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The demand for very high performance computers has encouraged 
some researchers in the computer science field to consider 
alternatives ,to the conventional notions of program and computer 
organization. The dataflow computer is one attempt to form a new 
collection of consistent systems ideas to improve both computer 
performance and to alleviate the software design problems induced by 

the construction of highly concurrent programs.

This report discusses both the dataflow computer concept in 

general, and specific dataflow computer designs and implementations in 

particular. Our intent is to introduce computer science professionals 
to the current results and terminology in the dataflow field. Serious 
readers should be able to acquire the knowledge necessary to 
assimilate and analyze in some depth, both recent and future research 
results. The subsections which follow describe the notion of dataflow 
programs and present some of the architectural features required to 
support these programs. The dataflow computer concept is then 
compared with the conventional von Neumann computer followed by a 
brief discussion of the disadvantages and benefits offered by the new 

model. Next, a survey of contemporary dataflow computer organizations 
is presented. Tne similarities and differences of these machines are 
discussed. Finally, a detailed case study of one particular dataflow 
computer is presented. Throughout the report, we have included 
references to recent work in ■ this field to help the reader find 
additional information on both the dataflow concept and ongoing 

research.

1. Introduction
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1.1 The Data-Driven Computing Model
Each machine system in existence can be thought of as being based 

on some computing model. The same can be said of hypothetical 
machines which exist only in a conceptual sense. Often such 
conceptual or "paper" machines are called computer architectures. The 
choice of the computing model fundamentally affects features in 
programming languages, operating systems, machines, and architectures. 

We present here a fundamental hypothesis about why the von Neumann 

systems ideas have been so successful: they are self-consistent. 
Self-consistent systems ideas provide a framework in which system 
sub-components are not in conflict vath each other. This results in 
more efficient system operation for the cost. In order to correct 
v.'hat are currently perceived as limitations in the von Neumann model, 
it is insufficient to modify only a single aspect of this traditional 

ser of ideas. A single modification may result in an inconsistent set 
of systems ideas. The inconsistency may cause tremendous additional 

complexity which will adversely affect both cost and performance.

In an attempt to find a new self-consistent set of systems ideas, 
a number of researchers have proposed the data-driven computing model. 
The basic idea behind a data-driven program is that activities should 
be initiated asynchronously by the arrival (or availability) of the 
necessary information required to perform that acrivitv. This 
data-driven model (also termed dataflow) is then in direct contrast 

with the von Neumann model which is control-driven,, in that some 
control mechanism (namely the clock and the program counter) specifies 

which actions will take place and when.

Figure 1-1 illustrates the operation of a data-driven program 
which computes the expression "a*b + c*d". At the machine language 
level, dataflow programs m.ay be conveniently represented as directed 
graphs. In the data-driven model, the nodes in the graph (called



cells) correspond to machine instructions which operate upon a 
sequence of operand tokens which flow to the cells along the arcs of 
the program graph. In the von Neumann computing model, the 
instructions cause the operand data to be fetched from memory to the 

processor; in the data-driven model, the data simply flows to the 
instructions cells. The arcs between cells can be viewed as FIFO 
storage pipes which queue the data items until the cell is ready to 
remove them for cell execution. When all the operands are present 
(each queue has transported a data item to the cell), the cell removes 
a data item from the head of each queue, computes the result, and 
passes the resulting data value along the output ere from the cell. 
Note that the expressions "a*b" and "c*d" may be computed 

concurrently. Due to the queueing behavior of the arcs, the "+" cell 
may also operate concurrently with the two cells provided that

sufficient data arrives to drive both the and cells. This
type of concurrent operationis commonly called pipelining.

Figure 1-1: Dataflow program for the expression "a*b + c*d"

Another interesting model for highly concurrent computation is 

the demand-driven model proposed by a number of other researchers
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[17, fi, 32, 9]. A brief description of the demand-driven model is 
presented here in order to acquaint the reader with some concepts 
related to data-driven programs, which will be expanded upon in the 
sequel. In .demand-driven programs some actions are initiated by 
data-driven rules and others are initiated by demands which are 
generated by other actions. Typically initial allocation of low level 
tasks is initiated by demand, and subsequent evaluation is performed 
in a data-driven manner. Using Figure 1-1 once again, we can describe 

the operation of the demand-driven model. Initially, a demand item 
arrives at the arc labelled "a*b + c*d" representing a need to compute 

the expression. Because the arcs from the cells to the "+" cell 
are empty (i.e., no data tokens are waiting) the " + " cell sends a 
demand token to both cells. Since data items are available at the 
inputs of the cells, they remove the incoming data items, compute 
their respective results, and send the resulting data items back to 
the "+" cell. The "+" cell senses that its demands have been met by 

the arrival of the data items on its inputs. The "+" function is 
performed and the result is sent over the arc "a*b + c*d" satisfying 

the initial demand on the program graph.

The following characteristics of the demand-driven model should 
be noted:

- Unlike the data-driven model, two types of information are 
carried over the program arcs: demand and data items.

- Demands flow back through, the graph while data items flow 
forward.

- Both demand and data items may be queued on the program 
arcs.

The principle advantage of the demand-driven model is the avoidance of 
unnecessary computation. In larger more complex dataflow programs with 
conditional selection of results (i.e., a dataflow version of 
" if-then-else" or "case" selection), the data-driven model w7ill 
evaluate all expressions for which data items are available, while the



5

demand-driven model will only evaluate expressions for which there is 
a demand or need. This is usually a subset of the data-driven 
expressions. In either model, a computation utilizes some physical 
resource. Hence, a program running under the demand-driven model 
should use less physical resources than its counterpart executing 
under the data-driven rules. A demand-driven program, however, incurs 

higher communication costs because demand items must be transmitted 

around the graph in addition to data items. The seriousness of these 

costs are usually cited as the primary reasons for choosing the 
dataflow (data-driven) model over the demand-driven model. A 
data-driven program may be viewed semantically as a demand-driven 
program in which a demand always exists at the output ports of the 
program cells. ■

All three computing models (von Neumann, data-driven and 
demand-driven) have their advantages and disadvantages. We 

concentrate here on an in-depth presentation of data-driven languages 
and machines. Due to the research nature of the data-driven field, 
the vocabulary and terminology has not yet standardized. We will 
therefore attempt to indicate synonyms wherever possible. The 
following section introduces additional terminology relevant to 
data-driven computing formalizing some of the concepts discussed 

above. It may be skipped by the casual reader.

1.2 A More Formal View of Data-Driven Computing
There are a number of ways to conceptualize the data-driven 

program model. Ihe most commonly used and perhaps the easiest method, 
is to view a data-driven program as a directed graph. The vertices 
(also called nodes or cells) correspond to actions which are performed 
in the program. The directed arcs correspond to data paths over which 
information is transmitted from the producer of the information to the 
consumer. The information is carried in quantum units which can be



«

6

thought of as messages. In a message passing environment, the 
directed arcs lead from the sender to the receiver. A node of a 
program graph may have any number of arcs. The actual number of arcs 
for any specific node will depend on the type of action associated 
with that node.

There are usually no restrictions on the operation of an arc 
which specifies the number or the type of messages which the arc can 

carry. If more than one message (also referred to as token, data 
item, data token, or packet) exists on an arc then the arc logically 
operates, as a FIFO (first-in first-out) storage device. These arcs 
(queues) conceptually have infinite length. This notion of infinite 

length queues should make most pragmatists quite nervous. It will be 
shown in section 3A  that this notion of infinity is a nice conceptual 
device, and does not necessarily present operational difficulties. 
The lack of a type restriction on messages implies that a message can 
be almost any data structure (e.g. literal, integer, vector, program, 
etc.)

Tnere are two aspects of data-driven cells which are important in 

understanding how actions take place in program graphs.

1. What activity takes place? This is specified by a cell 
function. Each cell in a program graph has a specific cell 
f'unction associated with it. The method by which the cell 
function is specified varies from one data-driven language 
to another. Typically it is a combination of a graphical 
shape and a tag or name associated with the cell.

2. When does the activity take place? This is specified by the 
firing rule. Each cell has an associated firing rule. The 
firing rule specifies which set of input arcs must contain 
at least one message before the cell function can be 
performed. This set is called the firing set.

When the firing rule of a cell is satisfied then that cell is 
said to be fireable. The data-driven model is an asynchronous one, 
and therefore a fireable cell is executed (fires) at some finite (but 
undetermined) time after it becomes fireable. Wnen a cell fires, the
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firing set data items are destroyed, and a set of resultant data items 
are placed on the output paths. The order in which the output data 
items appear on the output paths is unknown. The tine at which the 
outputs appear after a cell fires is finite but unspecified, and no 
assumption can be made about the order or the relation between the 
times at which the output items appear. This implies that cell 
behavior is completely asynchronous, end this is essential to a schema 
which is to be easily implemented in a distributed control 

environment. A cell is said to have fired only after all of the 
firing set data items have been removed and all output data items have 
been placed on the output paths.

An example of a cell firing is shown in Figure 1-2, where a cell 
performs a simple integer addition. In this case, the firing set is 
the set of all input data paths. The result of firing this cell would 
be: all output paths receive the sum of the input path items.

(8) (8) (8) 

f t  
cell after firing

Figure 1-2: A Sample Cell Firing

In the case where all of the input arcs contain more than a 

single message, the cell may remain fireable. In this case, the cell 
may continue to fire as long as the input paths (pipes) can supply the 
cell with input data at a sufficient rate. This type of operation is 
caled pipelined execution, and is illustrated in Figure 1-3.

(2)

cell is 
fireable

cell before firing cell fires
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cell is 
fireable

(6)

cell before firing

cell is still
fireable (2> . 

(4) ''

(6)

(7)
(4)

cell fires cell after firing

Figure 1-3: Pipelined Execution

There has been considerable discussion in recent literature 

concerning the benefits of functional programs [7, 17, 31]. 
Functional programs do not use the von Neumann global variable 
(storage location) concept. This allows dcta to be used as a value 
rather than as a storage location. This also implies that the nets 
are not history dependent (i. e. they are "nemoryless"). This storage 
management discipline removes side-effects, which have proven to be 
very difficult to deal with in the formal verification of programs. 
Programs in which the order of statement execution is not strictly 

dependent on the lexical ordering of the statements in the program, 
but where the order is dependent upon functional relationships are 

called nonprocedural languages. The semantics of a nonprocedural 
program' can be described in denotational terms rather than in an 
operational sense. "Denotational semantics" can considerably simplify 
the task of program verification. The von Neumann program model 
tightly binds the notion of physical location of program and data 
elements with the execution of program elements and the use of data 
elements. Functional languages break the tight binding for data, and 
nonprocedural languages break the binding for program elements. 
Data-driven programs are inherently functional and nonprocedural.
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Data-driven programs also naturally represent two forms of 
concurrency. The only sequencing rule for a data-driven program is 

that of data dependency. That is, if cell B depends on cell A for 
data (i.e. a directed path exists from cell A to cell B) then A and B 
are sequenced, and B follows A. If A does not depend on B for data 
(and vice versa) then A and B are independent activities and can 
therefore be executed in parallel. This type of parallelism is often 
called horizontal or spatial concurrency. Two spatially concurrent 

activities may be distributed to two distinct points in space, where 
each point is capable of independent execution. The other form of 

concurrency is pipelining (vertical or temporal) concurrency. Tne 
caca-criven program illustrated in Figure 1-4 represents both types of 
concurrency. ■ "

In Figure 1-4, notice that at time t2, both cell B and cell C are 
fireable. They ere spatially concurrent. Cells A, B, and C are all 
fireable at time tl even though for a given message, B and C follow 
A. The value produced by A between time to and tl can be consumed 

after time tl by B and/or C. After time tl, cell A is still fireable 
and can therefore be evaluated concurrently with B and C. This is due 

to the pipelined execution which is possible for data-driven programs. 
In order for B and C to both use results from A, two distinct copies 
cf 7.'s result values need to be produced. One copy is sent to cell B, 
and the other is sent to cell C. If A's result were to be stored in 

some single physical location and then addressed by B and C, then some 
''hidden" sequencing may result from storage access conflict. It is 

possible to construct multiport storage units, but this would not help 
when the same cell is accessed by multiple tasks asynchronously.

There are a number of data-driven languages (schemas) in 
existence. Many of these schemas have been used only as models for 
thematic development. Three of them are currently being used as a
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Figure 1-4: Two Types of Concurrency 

h=sis for serious system development. These are:

1. DDF, Dermis Data Flow, a graph schema developed by J. B. 
Dennis [13] at MIT. This schema is the most widely known 
and is used as a starting point for research work being 
carried out at MIT, Manchester University, U. Cal. Irvine, 
and Towa State University.

2. DDN's (Data-Driven Nets), a graph schema developed by A. L. 
Davis. Tms scnema is used as the base language for 
research being done at the University of Utah, the 
Novosibirsk Computing Center, and Burroughs Corporation.

3. Another data-driven representation is being used at 
Toulouse University in the development of a prototype 
computing system.
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A detailed description of all of these variants would be out of place 
here, and we therefore will restrict our presentation to a conceptual 
discussion of the data-driven cor.puting model, and a later description 
in section 3.4 of one particular schema.

1.3 Structural Concepts of Dataflow Architecture
The preceding section presented the dataflow computer concept 

from the programmer's perspective. This section discusses at an 

abstract level the kind of machine structure required to support the 
data-driven programming environment. Four major elements are necessary 
to support date-driven computation:

- instruction and data store,

- processing elements, i

- communication links (possibly non-triviel) between the 
stores and the processing elements, and

- control (including the allocation of logical program 
structures to physical resources).

1.3.1 Instruction and Data Store
As in conventional von’ Neumann computers, a store must be 

provided to maintain instructions (program graph) and data (tokens). 
Each cell in a machine language program graph represents a single 

instruction. This instruction must contain the name(s) or address(es) 
of the destination(s) for the data tokens which the instruction will 
produce for eventual distribution of results. Similarly, data tokens 
contain the name of their destination so that the communications 
element of the architecture can properly route the tokens to their 
destination instruction.

Two approaches may be taken for data token storage: they may 

either be stored separately in their own memory unit, or the tokens 
may be stored with the instructions. If stored in a separate memory, 

the job of finding fireable instructions is more difficult because the
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information necessary to determine whether the firing set of the 
instruction has been satisfied or not may be physically distributed 
throughout the token memory. Furthermore, information describing the 
traversal order of the tokens along an arc must be maintained. 
Separate storage tends to make the storage management task easier 
because only one type of structure needs to be allocated from the 
memory pool. If data tokens are stored with the instructions, it is 
much easier to find fireable instructions. However, the management of 

space in the store becomes more difficult because:

- two types of storage element must be allocated from the same 
physical memory,

- tokens must be maintained on some sort of list to simulate 
the queueing behavior of the program arcs.

1.3.2 Processing Elements
To take maximum advantage of the concurrent nature of data-driven 

programs, more than one processing unit should be provided. These 
units may be specialized for performing certain functions (e.g., 

integer or floating point arithmetic) or homogeneous, performing all 
possible cell functions. Instructions are routed from the instruction 
store to the processing units with their operands. If special purpose 
processing units are employed, the communication network must route 
instructions to the particular processor which is capable of executing 
them. If general purpose processors are used, instructions may be sent 

to any available processing unit. In either case, the instruction 
contains a field indicating the operation to be invoked by the 

instruction.
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1.3.3 Comnunications .
The communications component of a dataflow computer is 

responsible for binding together the different functional elements of 
the computer._ Communication is normally asynchronous (reflecting the 

asynchronous nature of dataflow programs) between units permitting the 

different subsystems to operate concurrently and independently of each 
other. Synchrony also serves the expandability requirements of the 
system because synchronous signals (which are sensitive to skew over 
long physical distances) are not required. Hence, modules may be added 
somewhat more easily.

When token or instruction routing is required, the communications 

component switches the tokens and instructions along the appropriate 
physical data path to the locus of their logical destination.

1.3.4 Control and Resource Allocation
The control portion of the dataflow processor is responsible for 

deciding which instructions are fireable and for initiating their 
execution. It must also find and utilize the available processing 
resources. Due to the distributed control nature of most dataflow 
processors, locating and exploiting available resources is a difficult 
problem due to the lack of global knowledge about the system state.

1.4 A Brief History of Data-Driven and Related Efforts
Work in the data-driven area is still in the research stage. The 

history' of efforts in this area is difficult to relate, as the 
data-driven model resembles other directed graph schemas, most notably 
Petri Nets [36]. A number of true data-driven projects are probably 
unknown to the authors due to their research or proprietary nature. 
No technical purpose would be served in cataloging every known effort. 

We therefore present a brief history of major public developments in 
the data-driven field.

There is considerable debate concerning the identity of the



inventor of the data-driven computation model. . It seems most likely 
that it was discovered in several independent incarnations. In 1964, 
Eshrs delivered a lecture at the Novosibirsk Computing Center on the 
topic of "Operation Patterns" [8]. Operation patterns ere definitely 
a type of data-driven schema. A seminar paper discussing the 
properties of concurrent programs in a theoretical context was 
presented by Karp and Miller in 1966 [28]. Although the model 
employed in this work is not strictly data-driven, it demonstrated the 
suitability of graphs as a formal tool for the analysis of parallel 
computation. The first major thesis on dataflow ideas was published 

in 1568 by Adams at Stanford [1] . At MIT, Rodriguez completed his 
thesis on dataflow concepts in 1967, although the thesis was not 
published as a report until 1969 [27]. Dennis described a dataflow 
computation model in 1969 [25] . This work by Dennis evolved into a 

rather large (by academic standards) research effort by the 
"Computation Structures Group" at MIT. This group has been active 
since that time and is extremely prolific. The most important of the 
MIT publications are:

- A description of the DDF schema [13].

- A description of the MIT architecture [26].

- A description of a high-level dataflow based programming 
language [42].

Another important data-driven research project is underway at the 
University of California at Irvine. This effort received its seed in 
the work of Dennis at MIT. The principal founders of the UCI effort 

are Professors Arvind and Gostelow. They subsequently developed an 
architecture [2] and a high-level language [24] using a base 
representation derived from DDF. Their group then revised their 
architecture and built simulation tools which were subsequently used 

to produce program measurements [19] .
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A serious system building project is underway in France at 
Toulouse University. This project is developing what is known as 
Systeme LAU [29] . This work includes the design of a programming 
language and the design and construction of a prototype multiprocessor 
system. Completion of the hardware is expected in late 1979. The 
French efforts have been guided by the work of Tesler and Enea on 

single assignment languages. The Toulouse effort also received early 

motivation by the work of Dennis at MIT. " ' " ’

Another project started with the doctoral thesis of Davis [5] 
which proposed both a language and a supporting architecture in 1972.
In the next 5 years, these ideas were refined under the support of the 
Burroughs Corporation. This led to the design cf a base language [4] 
and the construction of a prototype machine [3] which became 
operational in 1976. A description cf the base language and a 
detailed case study of this machine will be presented in section 3.

In 1977, a number of Universities in England were stimulated by 
funding from the British Science Research Council to undertake 
research efforts in the area of data-driven computation. These 
include projects at Manchester University [21] , Newcastle University, 
ar.c ’Westfield College. The .Manchester crcup have a hardware prototype 
of their machine under construction at this time.

A number of other {mostly academic) projects are involved to some 
extent with data-driven computation. Due either to the unpublished 

nature of this work, or the "youth" of the projects, they will simply 
be listed here as sites of effort:

- Iowa State University

- Xerox PARC

- Texas Instruments

- Clarkson College
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- University of Southwest Louisiana

- Purcue University

- University of Kansas
In addition, 'there has been considerable recent interest in Japan, 

primarily at the University of Tokyo, Hitachi and Fujitsu 
laboratories. .

The data-driven computational model has a number of ties to 

better established lines of theory. In particular, formal graphical 
network properties proven by Petri [36], Holt and Commoner [23], and 

ether Petri net workers [16, 22, 35, 11] play an important role as a 

theoretical fcur.daiicn fcr much of the work in the data-driven area. 
It has already been mentioned that data-driven programs are both 
functional and non-procedural, and as such are related to more general 

work in these two areas of programming language and program 
verification research. Since the data-driven computing model is 
primarily a model for highly concurrent, distributed control systems; 
the work is further influenced by other work on parallel processing.

1.5 Observations About Data-Driven Computing

1.5.1 Comparison with the von Neumann Organization
In 1945, John von Neumann described the organization for a 

computing device which has become the most prevalent computer 
architecture (with few exceptions). The pure von Neumann computer has 
a single processing unit which is connected to the primary memory unit 
through a set of parallel information paths which exchange control 
signals, addresses, and data between the two units. We shall call this 

collection of information paths the processor to memory channel, or 
simply, the channel. The channel operates in a sequential fashion,
i.e., the protocol which the processor and memory use to control the 
exchange of information is a sequential one. Information is exchanged 
between the processor and memory by changing the state of the control
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ignals and passing an address from the processor to the memory unit, 
n the case of a memory read operation (as specified by the control 
ignals) a data word is retrieved from the memory and transferred to 
he processor. If a write operation is selected, the data word is 
ent from the processor to the memory. Other features of the von 
eumann computer are:

- They contain a single centrally clocked processor.

- The processor executes a single instruction in step with the 
clock. .

- The processor is the system master and plays the role of a 
control and communications center for the entire system.

- Storage is organized as a linear a r r a y  of basic units called 
words.

- The processor accesses memory by specifying the physical 
position (address) of some word in the linear array.

----address—
Processor ■«t-- data Memory

— control—

Figure 1-5: Simple von Neumann computer organization

It is true that many modern computers exhibit some features which 
re not typical of the von Neumann computer, for example:

- The Burroughs B5500, B6800, B7700 machines are based upon 
stack addressable storage rather than, linearly addressed 
memory. ■

- The Burroughs B1800 does not have a fixed logical word 
length.

- Tne IBM360 and 370 series have special I/O processors called 
channels which can act independently of the rain processor 
in performing certain operations.

- The Honeywell 6050 has a number of peripheral I/O processors 
which specifically handle I/O tasks.

- The CDC6600 and the CRAY-1 contain a number of arithmetic
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processors which perform high speed arithmetic functions as
requested by a separate control processor. r

ch of these systems has departed in some significant way from the
I

n Neumann organization. However, program and data access remains 
imsrily sequential making the temper of these machines von Neumann

nature. :

Five major differences exist between the von Neumann computing 
del and the data-driven model. They are:

1. Von Neumann programs are strictly sequential; sequencing in 
a data-driven program is determined wholly by the data 
dependencies inherent in the solution of the problem. -

2. Data-driven programs permit greater freedom to exploit the
potential concurrency in a given program. '

3. The co-ordination of parallel processes is directly 
supported by the data-driven execution model, i.e., through 
the firing set rules. The strict sequencing in von Neumann 
programs 'is conceptually incompatible with the processing 
cf asynchronous events.

A. The structure of dataflow programs and computers admit to 
decentralization because the constituent subsystems 
communicate asvnchronously, eliminating lock step operation 
with a central system clock. ,

5. The von Neumann architecture is viable with respect to the 
implementation technology of the fifties and sixties.
Dataflow ideas are oriented toward system implementation in 
very large scale integration (VLSI), the implementation 
technology of the future.

e subsections which follow discuss and attempt to justify each of
ese differences.

£.2 Differences in Programming Style
To illustrate the differences in programming style between von 

umann programs and dataflow programs, figure 1-6 contains a von 
umann program equivalent to the dataflow. program of figure 1-1. 
te that the von Neumann program is rigidly secuenced, i.e. the 

struct ions must be executed in sequence from top to bottom for the 
ogram to be meaningful and execute correctly.Memory cells are
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move a, reaister-0
multiply b, register-0
move c, reaister-1
multiply register-0, register-1
move register-1, destination-aadress

igure 1-6: von Neumann Style Program for the Expression "a*b + c*d" 
plicitlv referenced via the addresses "a", "b", and "c". The 
ccessor resident registers, "reqister-O" and "register-1", are 
ployed as high speed scratch-pad storage cells to avoid the higher 

ansfer cost of repeatedly moving information across the channel from 
e memory to the processor where it can be acted upon and 

?nsformed. The dataflow program does net employ memory cells for 
crage and does not require the use of explicit addresses; the memory 
implicitly embedded in the storage semantics of the program arcs. 

2 cr.ly sequencing demands made upon the dataflow program is that the 
citicn must be performed after the two multiplication operations, 
e multiplication operations may be performed in parallel if 
fficient processing resources are available.

5.3 Exploitation of Concurrency
As the computing field progressed and the solutions of larger 

cblems were attempted through the use of computers, system 
chitects attempted to improve the performance of the von Neumann 
ganization through various methods. The speed of access to stored 
formation was improved through the use of cache memories, for 
ample. Direct transfer paths were placed in the system to move data 
cm input/output devices to the memory, rather than forcing all 

ternal data transfers through the processing unit. Processors were 

ternally pipelined to overlap the fetching and execution of 

structions. These improvements, however, did not change the 
nceptual nature of the computer - that of sequential data access and 
ocram execution. -
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The use of cache memories and pipelined instruction processors 
increase the exploitation of concurrency within a von Neumann program 
to a limited extent. Through instruction pipelining, more than one 
program instruction may be under execution at any given time by 
buffering successive levels of combinatorial logic with memory 
elements (e.g., registers). The maximum number of instructions which 

ray be under simultaneous execution, is determined by the number of 
stages in the pipeline. The operation of the pipeline is disrupted

by: .

- instructions which divert the flow of program control (e.g., 
cote's), and

- instructions v.’hich rust read the information stored in 
memory cells or registers whose contents have not yet been 
computed and stored by a more advanced stage in the 
processor pipeline.
iisruptions are both artifacts of the explicit sequencing and 

memory cell features of the von Neumann computer. Because data-driven 
programs do not use memory cells and sequencing is only determined by 
the relative position of the function nodes in the directed program 
graph, additional instruction and program level concurrency may be 
exploited, provided that the physical processing resources are 
available within the dataflow computer to concurrently execute the 
instruction nodes.

1.5.4 Co-ordination of Parallel Processing
The construction of multiple processor systems was intended to 

further improve machine performance by interconnecting a number of 
processor-channel-memory elements into a network of interacting 
computing systems. Large problems are separated into pieces which can 
be managed by the individual computers. The programs must co-ordinate 
their access to shared data in order to correctly perform the 
aggregate task. Because the computing elements are based upon the von 
Neumann computing model, program execution end data transmission is



performed sequentially between processors and memory. Although 
nultiprocessor systems significantly increased the problem solving 
power of modern computing, the mixture of explicit sequencing within 
programs and asynchronous system level behavior remains a problem, as 

the following discussion illustrates.

Programs (or portions of a program) which are executed in 
parallel and share information in some way must be co-crdinated to 
guarantee that the information used in any particular computation has 
in fact been completely defined before its use, i.e. that the 
computation is deterministic [10]. With the introduction of 
asynchronous input/output channels in about 1955, programmers were 

confronted for the first time with the synchronization problem; how to 
synchronize the operation of two or more devices and processors such 
that each works at maximum speed, but periodically communicates and 
shares results. The hardware interrupt was the first (and for quite 
some time, the last) mechanism proposed to assist processor and device 
synchronization. As a theory of operating systems developed, it 
became clear that the interrupt was incompatible with the modern 
notion of process structure causing a conceptual mismatch between 

software processes, the operating system, and the interrupt mechanism 
of the hardware. The hardware "wish list" of an operating system 

designer usually contains an entry requesting the virtualization of 
the device hardware to that of the process structure intended for the 

machine. -

The data-driven execution model conveniently provides a mechanism 
whereby concurrently executing portions of a dataflow program can 

co-orcinate processing. In figure 1-7, the result of the entire 

program cannot be formed until both the upper right and upper left 

subgraphs have produced their data tokens. One might anticipate that 
part of the inputs to the subnetworks could be obtained from a file or

21
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device. Hence, the program quite naturally and conveniently suspends 
execution until the file or device data arrives. Elaborate changes in 
physical and logical context are- not necessitated as in interrupt 
based systems.

Figure 1-7: Co-ordination of Subnetworks

1.5.5 Decentralization and Buildability
In addition to performance improvements, computer users need 

increased computer reliability for large applications such as 
telemetry, anesthesiology, information services, etc. Requirements 
for higher reliability have placed greater emphasis on software 

correctness. The von Neumann memory cell is hard to characterize 
mathematically, making formal verification of programs for those 
machines quite difficult [41]. Although some good verification 
techniques have evolved for sequential programs expressed in higher 
level programming languages, the proof of correctness for parallel 
programs remains a hard problem. For computer applications which 
include information privacy as a required capability, the lack of
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elegant, formal machine properties further inhibits the mathematical 
proof of programs with high reliability as a goal [14] .

Current multiprocessor architectures encourage software designers 

to perceive the system in terns of global state information, rather 
than more localized and less complex computational abstractions. The 

notion of global system state runs against the human inclination to 
parcel problems into smaller, more manageable units. Without the 

ability to decompose and abstract problems, our ability to deal with 
complexity and to make convincing mathematical statements about 
systems is limited.

Centralization impacts the buildabilitv of systems, let alone the 
ability to understand them. Centralized systems use a common clock 

which must be distributed to system components. As the physical size 
of centralized ■ multiprocessors increase, signal propagation times 
become longer unless the multiprocessor can be packaged in a novel way 
which reduces the length of the clock transmission paths, e.g. the 
CRAY-1. Longer propagation times result in slower execution speeds. 
Inventive packaging has its physical limits and often reduces the 
physical and logical expandability of the system. Central bus 
architectures suffer from similar signal distribution problems. 

Hence, the key to expansion, performance improvement, and 
comprehensibility may be decentralization and asynchronous operation.

1.5.6 Impact of Implementation Technology
A computer architecture depends heavily upon the technology 

available to build it. At the time that von Neumann proposed his 
computer organization, computers were constructed with vacuum tubes 
and the hardware was very expensive. During the 1960's and early 70*s 

circuit technology progressed from discrete transistor circuits to 
integrated circuit technology and dramatically reduced hardware costs. 

The prevalent computer architecture of our time is therefore based



upon a set of design principles v;hich are presently invalid. Most 
notable of the obsolete principles is the one that states, "Hardware 
is expensive; software is cheap." The nove toward very larce scale 
integration (VLSI) circuit techniques has again drastically changed 
computer design rules. Highly integrated von Neumann processors with 
minicomputer capabilities (e.g., word length, speed, address space, 
etc.) are commercially available at a reasonable cost. Because a 
fully integrated dataflow processor has not yet been developed, it is 

too soon to tell whether machines based upon the dataflow model can 
fully utilize (and avoid the pitfalls of) VLSI implementation. The 

results presented in the following section, however, ere encouraging 
and show that the exploitation of the VLSI technology is possible and 
it is not incompatible with the model.

1.5.7 Tne Impact of VLSI

The advantages of high density integrated circuit technology are 
so overwhelming that the constraints of VLSI must be considered as a 
primary force on future architectures. A detailed analysis of these 
effects is beyond the scope of this paper, but the global influences 
are summarized here.

Modern integrated devices are primarily built from either 
junction transistors (bipolar integrated circuits) or from 
field-effect transistors (metal oxide semiconductor or MOS integrated 
circuits). Due to the tremendous commercial emphasis that is 

currently being placed on MCS VLSI, the following discussion will 
mainly be concerned with' the properties of MCS device integration. 

The qualitative aspects of the following argument applies to bipolar 
devices but the numbers would be somewhat different.

The most highly publicized VLSI benefits are these involving 
cost. A single custom VLSI chip (64 pin package) currently costs 
about $80,000 to $300,000 to produce. Even then, production typically
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must be guaranteed for about a quarter of a million parts at an 
additional cost of $7 to S10 per part. This clearly indicates that 
VLSI cost advantages can be obtained only if any given chip can be 
used in very large volames. If a part does not have universal appeal, 
then the use of such a part in a new architecture brings about a 
number of high pressure constraints. Either the part must be used a 
large number of times in a single system, or a single system must have 

a very high sales volume, or some combination of the two. The number 

of part types in a given system is also a major concern in that it 
becomes a multiplicative factor in the system development cost. _ .

Another factor heavily influenced by a VLSI implementation is 
speed. The dominant speed factor for integrated circuits is the 
amount of delay which is incurred whenever a transistor tries to drive 

a signal level onto a conducting path. The size of this delay is 
proportional to the amount of capacitance which the signal path 

contains. The amount of effective capacitance which is attributed to 
any output is often called the load of that output. Typical off chip 
loads are on the order of 100 picofarads, while on chip loads are 
approximately one picofarad. Since delay times are proportional to 
the capacitive load (for constant output current from the driving 
transistor), this implies that signals which can remain on the chip 

will be driven about 2 orders of magnitude faster than those which 
must be driven to destinations off the chip. Additional speed-up can 

be obtained from the decreased- geometries of the switching elements 
and the conductor path lengths on an integrated circuit chip. This is 
a very strong argument for architectures which attempt to maximize 
locality of processing. For architectures in which activity cannot be 
done at the same physical locus, massive o'ff chip delays must be 
incurred as a result. The only way around the slow off chip drive 
problem is to drive more current off the chip. Tnis requires a series 

of relatively large output drivers (implemented using physically large
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transistors), which are very costly in terms of chip area and chip 
power consumption. As the integrated circuit technology advances and 

the size of individual circuit conponents is decreased, this disparity 
between on and off chip capacitances will increase. In addition, 

locality will reduce the amount of contention for a given system 
transmission path. This contention is important in a highly parallel - 
system in that the resultant sequencing due to transmission conflict 
will yield reduced system efficiency.

Tne number of pins is an important VLSI metric. The pin count is 

a primary factor in determining whether a given system module is 
nicely implementable as a VLSI circuit. Techniques to decrease 

physical pin count, such as time division multiplexing, are applicable 
in certain situations, but cannot be considered a general solution. 
If chip types are used in sufficient quantities to amortize the 
initial layout cost, then the physical cost to manufacture the system 

becomes approximately linear with pin count. Increasing the number of 
pins on a particular chip causes decreased yield due to bonding 

problems. Increased pin count implies that even more silicon area 
must be allocated to connection pads and pin drivers.

A VLSI implementation also yields the more commonly discussed 

advantages such as:

- Increased system reliability due to reduced part count,

- Decreased power consumption since voltages on a given chip 
scale with physical feature size, and

- Decreased system maintenance cost as chip replacement 
policies become more effective in highly integrated systems.

Tne extent to which these VLSI advantages can be realized is 
proportional to the logic/pin ratio of the proposed system modules. 

If the logic/pin ratio is relatively small then the situation is very 
much that of an SSI (small scale integration) machine. If the



* 27

logic/pin ratio is very high then true VLSI advantages can be 
obtained. This is a challenge to computer architects to devise 
systems which can be modularized into high complexity nodules which 
communicate with their environment using relatively few signals. 
Furthermore as integration technology advances causing feature sizes 
to shrink even more, these new architectures must remain viable.

1.5.8 Benefits of the New Model

The asynchronous nature of data-driven programs makes them 
inherently easier to contend with in a system sense. Each elementary 
action can be considered independently of absolute time. Only the 
sequence cf the actions is important. This eases the task cf program 
verification and the task of resource allocation (section 3.7). The 
sice-effect free and distributed treatment of storage also aids in 
verification and decreases the "hidden sequencing" which results from 
access conflicts to centralized storage. Distributed storage is 
physically advantageous for modern components in the following way:

- When ferromagnetic cores and vacuum tubes were used as 
storage components for main memory, there was an electrical 
advantage for centralization. Logic and memory voltage 
levels were very different and centralization of the storage 
elements allowed special purpose power supplies and level 
conversion circuits to be shared, thus reducing system cost. 
Today, main memory elements are fabricated from the same 
components as logic, thereby removing the former advantage 
cf central main storage.

- The larger address space of centralized stores increases 
access time. This results from the delay of the address 
decoding logic growing approximately logarithmically with 
the size of the address space.

- Physically distributed storage can be used as a method to 
reduce the performance killing "von Neumann bottleneck" 
described by Backus [7] . This bottleneck is the apparent 
slowness of the storage unit of von Neumann systems, which 
results from sequential storage accesses through a single 
memory port.

Data-Driven programs are more intuitive and natural as a means of 
program expression. The main reason for this is that in von Neumann
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- The programmer nust order the placement of every statement 
in a program even if the sequence is not implied by the 
problem. While this may not be much of a problem to the 
programmer, it can become a major problem when reading that 
program.' Sequence usually IS important, so how is the 
reader to know that in some cases it is of no consequence.

- Wnen writing or reading a von Neumann program, a person 
needs to analyze the program in two conceptual domains: data 
and control. That is, the person needs to be conscious of 
the set of variable values, while tracing the path of the 
program counter through a veritable maze of program 
statements.

Data-driven programs do not contain unnecessary (and therefore 
unnatural) sequencing, global variables, or program counter concepts. 
Data-driven programs can be constructed and analysed by considering 

c.nly one domain at a time, and each domain acts only on the basis of 
local influence.

Data-driven programs allow two types of concurrency to be 
represented in a single consistent framework. Whether or not this 
concurrency can actually be executed depends both on the supporting 
architecture and the amount of physical resources in any particular 
instantiation of that architecture. Fortunately the data-driven 

computation model frees the architect from a number of serious 
constraints imposed by the von Neumann model. There is not much 

consensus among dataflow architects as to what the best architecture 
should be. A survey of existing architectural ideas is given in 
section 2, and a detailed case study of a particular machine is 
presented in section 3 .

programs:
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1.5.9 Problems with the New Model .
The biggest problem with any new computing model is that after 30 

years, there is a massive von Neumann momentum. Algorithms and 
programming practice have been developed on the basis of large 
centralized chunks of storage. A major symptom of this attitude is 
the tremendous influence of data-bases and their applications. 
Data-bases are very large global stores, and present many operational 
difficulties in environments where concurrent accesses are allowed. 

The re-discovery of good algorithms for important problems, the 
retraining of more than a million professional people, the 
re-acquisition of 30 years worth of intuition and experience all 
combine to limit the acceptance of any new model. For example, it 
would currently be ludicrous for any manufacturer to market a machine 
which did not run FORTRAN, COBOL, PASCAL, etc. Furthermore, most 
computer buyers want a new machine to run these languages at least as 
well as their present systems.

In designing data-driven systems, our intuition can not be of 

much help as it is mostly based on a traditional style of computing. 
The inherent "copy, use, and destroy" policy for information in 

data-driven systems may prove to be in direct conflict with important 
"institutions" such as the Infernal Revenue Service database. It is 
indeed a certainty that the computing community will not rewrite all 
existing software, and generate new data bases to accommodate a new 

computational model.

The promise is that the current limits to growth which are 
imposed by the von Neumann model will be relieved. It is also hoped 

that some way will be found to acceptably accommodate von Neumann 
artifacts into the newer model in order to avoid the reconversion of 
30 years of work. Whether or not these promises can be met will 
depend upon:
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- V-tiether architects can find an acceptable machine 
organization.

- Voether language designers can produce acceptable 
programming environments.

- Vhether operating systems and other system services will be 
found to make the new environment as usable as traditional 
ones. .

The rest of this report is devoted to an exposition of some of the 

attempts to solve these hard problems.
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This section describes some of the existing dsts-criven computer 
architectures. To appreciate the similarities and differences of 
these machines, some architectural evaluation criteria must be 
established. Dataflow computers, like von Neumann machines, may be 
compared on the basis of two broad categories: functional (logical or 
behavioral) and structural criteria.

Tne functional characterization of a computer is a description of 
its behavior as perceived by the programmer. In the case of dataflow 
computers, logical attributes of these machines include:

- the basic execution model,

- the primitive data structures supported by the machine, and

- the operations upon instances of those structures.
This level of description is analogous to a discussion of instruction 
sets, words, bytes, and addressing modes for a von Neumann computer. 
Indeed, the execution model corresponds to a specification of the 
execution . "cycle" of the machine; data structures for the 

representation of integers, reals, characters, etc.; and machine 
operations for instructions and addressing.

A structural description of an architecture indicates how the

machine is to be physically organized at a high level. Some 
structural criteria include:

- the structural and logical relationship of processors to 
storage,

- processor organization and capabilities, and

- storage organization and management.
The structural description of a machine is the first indication of how 
the system architects intend to implement the functional capabilities 
described in the behavioral specification of the computer. The 

interplay between the operational behavior of programs on the machine

2. Survey of Existing Architectures
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and the actual machine structure will largely determine the 
computational performance of the computer. Figure 2-1 refines the 
general evaluation criteria presented above and may act as a handy 
reference guide to the description terminology used in the following 
survey. An evaluation table of this type will be presented for each 
machine discussed in this section. It is hoped that a consistent table 
format will allow for a more coherent understanding of the differences 
between the various architectures.

Execution model: data or demand-driven, variance in firing
rules.

Primitive data types: information units such as integers, float
ing point, characters, etc.

ITrta structures: vectors, arrays, lists, plexes, etc.
tructure operators: information access mechanism, 
ata operators: information transformations.

. rocessor organization: functional complexity, grain (size), speed, 
• special vs. general purpose.

Storage organization: address structure, space management, loca
tion of manager.

Processor/store comm: physical distance, communication protocol.
Extensibility: possible or not.
State of implementation:self explanatory.

Figure 2-1: yachine evaluation criteria
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2.1 MIT
The MIT dataflow project has the longest history of the existing 

data-driven computer efforts. The MIT effort has been most heavily 
influenced by the early theoretical work of Scott [38]. The MIT group 

has croocsed four machine forms: '

- form 1

- form 2

- form 3

- form 4

Special purpose computer for signal processing, 

Extension of form 1 to include data structures, 

Large store version of forms 1 and 2,

Full service time-sharing system.
Each machine form represents a significant increase in performance,

usability, and complexity. To eventually reach form 4, the MIT 
project is investigating user programming languages, developing the 

organization of a form 2 machine, and constructing a prototype of the 
fcrr. 1 signal processing machine [26, 33, 34].

The machine language of the MIT dataflow computer is the DDF 
cata-criven program schema. These Dennis Dataflow Nets [DDF] are best 
thought of .as directed graphs. The nodes of the program graph are of 
two kinds: actors and links. Actors accept a set of operands on 
incoming links, then fire and compute a result which is placed on an 
outgoing link. Two types of links are provided: data links which 
conduct data tokens and boolean links which carry control information. 

In addition to directing the flow of data, links are explicit copy 
sites where tokens may be copied and passed to two separate 
destinations. Links may be connected in series to provide variable 
fan-out from cells. There are six major varieties of actors in the 
MIT machine language:

- operators: perform simple arithmetic and logical functions,

- identity: passes its input arguments unchanged,

- decider: applies a predicate to its input arguments 
producing a truth value,
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- T-gste: passes a data token when its control input receives 
a true token,

- F-gate: passes an input data token when it receives s false 
token at is control input, and

- merge: selects a data token from the data input which 
corresponds to the truth value of its control input (two-way 
selection).

..
The MIT Dennis/Misunas dataflow processor is divided into five 

major subsystems: .

- memory subsystem: holds instruction cells and operands,

- processing subsystems: arithmetic and logic units,

- arbitration network: a switching network to conduct 
operaticn packets from the memory subsystem to the 
processing subsystem,

- distribution network: a switching network to conduct data 
packets from the processing subsystem to the memory 
subsystem for storage, and

- control network: a switching network which carries control 
packets from the processing subsystem to the memory 
subsystem.

As shown in Figure 2-2, data operations to be performed flow7 counter 
clockwise from the memory subsystem, and are switched by the 

arbitration network to a particular processing 'unit in the processing 
subsystem. The processing unit computes the result. The data packet 

oenerated by the processing unit is then switched bv the distribution 
network to the memory subsystem for eventual storage writhin an 
instruction cell. Control packets flow from the processing units to 
destination instruction cells through a separate communication 
network.

^r,1

The control, distribution, and arbitration networks are indeed 

packet routing networks. The packets contain control information which 
the routing networks decode, eventually switching the packets to their 
destination. The networks are composed of arbitration and selection 
elements. Arbiters join paths together while the selectors perform
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Figure 2-2: High level structure of the MIT dataflow computer 
the "decode and switch" operation which directs the packets down the 

appropriate electrical path.

Tracing the execution of an instruction provides the best insight 
into the operation of the computer. Each instruction cell has the 
internal structure illustrated by Figure 2-3. Using cells of this 
type, the memory subsystem stores the internal representation of the 
dataflow program. One machine instruction is stored in the output 
control. portion of each instruction cell. The three receivers store 

data values as they arrive at the cell. When the firing set of the 
cell has been satisfied, the cell transmits an operation packet. The 

packet which contains the instruction and operand data values, is 
routed by the arbitration network to the appropriate processing unit. 
In the MIT machine, the processing units are heterogeneous. That is, 
each of the processing units has a few dedicated functions which it 
performs very quickly. The arbitration network routes the operation 
packets generated by instruction cells to the processing units which
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have the capability to calculate the result.
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Figure 2-3: Structure of an instruction cell

Cnee the result has been computed, the processing unit generates 
one or more result packets. Result packets are either control packets 
bearing boolean values or data packets containing either integer or 
complex values. The destinations of the control end result packets 

are determined from destination identifiers contained in the packets. 
The execution cycle is completed as the newly arriving control and 
cate packets induce additional instruction cells to fire.

The machine structure is a rather novel distribution of 
conventional computing functions. Instructions ere not "fetched" from 
memory, but the operands are brought to the instructions. Processing 
of instructions is neatly separated from their sequencing. The 
transmission of packets within the machine is asynchronous, permitting 
the different computer subsystems to operate independently. This 

concurrency is effectively exploited because more than one instruction 
cell can be fireable at any instant. Dennis has presented a design for 

the arbitration network which allows many operation packets to flow 
concurrently through the network to the processing units.
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Because the MIT machine depends heavily upon communications 
external to the subsystem elements and the elements themselves are of 
verv low functional comolexitv, the desian cannot achieve a hich logic 
to pin ratio _when realized in VLSI circuits. Packet communication 
speed will also suffer because the design cannot take advantage of the 
shorter on-chip propagation times. The extensibility of processing 
power and instruction storage is excellent. By expanding the 
arbitration and distribution networks, additional processing units and 

instruction cells are easily appended. However, expansion of the 
arbitration distribution and control networks may result in longer, 
serial chains of routing paths, causing somewhat longer packet 
transmission times. A summary table of the MIT architecture is shown 
in Ficure 2-4. ■

execution model: ' Data-driven
machine language: Directed graph; computational, control,

and routing operators. Form 1: scalar prim
itive types. Form 2&3: record, array and 
and self-referencing da "cs structures, 

primitive data types: Integer, boolean, real, and character val
ues (Form 1.) __ 

data operators: Functions, T-gate, F-gate, merge, identity,
decider.

processor components: 5 subsystems: memory, arbitration network,
distribution network, processing units, 
memory.

processing elements: Special purpose dedicated processing units
- of low7 complexity,

address structure: Instruction cells in memory are selected
by decoding identifiers in the packets, 

storage management: Instruction storage is managed by the memory
module.

communication protocol: Packet switched; packets contain simple
routing information, 

extensibility: Extensibility of processing function and
memory is excellent at logarithmic cost, 

physical extensibility: Very good since intermodule communication
is entirely asynchronous, 

implementation status: Form 1 prototype under construction. High
er level language (VAL [42]) has been 
designed and a translator/interpreter is 
operational.

Figure 2-4: MIT Dataflow Computer: Summary
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2.2 Systeme LAU .
Systeme LAU is a French dataflow effort at ONERA-CERT. Unlike 

the projects at MIT, Utah and UCI, the Systeme L’.U group began their 

project with some specific high-level linguistic ideas 

[12, 29, 30, 15]. The designers were influenced primarily by the 

single assignment language of Tesler and Enea [40] and the work of 

Dennis [13]. At the highest level of abstraction, the Systeme L^U 

designers intend programs to be written in their higher level 

language. By using a higher level algebraic language, the complexity 

of detailed program graphs is suppressed. The Systeme LAU language 

uses the single assignment programming rule which states that a 

variable may be assigned a value at most once in a particular program 

context. Single assignment is semantically equivalent to the directed 

graph form of dataflow programs. The rule permits greater freedom to 

exploit the potential concurrency within a program.

■ The high level language of Systeme LAU is almost directly 

executed in the hardware. The statement forms each have a 

corresponding operator. Because the high level language is directly 

supported by the machine, the concurrency advantages of the dataflow 

model are not sacrificed by the algebraic nature of the programming 

language. The LAU architecture permits the exploitation of both 

pipelined and spatial concurrency. Pipelining is implemented within 

the individual hardware modules. Due to the single assignment rule, 

spatial concurrency is inherently expressed in LVJ programs. It may 

also be explicitly denoted by the programmer with an EXPAND language 

construct.

All statements in the high level language are assignment 

statements. In place of variables, the LAU designers have substituted 

"objects". Objects are assumed to exist in a single assignment 

environment. That is, after an object has been written, it may be read
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an indefinite number of times. It may not, however, be written more 

than cnce. Statement execution is ordered by data-driven sequencing. 

The most primitive operational notion in the LAU machine is that of 

the Data Production Set or "DPS". A DPS may be represented as a pair: 

the first component is a set of objects, anc the second component is a 

set of statements which produces the objects in the object set 

component. A statement in a program is defined in terms of the DPS's 

which it produces, and the DPS's which the statement consumes.

There are six major instruction types: operations, loop, case, 

act (controlled invocation), expand (parallel execution fork and 

join), and call. Each instruction specifies the desired action, the 

identities of the operands, the destination cf the result, and several 

condition bits. Instructions are not bound to execute on any 

particular processing unit. Data items in the system consist of a 
value and a variable number of addresses which identify the 

instructions which use the data value as an operand.

Systeme LAU is a multiprocessor architecture whose overall 

structure is given in figure 2-5. The current implementation is 

limited to one processor attached to a host minicomputer through an 

interface for input/output facilities. It is divided into three main 

subsystems:

1. Control units,

2 . Memory subsystems, and

3. Up to 32 elementary execution processors.

The host minicomputer is used to develop programs and unload both the 

control unit memories and the memory subsystem.

The local memory subsystem contains several computational tasks 

represented as data production sets. Tasks are loaded when all inputs 

are available end terminated when all outputs have been produced. To 

increase memory bandwidth, the actual store is divided into 8
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• Figure 2-5: Overall structure of Systeme LAU 

independent banks which operate concurrently. The memory control unit 

arbitrates accesses to the store.

The control unit performs the data-driven control sequencing of 

the processor, and its operation is rather unique. The control unit 

contains two memory units: the instruction control memory and the 

data control memory. There are three control memory bits and one data _

control bit for each word in the local memory. The three control 

memory bits signify the status (presence of operands) of the firing 

set for a particular instruction. 'When the three bits in a control 

memory word become enabled, the instruction at the corresponding word 

in the local memory becomes executable. The control memory is 
continually searched for for the presence of executable instructions.

Ready instructions are read from the local memory and passed to the 
execution unit for subsequent interpretation. The data control memory 

indicates whether a particular datum has been calculated or is 

awaiting computation. When the data control memory is scanned, the



control unit determines which bits nay be enabled in the control 

memory, i.e., which instructions have a particular operand awaiting 

execution of the instruction. ■

The execution unit is split into several independent asynchronous 

nodules. Full parallel operation can be realized cue to the 

data-driven nature of instruction flow. The execution unit decodes 

the instructions which it receives from the local memory and 

dispatches their execution to the appropriate instruction 

interpretation unit. Tne arithmetic unit has additional substructure 

consisting of several floating point execution units, fixed point 

arithmetic units, and a vector execution unit. These interpretation 

mcdules can operate concurrently. The control execution unit is 

composed of separate, asynchronous interpretation units, at least one 

unit for each of the control instruction types. Due to the unique 

properties cf the machine language (i.e., data-driven sequencing and 

registerless instruction format) pipelining techniques are usable 

without any of their well-known drawbacks with respect to branching 

and synchronization.

The structure of the LAU machine has been influenced by a desire 

to use commercially available computers as components. As such it 

supports the most powerful set of primitive operations of any of the 

machines surveyed. It will also naturally have a number of support 

tools which will greatly aid the programming task., The machine is 

therefore not intended to be, and it is not reasonably amenable to a 

future VLSI implementation. The decision to start with a high level 

language was a good one. A major advantage of the LAU machine (like 

the MIT machines) is direct support of floating point arithmetic. 

Work by the Utah group has demonstrated the absolute necessity of 

floating point hardware to provide the performance required to solve 

real scientific problems [39].

■ Al
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execution model: 
machine language: 
primitive data types: 
cp*s r8ncrs i

processor components: 

processing elements:

address structure: 
storage management: 
communication protocol:

extensibility:

pr.ys i ca 1 exter.s i bi 1 i ty: 
implementation status:

Data-driven 
Directed graph.
Integers, floating point.
Arithmetic operations, loops, case, proce
dure calls.
Control unit, execution unit, memory sub
system.
Interchangeable, homogeneous. Element sub
structure permits parallel operation of 
special instruction interpretation units. 
Linear.
No special management technique.
Simple addressing, request and acknowledge 
protocol.
Easy addition of processing elements. Mem
ory control units permits addition of more 
store although speed of the unit will lim
it ranc'width eventually.
Extensibility net a goal; difficult.
As of November 1972, the Systems LAU has 
been fabricated and tested at the subsys
tem level. The machine can currently exe
cute programs and performance analysis is 
being conducted.

Figure 2-6: Systeme LAU: Summary



2.3 University of Manchester

Under the support of the Eritish Science Research Council, the 

Manchester University (MU) dataflow group is currently producing a 

protetype dataflow machine. As a preliminary investigation into the 

relationship between a high level language and machine structure, the 

language LAPSE was defined [21]. The designers credit the Id 

language [24] and LUCID [31] for many of their language ideas. In 

particular, LAPSE is a single assignment language with many of the 

familiar higher level programming language constructs. The syntax is 

patterned after Pascal. The graph language of the machine, which is 

the executable program form, closely resembles L£.FSE. Hence, the

C 1'r ' T T  5 T“k C 1 jcOG r 'iy  c* v“u :  ̂T"CV'crS *

The simple data types supported by the machine are Boolean, 

integer, and floating point values. Simple types may be combined into 

records and arrays similar to those of Pascal or PL/1. Some of the 

operators supported by the machine are:

- arithmetic operators: add, subtract, etc.,

- comparison: greater than, equal to zero, etc.,

- merge: join two arcs, passing tokens from exactly one input,

- pass on true: conditional transfer of token,

- pass on false: conditional transfer of token, and

- duplicate: replicate incoming data values along two paths.
The .Manchester machine supports Pascal-like procedure calls. Unlike 

the MIT dataflow computer, procedures are not copied when invoked. 

Instead, an input interface and output interface are provided for each 

procedure corresponding to the usual notion of entry and return 

linkages. When a data token flows into the input interface, it is 

labelled with an identifier that indicates the source of the data 

token. Data tokens from the same source have the same identifier. Upon 

exit through the output interface, a dynamic link is created which

. 43
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directs the output back to the locus of the procedure call. This 

mechanism effectively imitates the generation of new procedure code at 

the appropriate place in the program graph.

Figure 2-7: Structure of an individual Manchester processor

The Manchester architecture consists of a variable number of ring 

structured processors arranged around an exchange switch. The ring 

processor closely resembles the MIT machine in its circular flow of 

data (figure 2-7). However, no distinction is nade between control 
and cata information; a separate path for control information (e.g., 

the control network in the Dennis/Misunas machine) is not provided.

Two types of messages flow in the machine: instructions and 

tokens. Instructions are kept in the instruction store. Each 

instruction contains:

- the node function,

- the destination for each of the results that it produces 
which includes the instruction address and the number of 
operands expected at the destination.
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Tokens are produced by the processing unit as a result of instruction 
execution or they are received via the input/output switch from some 

external source. They are stored either in the result queue or the 
-etching store. Tokens contain their data value, eventual 

destination, and a label which is used to regulate procedure calls. 

Tokens are tagged with the type of the data value that they carry 

allowing dynamic type-checking.

The result queue is a rate balancing mechanism which attempts to 

smooth the rate of token production and consumption. Executable 

instructions for the processing unit are produced by the combined 

operation of the matching store and the instruction unit. The 

cer.eration of an executable instruction troceecs in the fcllowina wav:

1. The matching store removes a result token from the result 
queue.

2. If the token indicates that only one operand is expected at 
its destination, it is sent immediately to the instruction 
store unit.

3. If more than one operand is required, the memory in the 
matching store is searched for an entry with the same 
destination. The matching entry is deleted and the result 
pair is sent to the instruction store. Unmatched tokens 
are saved in the memory.

4. Token pairs are accepted by the instruction store. The 
destination instruction is read and transmitted to tn 
processing unit for execution.

The interfaces between units are asynchronous permitting greater 

operational concurrency with all units operating in parallel.

In order to capitalize on the potential spatial concurrency of 

the dataflow programs, several rings are forged into a multi-ring 

structure. The Manchester computer is a multilayered integration of 

many ring processors arranged around an exchange switch. Within the 

context of the ring processor, the exchange switch corresponds to the 

input/output switch that provides external communications to and from



a given ring. Because rings are autonomous the processors rnav operate 
asvnchronously and in parallel. None of the storage units are shared, 

removing performance limitations due to finite memory bandwidth. Input 

and output channels are naturally accommodated by this design. They 

simply mimic the input and output behavior of tokens.

Tne exchange switch has an uncomplicated structure. It consists 

of successive layers of token distribution, buffering and arbitration. 

Tokens are routed at each distribution layer according to a particular 

bit in the name field. By altering the routing bits, faulty processor 

units can be isolated until repair. Buffer layers decrease the effects 

of address interference or token "clashes" within the distribution

The MU machine inherently requires a high amount of communication 

arcunc each ring. In a VLSI implementation, the slow off chip speeds 

will tend to reduce system performance. This may be mitigated 

somewhat by the ability of each ring processor to be pipelined. 

Unlike the MIT machine, the MU machine's component units are rather 

complex and can utilize the scale supported by VLSI densities. The MU 

machine (like Systeme LAU) has rather direct support of high level 

language constructs: floating point operations, and structure 

operators. The logical structure of the exchange switch is simple and 

can be implemented with order log(N) circuit elements. However, the 

physical interconnection cost of these elements and delays through the 

switching network will significantly impact overall cost and 

performance. Figure 2-8 show’s the summary table for the MU machine.

46



41

execution model: " " 
machine language:

ive cate types: 
ure operators: 

cats operators:

processor components:'

processing elements:

address structure:

s- s rTi&riSGsrrisnci 

ccrr;jr:ication protocol:

extensibility:

physical extensibility: 

implementation status:

Data-driven.
Directed graph; direct support of LAPSE
higher level language.
Boolean, integer, floating point values. 
Records and arrays.
Arithmetic, comparison, token distribu
tion and selection, function calls. 
Instruction store, processing unit, input 
output switch, result queue, and match- 
store unit arranged into a ring.
Processing unit has substructure of sev
eral homogeneous executable instruction 
processors.
Instruction store is linearly addressable. 
Matching store has an associative mem
ory organization.
Matching store performs its own manage
ment.
Packet sv,’itched; tokens contain simple 
routing information. Exchange switch per
forms interprocessor message transmission. 
Exchange switch permits good extensibili
ty through addition of more token routing 
circuitry and ring processors. Ring pro
cessors may be extended through addition 
of instruction memory and executable in
struction processors.
Exchange switch interconnections tend to 
be complex. Asynchronous token transmis
sion eliminates sensitivity to physical 
transmission distances.
Simulation of machine is complete. LAPSE 
to program graph translator is complete. 
A single ring prototype is under construc
tion. . a,...

Figure 2-8: University of Manchester Dataflow Computer: Summary
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2.4 University of California Irvine

The goal of the dataflow project at the University of California, 

Irvine (UCI) is to develop a machine which:

- fully exploits the advantages of large scale integration,

- utilizes a very large number of processors (greater than one 
thousand), ■'

- significantly improves the structure and construction of 
software by rejecting those features of the von Neumann 
model which adversely affect programming.

UCI has proposed a new programming language called Id which supports

the single assignment programming concept. The unique aspect of the

UCI work is the "unfolding" interpreter which attempts to obtain still

mere execution concurrency through manipulations applied to the

iterative and procedural constructs of the program graph.

- The UCI dataflow system supports two classes of values: 

elementary and structured values. Elementary values correspond to the 

usual notion of primitive types, e.g., integers, reals, etc. 

Structured values, however, are recursively defined trees from which 

vectors, arrays and other complex structures may be defined. Two 

operators may be applied to structured values: select and append. 

The expression "select(x,i)" returns the ith subtree of the structure 

value x. The append operator joins structure values together to create 

instances of yet more complex structure values. In addition to the 

usual arithmetic functions, operators ere provided for procedure 

application, conditional expressions, and loops.

The asynchronous operation permitted by a program graph is termed 

static parallelism. The "unfolding" interpreter attempts to find 

instances of additional dynamic concurrency by "unfolding" the graph.

Figure 2-9 shows an add cell "s" which has two sets of input 

operands queued at its inputs. Following the usual data-driven 

execution rules, the add cell will fire twice in succession producing
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Figure 2-9: Example of static parallelism 
two result tokens. (The superscripts indicate the logical traversal 

ordering of tokens on the graph arcs. Because an add cell is 

functional in the sense that future results do not depend upon the 

execution history of the cell (i.e., it is memoryless) the second 

addition could also be performed immediately. Tne addition of the 

second pair of operands could be physically completed before the first 

addition due to the asynchronous firing rules of the data-driven 

model. This single cell could be replaced by two physical add cells 

provided that the result tokens leave the expanded graph in the same 

order in which they arrive, as indicated by the subscript order. 

Subscript order can be maintained during execution through the use of 

tags which retain information regarding the token ordering. If the 

add cell is replaced by a loop or procedure invocation, even more 

concurrency can be realized. The interpreter is permitted to unfold 

all the expressions within the .loop or procedure for parallel 

execution. If a large number of physical processors are available,
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the unfolded expression will execute much faster than the regular form 
of the expression. This f o m  of concurrency is called dynamic 

parallelism, since often the degree of unfolding cannot be determined 
until execution time, as in the case of loops.

The design of the UCI dataflow computer was guided by four major 

principles: -

1. concurrency: "... It is more important to design for large 
numbers of slow but concurrent accesses than to design for 
a few accesses that are fast but sequential." [41]

2. distribution: Activities are spread over the available 
processors.

3. locality: Logically related activities should execute 
within close physical proximity, presumably minimizing

■ communication time.

4. redundancy: Local copies of a particular structure can be 
used to improve the speed of access.

Because the designers view the existing dataflow architecture as a

testbed for machine and language ideas, the architecture is changing.

Future proposals will address modular expansion and fault-tolerance,

issues which have been temporarily deferred.

Figure 2-10: UCI processor - physical domain

The UCI dataflow computer consists of one cr more physical



dora ins. A physical domain (Figure 2-10) is a network of one or more 

processing elements, a memory controller, and a memory storage module. 

The processing elements are connected to two shift register token 

busses which, together with the global memory bus, connect a number of 

physical domains to form a ring domain. The token busses are 

organized as counter-rotating rings. The ring is divided into a fixed 

number of token slots (one per ring per processing element) , each cf 

fixed length. The processing elements monitor the busses for tokens 

with their physical address. When a match occurs, the token is 

removed creating an empty slot. Any empty slot facing a processing 

element r.sy be filled with an output token.

When s result has teen computed by s processing element, the 

logical destination address for the result is mapped into a physical 

address through the use of an assignment function. Because more than 

cr.e computational activity can be assigned to any given processing 

element, tokens must be sorted into activity groups. Tokens are 

labelled with an activity name. When the firing set of a waiting 

activity has been satisfied, the computation will be performed. 

Output tokens are queued to be transmitted in the next empty token 

slot, '

Structure values reside in the local memories. Tokens need to 

carry only structure pointers, eliminating undesirable copy 

operations. The processing elements within a physical domain are 

connected to the memory controller through a local bus. Address 

interpretation and memory arbitration is performed by the controller. 

Although distinct memory units exist within the physical domains of 

the computer, the address space of the machine is unified. Kence, if 

a structure is contained within the physical domain which generated 

the access request to it, the structure value cen be quickly accessed. 

If the structure exists within another physical domain, the local
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memory controller can forward the access request to the appropriate 

distant controller along the global memory bus. Global communication 

can be reduced through the use of local structure copies, although the 

regulation of updates to a globally accessed structure (in the logical 

sense) becomes mtore difficult because all copies must be modified as 

the result of a single update.

The UCI machine, like that of MIT and MU, is communication 

intensive. This causes possible system contention for transmission. 

It also indicates that some of the speed advantages of a VLSI 
implementation will be lost. The fine grain search for parallelism 

creates a certain amount of additional overhead to do the "unfolding" 

style of interpretation. It remains to be seen whether this overhead 

is worth it in terms of total system performance. A summary table for 

the UCI machine is shown in Ficure 2-11.
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execution model: 
machine language: 
primitive data types:

structure operators:

data operators:

processor components:

processing elements: 

address structure:

storage management: 
communication protocol: 
extensibility:

physical extensibility: 

implementation status:

Data-driven, unfolding interpreter. 
Directed-graph translation of Id programs. 
Integer, floating, Boolean, and string 
values.
append and select applied to recursive 
tree structures.
Arithmetic, loops, conditionals, proce
dure application.
Machine is partitioned into separate phys
ical domains. Each domain contains sev
eral processing elements, a local memory 
controller, and a local store.
Non-specialized processing elements with
in a physical domain.
Unified address space over the entire com
puter. Structure requests are satisfied 
locally if possible. Otherwise, struc
tures are transferred from distant memory 
units via the global communication bus. 
Performed locally by control unit.
Slotted ring network.
Easily extensible along token and global 
busses. Additional traffic may cause comm
unication to degrade without the use of 
locally cached structures.
Ring busses are sequential shift regis
ters. May be hindered by sequential tim
ing of the net.
Extensive simulation.

Figure 2-11: UCI Dataflow Computer: Summary
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2.5 University of Utah

The University of Utah Dctc-ariven Machine (DDMl) is the subject 

cf the case study presented in section 3. We therefore restrict our 

presentation here to a brief description of DDMl in terms of the 

criteria set forth in the machine summary tables.

The machine language of DDMl is a directed graph [4, 3]. The 

data tokens which circulate within the machine are list structures of 

arbitrary complexity. Using lists, both complex data structures (e.g., 

plexes, trees, etc.) and regular structures (e.g., vectors and arrays) 

can be represented. The operator set includes functions that 

concatenate, decompose and index the list structure of the data 

tokens. A high-level Graphical Programming Language (GPL) has been 

proposed for higher level programming. GPL supports a number of 

common programming constructs which can be translated to the low level 

macmne lcnouaQ9 .

Physically, the DDMl is a tree structured multiprocessor. 

Computational tasks, called data-driven processes (DDP's), are 

partitioned among lower level physical processors if the resources are 

available and the computational pay-off exceeds the amount of work 

required to dissect and transfer the program subnet to a subordinate 

processor. The processors in DDMl are homogeneous, capable of 
executing any of the operator cell types. The processors consist of a 

processing element and a storage unit pair. This organization' permits 

the exploitation of program locality.

One of the primary goals of the University of Utah effort is to 

develop a machine which is compatible with VLSI implementation and can 

be simply extended through the addition of more, processor-store 

elements. Communications in DDMl are packet switched and entirely 

asynchronous. Hence, the system does not need to be tuned when more 

computing elements are added. The summary table is shown in Figure
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2-12.

execution model: 
nechine language: 
primitive data types: 
structure operators:

data operators: 
processor conponents:

processing elements:

address structure:

storage management:

communication protocol: 
e x tens i b i 1 i t v :

phvsicsl extensibility: 

implementation status:

Data-driven, recursive machines.
Directed graphs.
Integers.
Tokens are list structures which may be 
concatenated, decomposed, and indexed. 
Arithmetic, and token routing.
Processors are implemented as processing 
element and storage pairs.
Processors are homogeneous and capable of 
interpreting all cell types.
Storage is organized as a list structured 
file.
Management is performed within each stor
age element.
Packet switched and fully asynchronous. 
Addition of processcr-stere pairs is eas
ily accomplished. Extension of local 
storage capacity has not yet been ade
quately solved.
Asynchronous communication eliminates sen
sitivity to physical separation.
Prototypes 1 and 2 have been constructed, 
debugged, and tested. New languages and 
machines are currently under definition 
and construction.

Figure 2-12: University of Utah DDM1: Summary
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3.1 Introduction and Chronology

Data-driven machine #1 (DDMl) is part of an ongoing research 

effort to produce a working set of systems ideas for a highly 

concurrent, distributed control, computing environment. The project 

began around 1970 with an attempt to find a language for concurrent 
structured programming [5]. These ideas were refined in the 

following year to produce a data-driven program schema known as DDN1 s 

[41 . A translator 'was then written which would translate programs 

'written in a lexically simplified subset of Algol to the functionally 

equivalent DDN1 programs. During the next 4 years, ideas about 

resource allocation and implementation strategies were developed. The 

DD-Ml prototype [3] became operational in July of 1976. This prototype 

became the nucleus for an experimental data-driven environment 'where 

systems software and new hardware could be developed. In September 

1977, the project moved to the University of Utah where it continues 

under a grant provided by the Burroughs Corporation. • '

' The remainder of this section is a detailed case study of this 

project, and in particular the prototype DDMl machine. We will (in a 

perhaps futile attempt to give an unbiased presentation) describe only 

’work which has either been completed or is underway. We will 

deliberately avoid making claims about future wonders which we hope to 

produce. In attempting to improve substantially upon the von Neumann 

'world, it is necessary to create a new set of self-consistent systems 

ideas. We outline this new set of ideas here, and then present the 

details and critique of the DDMl implementation.

There are two primary ways in which the performance of 

traditional single sequential processor systems can be improved:

1. To use faster components in existing architectures, and

2. To design new architectures and programming methods, w’hich

3. A Case Study of The DDMl Machine
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The first approach is inherently limited in that the effects of 

reduced 'integrated circuit geometry and new logic families can 

reasonably be'expected to increase overall system performance by only 

two orders of magnitude. While this is initially impressive, it does 

not meet the desired machine performance estimates necessary to solve 

large physics problems, or that needed for accurate weather prediction 

[37] . The second approach is not inherently limited by the physical 

properties cf switching devices. The bound on the performance 

increase which can be obtained by exploiting concurrency is only 

inherently limited by the problem and human imagination (both on the 

part of the programmer and by the machine system designer).

There are numerous levels at which concurrency can be exploited 

in digital computers, i.e. multiple cat? paths, more concurrent 

realization of low-level circuit functions, overlapped and pipelined 

processing within a single processing element, multiple processors, 

etc. In developing any new "fast as possible" machine, it is 

important to attempt to implement all of these suggestions. We feel 

however that raw speed is not the primary reason for investigating the 

class of machines presented here. In fact, judgment of the merit of 

the data-driven approach on the basis of raw sp>eed measures made on 

machines such as DDMl is somewhat unfair to the new approach. 

Data-driven systems ideas are still in their infancy when compared to 

the long development history of Von Neumann structures, and therefore 

it is unlikely that the data-driven ideas will have reached comparable 

levels of sophistication. In addition, the actual performance of any 

of the proposed data-driven architectures is based on the assumption 

that the programs being executed contain very high levels of 

concurrency, and that the machine is composed of a large number of 
functional units. Such data-driven machines have not yet been

are capable of exploiting high degrees of concurrency.



constructed in even a prototype form. Furthermore, the types of 
programs which are currently being run on prototype hardware or 

simulation systems are quite simple end do not contain tremendous 

amounts cf exploitable parallelism. The bast v.'ay to judge data-driven 

system concepts at the current time is to analyze the various system 

approaches in a qualitative sense, and decide whether or not these 

systems are likely to meet their stated coals. The DPMI project has 

been mainly concerned with solving the problem of how to utilize and 

organize systems containing large numbers of independent processors. 

The result of this concern is that a number of low level issues 

relevant to the creation of single, very high performance processors 

have been neglected. Among these ere, high speed arithmetic, fast 

internal circuit design, the use of high speed circuit families, etc.

Tne influence cf integrated circuit technology permeates the 

entire spectrum of commercially available digital systems. It is 

clear that any machine architecture intended to have a general 

commercial appeal must be viable with respect to the changing 

constraints of integrated circuit technology. For architectures which 

fit nicely into the VLSI (very large scale integration) realm, the 

advantages are numerous. Among these are lower cost, increased 

reliability, increased speed, and decreased power consumption. The 

architectures which do not fit well into the VLSI world are at most 

only ideological points of interest or they may be successful only in 

a very special purpose sense. '

There are a number of additional design goals which heavily 

influence the class of machine structures presented here. Namely it 

is intended that these machines be general purpose, extensible, 

reliable, easily programmable, support very high levels of 

concurrency, and also be economical with respect to their performance 

and existing technology. In particular this effort is not concerned
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with one of a kind or special purpose machines. Special purpose 

machines are perhaps ideal for a given environment, but suffer from 

inherent limits in their applicability to other problems.

3.2 Architectural Principles

The implications of VLSI implementation constraints imply that 

machines which consist of a number of similar part types are 

attractive economically. In addition, if the systems can exploit a 

high degree of program locality, then higher performance can be 

obtained because on chip transmission paths are both short and fast 

(small capacitive load). Drastic additional speed up can be obtained 

if these systems can also support very high levels of concurrency. 

Cne approach to meet these objectives is to create an architecture 

which consists of a large number of identical processing sites. This 

approach has been taken by many architects and is particularly 

prevalent today where microprocessors are used as a replicated 

processing element in a number of different topologies. The DDMl 

project had a number of design goals which made the use of existing 

microprocessor modules impossible. The design goals did require that 

the system support very high levels of concurrency and consist of a 

set cf processing sites capable of performing localized storage and 

computation of a reasonable complexity. These sites should be 

essentially the same physical module, which can be constructed from 
one (ideal) or a set of chip types. An additional goal of the 

architecture presented here is that of extensibility, namely that DDMl 

should consist of a finite but unbounded number of processing 

elements. More specifically, the architecture should be indefinitely 

extensible in the following way:

- Machine pow’er should be enhanced by the addition of more 
processing nodules (i.e. allow greater concurrency due to 
the increased number of processing sites);

- The addition of new modules should not require any change to 
the existing operating sy'stem in order to manage the



- Additional resources should be added simply by "plugging in 
new modules" without any special tuning of the existing 
hardware to create consistent system timing and 
communication for the expanding system; and

- Extensions should, be available in small quantums.

The first and last points indicate that a user should be able to 

purchase only the power needed, rather than much more or much less 

than the amount desired. The other points demonstrate that the 

manufacturer should only need to support a single module, rather than 

a large number of system configurations and size ranges. If such 

goals can be met in practice then such systems would have an 

enormously attractive economic appeal to both the user and the system 

vendor.

Extensible systems cannot be implemented in a synchronous, 

centrally controlled manner. Central control of arbitrarily 

extensible systams implies that the control must be able to function 

on an arbitrarily large amount of state information, which either 

slows system timing drastically or requires controller modification to 

access the new state information. One major purpose of the 

multiprocessor approach is to increase performance, and a drastic 

slowing of system timing would therefore be considered unacceptable. 

Controller modification is equally 'unacceptable in that it conflicts 

with the stated design goals. In an arbitrarily extensible synchronous 

system the problem of unbounded clock skew (maximum difference in the 

perceived clock time between any two processing sites in the system) 

will cause failure. The systems described here will therefore be 

asynchronous, fully distributed systems. Fully distributed systems 
have the following characteristics:

- No module of a fully distributed system can determine the 
total system state, and

- No module of a fully distributed system can enforce
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resulting larger system;
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simultaneity in other modules.

Holt [13] has shown that the notion of total system state in complex 

asynchronous systems is intellectually counter productive. 

Furthermore the enforcement of simultaneity in physically separate, 

asynchronous devices is impossible.

There are many ways to organize an extensible set of modules in a 

distributed control system. One possible choice is a hierarchy. The 

advantages of hierarchical organizations are:

- A simplification in the amount of complexity to be dealt 
with at a given level.

- Verification by inductive methods can be dene for uniform 
nierarchic systems.

- The natural superior-inferior relationships of elements in 
' hierarchic systems can be utilized to resolve important

multi-resource system problems such as contention for shared 
resources and deadlock.

It will be seen that hierarchy can be further exploited and

facilitates a nice resource allocation policy. Recursive hierarchies

are cf particular interest. In a recursive hierarchy the structure of

the system at one level of the hierarchy is the same as the structure

cf the system at any other level in the hierarchy. Recursion

inherently implies that some element is defined in terms of itself.

In the case of DDMl it will be seen that this implies that the same

module (and ultimately the same chip) can be used at each level.
Recursive systems are nicely extensible. Clearly physical recursion

rust terminate at some point. This point will be seen to be the
logically deepest set of resources in the physical hierarchy.

Additional advantages of recursively structured systems have been

demonstrated by Glusnkov [18] . It will be shown that the width of a

level in these recursive hierarchic structures can be used to execute

independent operations, while the depth of the hierarchy will be used

to facilitate pipelined operations.



It is also our basic belief that machine ideas and language ideas 
should be based on the same fundamental concepts to provide a nice 

"fit". This fit is an important property of a self-consistent set of 
systems ideas. In this case the local, hierarchic, asynchronous 

behavior of the architecture nicely fits intrinsic properties of 

data-criven programs.

3.3 The Machine Language

The machine language of DDM1 (Data-Driven Machine #1) is the DDN 

(Data-Driven Net) representation. It is not intended that anyone 

should program directly in the DEN representation, but rather that the 

language used for the actual programming be translated into DDN form 

fcr execution. It is possible to translate veil-structured programs 

in conventional languages (ALGOL, FORTRAN, etc.) into DDN's, but these 

languages are not 'well suited to the sp-ec if ication of parallel 

algorithms. Bone recently developed high-level languages are 

particularly well suited for the specification of concurrency, and can 

be easily and efficiently translated into DDN form 

[31, 42, 24, 29, 20].

The main advantage of DDN's over the other data-driven schemata 

[13, 8 , 1, 27] is that no distinction need be made in DDN's between 

control and data. The lack of this distinction yields increased 

simplicity in DDN processes with no less of representational power. 

In addition the DDN primitives, while not being any more numerous than 

those of the other low-level dataflow languages, are more general.

Seven distinct cell types are used in data-driven nets. A DDN 

cell type corresponds to the choice of statement types in conventional 

programming languages, and as such reflects a particular style and 

area of emphasis. Often times such choices are guided by theoretical 

considerations to find a minimal set cr a maximally powerful 

collection of types. DDN cell type selection was influenced primarily

• . 62
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by pragmatic considerations. The DDN cells were chosen for simplicity 
and generality, and each cell type was chosen to clearly characterize 

a particular type of activity that was felt to exist in parallel 

programs. Each cell type is represented by a unique graphical symbol. 
Figure 3-1 shows the cell types, with their firing sets (the set of 

inputs which are required to be present before the cell type can be 

executed), and cell functions (a description of the functional action 

taken by each cell type). Notational conventions adopted here are:

- Each type of data path is named: I for input, 0 for output,
F for feedback, C for condition, and X for index.

- Subscripts indicate data paths which may receive different 
valued tokens.

- Superscripts indicate data paths which will carry identical 
valued copies of output data items.

Since each data item of a firing set is destroyed when the cell fires,

any time a data item is to be used in more than one place (due to

either pipelining or concurrency requirements), more than one copy of

that output item will need to be be produced. This implies that the

destination for any output may be a list of destinations. If there

are n elements in the list, then n copies of the result data will be

produced and sent to the respective destinations. Note that input

paths will never have superscripted names, but outputs always do,

indicating that any output result may be copied many times.

Tne SYNCH cell allows parallel streams of data to be 

synchronized. Such synchronization may indicate that a number of 

concurrent activities have reached a certain point or state. For 

example, the inputs to some process may be produced by a number of 

parallel processes. The inputs could be passed through a SYNCH cell 

to the called process. If it were desirable'to determine whether the 

called process is reedy to be executed or not, then it would be 

possible to look at the input SYNCH cell and determine the answer to 

the question. If the SYNCH cell were fireable then the called process
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could be considered to be fireable. If no such input SYNCH cell 
existed, then the decision would be much more complicated, in that it 

v.’ould require the ability to perceive action in all of the distributed 

parallel producers of the called process' inputs. This inforriation 

'would then have to be correlated to create some consistent view of the 

state of the system. It has already been stated that such a global 

state view is counter productive. In this sample case, the state 

infomation is very expensive to obtain, and a better solution exists 

(the SYNCH cell).

The OPERATOR cell is used to perform normal operations such as 

arithmetic, relational tests, etc. The OPERATOR cell type is actually 

a class of individual OPERATOR cells. The actual operator definition 

is mace by a small symbol placed in the OPERATOR cell, which indicates 

the actual operation (e.g. *+' indicates add, etc.). Each operator 

type will inherently indicate how many actual inputs and outputs will 

be required. For example addition is normally thought of as a 2 input 

and 1 output operation. Tne LISP operation CAR, on the other hand, is 

a single input and double output operation. Any DDN output may be 

further replicated for the reasons previously discussed.

The CALL cell is used to invoke a named data-driven process, and 

in that respect acts just like call constructs in languages such as 

ALGOL. If the firing sets and the cell functions of the CALL cell and 

the OPERATOR cell in Figure 3-1 are compared, then it is apparent that 

the OPERATOR and CALL cells act in very similar manners. This 

similarity allows CALL cells and OPERATOR cells to be semantically 

interchangeable in DEN programs. In essence they both perform 

functions, the only difference being that an OPERATOR cell indicates 

that the function is a machine or system provided function whereas the 

CALL indicates that the function being performed has been defined by 

the programmer. The CALL cell also allows the usual program hierarchy
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Conditional expressions in DDN programs are implemented by the 

conditional routing of data items to the desired parts of the program 

graph. There'are two DDN cell types which can be used to perform this

to be constructed.

he DISTRIBUTE cell, and the SELECT cell. Tne DISTRIBUTE cell

allows an input data item to be routed onto one of n (programmer 

defines n) possible outputs. The desired output is specified by the 

index input. If the index value is out of range then an error 

condition exists. Tne method for handling errors will be described 

later. The SELECT cell allows one of n inputs (again n is a variable 

and is specified by the prograrmer) to be selected end placed on the 

sr i~~ 16 c u c u t » Ths inc-j“ to l>9 s0 sc^sci is s c ^  £i6c c-v t ~ s Ipc^x 

ir.pur. to the SELECT cell. Tvso simple programs are shown in Figure 3-2 

•which illustrate the use of SELECT and DISTRIBUTE cells to represent 

conditional program constructions.

E D

a) If C < 0 then D:=l else E:=1 b) If C < 0 then D:=0 else D:=5

Figure 3-2: Two DDN methods for reoresentino condition statements

In a concurrent environment, there are times w;hen two parallel
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events will need to be merged on a first come first served basis. 

This action is performed in DDN programs by the ARBITER cell. The 

primary problem with such a merge is that information is lest about 
the sources of the merged data items. The index output of the ARBITER 

allows the information about this choice to be preserved. This 

information can be used in DEN programs to create program structures 

which are deterministic in their behavior. A sample program which 

exhibits such a construction will be shown later in Figure 3-8.

Another form of merge operation is required in iterative DDN

programs and is provided by the GATE cell. Unlike the other cells, 

the GATE cell operates on the basis of an internal state. The cell 

function and firing set are functions of this internal state. 
Iterative DDN's appear as a net with a set of input paths I, a set of 

feedback paths F, and a set of output paths 0. The recycling of data 

on the F paths is done once for each iteration of the iterative 

program. The program is initially started with the values which 

arrive on the I paths, and when the iteration terminates the results 

of the program are sent out on the 0 paths. The basic function of the 

GATE cell is to perform a merge operation on inputs I and F, as 

specified by the input C. The value on the C path corresponds to a 

condition which controls the iteration. A TRUE value indicates that 

another pass will be taken through the body of the iterated code. 

This will result in a set of feedback values on the F paths. If the C 

value is FALSE then the iteration is terminated and no new feedback 

values will be produced. Initially the GATE cell's state is set 

"open" to pass a single I data item, then the GATE "closes" to inhibit 

further I's and allow F's to pass. After a C=FALSE input arrives the 

GATE again opens. The general form of an iterative DDN program 
contains the following:

- A net or process to be iterated,

- A set of initial data paths,
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- A set of feedback data paths, and

- A set of output data paths.
is structure is illustrated in Figure 3-3.

-feedback paths

. Figure 3-3: Data-Driven Iteration

Proper sequencing for such an iteration would be:

- When each initial data path has an item, the net fires.

- When the net has fired, output items are placed on the 
feedback paths, and the net is then primed to iterate.

- Step 2 is repeated until the iteration started by the first 
set of initial inputs terminates and produces outputs.

- The sequence is then restarted.

The GATE cell is used to prevent non-deterministic merging of data 

paths in iterative situations. Loop termination is implemented by the 

joint use of DISTRIBUTE, and OPERATOR cells. A sample iteration is 

shown in Figure 3-4, which increments a value iteratively until it 

becomes 3, and outputs it. Data items not delimited by parentheses 

are of type CONSTANT and are considered to be part of the program 

definition. Constants are therefore not destroyed by the firing of a

"he situation where several data paths terminate at a single
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Figure 2-4: A Simple Iterative Net 

destination is not allowed, as this would imply that non-deterministic 

merging could occur at such a junction. Merging of data paths is 

allowed only in well-controlled instances as provided by the GATE, 

SELECTION, and ARBITER cells. .

As in other data-driven schemata, DDN's naturally represent two 

types of concurrency (pipelining and independent operations). DDN's, 

due to their asynchronous behavior, are non-deterministic with respect 

to execution histories. However the important point is that in a 

functional sense, DDN structures are deterministic. That is, if a 

sequence of values is sent into a DDN program any number of times, the 

resulting sequences of output values will always be the same. This 

property is known as output functionality. Certain DDN program 

topologies are not output functional and correspond to a programmer 

error. It is possible in a "DDN compiler" to find all such 

non-deterministic topologies and flag them as errors.

The inherent operational asynchrony of distributed control 

systems makes it virtually impossible to recreate an error situation 

for debugging purposes. It is therefore important to be able to 

guarantee correct system operation through analytic techniques.
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Analysis of DEN structures is in general very difficult. For example 

it is difficult to answer such questions as:

- V.hen does a DDN begin execution?

- When does a DDN terminate?

Answers to these questions require global perception of the net 

activity. Since DDN mechanics are defined in local terms, global 

behavior cannot be perceived. The general problem lies in the lack of 

ability to observe state phenomenon in fully distributed systems.

If all of the input paths to a DEN are synchronized at an input 

SYNCH cell, then important state information can be observed locally

a; thst point.. A similar argument can be made about the output paths. 

The "delimiting" of a DDN by SYNCH cells yields a form for a 

data-driven process (DP?). This process form is shown in Figure 3-5.

Figure 3-5: Data-Driven Process Form

The DDP form simplifies comprehension of the program 

considerably. The single input SYNCH cell acts as a collector for the 

process working set, and the output SYNCH cell acts as a termination 

point for the process and a distributer for the results of the 

process. In addition, EDP's have the same operational characteristics 

as CALL and OP cells. In fact, CALL cells invoke only DDP's.



When the input SYNCH cell becomes fireable, then the DDP is said 

to be fireable. When the output SYNCH cell has fired, then the DDP is 

said to have terminated. Between these two times, the DD? is said to 

be active. Under pipelining, the definitions of active, fireable, and 

terminated have to be modified as there may be many instances of each. 

A new definition for termination may be made by counting the number of 

input SYNCH cell firings and the number of output SYNCH cell firings. 

When these numbers are equal then the pipelined DDP can be said to 

have terminated.

Since a DDP exhibits the same behavior as a simple OPERATOR cell, 

a clear, substitution rule can be formulated. Within anv DDN, a DDP 

•which performs a function F nav be substituted for any OPERATOR cell 

performing F without changing the functional operation of the original 

DEN. This substitution rule allows a call mechanism to be defined 
(the CALL cell), which allows for recursive and/or hierarchically 

defined DDN's and DDP's. The name of trie called DD? is indicated 

inside the CALL cell box.

While the DDP model has some very nice properties with respect to 

abstraction, substitution, and hierarchical structure, it is more 

limited in what it can represent than the more general DDN's. The 

general problem is that DDP structures use one input set for each 

output set produced. Many problems use an arbitrary number of inputs 

to produce a single output (or vice-versa). This problem can be 

corrected using a type of message structuring discipline known as 

streams [43]. A discussion of streams and the operations of DEW 

programs using streams as an intrinsic data structure type is not 

presented in this chapter, as it is felt that such a discussion is not 

necessary to understand the material presented here. Due to the 

functional form of DDP's, the formal verification of program 

properties is simplified.

. 71
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Figure 3-6 shows two DDP's, each containing two parallel 

recursive calls to calculate the nth Fibonacci number, for positive 

integers n. Figure 3-6a shows the obvious net, while 3-6b shows a net 

which will execute as fast with two processors as 3-6a does with three 

processors (assuming that > and - operations require equal time to

compute) ■
Find the nth Fibonacci number: 

where F(l) = 0  
F(2) = 1
F (n>2) = F (n-1) +F (n-2)

C H B O

b) faat rr-q-cJ-r*# only
2 for

Figure 3-6: Fibonacci DDP's
i

A detailed discussion of data structure handling is beyond the 

sccp-e cf the issues discussed here. It is appropriate to mention a 

few considerations relating to better program structure. One can 

consider DDN's to consist of two files:



1. A static file (so far - the net description), and

2. A dynamic file (until now - the data items).
A no re general approach is to allow the data item file to be either 

static or dynamic (and similarly for the net description). The basic 

nature of data-driven computation indicates that the dynamic file 

elements will be destroyed upon cell firing, and some copying will be 

inherently necessary. The proper choice for the dynamic file would be 

the file (data item or net) which would minimize the copying 

requirements. In instances where large data structures are used, the 

static file would be the data structure and the net description would 

be the dynamic file. In this instance the data structure would be 

treated as a static resource which could then be shared by a number of 

concurrent processes. To avoid the possibility of access conflicts to 

the structure, an ARBITER cell can be used to guarantee first come 

first served (but sequential) access to the structure.

Figure 3-7 shows a net for controlling read access to a shared 

vector. Tne inputs Pi, P2, and P3 are the indices from concurrent 

processes 1, 2, and 3 respectively. The vector input is the vector to 

be loaded into place. It is assumed that the load input arrives 

before any of the Pn inputs. The SHARED RESOURCE box of this net acts 

as a sequential interpreter for instructions flowing into it. The net 

also shows how order-preserving parallel to serial to parallel 

conversion takes place using the ARBITER and DISTRIBUTE cells. The 

DDN’ ARBITER cell does not perform just the normal arbiter function, 

but also generates an index indicating which input was selected. This 

index preserves enough information to allow the sequenced items to be 

correctly "reparallelized". Any time an ARBITER cell is used in a 

net, it must be used in exactly the same ARBITER - DISTRIBUTE cell 

pair topology as shown in Figure 3-7. Otherwise the ARBITER cell will 

cause non-deterministic sequencing and the result will be a net which 

is not output functional. Figure 3-8 illustrates how order-preserving

73
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serial to parallel to serial conversion is handled.

Figure 3-7: Shared Resource DDN

o c t p o t  p i p *

Figure 3-8: Serial to Parallel to Serial Conversion

The basic nature of data-driven processes is that operations are 

pushed into action by the arrival of the required set of inputs. If 

one of these inputs is prevented from arriving at the intended 

destination (due to a programming problem or other type of error), 

then that destination cell v/ill never fire. Consequently, all cells 

having firing sets with outputs from the unfireable cell will never
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fire and so on. A cell or a net which can never fire is said to hang. 
A cell or net which can never hang is said to be live. Since no cell 

can determine whether it is waiting for an input that will never 

arrive (i.e. whether it is live or not), it is inportent to be able to 

guarantee liveness from a topological examination of the net process. 

This examination can be performed in a compiler-like operation and a 

special ERROR data item can be inserted where necessary to maintain 

liveness. For example, if a DDP contained a conditionally defined 

output, then that DDP could hang if the condition was never met. Tne 

compiler (or the programmer) could produce a net which, on failure of

:r.e condition, would send an ERROR item, 

•hown in Figure 3-9.

?xanple c; a net is

D
D

A net. which can hang A corrected net which can
. not hang

Figure 3-9: Correcting a hangable net

When a conditional expression is described as a DDN, only one 

path of the condition will fire for a given set of inputs. For this 

reason, the notion of whether a particular cell is live or not is not 

of much practical worth, and in fact, it is impossible to determine 

tcpelogically. Similarly for general DDU's the notion of liveness is 
somewhat nebulous, but for a DDP, liveness is an important and
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Two other important characteristics of DDP's are whether they are 

safe or clean. A DDP is said to be clean if when it terminates, there 

are no non-constant data items existing in the DDP. EDP's are clean 

when they are defined. If they were not, then the output values would 

be history dependent upon the values of the existing non-constant data 
items. A live DDP which terminates without error and is always clean 

is said to be safe. It can be shown that safe DDP's execute in an 

output functional manner under pipelining.

It is possible to determine by topological analysis of any DDN 

v:hether it is safe or net. The machine algorithms for such analysis 

are lengthy and will not be presented here. Such analysis would be an 

important part of a DDN compiler, and should be performed before 

execution cf any DDP.

3.4 The Architecture

The architecture consists of a set of asynchronous modules which 

communicate by passing messages. The fundamental computational unit 

of the architecture is a processor-store element (PSE). A PSE 

consists cf a processor module (P) and its associated local storage 

module (S). Any PSE can execute any machine language program,

topologically verifiable property.

. l. : ?e. Tne

architecture is a recursively organized set of these PSE1s. The 

recursive definition cf the structure is:

<PSEn> ::= <PnXSn>

<^n> ::= <ASUn>

<Pn> ::= <APn> I <APnXPSE.GROUPn+l>

<?SE.GROUPn+1> ::= <pSEn+i> | <PSEn+i><PSE.GROU?n+i>
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Subscripts denote the recursive level at which the module 

physically resides. <AP> is an atomic processor module, which has no 

further sub-structure (contains no PSE's). Similarly an atonic 
storage unit, <ASU> has no PSE substructure. The width of a 

<P5E.C-R0'JP> has a physical bound. For the DDMl prototype, this bound 

is eight. The structure is depicted in Figure 3-10.

psz ‘&

Figure 3-10: Recursive definition of a PSE at level n 

This structure allows for a hierarchical distributed storage 

organization. Any S or ASU may consist of an arbitrary amount of 

storage of any desired medium. Higher levels of PSE's are considered 

logically superior to lower level PSE's. It is advantageous if higher 

level stores (ASU's) are slower and larger than the stores of lower 

levels. This reflects the notion that the functional ability of the 

father node should be greater than or equal to the abilities of all of 

the son nodes. Tne interface and functional ability of any ASU 

(regardless of size, speed, and level) is the same. The structure 

also allows for an arbitrary number of processors to be used 

concurrently. It is important to note that' all AP's are identical 

regardless of level. However, the processors at higher levels will be 

more powerful, in that they contain more substructure than the 

processors at lower levels. More substructure implies more internal



Viewing the DDMl system in this recursive sense is the best way 

to understand the operational nature of the system. The recursive 

view is somewhat disconcerting when it cones to understanding v;hat the 

system looks like physically. When viewed ncn-recursively this 

structure is simply a tree structure with a single root and a 

possibility for up to eight sons at any node. Each node of the tree 

is a PSE and is capable of executing any machine language program. 

The leaf nodes have no substructure and therefore consist of an AP and 

an ASU.. At each node the fan-out is fixed but the depth of the tree 

is arbitrary. In this manner the architecture allows any desired 

number of PSE's to be included into a given machine. Each PSE is a 

completely asynchronous nodule, and therefore as new PSE's are added 

to the system no system tuning need be performed. The desired goal is 

for machine 'performance to improve with the addition of more PSE's.

There are a number of ways to map this logical tree structure 

onto a collection of PSE's. All involve some form of a connection 

network to implement the desired communication paths. A number of 

general interconnection networks have been considered: busses, 

crossbars, Banyan nets [12], and permutation networks [17]. For 

tree-like machines, full connectivity is not required. The expense of 

crossbar switches vary as the square of the connected elements. Eus 

conflict (and therefore bus contention) would drastically reduce 

actual parallelism in the machine. Permutation networks present a 

tremendous problem in that they may need to be totally reconfigured 

when a single new connection is necessary. Tnis is difficult to do 

reliably in a multi-path distributed control environment. Banyan 

networks have some merit, but do not allow the desired hierarchic 

pipelined communication. Therefore in the DZv'l prototype, a simple 1 

to 8 switch was chosen as the interface unit between successive levels
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cf PSE's. The result is that the physical and logical recursive 

structures are the same. The structure is fixed and cannot be 

dynamically changed.

Information is passed between PSE’s as nessages v.’hich are 

variable length character strings. Upward traveling messages are 

passed by the switch in an arbiter like manner. Downward going 

messages contain header fields which indicate their destination. This 

header is processed by the switch hardware in order to enable the 

desired routing through the switch. The header is also deleted by the 

switch hardware as the message is passed. Downward and upward 

messages are manipulated by independent hardware in the switch, and 

therefore are capable cf being controlled concurrently.

The character serial nature of the machine has the following
cCVSr.w6C£S l

- Hardware modules are made simpler and are more applicable 
for VLSI implementation due to the reduced pin count.

- Hardware communication paths are more general in that 
information units can be transmitted as varying numbers of 
fixed-width base characters. This facilitates a hardware 
substitution strategy for modules. Each module can 
interpret the variable length message and perform the 
indicated function.

These advantages aid in greatly reducing the cost of the hardware
modules. Some low-level performance is lost by doing everything

serially. The philosophy for this architecture is to regain that lost

performance many times over by providing a systems organization that

allows for many highly concurrent levels of activity.

Physical queues are placed between levels of PSE's in order to 

facilitate pipelining and increase physical module independence. 

V'ithout queues, the sender of a message would need to wait on receiver 

availability. If a queue becomes full, only then must the sender wait 

until the receiver has released some queue space. If queue sizes are



adjusted so that a sender is rarely required to wait for space, then 
the system would be well tuned for efficient processing. Optimal 

queue size depends on the average message length. It is therefore 

impossible to, guarantee that no waiting will occur. It can be shown 

that the strict hierarchical control and a restricted process 

structure insures that the system does not deadlock. A block diagram 

of the PSE structure is shown in Figure 3-11. In the DDMl prototype, 

all communication paths except for the path between the ASU and the 

AP, consist of 6 wires (a 2 wire request-acknowleage control link ana 

a 4 wire, character-width data bus) .

fttber FSE
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0 1 7

' Figure 3-11: PSE Structure

The variable length, character serial message structure and DDN 

representation requires a highly flexible storage structure. This 

needed flexibility has been implemented in- the low level hardware 

functions of the ASU. In order to increase efficiency of the PSE, all 

storage management functions are performed internally by the ASU. The 

ASU appears to the AP as a variable field length file system, which



directly executes commands, such as: initialize, skip, insert, read, 

v.-rite, delete, and index. The free space is managed automatically by

the ASU. • . ■... '

The PSE structure allows for a high degree of processing locality 

in that any PSE can execute any DDN program (assuming that there is 

sufficient storage in its local ASU). In addition the PSE admits 
nicely to VLSI implementation. The 1 to 8 switch can be implemented 

using a cascaded set of 1 to 2 switches. Using 1:2 switches, module 

complexities for the DDMl prototype (pin and gate count) are shown in 

Figure 3-12. Tnese pin counts include connections for power, ground, 

initialization, and extension. The indicated module pin counts are 

rounded up to coincide with standard package sizes. A cate in these 

counts corresponds to a 2 input NAND gate.
Module Gate Count Pin Count

IQ, OQ (4K) 3,COO 16

Ap 20,000 64

ASU (4K) 47,000 64

1:2 Switch 2,000 64

Ad + ASU 67,000 64

AP+ASU+IO+OQ 73,000 64

AP+ASU+swi tch 69,000 64

PSE 75,000 64

Figure 3-12: PSE Module Complexities

These counts are well within the limits of modern circuit and 

packaging technology, especially since much of the logic is storage 

and therefore has a highly regular geometry.
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3.5 Internal structure of DDMl

The internal structure of DDMl is a rather flexible prototyping 

architecture. A number of decisions were made to cive a large degree 

cf flexibility to what is a special purpose data-driven machine. Some 

of these decisions result in decreased performance, but are considered 

to be worth it as the hardware is continually being upgraded to 

reflect new implementation ideas. In this section we present the 

fundamental structure of the atomic storage unit (ASU) and the atomic 

processor (AP). The other components in the PSE are simple queues and 

switches of a very straightforward design.

Inherent in a DDN process is the need for the net to grow end 

shrink in size c urine? execution. This, end £ ceneral belief in ether 

advantages associated with a variable field size storage 

representation, led to the adoption of The Storage Model (TSM) as the 

basis for storage in DDMl. TSM is a storage structuring discipline 

invented by R. S. Barton. DDN processes exist in DDMl, as "Storage 

Model" files. Tne goal of the TSM discipline is to provide a location 

independent method for dealing with an arbitrary structure of variable 

length fields.

Tne TSM structure is a field. A field is a variable number of 

characters enclosed between two reserved characters. These special 

delineation characters may not appear in the data, and will be denoted 

by left and right parentheses. A field may also be a sequence cf any 

number of fields enclosed in parentheses.

TSM structures appear as well nested parenthesized expressions. 

One view of these structures is that they represent data structures, 

which are generalized trees. Straight forward mappings of scalars, 

tuples, strings, lists, vectors, and n-ary arrays can be mace onto 

these tree structures. Any field which does not contain subfielcs is 

called a record, while any field which contains some subfields (i.e.



has substructure) is called a file. In any file the first subfield 
(which may itself be a file) is the descriptor for the remaining 

subfielcs. Tne remaining subfielcs are the contents of the field. A 

sir.ple TS.V. vector may be represented by the template:

((ordered vector)(element value 1) (value 2 ) ... (value n))

Similarly a matrix may be represented by:

(((ordered matrix)
((ordered row 1) (value 1) ... (value n))
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((ordered row m)(value 1) ... (value n))
))

The non-cescriptor fields of any file may b-e ordered or 

ur.crcered. Unordered fields must be named and are accessed by name. 

Ordered fields may also be named, but can be accessed either by name 

or by position via an index. TSM fields may contain an arbitrarily 

deep substructure and are indexed by an access vector. Each element 

of the access vector may be either a name or an index number. If the 

nth element of the access vector is a number then the TSM file must be 

ordered or an error will occur. If the nth element of the access 

vector is a name, then there must exist an equivalently named subfield 

ir. the TSM structure being accessed. If no matching name exists at 

that level, an error condition will also occur. One notational 

convenience in specifying TS.M structures is allowed. Any pair of back 

to beck parentheses may be replaced by a comma. Hence ( ( 6 ) (4)(5)) can 

also be written as (6,4,5).

TSK also specifies how free space is stored and used, but these

details are not germane to the programmer's world and are omitted 

here.

The ASU is simply a TS.M file system. The file commands which the
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- Initialize - initializes memory contents.

- Skip - cursor skips.over field currently under the cursor.

- Insert - inserts field prior to <the charecter or file 
pointed to by the cursor.

- Delete - deletes field pointed to by the cursor.

- Assign - assigns a character or a file to the character or 
file pointed to by the cursor.

- Read - reads the field pointed to by the cursor.

- Head - positions the cursor to the leading "(" of the father 
field of the character currently under the cursor.

ASU performs are:

— z-irn'sx ~ u i r c e y )  i co^s i^cGy^no 009rations
rtinc 5t tne ri^st chcr’scter in tne store*

- ?.ir.dex - (relative index) : does indexing operations 
starting from the current cursor position.

The ASU is a 4K 4 bit character store using random access storaqe 

chips. Hie ASU is organized so that dynamic storage can be easily 

accommodated. RAM storage was picked to minimize the number of 

variables effecting performance measures. A black box view of the ASU 

is shown in Figure 3-13. ec <

A 4 cycle self-timed signaling convention (handshaking) controls 

the inputs to the ASU. The two wires which are necessary to support 

this convention carry request and acknowledge signals. These two 

vires are called a link. The input link controls both the command and 

the input busses. Commands are placed on the command bus and data 

characters are sent via the input bus. Similarly, output characters

■ (output bus) and error conditions are controlled by the output link. 

Eighteen lines are also present to communicate with the mapping unit 

vrich is strictly a speed-up device used during index commands. If no 

mapper is present, no change to the ASU is necessary.



85

ASU

n£~o£r

4
<5--- \------

input
interface <

4 tW
-a---- \------

mapper
> interface

J 4
------\

output
interface <

2
------ ^

data bus

request
acknowledge

command bus

-tw output data bus

c. C s'IZ'i 0 V L- £

Figure 3-13: ASU Black Box Model

The internal architecture of the ASU is shown in Figure 3-14. 

This architecture has proven to be a nice structure for prototyping. 

Sub-icchines may be added, deleted, and modified with negligible impact 

on the rest of the rx>dules.

The soft control consists of an asynchronous micro-controller, a 

read/write microcode store, and a condition-select unit. The 

ccndition-select unit selects a condition line and places it in a 

condition register.

The Ap architecture is the same flexible prototyping structure 

that is used in the .ASU. Different submachines and microcode formats 

are used to support Ap functional requirements. The Ap is intended to 

execute the DEN program structures, with cells cf type; SYNCH, CALL, 

CP, CATE, DISTRIBUTE, SELECT, and ARBITER. Tne sub-types of OP cell
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Figure 3-14: Elock Architecture of ASU 

which ere allowed reflect the machine operation primitives which the 

DDMi hardware supports. These operators perform actions such as add, 

subtract, relational tests, indexed reads and writes on TSM 

structures, maximum, minimum, not, negate, and absolute value.

DD;%'1 operates on sign magnitude decimal integers. TRUE is 

represented as a 1 digit while FALSE is a 0 digit. The presence of a 

sign indicates negative numbers, no sign indicates positive 

numbers. Integers may be of arbitrary length. All data transmissions 

are in storage model format end are performed in a character-serial 

fashion. Numbers are transmitted low-order digit first followed by 

the sign.

The combination of the Ap, ASU, two asynchronous queues (IQ and 

Op), end the 1:8 switch are a PSE.



ivhen a message corresponding to a DDN program enters a PSE at any 

level, the PSE may take one of tv/o actions:

1. DECOMPOSITION1 AND ALLOCATION: If the PSE has substructure 
and if there exists some set of concurrent subnets in the 
DDN process, then the PSE may split trie DDN and send 
concurrent subnets to PSE's at the next lower level.

2. EXECUTION: if the PSE has no subresources, or if there is 
no exploitable concurrency in the DDN, then the PSE 
executes the DDN at that level.

To aid the decomposition process, a structural descriptor may 

precede the incoming DDN in the message. This additional storage can 

greatly reduce the time required for decomposition decisions in the 

PSE. Ir. addition, each PEE must contain information about the number 

of available PSE's and the sizes of their respective stores. Problems 

would result if, a DDN were sent to a PSE that did not have sufficient 

memory to store the DDN. Only the local store sizes of immediate 

subresources are known. This insures the recursive nature of the 

decomposition process.

The decomposition process takes some time. It is important that 

the speed-up gained by the extra concurrency resulting from 

decomposition is not overshadowed by the time to decompose. 

Experiments have indicated that a "first fit" decomposition is 

generally better than a "best fit" decomposition strategy. It also 

appears not to be worthwhile to completely decompose a DDN on this 

architecture. At fine granularities, the slowdown resulting from loss 

of locality is not regained by the concurrent execution of very small 

subtasks. An exception to this rule would be in the case of 

pipelining, where subtasks remain allocated for relatively long 

periods of time and sustain high activity at each site.

If decomposition and resource allocation occur at run-time, it is 

important that they be simplified as much as possible. It is possible
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3.d Automatic Resource Allocation and Evaluation
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to perform these tasks completely at compile-tine. This however is 

inadvisable since it is based on an assumption of the run-time 

availability of PSE's in the system. In a system containing large 

numbers cf PSE's, the probability is high that some PSE's will fail or 

be busy doing other things. In addition, large portions of a process 

may only be evaluated conditionally. A compile-time allocation would 

have to allocate tasks which may never be executed. The strategy is 

taken here to split the decomposition task into two phases:

1. At compile time: do all of the resource and condition 
independent work, and

2. At run-tine: dynamically make the actual allocation of 
executable tasks to available physical resources.

DDN's are quite irregularly structured graphs anc DDMl is a very 

regularly structured set of resources. Direct run-time allocation 

would be too slew, due to the structural disparity between program and 

machine. At compile-time, the two-terminal DDN process structure is 

transformed into a well structured and functionally equivalent series 

parallel graph (SP-^graph). "Two-terminal" means that the graph 

contains a single "first" cell and a single "last" cell. Tnis matches 

the DDP form and facilitates determination of net termination and 

initiation. SP-graphs are acyclic, two terminal, directed graph 

structures which can be formed by successively combining cells and/or 

SP-graphs in series or in parallel. The SP-craph structures are then 

allocated as necessary at run-time. Dataflow graphs in general admit 

nicely to arbitrary restructuring cue to their asynchronous and local 

control characteristics.

The allocation of SP-graphs onto tree-structured physical 

resources is an easy task. If the SP-araph -of Figure 3-15 is folded 

back onto itself about the middle, the result is a tree-structured 

EP—graph. The SF-grsph, its folding, and the allocation onto a tree 

of physical resources are all shown in Figure 3-15. In this way full
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middle

to tree of PSE's

Figure 3-15: The allocation of SP-Graph programs onto a PSE tree 

upward and downward communication can be carried on concurrently to 

achieve pipelining. Horizontal parallelism can be achieved by 

spreading independent subtasks across a given level of the 

architecture. Resource allocation is performed automatically by the 

hardware in DDMl to achieve very high degrees of parallelism. Tne 

amount of obtainable concurrency is a function of available hardware 

resources ana the program structure.

3.7 DDM1 in retrospect

DDMl represents a particular architecture and evaluation scheme 

for dataflow programs. The architecture exploits a recursive 

hierarchy to reduce complexity and allows for the arbitrary expansion 

cf system resources. Physical resources are organized such that they 

can be used to exploit both pipelined and independent tasks. The 

system exploits the notion of locality which is irportant for both the 

increased speed and decreased cost aspects of a VLSI implementation. 

This notion of locality also indicates that this system is not



intended to exploit concurrency at the lowest possible level. It is
felt that the additional overhead involved would actually reduce 

overall performance levels. •

DPMI is operational and executes DDK’ programs. DDMl communicates 

'with 5 DECSYSTEM 20/60, which is used to support conventional software 

tools such as compilers, simulators, and measurement programs. The 

current programming language for the DDMl system is the DDN 

representation. Programs can be created by working at a Tektronix 

storage tube display terminal and simply drawing the program. The 

programs which support this graphical programmer station run on the 

DECSYSTEM 20/60. The main problem with this station is the lack of 

interaction which results from the slow storage tube graphics 

terminal. An interactive graphical programming language is in 

progress (in both a high-level and a low-level form). A simulator is 

being written on the DEC-20 which will manage any specified tree of 

resources (virtual) and use the DDMl for actual evaluation. A number 

cf large application programs are being written for DDMl. Detailed 

statistics will be taken during the execution of these programs to aid 

in formal evaluation of the DDMl hardware. There is also a graphical 

high-level language GPL [20] which has been defined (preliminary 

form) and is currently being implemented in the form of an on-line 

graphical programming environment and a language compiler.

Tne main points of departure of the "Utah" approach and that of 

Dennis [26] is the use of a recursive hierarchy of physical 

resources, the exploitation of physical locality to decrease message 

frequency and increase the speed of VLSI implementations, dynamic 

hierarchical resource allocation, the lack of specialized functional 

modules to reduce the chip type count, and a slight difference in the 

structure of the low-level schema. The architecture of DDMl differs 

from that of Arvind and Gostelow [2] in that it does not try to
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chi eve concurrency at all possible levels (because of the locality 

ssue) , the interconnection scheme is nuch sir.pler and no bus 

cntention is possible, no special address space management needs to 

e cone, allocated tasks may consist of many cells rather than just a 

ingle operation, and tasks are allocated only when all of their 

ecessary input operands are present.

The disadvantages of the system described ere:

- The current ASU design is not nicely extensible to allow 
more storage capacity to just be "plugged in" et a PSE site.

- The fixed, harc-vire tree structure is not flexible and 
results in certain PSE's in one subtree remaining idle when 
another heavilv leaded subtree fcsclv needs more resources.

- There is currently net enough empirical data from test runs 
on very large programs to accurately quantify the overhead 
involved in decomposition.

- Failure cf a PSE will cause the entire subtree below the 
failure to become unusable. In general, the issues of fault 
tolerance nave not been properly attended to.

- Certain "perverse" SP-graph topologies can not easily be 
allocated such that full pipelining can be supported. '



We have presented a rather detailed view of a non von Neumann 

computing model. The biggest problems with this model lie in 
overcoming the tremendous intellectual and commercial momentum of von 

Neumann structures. The parts of the cult which seem most likely to 

succeed are the highly functional programming style, the method by 

which a multiplicity of tasks can be coordinated in a concurrent 

environment, and the basic notion that local control is an important 

property for a module of a large system. It is possible to build 

these ideas into existent commercial systems which run on conventional 

hardware structures. The weakest point of the work done to date is 

the failure cf all researchers to find acceptable new mechanisms for 

vcr. Neumann artifacts like data structures ant file systems. Given 

time and some good ideas perhaps these problems can be solved. If 

they can, the payoff is potentially enormous.

4. Conclusions '
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