458 research outputs found

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    High-Performance Concurrent Memory Allocation

    Get PDF
    Memory management takes a sequence of program-generated allocation/deallocation requests and attempts to satisfy them within a fixed-sized block of memory while minimizing the total amount of memory used. A general-purpose dynamic-allocation algorithm cannot anticipate future allocation requests so its output is rarely optimal. However, memory allocators do take advantage of regularities in allocation patterns for typical programs to produce excellent results, both in time and space (similar to LRU paging). In general, allocators use a number of similar techniques, each optimizing specific allocation patterns. Nevertheless, memory allocators are a series of compromises, occasionally with some static or dynamic tuning parameters to optimize specific program-request patterns. The goal of this thesis is to build a low-latency memory allocator for both kernel and user multi-threaded systems, which is competitive with the best current memory allocators, while extending the feature set of existing and new allocator routines. A new llheap memory-allocator is created that achieves all of these goals, while maintaining and managing sticky allocation properties for zero-filled and aligned allocations without a performance loss. Hence, it becomes possible to use @realloc@ frequently as a safe operation, rather than just occasionally, because it preserves sticky properties when enlarging storage requests. Furthermore, the ability to query sticky properties and information allows programmers to write safer programs, as it is possible to dynamically match allocation styles from unknown library routines that return allocations. The C allocation API is also extended with @resize@, advanced @realloc@, @aalloc@, @amemalign@, and @cmemalign@ so programmers do not make mistakes writing theses useful allocation operations. llheap is embedded into the uC++ and C-for-all runtime systems, both of which have user-level threading. The ability to use C-for-all's advanced type-system (and possibly C++'s too) to combine advanced memory operations into one allocation routine using named arguments shows how far the allocation API can be pushed, which increases safety and greatly simplifies programmer's use of dynamic allocation. The llheap allocator also provides comprehensive statistics for all allocation operations, which are invaluable in understanding and debugging a program's dynamic behaviour. No other memory allocator examined in the thesis provides such comprehensive statistics gathering. As well, llheap provides a debugging mode where allocations are checked with internal pre/post conditions and invariants. It is extremely useful, especially for students. While not as powerful as the @valgrind@ interpreter, a large number of allocations mistakes are detected. Finally, contention-free statistics gathering and debugging have a low enough cost to be used in production code. A micro-benchmark test-suite is started for comparing allocators, rather than relying on a suite of arbitrary programs. It has been an interesting challenge. These micro-benchmarks have adjustment knobs to simulate allocation patterns hard-coded into arbitrary test programs. Existing memory allocators, glibc, dlmalloc, hoard, jemalloc, ptmalloc3, rpmalloc, tbmalloc, and the new allocator llheap are all compared using the new micro-benchmark test-suite

    Persistent object stores

    Get PDF
    The design and development of a type secure persistent object store is presented as part of an architecture to support experiments in concurrency, transactions and distribution. The persistence abstraction hides the physical properties of data from the programs that manipulate it. Consequently, a persistent object store is required to be of unbounded size, infinitely fast and totally reliable. A range of architectural mechanisms that can be used to simulate these three features is presented. Based on a suitable selection of these mechanisms, two persistent object stores are presented. The first store is designed for use with the programming language PS-algol. Its design is evolved to yield a more flexible layered architecture. The layered architecture is designed to provide each distinct architectural mechanism as a separate architectural layer conforming to a specified interface. The motivation for this design is two-fold. Firstly, the particular choice of layers greatly simplifies the resulting implementation and secondly, the layered design can support experimental architecture implementations. Since each layer conforms to a specified interface, it is possible to experiment with the implementation of an individual layer without affecting the implementation of the remaining architectural layers. Thus, the layered architecture is a convenient vehicle for experimenting with the implementation of persistent object stores. An implementation of the layered architecture is presented together with an example of how it may be used to support a distributed system. Finally, the architecture's ability to support a variety of storage configurations is presented

    Data description and manipulation in persistent programming languages

    Get PDF

    Dataflow computers: a tutorial and survey

    Get PDF
    Journal ArticleThe demand for very high performance computer has encouraged some researchers in the computer science field to consider alternatives to the conventional notions of program and computer organization. The dataflow computer is one attempt to form a new collection of consistent systems ideas to improve both computer performance and to alleviate the software design problems induced by the construction of highly concurrent programs

    Feasibility study for the implementation of NASTRAN on the ILLIAC 4 parallel processor

    Get PDF
    The ILLIAC IV, a fourth generation multiprocessor using parallel processing hardware concepts, is operational at Moffett Field, California. Its capability to excel at matrix manipulation, makes the ILLIAC well suited for performing structural analyses using the finite element displacement method. The feasibility of modifying the NASTRAN (NASA structural analysis) computer program to make effective use of the ILLIAC IV was investigated. The characteristics are summarized of the ILLIAC and the ARPANET, a telecommunications network which spans the continent making the ILLIAC accessible to nearly all major industrial centers in the United States. Two distinct approaches are studied: retaining NASTRAN as it now operates on many of the host computers of the ARPANET to process the input and output while using the ILLIAC only for the major computational tasks, and installing NASTRAN to operate entirely in the ILLIAC environment. Though both alternatives offer similar and significant increases in computational speed over modern third generation processors, the full installation of NASTRAN on the ILLIAC is recommended. Specifications are presented for performing that task with manpower estimates and schedules to correspond
    • …
    corecore