
DATAFLOW COMPUTERS:
A TUTORIAL AND SURVEY

by

A. L. Davis
and

P. J. Drongowski

UUCS - 80 - 109

September 1, 1979

Revision: July 15, 1980

Table of Contents .

1. Introduction 1
1.1 The Data-Driven Computing Model 2
1.2 A More Formal View of Data-Driven Computing 5
1.3 Structural Concepts of Dataflow Architecture 11

1.3.1 Instruction and Data Store 11
1.3.2 Processing Elements 12
1.3.3 Communications 13
1.3.4 Control and Resource Allocation 13

1.4 A Brief History of Data-Driven and Related Efforts 13
1.5 Observations About Data-Driven Computing 16

1.5.1 Comparison with the von Neumann Organization 16
1.5.2 Differences in Programming Style 18
1.5.3 Exploitation of Concurrency 19
1.5.4 Co-ordination of Parallel Processing 20
1.5.5 Decentralization and Buildability 22
1.5.6 Impact of Implementation Technology 23
1.5.7 The Impact of VLSI 24
1.5.8 Benefits of the New Model 27
1.5.9 Problems with the New Model 29

2. Survey of Existing Architectures ■ 31
2.1 MIT 33
2.2 Systeme LAU 38
2.3 University of Manchester 43
2.4 University of California Irvine 48
2.5 University of Utah . 54
3. A Case Study of Tne DDMl Machine 56
3.1 Introduction and Chronology " 56
3.2 Architectural Principles 59
3.3 The Machine Language 62
3.4 The Architecture 76
3.5 Internal structure of DDMl 82
3.6 Automatic Resource Allocation and Evaluation 87
3.7 DDMl in retrospect 89
4. Conclusions ■ 92
5. Acknowledgments 93

. i

ii

3
7
7
9
17
18

22
32
34
36
37
39
41
44
46
48
50
52
55
63
66

68
68
70
72
74
74
75
77
80
81
84
85
88

1-1: Dataflow program for the expression "a*b + c*d"
1-2: A Sample Cell Firing
1-3: Pipelined Execution
1-4: Two Types of Concurrency
1-5: Simple von Neumann computer organization
1-6: von Neumann Style Program for the Expression "a*b +

c*d" “
1-7: Co-ordination of Subnetworks
2-1: Machine evaluation criteria
2-2: High level structure of the MIT dataflow computer
2-3: Structure of an instruction cell
2-4: MIT Dataflow Computer: Summary
2-5: Overall structure of Systeme L^U
2-6: Systeme LAU: Summary
2-7: Structure of an individual Manchester processor
2-8: University of Manchester Dataflow Computer: Summary
2-9: Example of static parallelism
2-10: UCI processor - physical domain
2-11: UCI Dataflow Computer: Summary
2-12: University of Utah DDMl: Summary
3-1: DDN Cell Types
3-2: Two DEN methods for representing condition

statements
3-3: Data-Driven Iteration
3-4: A Simple Iterative Net
3-5: Data-Driven Process Form .j 'io -
3-6: Fibonacci DDP's . ~
3-7: Shared Resource DDN
3-8: Serial to Parallel to Serial Conversion A ri JT ;•> *r ,3-9: Correcting a hangable net
3-10: Recursive definition of a PSE at level n
3-11: PSE Structure
3-12: PSE Module Complexities ••• * • ; , -
3-13: ASU Black Box Model
3-14: Block Architecture of ASU
3-15:. The allocation of SP-Graph programs onto a PSE tree

List of Figures

The demand for very high performance computers has encouraged
some researchers in the computer science field to consider
alternatives ,to the conventional notions of program and computer
organization. The dataflow computer is one attempt to form a new
collection of consistent systems ideas to improve both computer
performance and to alleviate the software design problems induced by

the construction of highly concurrent programs.

This report discusses both the dataflow computer concept in

general, and specific dataflow computer designs and implementations in

particular. Our intent is to introduce computer science professionals
to the current results and terminology in the dataflow field. Serious
readers should be able to acquire the knowledge necessary to
assimilate and analyze in some depth, both recent and future research
results. The subsections which follow describe the notion of dataflow
programs and present some of the architectural features required to
support these programs. The dataflow computer concept is then
compared with the conventional von Neumann computer followed by a
brief discussion of the disadvantages and benefits offered by the new

model. Next, a survey of contemporary dataflow computer organizations
is presented. Tne similarities and differences of these machines are
discussed. Finally, a detailed case study of one particular dataflow
computer is presented. Throughout the report, we have included
references to recent work in ■ this field to help the reader find
additional information on both the dataflow concept and ongoing

research.

1. Introduction

2

1.1 The Data-Driven Computing Model
Each machine system in existence can be thought of as being based

on some computing model. The same can be said of hypothetical
machines which exist only in a conceptual sense. Often such
conceptual or "paper" machines are called computer architectures. The
choice of the computing model fundamentally affects features in
programming languages, operating systems, machines, and architectures.

We present here a fundamental hypothesis about why the von Neumann

systems ideas have been so successful: they are self-consistent.
Self-consistent systems ideas provide a framework in which system
sub-components are not in conflict vath each other. This results in
more efficient system operation for the cost. In order to correct
v.'hat are currently perceived as limitations in the von Neumann model,
it is insufficient to modify only a single aspect of this traditional

ser of ideas. A single modification may result in an inconsistent set
of systems ideas. The inconsistency may cause tremendous additional

complexity which will adversely affect both cost and performance.

In an attempt to find a new self-consistent set of systems ideas,
a number of researchers have proposed the data-driven computing model.
The basic idea behind a data-driven program is that activities should
be initiated asynchronously by the arrival (or availability) of the
necessary information required to perform that acrivitv. This
data-driven model (also termed dataflow) is then in direct contrast

with the von Neumann model which is control-driven,, in that some
control mechanism (namely the clock and the program counter) specifies

which actions will take place and when.

Figure 1-1 illustrates the operation of a data-driven program
which computes the expression "a*b + c*d". At the machine language
level, dataflow programs m.ay be conveniently represented as directed
graphs. In the data-driven model, the nodes in the graph (called

cells) correspond to machine instructions which operate upon a
sequence of operand tokens which flow to the cells along the arcs of
the program graph. In the von Neumann computing model, the
instructions cause the operand data to be fetched from memory to the

processor; in the data-driven model, the data simply flows to the
instructions cells. The arcs between cells can be viewed as FIFO
storage pipes which queue the data items until the cell is ready to
remove them for cell execution. When all the operands are present
(each queue has transported a data item to the cell), the cell removes
a data item from the head of each queue, computes the result, and
passes the resulting data value along the output ere from the cell.
Note that the expressions "a*b" and "c*d" may be computed

concurrently. Due to the queueing behavior of the arcs, the "+" cell
may also operate concurrently with the two cells provided that

sufficient data arrives to drive both the and cells. This
type of concurrent operationis commonly called pipelining.

Figure 1-1: Dataflow program for the expression "a*b + c*d"

Another interesting model for highly concurrent computation is

the demand-driven model proposed by a number of other researchers

4

[17, fi, 32, 9]. A brief description of the demand-driven model is
presented here in order to acquaint the reader with some concepts
related to data-driven programs, which will be expanded upon in the
sequel. In .demand-driven programs some actions are initiated by
data-driven rules and others are initiated by demands which are
generated by other actions. Typically initial allocation of low level
tasks is initiated by demand, and subsequent evaluation is performed
in a data-driven manner. Using Figure 1-1 once again, we can describe

the operation of the demand-driven model. Initially, a demand item
arrives at the arc labelled "a*b + c*d" representing a need to compute

the expression. Because the arcs from the cells to the "+" cell
are empty (i.e., no data tokens are waiting) the " + " cell sends a
demand token to both cells. Since data items are available at the
inputs of the cells, they remove the incoming data items, compute
their respective results, and send the resulting data items back to
the "+" cell. The "+" cell senses that its demands have been met by

the arrival of the data items on its inputs. The "+" function is
performed and the result is sent over the arc "a*b + c*d" satisfying

the initial demand on the program graph.

The following characteristics of the demand-driven model should
be noted:

- Unlike the data-driven model, two types of information are
carried over the program arcs: demand and data items.

- Demands flow back through, the graph while data items flow
forward.

- Both demand and data items may be queued on the program
arcs.

The principle advantage of the demand-driven model is the avoidance of
unnecessary computation. In larger more complex dataflow programs with
conditional selection of results (i.e., a dataflow version of
" if-then-else" or "case" selection), the data-driven model w7ill
evaluate all expressions for which data items are available, while the

5

demand-driven model will only evaluate expressions for which there is
a demand or need. This is usually a subset of the data-driven
expressions. In either model, a computation utilizes some physical
resource. Hence, a program running under the demand-driven model
should use less physical resources than its counterpart executing
under the data-driven rules. A demand-driven program, however, incurs

higher communication costs because demand items must be transmitted

around the graph in addition to data items. The seriousness of these

costs are usually cited as the primary reasons for choosing the
dataflow (data-driven) model over the demand-driven model. A
data-driven program may be viewed semantically as a demand-driven
program in which a demand always exists at the output ports of the
program cells. ■

All three computing models (von Neumann, data-driven and
demand-driven) have their advantages and disadvantages. We

concentrate here on an in-depth presentation of data-driven languages
and machines. Due to the research nature of the data-driven field,
the vocabulary and terminology has not yet standardized. We will
therefore attempt to indicate synonyms wherever possible. The
following section introduces additional terminology relevant to
data-driven computing formalizing some of the concepts discussed

above. It may be skipped by the casual reader.

1.2 A More Formal View of Data-Driven Computing
There are a number of ways to conceptualize the data-driven

program model. Ihe most commonly used and perhaps the easiest method,
is to view a data-driven program as a directed graph. The vertices
(also called nodes or cells) correspond to actions which are performed
in the program. The directed arcs correspond to data paths over which
information is transmitted from the producer of the information to the
consumer. The information is carried in quantum units which can be

«

6

thought of as messages. In a message passing environment, the
directed arcs lead from the sender to the receiver. A node of a
program graph may have any number of arcs. The actual number of arcs
for any specific node will depend on the type of action associated
with that node.

There are usually no restrictions on the operation of an arc
which specifies the number or the type of messages which the arc can

carry. If more than one message (also referred to as token, data
item, data token, or packet) exists on an arc then the arc logically
operates, as a FIFO (first-in first-out) storage device. These arcs
(queues) conceptually have infinite length. This notion of infinite

length queues should make most pragmatists quite nervous. It will be
shown in section 3A that this notion of infinity is a nice conceptual
device, and does not necessarily present operational difficulties.
The lack of a type restriction on messages implies that a message can
be almost any data structure (e.g. literal, integer, vector, program,
etc.)

Tnere are two aspects of data-driven cells which are important in

understanding how actions take place in program graphs.

1. What activity takes place? This is specified by a cell
function. Each cell in a program graph has a specific cell
f'unction associated with it. The method by which the cell
function is specified varies from one data-driven language
to another. Typically it is a combination of a graphical
shape and a tag or name associated with the cell.

2. When does the activity take place? This is specified by the
firing rule. Each cell has an associated firing rule. The
firing rule specifies which set of input arcs must contain
at least one message before the cell function can be
performed. This set is called the firing set.

When the firing rule of a cell is satisfied then that cell is
said to be fireable. The data-driven model is an asynchronous one,
and therefore a fireable cell is executed (fires) at some finite (but
undetermined) time after it becomes fireable. Wnen a cell fires, the

7

firing set data items are destroyed, and a set of resultant data items
are placed on the output paths. The order in which the output data
items appear on the output paths is unknown. The tine at which the
outputs appear after a cell fires is finite but unspecified, and no
assumption can be made about the order or the relation between the
times at which the output items appear. This implies that cell
behavior is completely asynchronous, end this is essential to a schema
which is to be easily implemented in a distributed control

environment. A cell is said to have fired only after all of the
firing set data items have been removed and all output data items have
been placed on the output paths.

An example of a cell firing is shown in Figure 1-2, where a cell
performs a simple integer addition. In this case, the firing set is
the set of all input data paths. The result of firing this cell would
be: all output paths receive the sum of the input path items.

(8) (8) (8)

f t
cell after firing

Figure 1-2: A Sample Cell Firing

In the case where all of the input arcs contain more than a

single message, the cell may remain fireable. In this case, the cell
may continue to fire as long as the input paths (pipes) can supply the
cell with input data at a sufficient rate. This type of operation is
caled pipelined execution, and is illustrated in Figure 1-3.

(2)

cell is
fireable

cell before firing cell fires

8

cell is
fireable

(6)

cell before firing

cell is still
fireable (2> .

(4) ''

(6)

(7)
(4)

cell fires cell after firing

Figure 1-3: Pipelined Execution

There has been considerable discussion in recent literature

concerning the benefits of functional programs [7, 17, 31].
Functional programs do not use the von Neumann global variable
(storage location) concept. This allows dcta to be used as a value
rather than as a storage location. This also implies that the nets
are not history dependent (i. e. they are "nemoryless"). This storage
management discipline removes side-effects, which have proven to be
very difficult to deal with in the formal verification of programs.
Programs in which the order of statement execution is not strictly

dependent on the lexical ordering of the statements in the program,
but where the order is dependent upon functional relationships are

called nonprocedural languages. The semantics of a nonprocedural
program' can be described in denotational terms rather than in an
operational sense. "Denotational semantics" can considerably simplify
the task of program verification. The von Neumann program model
tightly binds the notion of physical location of program and data
elements with the execution of program elements and the use of data
elements. Functional languages break the tight binding for data, and
nonprocedural languages break the binding for program elements.
Data-driven programs are inherently functional and nonprocedural.

9

Data-driven programs also naturally represent two forms of
concurrency. The only sequencing rule for a data-driven program is

that of data dependency. That is, if cell B depends on cell A for
data (i.e. a directed path exists from cell A to cell B) then A and B
are sequenced, and B follows A. If A does not depend on B for data
(and vice versa) then A and B are independent activities and can
therefore be executed in parallel. This type of parallelism is often
called horizontal or spatial concurrency. Two spatially concurrent

activities may be distributed to two distinct points in space, where
each point is capable of independent execution. The other form of

concurrency is pipelining (vertical or temporal) concurrency. Tne
caca-criven program illustrated in Figure 1-4 represents both types of
concurrency. ■ "

In Figure 1-4, notice that at time t2, both cell B and cell C are
fireable. They ere spatially concurrent. Cells A, B, and C are all
fireable at time tl even though for a given message, B and C follow
A. The value produced by A between time to and tl can be consumed

after time tl by B and/or C. After time tl, cell A is still fireable
and can therefore be evaluated concurrently with B and C. This is due

to the pipelined execution which is possible for data-driven programs.
In order for B and C to both use results from A, two distinct copies
cf 7.'s result values need to be produced. One copy is sent to cell B,
and the other is sent to cell C. If A's result were to be stored in

some single physical location and then addressed by B and C, then some
''hidden" sequencing may result from storage access conflict. It is

possible to construct multiport storage units, but this would not help
when the same cell is accessed by multiple tasks asynchronously.

There are a number of data-driven languages (schemas) in
existence. Many of these schemas have been used only as models for
thematic development. Three of them are currently being used as a

10

Figure 1-4: Two Types of Concurrency

h=sis for serious system development. These are:

1. DDF, Dermis Data Flow, a graph schema developed by J. B.
Dennis [13] at MIT. This schema is the most widely known
and is used as a starting point for research work being
carried out at MIT, Manchester University, U. Cal. Irvine,
and Towa State University.

2. DDN's (Data-Driven Nets), a graph schema developed by A. L.
Davis. Tms scnema is used as the base language for
research being done at the University of Utah, the
Novosibirsk Computing Center, and Burroughs Corporation.

3. Another data-driven representation is being used at
Toulouse University in the development of a prototype
computing system.

11

A detailed description of all of these variants would be out of place
here, and we therefore will restrict our presentation to a conceptual
discussion of the data-driven cor.puting model, and a later description
in section 3.4 of one particular schema.

1.3 Structural Concepts of Dataflow Architecture
The preceding section presented the dataflow computer concept

from the programmer's perspective. This section discusses at an

abstract level the kind of machine structure required to support the
data-driven programming environment. Four major elements are necessary
to support date-driven computation:

- instruction and data store,

- processing elements, i

- communication links (possibly non-triviel) between the
stores and the processing elements, and

- control (including the allocation of logical program
structures to physical resources).

1.3.1 Instruction and Data Store
As in conventional von’ Neumann computers, a store must be

provided to maintain instructions (program graph) and data (tokens).
Each cell in a machine language program graph represents a single

instruction. This instruction must contain the name(s) or address(es)
of the destination(s) for the data tokens which the instruction will
produce for eventual distribution of results. Similarly, data tokens
contain the name of their destination so that the communications
element of the architecture can properly route the tokens to their
destination instruction.

Two approaches may be taken for data token storage: they may

either be stored separately in their own memory unit, or the tokens
may be stored with the instructions. If stored in a separate memory,

the job of finding fireable instructions is more difficult because the

12

information necessary to determine whether the firing set of the
instruction has been satisfied or not may be physically distributed
throughout the token memory. Furthermore, information describing the
traversal order of the tokens along an arc must be maintained.
Separate storage tends to make the storage management task easier
because only one type of structure needs to be allocated from the
memory pool. If data tokens are stored with the instructions, it is
much easier to find fireable instructions. However, the management of

space in the store becomes more difficult because:

- two types of storage element must be allocated from the same
physical memory,

- tokens must be maintained on some sort of list to simulate
the queueing behavior of the program arcs.

1.3.2 Processing Elements
To take maximum advantage of the concurrent nature of data-driven

programs, more than one processing unit should be provided. These
units may be specialized for performing certain functions (e.g.,

integer or floating point arithmetic) or homogeneous, performing all
possible cell functions. Instructions are routed from the instruction
store to the processing units with their operands. If special purpose
processing units are employed, the communication network must route
instructions to the particular processor which is capable of executing
them. If general purpose processors are used, instructions may be sent

to any available processing unit. In either case, the instruction
contains a field indicating the operation to be invoked by the

instruction.

' 13

1.3.3 Comnunications .
The communications component of a dataflow computer is

responsible for binding together the different functional elements of
the computer._ Communication is normally asynchronous (reflecting the

asynchronous nature of dataflow programs) between units permitting the

different subsystems to operate concurrently and independently of each
other. Synchrony also serves the expandability requirements of the
system because synchronous signals (which are sensitive to skew over
long physical distances) are not required. Hence, modules may be added
somewhat more easily.

When token or instruction routing is required, the communications

component switches the tokens and instructions along the appropriate
physical data path to the locus of their logical destination.

1.3.4 Control and Resource Allocation
The control portion of the dataflow processor is responsible for

deciding which instructions are fireable and for initiating their
execution. It must also find and utilize the available processing
resources. Due to the distributed control nature of most dataflow
processors, locating and exploiting available resources is a difficult
problem due to the lack of global knowledge about the system state.

1.4 A Brief History of Data-Driven and Related Efforts
Work in the data-driven area is still in the research stage. The

history' of efforts in this area is difficult to relate, as the
data-driven model resembles other directed graph schemas, most notably
Petri Nets [36]. A number of true data-driven projects are probably
unknown to the authors due to their research or proprietary nature.
No technical purpose would be served in cataloging every known effort.

We therefore present a brief history of major public developments in
the data-driven field.

There is considerable debate concerning the identity of the

inventor of the data-driven computation model. . It seems most likely
that it was discovered in several independent incarnations. In 1964,
Eshrs delivered a lecture at the Novosibirsk Computing Center on the
topic of "Operation Patterns" [8]. Operation patterns ere definitely
a type of data-driven schema. A seminar paper discussing the
properties of concurrent programs in a theoretical context was
presented by Karp and Miller in 1966 [28]. Although the model
employed in this work is not strictly data-driven, it demonstrated the
suitability of graphs as a formal tool for the analysis of parallel
computation. The first major thesis on dataflow ideas was published

in 1568 by Adams at Stanford [1] . At MIT, Rodriguez completed his
thesis on dataflow concepts in 1967, although the thesis was not
published as a report until 1969 [27]. Dennis described a dataflow
computation model in 1969 [25] . This work by Dennis evolved into a

rather large (by academic standards) research effort by the
"Computation Structures Group" at MIT. This group has been active
since that time and is extremely prolific. The most important of the
MIT publications are:

- A description of the DDF schema [13].

- A description of the MIT architecture [26].

- A description of a high-level dataflow based programming
language [42].

Another important data-driven research project is underway at the
University of California at Irvine. This effort received its seed in
the work of Dennis at MIT. The principal founders of the UCI effort

are Professors Arvind and Gostelow. They subsequently developed an
architecture [2] and a high-level language [24] using a base
representation derived from DDF. Their group then revised their
architecture and built simulation tools which were subsequently used

to produce program measurements [19] .

15

A serious system building project is underway in France at
Toulouse University. This project is developing what is known as
Systeme LAU [29] . This work includes the design of a programming
language and the design and construction of a prototype multiprocessor
system. Completion of the hardware is expected in late 1979. The
French efforts have been guided by the work of Tesler and Enea on

single assignment languages. The Toulouse effort also received early

motivation by the work of Dennis at MIT. " ' " ’

Another project started with the doctoral thesis of Davis [5]
which proposed both a language and a supporting architecture in 1972.
In the next 5 years, these ideas were refined under the support of the
Burroughs Corporation. This led to the design cf a base language [4]
and the construction of a prototype machine [3] which became
operational in 1976. A description cf the base language and a
detailed case study of this machine will be presented in section 3.

In 1977, a number of Universities in England were stimulated by
funding from the British Science Research Council to undertake
research efforts in the area of data-driven computation. These
include projects at Manchester University [21] , Newcastle University,
ar.c ’Westfield College. The .Manchester crcup have a hardware prototype
of their machine under construction at this time.

A number of other {mostly academic) projects are involved to some
extent with data-driven computation. Due either to the unpublished

nature of this work, or the "youth" of the projects, they will simply
be listed here as sites of effort:

- Iowa State University

- Xerox PARC

- Texas Instruments

- Clarkson College

16

- University of Southwest Louisiana

- Purcue University

- University of Kansas
In addition, 'there has been considerable recent interest in Japan,

primarily at the University of Tokyo, Hitachi and Fujitsu
laboratories. .

The data-driven computational model has a number of ties to

better established lines of theory. In particular, formal graphical
network properties proven by Petri [36], Holt and Commoner [23], and

ether Petri net workers [16, 22, 35, 11] play an important role as a

theoretical fcur.daiicn fcr much of the work in the data-driven area.
It has already been mentioned that data-driven programs are both
functional and non-procedural, and as such are related to more general

work in these two areas of programming language and program
verification research. Since the data-driven computing model is
primarily a model for highly concurrent, distributed control systems;
the work is further influenced by other work on parallel processing.

1.5 Observations About Data-Driven Computing

1.5.1 Comparison with the von Neumann Organization
In 1945, John von Neumann described the organization for a

computing device which has become the most prevalent computer
architecture (with few exceptions). The pure von Neumann computer has
a single processing unit which is connected to the primary memory unit
through a set of parallel information paths which exchange control
signals, addresses, and data between the two units. We shall call this

collection of information paths the processor to memory channel, or
simply, the channel. The channel operates in a sequential fashion,
i.e., the protocol which the processor and memory use to control the
exchange of information is a sequential one. Information is exchanged
between the processor and memory by changing the state of the control

17

ignals and passing an address from the processor to the memory unit,
n the case of a memory read operation (as specified by the control
ignals) a data word is retrieved from the memory and transferred to
he processor. If a write operation is selected, the data word is
ent from the processor to the memory. Other features of the von
eumann computer are:

- They contain a single centrally clocked processor.

- The processor executes a single instruction in step with the
clock. .

- The processor is the system master and plays the role of a
control and communications center for the entire system.

- Storage is organized as a linear a r r a y of basic units called
words.

- The processor accesses memory by specifying the physical
position (address) of some word in the linear array.

----address—
Processor ■«t-- data Memory

— control—

Figure 1-5: Simple von Neumann computer organization

It is true that many modern computers exhibit some features which
re not typical of the von Neumann computer, for example:

- The Burroughs B5500, B6800, B7700 machines are based upon
stack addressable storage rather than, linearly addressed
memory. ■

- The Burroughs B1800 does not have a fixed logical word
length.

- Tne IBM360 and 370 series have special I/O processors called
channels which can act independently of the rain processor
in performing certain operations.

- The Honeywell 6050 has a number of peripheral I/O processors
which specifically handle I/O tasks.

- The CDC6600 and the CRAY-1 contain a number of arithmetic

18

processors which perform high speed arithmetic functions as
requested by a separate control processor. r

ch of these systems has departed in some significant way from the
I

n Neumann organization. However, program and data access remains
imsrily sequential making the temper of these machines von Neumann

nature. :

Five major differences exist between the von Neumann computing
del and the data-driven model. They are:

1. Von Neumann programs are strictly sequential; sequencing in
a data-driven program is determined wholly by the data
dependencies inherent in the solution of the problem. -

2. Data-driven programs permit greater freedom to exploit the
potential concurrency in a given program. '

3. The co-ordination of parallel processes is directly
supported by the data-driven execution model, i.e., through
the firing set rules. The strict sequencing in von Neumann
programs 'is conceptually incompatible with the processing
cf asynchronous events.

A. The structure of dataflow programs and computers admit to
decentralization because the constituent subsystems
communicate asvnchronously, eliminating lock step operation
with a central system clock. ,

5. The von Neumann architecture is viable with respect to the
implementation technology of the fifties and sixties.
Dataflow ideas are oriented toward system implementation in
very large scale integration (VLSI), the implementation
technology of the future.

e subsections which follow discuss and attempt to justify each of
ese differences.

£.2 Differences in Programming Style
To illustrate the differences in programming style between von

umann programs and dataflow programs, figure 1-6 contains a von
umann program equivalent to the dataflow. program of figure 1-1.
te that the von Neumann program is rigidly secuenced, i.e. the

struct ions must be executed in sequence from top to bottom for the
ogram to be meaningful and execute correctly.Memory cells are

19

move a, reaister-0
multiply b, register-0
move c, reaister-1
multiply register-0, register-1
move register-1, destination-aadress

igure 1-6: von Neumann Style Program for the Expression "a*b + c*d"
plicitlv referenced via the addresses "a", "b", and "c". The
ccessor resident registers, "reqister-O" and "register-1", are
ployed as high speed scratch-pad storage cells to avoid the higher

ansfer cost of repeatedly moving information across the channel from
e memory to the processor where it can be acted upon and

?nsformed. The dataflow program does net employ memory cells for
crage and does not require the use of explicit addresses; the memory
implicitly embedded in the storage semantics of the program arcs.

2 cr.ly sequencing demands made upon the dataflow program is that the
citicn must be performed after the two multiplication operations,
e multiplication operations may be performed in parallel if
fficient processing resources are available.

5.3 Exploitation of Concurrency
As the computing field progressed and the solutions of larger

cblems were attempted through the use of computers, system
chitects attempted to improve the performance of the von Neumann
ganization through various methods. The speed of access to stored
formation was improved through the use of cache memories, for
ample. Direct transfer paths were placed in the system to move data
cm input/output devices to the memory, rather than forcing all

ternal data transfers through the processing unit. Processors were

ternally pipelined to overlap the fetching and execution of

structions. These improvements, however, did not change the
nceptual nature of the computer - that of sequential data access and
ocram execution. -

20

The use of cache memories and pipelined instruction processors
increase the exploitation of concurrency within a von Neumann program
to a limited extent. Through instruction pipelining, more than one
program instruction may be under execution at any given time by
buffering successive levels of combinatorial logic with memory
elements (e.g., registers). The maximum number of instructions which

ray be under simultaneous execution, is determined by the number of
stages in the pipeline. The operation of the pipeline is disrupted

by: .

- instructions which divert the flow of program control (e.g.,
cote's), and

- instructions v.’hich rust read the information stored in
memory cells or registers whose contents have not yet been
computed and stored by a more advanced stage in the
processor pipeline.
iisruptions are both artifacts of the explicit sequencing and

memory cell features of the von Neumann computer. Because data-driven
programs do not use memory cells and sequencing is only determined by
the relative position of the function nodes in the directed program
graph, additional instruction and program level concurrency may be
exploited, provided that the physical processing resources are
available within the dataflow computer to concurrently execute the
instruction nodes.

1.5.4 Co-ordination of Parallel Processing
The construction of multiple processor systems was intended to

further improve machine performance by interconnecting a number of
processor-channel-memory elements into a network of interacting
computing systems. Large problems are separated into pieces which can
be managed by the individual computers. The programs must co-ordinate
their access to shared data in order to correctly perform the
aggregate task. Because the computing elements are based upon the von
Neumann computing model, program execution end data transmission is

performed sequentially between processors and memory. Although
nultiprocessor systems significantly increased the problem solving
power of modern computing, the mixture of explicit sequencing within
programs and asynchronous system level behavior remains a problem, as

the following discussion illustrates.

Programs (or portions of a program) which are executed in
parallel and share information in some way must be co-crdinated to
guarantee that the information used in any particular computation has
in fact been completely defined before its use, i.e. that the
computation is deterministic [10]. With the introduction of
asynchronous input/output channels in about 1955, programmers were

confronted for the first time with the synchronization problem; how to
synchronize the operation of two or more devices and processors such
that each works at maximum speed, but periodically communicates and
shares results. The hardware interrupt was the first (and for quite
some time, the last) mechanism proposed to assist processor and device
synchronization. As a theory of operating systems developed, it
became clear that the interrupt was incompatible with the modern
notion of process structure causing a conceptual mismatch between

software processes, the operating system, and the interrupt mechanism
of the hardware. The hardware "wish list" of an operating system

designer usually contains an entry requesting the virtualization of
the device hardware to that of the process structure intended for the

machine. -

The data-driven execution model conveniently provides a mechanism
whereby concurrently executing portions of a dataflow program can

co-orcinate processing. In figure 1-7, the result of the entire

program cannot be formed until both the upper right and upper left

subgraphs have produced their data tokens. One might anticipate that
part of the inputs to the subnetworks could be obtained from a file or

21

2 2

device. Hence, the program quite naturally and conveniently suspends
execution until the file or device data arrives. Elaborate changes in
physical and logical context are- not necessitated as in interrupt
based systems.

Figure 1-7: Co-ordination of Subnetworks

1.5.5 Decentralization and Buildability
In addition to performance improvements, computer users need

increased computer reliability for large applications such as
telemetry, anesthesiology, information services, etc. Requirements
for higher reliability have placed greater emphasis on software

correctness. The von Neumann memory cell is hard to characterize
mathematically, making formal verification of programs for those
machines quite difficult [41]. Although some good verification
techniques have evolved for sequential programs expressed in higher
level programming languages, the proof of correctness for parallel
programs remains a hard problem. For computer applications which
include information privacy as a required capability, the lack of

23

elegant, formal machine properties further inhibits the mathematical
proof of programs with high reliability as a goal [14] .

Current multiprocessor architectures encourage software designers

to perceive the system in terns of global state information, rather
than more localized and less complex computational abstractions. The

notion of global system state runs against the human inclination to
parcel problems into smaller, more manageable units. Without the

ability to decompose and abstract problems, our ability to deal with
complexity and to make convincing mathematical statements about
systems is limited.

Centralization impacts the buildabilitv of systems, let alone the
ability to understand them. Centralized systems use a common clock

which must be distributed to system components. As the physical size
of centralized ■ multiprocessors increase, signal propagation times
become longer unless the multiprocessor can be packaged in a novel way
which reduces the length of the clock transmission paths, e.g. the
CRAY-1. Longer propagation times result in slower execution speeds.
Inventive packaging has its physical limits and often reduces the
physical and logical expandability of the system. Central bus
architectures suffer from similar signal distribution problems.

Hence, the key to expansion, performance improvement, and
comprehensibility may be decentralization and asynchronous operation.

1.5.6 Impact of Implementation Technology
A computer architecture depends heavily upon the technology

available to build it. At the time that von Neumann proposed his
computer organization, computers were constructed with vacuum tubes
and the hardware was very expensive. During the 1960's and early 70*s

circuit technology progressed from discrete transistor circuits to
integrated circuit technology and dramatically reduced hardware costs.

The prevalent computer architecture of our time is therefore based

upon a set of design principles v;hich are presently invalid. Most
notable of the obsolete principles is the one that states, "Hardware
is expensive; software is cheap." The nove toward very larce scale
integration (VLSI) circuit techniques has again drastically changed
computer design rules. Highly integrated von Neumann processors with
minicomputer capabilities (e.g., word length, speed, address space,
etc.) are commercially available at a reasonable cost. Because a
fully integrated dataflow processor has not yet been developed, it is

too soon to tell whether machines based upon the dataflow model can
fully utilize (and avoid the pitfalls of) VLSI implementation. The

results presented in the following section, however, ere encouraging
and show that the exploitation of the VLSI technology is possible and
it is not incompatible with the model.

1.5.7 Tne Impact of VLSI

The advantages of high density integrated circuit technology are
so overwhelming that the constraints of VLSI must be considered as a
primary force on future architectures. A detailed analysis of these
effects is beyond the scope of this paper, but the global influences
are summarized here.

Modern integrated devices are primarily built from either
junction transistors (bipolar integrated circuits) or from
field-effect transistors (metal oxide semiconductor or MOS integrated
circuits). Due to the tremendous commercial emphasis that is

currently being placed on MCS VLSI, the following discussion will
mainly be concerned with' the properties of MCS device integration.

The qualitative aspects of the following argument applies to bipolar
devices but the numbers would be somewhat different.

The most highly publicized VLSI benefits are these involving
cost. A single custom VLSI chip (64 pin package) currently costs
about $80,000 to $300,000 to produce. Even then, production typically

25

must be guaranteed for about a quarter of a million parts at an
additional cost of $7 to S10 per part. This clearly indicates that
VLSI cost advantages can be obtained only if any given chip can be
used in very large volames. If a part does not have universal appeal,
then the use of such a part in a new architecture brings about a
number of high pressure constraints. Either the part must be used a
large number of times in a single system, or a single system must have

a very high sales volume, or some combination of the two. The number

of part types in a given system is also a major concern in that it
becomes a multiplicative factor in the system development cost. _ .

Another factor heavily influenced by a VLSI implementation is
speed. The dominant speed factor for integrated circuits is the
amount of delay which is incurred whenever a transistor tries to drive

a signal level onto a conducting path. The size of this delay is
proportional to the amount of capacitance which the signal path

contains. The amount of effective capacitance which is attributed to
any output is often called the load of that output. Typical off chip
loads are on the order of 100 picofarads, while on chip loads are
approximately one picofarad. Since delay times are proportional to
the capacitive load (for constant output current from the driving
transistor), this implies that signals which can remain on the chip

will be driven about 2 orders of magnitude faster than those which
must be driven to destinations off the chip. Additional speed-up can

be obtained from the decreased- geometries of the switching elements
and the conductor path lengths on an integrated circuit chip. This is
a very strong argument for architectures which attempt to maximize
locality of processing. For architectures in which activity cannot be
done at the same physical locus, massive o'ff chip delays must be
incurred as a result. The only way around the slow off chip drive
problem is to drive more current off the chip. Tnis requires a series

of relatively large output drivers (implemented using physically large

26

transistors), which are very costly in terms of chip area and chip
power consumption. As the integrated circuit technology advances and

the size of individual circuit conponents is decreased, this disparity
between on and off chip capacitances will increase. In addition,

locality will reduce the amount of contention for a given system
transmission path. This contention is important in a highly parallel -
system in that the resultant sequencing due to transmission conflict
will yield reduced system efficiency.

Tne number of pins is an important VLSI metric. The pin count is

a primary factor in determining whether a given system module is
nicely implementable as a VLSI circuit. Techniques to decrease

physical pin count, such as time division multiplexing, are applicable
in certain situations, but cannot be considered a general solution.
If chip types are used in sufficient quantities to amortize the
initial layout cost, then the physical cost to manufacture the system

becomes approximately linear with pin count. Increasing the number of
pins on a particular chip causes decreased yield due to bonding

problems. Increased pin count implies that even more silicon area
must be allocated to connection pads and pin drivers.

A VLSI implementation also yields the more commonly discussed

advantages such as:

- Increased system reliability due to reduced part count,

- Decreased power consumption since voltages on a given chip
scale with physical feature size, and

- Decreased system maintenance cost as chip replacement
policies become more effective in highly integrated systems.

Tne extent to which these VLSI advantages can be realized is
proportional to the logic/pin ratio of the proposed system modules.

If the logic/pin ratio is relatively small then the situation is very
much that of an SSI (small scale integration) machine. If the

* 27

logic/pin ratio is very high then true VLSI advantages can be
obtained. This is a challenge to computer architects to devise
systems which can be modularized into high complexity nodules which
communicate with their environment using relatively few signals.
Furthermore as integration technology advances causing feature sizes
to shrink even more, these new architectures must remain viable.

1.5.8 Benefits of the New Model

The asynchronous nature of data-driven programs makes them
inherently easier to contend with in a system sense. Each elementary
action can be considered independently of absolute time. Only the
sequence cf the actions is important. This eases the task cf program
verification and the task of resource allocation (section 3.7). The
sice-effect free and distributed treatment of storage also aids in
verification and decreases the "hidden sequencing" which results from
access conflicts to centralized storage. Distributed storage is
physically advantageous for modern components in the following way:

- When ferromagnetic cores and vacuum tubes were used as
storage components for main memory, there was an electrical
advantage for centralization. Logic and memory voltage
levels were very different and centralization of the storage
elements allowed special purpose power supplies and level
conversion circuits to be shared, thus reducing system cost.
Today, main memory elements are fabricated from the same
components as logic, thereby removing the former advantage
cf central main storage.

- The larger address space of centralized stores increases
access time. This results from the delay of the address
decoding logic growing approximately logarithmically with
the size of the address space.

- Physically distributed storage can be used as a method to
reduce the performance killing "von Neumann bottleneck"
described by Backus [7] . This bottleneck is the apparent
slowness of the storage unit of von Neumann systems, which
results from sequential storage accesses through a single
memory port.

Data-Driven programs are more intuitive and natural as a means of
program expression. The main reason for this is that in von Neumann

28

- The programmer nust order the placement of every statement
in a program even if the sequence is not implied by the
problem. While this may not be much of a problem to the
programmer, it can become a major problem when reading that
program.' Sequence usually IS important, so how is the
reader to know that in some cases it is of no consequence.

- Wnen writing or reading a von Neumann program, a person
needs to analyze the program in two conceptual domains: data
and control. That is, the person needs to be conscious of
the set of variable values, while tracing the path of the
program counter through a veritable maze of program
statements.

Data-driven programs do not contain unnecessary (and therefore
unnatural) sequencing, global variables, or program counter concepts.
Data-driven programs can be constructed and analysed by considering

c.nly one domain at a time, and each domain acts only on the basis of
local influence.

Data-driven programs allow two types of concurrency to be
represented in a single consistent framework. Whether or not this
concurrency can actually be executed depends both on the supporting
architecture and the amount of physical resources in any particular
instantiation of that architecture. Fortunately the data-driven

computation model frees the architect from a number of serious
constraints imposed by the von Neumann model. There is not much

consensus among dataflow architects as to what the best architecture
should be. A survey of existing architectural ideas is given in
section 2, and a detailed case study of a particular machine is
presented in section 3 .

programs:

' 29

1.5.9 Problems with the New Model .
The biggest problem with any new computing model is that after 30

years, there is a massive von Neumann momentum. Algorithms and
programming practice have been developed on the basis of large
centralized chunks of storage. A major symptom of this attitude is
the tremendous influence of data-bases and their applications.
Data-bases are very large global stores, and present many operational
difficulties in environments where concurrent accesses are allowed.

The re-discovery of good algorithms for important problems, the
retraining of more than a million professional people, the
re-acquisition of 30 years worth of intuition and experience all
combine to limit the acceptance of any new model. For example, it
would currently be ludicrous for any manufacturer to market a machine
which did not run FORTRAN, COBOL, PASCAL, etc. Furthermore, most
computer buyers want a new machine to run these languages at least as
well as their present systems.

In designing data-driven systems, our intuition can not be of

much help as it is mostly based on a traditional style of computing.
The inherent "copy, use, and destroy" policy for information in

data-driven systems may prove to be in direct conflict with important
"institutions" such as the Infernal Revenue Service database. It is
indeed a certainty that the computing community will not rewrite all
existing software, and generate new data bases to accommodate a new

computational model.

The promise is that the current limits to growth which are
imposed by the von Neumann model will be relieved. It is also hoped

that some way will be found to acceptably accommodate von Neumann
artifacts into the newer model in order to avoid the reconversion of
30 years of work. Whether or not these promises can be met will
depend upon:

30

- V-tiether architects can find an acceptable machine
organization.

- Voether language designers can produce acceptable
programming environments.

- Vhether operating systems and other system services will be
found to make the new environment as usable as traditional
ones. .

The rest of this report is devoted to an exposition of some of the

attempts to solve these hard problems.

31

This section describes some of the existing dsts-criven computer
architectures. To appreciate the similarities and differences of
these machines, some architectural evaluation criteria must be
established. Dataflow computers, like von Neumann machines, may be
compared on the basis of two broad categories: functional (logical or
behavioral) and structural criteria.

Tne functional characterization of a computer is a description of
its behavior as perceived by the programmer. In the case of dataflow
computers, logical attributes of these machines include:

- the basic execution model,

- the primitive data structures supported by the machine, and

- the operations upon instances of those structures.
This level of description is analogous to a discussion of instruction
sets, words, bytes, and addressing modes for a von Neumann computer.
Indeed, the execution model corresponds to a specification of the
execution . "cycle" of the machine; data structures for the

representation of integers, reals, characters, etc.; and machine
operations for instructions and addressing.

A structural description of an architecture indicates how the

machine is to be physically organized at a high level. Some
structural criteria include:

- the structural and logical relationship of processors to
storage,

- processor organization and capabilities, and

- storage organization and management.
The structural description of a machine is the first indication of how
the system architects intend to implement the functional capabilities
described in the behavioral specification of the computer. The

interplay between the operational behavior of programs on the machine

2. Survey of Existing Architectures

tj
U
r n

32

and the actual machine structure will largely determine the
computational performance of the computer. Figure 2-1 refines the
general evaluation criteria presented above and may act as a handy
reference guide to the description terminology used in the following
survey. An evaluation table of this type will be presented for each
machine discussed in this section. It is hoped that a consistent table
format will allow for a more coherent understanding of the differences
between the various architectures.

Execution model: data or demand-driven, variance in firing
rules.

Primitive data types: information units such as integers, float
ing point, characters, etc.

ITrta structures: vectors, arrays, lists, plexes, etc.
tructure operators: information access mechanism,
ata operators: information transformations.

. rocessor organization: functional complexity, grain (size), speed,
• special vs. general purpose.

Storage organization: address structure, space management, loca
tion of manager.

Processor/store comm: physical distance, communication protocol.
Extensibility: possible or not.
State of implementation:self explanatory.

Figure 2-1: yachine evaluation criteria

33

2.1 MIT
The MIT dataflow project has the longest history of the existing

data-driven computer efforts. The MIT effort has been most heavily
influenced by the early theoretical work of Scott [38]. The MIT group

has croocsed four machine forms: '

- form 1

- form 2

- form 3

- form 4

Special purpose computer for signal processing,

Extension of form 1 to include data structures,

Large store version of forms 1 and 2,

Full service time-sharing system.
Each machine form represents a significant increase in performance,

usability, and complexity. To eventually reach form 4, the MIT
project is investigating user programming languages, developing the

organization of a form 2 machine, and constructing a prototype of the
fcrr. 1 signal processing machine [26, 33, 34].

The machine language of the MIT dataflow computer is the DDF
cata-criven program schema. These Dennis Dataflow Nets [DDF] are best
thought of .as directed graphs. The nodes of the program graph are of
two kinds: actors and links. Actors accept a set of operands on
incoming links, then fire and compute a result which is placed on an
outgoing link. Two types of links are provided: data links which
conduct data tokens and boolean links which carry control information.

In addition to directing the flow of data, links are explicit copy
sites where tokens may be copied and passed to two separate
destinations. Links may be connected in series to provide variable
fan-out from cells. There are six major varieties of actors in the
MIT machine language:

- operators: perform simple arithmetic and logical functions,

- identity: passes its input arguments unchanged,

- decider: applies a predicate to its input arguments
producing a truth value,

34

- T-gste: passes a data token when its control input receives
a true token,

- F-gate: passes an input data token when it receives s false
token at is control input, and

- merge: selects a data token from the data input which
corresponds to the truth value of its control input (two-way
selection).

..
The MIT Dennis/Misunas dataflow processor is divided into five

major subsystems: .

- memory subsystem: holds instruction cells and operands,

- processing subsystems: arithmetic and logic units,

- arbitration network: a switching network to conduct
operaticn packets from the memory subsystem to the
processing subsystem,

- distribution network: a switching network to conduct data
packets from the processing subsystem to the memory
subsystem for storage, and

- control network: a switching network which carries control
packets from the processing subsystem to the memory
subsystem.

As shown in Figure 2-2, data operations to be performed flow7 counter
clockwise from the memory subsystem, and are switched by the

arbitration network to a particular processing 'unit in the processing
subsystem. The processing unit computes the result. The data packet

oenerated by the processing unit is then switched bv the distribution
network to the memory subsystem for eventual storage writhin an
instruction cell. Control packets flow from the processing units to
destination instruction cells through a separate communication
network.

^r,1

The control, distribution, and arbitration networks are indeed

packet routing networks. The packets contain control information which
the routing networks decode, eventually switching the packets to their
destination. The networks are composed of arbitration and selection
elements. Arbiters join paths together while the selectors perform

35

hW «M U | iM t lM

Uamnrj UcriM

Figure 2-2: High level structure of the MIT dataflow computer
the "decode and switch" operation which directs the packets down the

appropriate electrical path.

Tracing the execution of an instruction provides the best insight
into the operation of the computer. Each instruction cell has the
internal structure illustrated by Figure 2-3. Using cells of this
type, the memory subsystem stores the internal representation of the
dataflow program. One machine instruction is stored in the output
control. portion of each instruction cell. The three receivers store

data values as they arrive at the cell. When the firing set of the
cell has been satisfied, the cell transmits an operation packet. The

packet which contains the instruction and operand data values, is
routed by the arbitration network to the appropriate processing unit.
In the MIT machine, the processing units are heterogeneous. That is,
each of the processing units has a few dedicated functions which it
performs very quickly. The arbitration network routes the operation
packets generated by instruction cells to the processing units which

3^

have the capability to calculate the result.

control
packets

data
packets

In s t r u c t io n C e ll ■acknowledge signals

Input
Control

y

&

Receiver 1

Receiver 2

Receiver 3

£
Output
Control

In s tru c tio n

operation
packets

'■operand value*

Figure 2-3: Structure of an instruction cell

Cnee the result has been computed, the processing unit generates
one or more result packets. Result packets are either control packets
bearing boolean values or data packets containing either integer or
complex values. The destinations of the control end result packets

are determined from destination identifiers contained in the packets.
The execution cycle is completed as the newly arriving control and
cate packets induce additional instruction cells to fire.

The machine structure is a rather novel distribution of
conventional computing functions. Instructions ere not "fetched" from
memory, but the operands are brought to the instructions. Processing
of instructions is neatly separated from their sequencing. The
transmission of packets within the machine is asynchronous, permitting
the different computer subsystems to operate independently. This

concurrency is effectively exploited because more than one instruction
cell can be fireable at any instant. Dennis has presented a design for

the arbitration network which allows many operation packets to flow
concurrently through the network to the processing units.

37

Because the MIT machine depends heavily upon communications
external to the subsystem elements and the elements themselves are of
verv low functional comolexitv, the desian cannot achieve a hich logic
to pin ratio _when realized in VLSI circuits. Packet communication
speed will also suffer because the design cannot take advantage of the
shorter on-chip propagation times. The extensibility of processing
power and instruction storage is excellent. By expanding the
arbitration and distribution networks, additional processing units and

instruction cells are easily appended. However, expansion of the
arbitration distribution and control networks may result in longer,
serial chains of routing paths, causing somewhat longer packet
transmission times. A summary table of the MIT architecture is shown
in Ficure 2-4. ■

execution model: ' Data-driven
machine language: Directed graph; computational, control,

and routing operators. Form 1: scalar prim
itive types. Form 2&3: record, array and
and self-referencing da "cs structures,

primitive data types: Integer, boolean, real, and character val
ues (Form 1.) __

data operators: Functions, T-gate, F-gate, merge, identity,
decider.

processor components: 5 subsystems: memory, arbitration network,
distribution network, processing units,
memory.

processing elements: Special purpose dedicated processing units
- of low7 complexity,

address structure: Instruction cells in memory are selected
by decoding identifiers in the packets,

storage management: Instruction storage is managed by the memory
module.

communication protocol: Packet switched; packets contain simple
routing information,

extensibility: Extensibility of processing function and
memory is excellent at logarithmic cost,

physical extensibility: Very good since intermodule communication
is entirely asynchronous,

implementation status: Form 1 prototype under construction. High
er level language (VAL [42]) has been
designed and a translator/interpreter is
operational.

Figure 2-4: MIT Dataflow Computer: Summary

38

2.2 Systeme LAU .
Systeme LAU is a French dataflow effort at ONERA-CERT. Unlike

the projects at MIT, Utah and UCI, the Systeme L’.U group began their

project with some specific high-level linguistic ideas

[12, 29, 30, 15]. The designers were influenced primarily by the

single assignment language of Tesler and Enea [40] and the work of

Dennis [13]. At the highest level of abstraction, the Systeme L^U

designers intend programs to be written in their higher level

language. By using a higher level algebraic language, the complexity

of detailed program graphs is suppressed. The Systeme LAU language

uses the single assignment programming rule which states that a

variable may be assigned a value at most once in a particular program

context. Single assignment is semantically equivalent to the directed

graph form of dataflow programs. The rule permits greater freedom to

exploit the potential concurrency within a program.

■ The high level language of Systeme LAU is almost directly

executed in the hardware. The statement forms each have a

corresponding operator. Because the high level language is directly

supported by the machine, the concurrency advantages of the dataflow

model are not sacrificed by the algebraic nature of the programming

language. The LAU architecture permits the exploitation of both

pipelined and spatial concurrency. Pipelining is implemented within

the individual hardware modules. Due to the single assignment rule,

spatial concurrency is inherently expressed in LVJ programs. It may

also be explicitly denoted by the programmer with an EXPAND language

construct.

All statements in the high level language are assignment

statements. In place of variables, the LAU designers have substituted

"objects". Objects are assumed to exist in a single assignment

environment. That is, after an object has been written, it may be read

39

an indefinite number of times. It may not, however, be written more

than cnce. Statement execution is ordered by data-driven sequencing.

The most primitive operational notion in the LAU machine is that of

the Data Production Set or "DPS". A DPS may be represented as a pair:

the first component is a set of objects, anc the second component is a

set of statements which produces the objects in the object set

component. A statement in a program is defined in terms of the DPS's

which it produces, and the DPS's which the statement consumes.

There are six major instruction types: operations, loop, case,

act (controlled invocation), expand (parallel execution fork and

join), and call. Each instruction specifies the desired action, the

identities of the operands, the destination cf the result, and several

condition bits. Instructions are not bound to execute on any

particular processing unit. Data items in the system consist of a
value and a variable number of addresses which identify the

instructions which use the data value as an operand.

Systeme LAU is a multiprocessor architecture whose overall

structure is given in figure 2-5. The current implementation is

limited to one processor attached to a host minicomputer through an

interface for input/output facilities. It is divided into three main

subsystems:

1. Control units,

2 . Memory subsystems, and

3. Up to 32 elementary execution processors.

The host minicomputer is used to develop programs and unload both the

control unit memories and the memory subsystem.

The local memory subsystem contains several computational tasks

represented as data production sets. Tasks are loaded when all inputs

are available end terminated when all outputs have been produced. To

increase memory bandwidth, the actual store is divided into 8

40

Communication Network

!*
-T'{
I

• ‘ 1

• Figure 2-5: Overall structure of Systeme LAU

independent banks which operate concurrently. The memory control unit

arbitrates accesses to the store.

The control unit performs the data-driven control sequencing of

the processor, and its operation is rather unique. The control unit

contains two memory units: the instruction control memory and the

data control memory. There are three control memory bits and one data _

control bit for each word in the local memory. The three control

memory bits signify the status (presence of operands) of the firing

set for a particular instruction. 'When the three bits in a control

memory word become enabled, the instruction at the corresponding word

in the local memory becomes executable. The control memory is
continually searched for for the presence of executable instructions.

Ready instructions are read from the local memory and passed to the
execution unit for subsequent interpretation. The data control memory

indicates whether a particular datum has been calculated or is

awaiting computation. When the data control memory is scanned, the

control unit determines which bits nay be enabled in the control

memory, i.e., which instructions have a particular operand awaiting

execution of the instruction. ■

The execution unit is split into several independent asynchronous

nodules. Full parallel operation can be realized cue to the

data-driven nature of instruction flow. The execution unit decodes

the instructions which it receives from the local memory and

dispatches their execution to the appropriate instruction

interpretation unit. Tne arithmetic unit has additional substructure

consisting of several floating point execution units, fixed point

arithmetic units, and a vector execution unit. These interpretation

mcdules can operate concurrently. The control execution unit is

composed of separate, asynchronous interpretation units, at least one

unit for each of the control instruction types. Due to the unique

properties cf the machine language (i.e., data-driven sequencing and

registerless instruction format) pipelining techniques are usable

without any of their well-known drawbacks with respect to branching

and synchronization.

The structure of the LAU machine has been influenced by a desire

to use commercially available computers as components. As such it

supports the most powerful set of primitive operations of any of the

machines surveyed. It will also naturally have a number of support

tools which will greatly aid the programming task., The machine is

therefore not intended to be, and it is not reasonably amenable to a

future VLSI implementation. The decision to start with a high level

language was a good one. A major advantage of the LAU machine (like

the MIT machines) is direct support of floating point arithmetic.

Work by the Utah group has demonstrated the absolute necessity of

floating point hardware to provide the performance required to solve

real scientific problems [39].

■ Al

42

execution model:
machine language:
primitive data types:
cp*s r8ncrs i

processor components:

processing elements:

address structure:
storage management:
communication protocol:

extensibility:

pr.ys i ca 1 exter.s i bi 1 i ty:
implementation status:

Data-driven
Directed graph.
Integers, floating point.
Arithmetic operations, loops, case, proce
dure calls.
Control unit, execution unit, memory sub
system.
Interchangeable, homogeneous. Element sub
structure permits parallel operation of
special instruction interpretation units.
Linear.
No special management technique.
Simple addressing, request and acknowledge
protocol.
Easy addition of processing elements. Mem
ory control units permits addition of more
store although speed of the unit will lim
it ranc'width eventually.
Extensibility net a goal; difficult.
As of November 1972, the Systems LAU has
been fabricated and tested at the subsys
tem level. The machine can currently exe
cute programs and performance analysis is
being conducted.

Figure 2-6: Systeme LAU: Summary

2.3 University of Manchester

Under the support of the Eritish Science Research Council, the

Manchester University (MU) dataflow group is currently producing a

protetype dataflow machine. As a preliminary investigation into the

relationship between a high level language and machine structure, the

language LAPSE was defined [21]. The designers credit the Id

language [24] and LUCID [31] for many of their language ideas. In

particular, LAPSE is a single assignment language with many of the

familiar higher level programming language constructs. The syntax is

patterned after Pascal. The graph language of the machine, which is

the executable program form, closely resembles L£.FSE. Hence, the

C 1'r ' T T 5 T“k C 1 jcOG r 'iy c* v“u : ̂T"CV'crS *

The simple data types supported by the machine are Boolean,

integer, and floating point values. Simple types may be combined into

records and arrays similar to those of Pascal or PL/1. Some of the

operators supported by the machine are:

- arithmetic operators: add, subtract, etc.,

- comparison: greater than, equal to zero, etc.,

- merge: join two arcs, passing tokens from exactly one input,

- pass on true: conditional transfer of token,

- pass on false: conditional transfer of token, and

- duplicate: replicate incoming data values along two paths.
The .Manchester machine supports Pascal-like procedure calls. Unlike

the MIT dataflow computer, procedures are not copied when invoked.

Instead, an input interface and output interface are provided for each

procedure corresponding to the usual notion of entry and return

linkages. When a data token flows into the input interface, it is

labelled with an identifier that indicates the source of the data

token. Data tokens from the same source have the same identifier. Upon

exit through the output interface, a dynamic link is created which

. 43

44

directs the output back to the locus of the procedure call. This

mechanism effectively imitates the generation of new procedure code at

the appropriate place in the program graph.

Figure 2-7: Structure of an individual Manchester processor

The Manchester architecture consists of a variable number of ring

structured processors arranged around an exchange switch. The ring

processor closely resembles the MIT machine in its circular flow of

data (figure 2-7). However, no distinction is nade between control
and cata information; a separate path for control information (e.g.,

the control network in the Dennis/Misunas machine) is not provided.

Two types of messages flow in the machine: instructions and

tokens. Instructions are kept in the instruction store. Each

instruction contains:

- the node function,

- the destination for each of the results that it produces
which includes the instruction address and the number of
operands expected at the destination.

45

Tokens are produced by the processing unit as a result of instruction
execution or they are received via the input/output switch from some

external source. They are stored either in the result queue or the
-etching store. Tokens contain their data value, eventual

destination, and a label which is used to regulate procedure calls.

Tokens are tagged with the type of the data value that they carry

allowing dynamic type-checking.

The result queue is a rate balancing mechanism which attempts to

smooth the rate of token production and consumption. Executable

instructions for the processing unit are produced by the combined

operation of the matching store and the instruction unit. The

cer.eration of an executable instruction troceecs in the fcllowina wav:

1. The matching store removes a result token from the result
queue.

2. If the token indicates that only one operand is expected at
its destination, it is sent immediately to the instruction
store unit.

3. If more than one operand is required, the memory in the
matching store is searched for an entry with the same
destination. The matching entry is deleted and the result
pair is sent to the instruction store. Unmatched tokens
are saved in the memory.

4. Token pairs are accepted by the instruction store. The
destination instruction is read and transmitted to tn
processing unit for execution.

The interfaces between units are asynchronous permitting greater

operational concurrency with all units operating in parallel.

In order to capitalize on the potential spatial concurrency of

the dataflow programs, several rings are forged into a multi-ring

structure. The Manchester computer is a multilayered integration of

many ring processors arranged around an exchange switch. Within the

context of the ring processor, the exchange switch corresponds to the

input/output switch that provides external communications to and from

a given ring. Because rings are autonomous the processors rnav operate
asvnchronously and in parallel. None of the storage units are shared,

removing performance limitations due to finite memory bandwidth. Input

and output channels are naturally accommodated by this design. They

simply mimic the input and output behavior of tokens.

Tne exchange switch has an uncomplicated structure. It consists

of successive layers of token distribution, buffering and arbitration.

Tokens are routed at each distribution layer according to a particular

bit in the name field. By altering the routing bits, faulty processor

units can be isolated until repair. Buffer layers decrease the effects

of address interference or token "clashes" within the distribution

The MU machine inherently requires a high amount of communication

arcunc each ring. In a VLSI implementation, the slow off chip speeds

will tend to reduce system performance. This may be mitigated

somewhat by the ability of each ring processor to be pipelined.

Unlike the MIT machine, the MU machine's component units are rather

complex and can utilize the scale supported by VLSI densities. The MU

machine (like Systeme LAU) has rather direct support of high level

language constructs: floating point operations, and structure

operators. The logical structure of the exchange switch is simple and

can be implemented with order log(N) circuit elements. However, the

physical interconnection cost of these elements and delays through the

switching network will significantly impact overall cost and

performance. Figure 2-8 show’s the summary table for the MU machine.

46

41

execution model: " "
machine language:

ive cate types:
ure operators:

cats operators:

processor components:'

processing elements:

address structure:

s- s rTi&riSGsrrisnci

ccrr;jr:ication protocol:

extensibility:

physical extensibility:

implementation status:

Data-driven.
Directed graph; direct support of LAPSE
higher level language.
Boolean, integer, floating point values.
Records and arrays.
Arithmetic, comparison, token distribu
tion and selection, function calls.
Instruction store, processing unit, input
output switch, result queue, and match-
store unit arranged into a ring.
Processing unit has substructure of sev
eral homogeneous executable instruction
processors.
Instruction store is linearly addressable.
Matching store has an associative mem
ory organization.
Matching store performs its own manage
ment.
Packet sv,’itched; tokens contain simple
routing information. Exchange switch per
forms interprocessor message transmission.
Exchange switch permits good extensibili
ty through addition of more token routing
circuitry and ring processors. Ring pro
cessors may be extended through addition
of instruction memory and executable in
struction processors.
Exchange switch interconnections tend to
be complex. Asynchronous token transmis
sion eliminates sensitivity to physical
transmission distances.
Simulation of machine is complete. LAPSE
to program graph translator is complete.
A single ring prototype is under construc
tion. . a,...

Figure 2-8: University of Manchester Dataflow Computer: Summary

48

2.4 University of California Irvine

The goal of the dataflow project at the University of California,

Irvine (UCI) is to develop a machine which:

- fully exploits the advantages of large scale integration,

- utilizes a very large number of processors (greater than one
thousand), ■'

- significantly improves the structure and construction of
software by rejecting those features of the von Neumann
model which adversely affect programming.

UCI has proposed a new programming language called Id which supports

the single assignment programming concept. The unique aspect of the

UCI work is the "unfolding" interpreter which attempts to obtain still

mere execution concurrency through manipulations applied to the

iterative and procedural constructs of the program graph.

- The UCI dataflow system supports two classes of values:

elementary and structured values. Elementary values correspond to the

usual notion of primitive types, e.g., integers, reals, etc.

Structured values, however, are recursively defined trees from which

vectors, arrays and other complex structures may be defined. Two

operators may be applied to structured values: select and append.

The expression "select(x,i)" returns the ith subtree of the structure

value x. The append operator joins structure values together to create

instances of yet more complex structure values. In addition to the

usual arithmetic functions, operators ere provided for procedure

application, conditional expressions, and loops.

The asynchronous operation permitted by a program graph is termed

static parallelism. The "unfolding" interpreter attempts to find

instances of additional dynamic concurrency by "unfolding" the graph.

Figure 2-9 shows an add cell "s" which has two sets of input

operands queued at its inputs. Following the usual data-driven

execution rules, the add cell will fire twice in succession producing

49

=> s: r> s:

+Ca1>b1) (a",b“)
• +(a l >b1) 1

00

T

(c)

Figure 2-9: Example of static parallelism
two result tokens. (The superscripts indicate the logical traversal

ordering of tokens on the graph arcs. Because an add cell is

functional in the sense that future results do not depend upon the

execution history of the cell (i.e., it is memoryless) the second

addition could also be performed immediately. Tne addition of the

second pair of operands could be physically completed before the first

addition due to the asynchronous firing rules of the data-driven

model. This single cell could be replaced by two physical add cells

provided that the result tokens leave the expanded graph in the same

order in which they arrive, as indicated by the subscript order.

Subscript order can be maintained during execution through the use of

tags which retain information regarding the token ordering. If the

add cell is replaced by a loop or procedure invocation, even more

concurrency can be realized. The interpreter is permitted to unfold

all the expressions within the .loop or procedure for parallel

execution. If a large number of physical processors are available,

50

the unfolded expression will execute much faster than the regular form
of the expression. This f o m of concurrency is called dynamic

parallelism, since often the degree of unfolding cannot be determined
until execution time, as in the case of loops.

The design of the UCI dataflow computer was guided by four major

principles: -

1. concurrency: "... It is more important to design for large
numbers of slow but concurrent accesses than to design for
a few accesses that are fast but sequential." [41]

2. distribution: Activities are spread over the available
processors.

3. locality: Logically related activities should execute
within close physical proximity, presumably minimizing

■ communication time.

4. redundancy: Local copies of a particular structure can be
used to improve the speed of access.

Because the designers view the existing dataflow architecture as a

testbed for machine and language ideas, the architecture is changing.

Future proposals will address modular expansion and fault-tolerance,

issues which have been temporarily deferred.

Figure 2-10: UCI processor - physical domain

The UCI dataflow computer consists of one cr more physical

dora ins. A physical domain (Figure 2-10) is a network of one or more

processing elements, a memory controller, and a memory storage module.

The processing elements are connected to two shift register token

busses which, together with the global memory bus, connect a number of

physical domains to form a ring domain. The token busses are

organized as counter-rotating rings. The ring is divided into a fixed

number of token slots (one per ring per processing element) , each cf

fixed length. The processing elements monitor the busses for tokens

with their physical address. When a match occurs, the token is

removed creating an empty slot. Any empty slot facing a processing

element r.sy be filled with an output token.

When s result has teen computed by s processing element, the

logical destination address for the result is mapped into a physical

address through the use of an assignment function. Because more than

cr.e computational activity can be assigned to any given processing

element, tokens must be sorted into activity groups. Tokens are

labelled with an activity name. When the firing set of a waiting

activity has been satisfied, the computation will be performed.

Output tokens are queued to be transmitted in the next empty token

slot, '

Structure values reside in the local memories. Tokens need to

carry only structure pointers, eliminating undesirable copy

operations. The processing elements within a physical domain are

connected to the memory controller through a local bus. Address

interpretation and memory arbitration is performed by the controller.

Although distinct memory units exist within the physical domains of

the computer, the address space of the machine is unified. Kence, if

a structure is contained within the physical domain which generated

the access request to it, the structure value cen be quickly accessed.

If the structure exists within another physical domain, the local

52

memory controller can forward the access request to the appropriate

distant controller along the global memory bus. Global communication

can be reduced through the use of local structure copies, although the

regulation of updates to a globally accessed structure (in the logical

sense) becomes mtore difficult because all copies must be modified as

the result of a single update.

The UCI machine, like that of MIT and MU, is communication

intensive. This causes possible system contention for transmission.

It also indicates that some of the speed advantages of a VLSI
implementation will be lost. The fine grain search for parallelism

creates a certain amount of additional overhead to do the "unfolding"

style of interpretation. It remains to be seen whether this overhead

is worth it in terms of total system performance. A summary table for

the UCI machine is shown in Ficure 2-11.

53

execution model:
machine language:
primitive data types:

structure operators:

data operators:

processor components:

processing elements:

address structure:

storage management:
communication protocol:
extensibility:

physical extensibility:

implementation status:

Data-driven, unfolding interpreter.
Directed-graph translation of Id programs.
Integer, floating, Boolean, and string
values.
append and select applied to recursive
tree structures.
Arithmetic, loops, conditionals, proce
dure application.
Machine is partitioned into separate phys
ical domains. Each domain contains sev
eral processing elements, a local memory
controller, and a local store.
Non-specialized processing elements with
in a physical domain.
Unified address space over the entire com
puter. Structure requests are satisfied
locally if possible. Otherwise, struc
tures are transferred from distant memory
units via the global communication bus.
Performed locally by control unit.
Slotted ring network.
Easily extensible along token and global
busses. Additional traffic may cause comm
unication to degrade without the use of
locally cached structures.
Ring busses are sequential shift regis
ters. May be hindered by sequential tim
ing of the net.
Extensive simulation.

Figure 2-11: UCI Dataflow Computer: Summary

54

2.5 University of Utah

The University of Utah Dctc-ariven Machine (DDMl) is the subject

cf the case study presented in section 3. We therefore restrict our

presentation here to a brief description of DDMl in terms of the

criteria set forth in the machine summary tables.

The machine language of DDMl is a directed graph [4, 3]. The

data tokens which circulate within the machine are list structures of

arbitrary complexity. Using lists, both complex data structures (e.g.,

plexes, trees, etc.) and regular structures (e.g., vectors and arrays)

can be represented. The operator set includes functions that

concatenate, decompose and index the list structure of the data

tokens. A high-level Graphical Programming Language (GPL) has been

proposed for higher level programming. GPL supports a number of

common programming constructs which can be translated to the low level

macmne lcnouaQ9 .

Physically, the DDMl is a tree structured multiprocessor.

Computational tasks, called data-driven processes (DDP's), are

partitioned among lower level physical processors if the resources are

available and the computational pay-off exceeds the amount of work

required to dissect and transfer the program subnet to a subordinate

processor. The processors in DDMl are homogeneous, capable of
executing any of the operator cell types. The processors consist of a

processing element and a storage unit pair. This organization' permits

the exploitation of program locality.

One of the primary goals of the University of Utah effort is to

develop a machine which is compatible with VLSI implementation and can

be simply extended through the addition of more, processor-store

elements. Communications in DDMl are packet switched and entirely

asynchronous. Hence, the system does not need to be tuned when more

computing elements are added. The summary table is shown in Figure

55

2-12.

execution model:
nechine language:
primitive data types:
structure operators:

data operators:
processor conponents:

processing elements:

address structure:

storage management:

communication protocol:
e x tens i b i 1 i t v :

phvsicsl extensibility:

implementation status:

Data-driven, recursive machines.
Directed graphs.
Integers.
Tokens are list structures which may be
concatenated, decomposed, and indexed.
Arithmetic, and token routing.
Processors are implemented as processing
element and storage pairs.
Processors are homogeneous and capable of
interpreting all cell types.
Storage is organized as a list structured
file.
Management is performed within each stor
age element.
Packet switched and fully asynchronous.
Addition of processcr-stere pairs is eas
ily accomplished. Extension of local
storage capacity has not yet been ade
quately solved.
Asynchronous communication eliminates sen
sitivity to physical separation.
Prototypes 1 and 2 have been constructed,
debugged, and tested. New languages and
machines are currently under definition
and construction.

Figure 2-12: University of Utah DDM1: Summary

56

3.1 Introduction and Chronology

Data-driven machine #1 (DDMl) is part of an ongoing research

effort to produce a working set of systems ideas for a highly

concurrent, distributed control, computing environment. The project

began around 1970 with an attempt to find a language for concurrent
structured programming [5]. These ideas were refined in the

following year to produce a data-driven program schema known as DDN1 s

[41 . A translator 'was then written which would translate programs

'written in a lexically simplified subset of Algol to the functionally

equivalent DDN1 programs. During the next 4 years, ideas about

resource allocation and implementation strategies were developed. The

DD-Ml prototype [3] became operational in July of 1976. This prototype

became the nucleus for an experimental data-driven environment 'where

systems software and new hardware could be developed. In September

1977, the project moved to the University of Utah where it continues

under a grant provided by the Burroughs Corporation. • '

' The remainder of this section is a detailed case study of this

project, and in particular the prototype DDMl machine. We will (in a

perhaps futile attempt to give an unbiased presentation) describe only

’work which has either been completed or is underway. We will

deliberately avoid making claims about future wonders which we hope to

produce. In attempting to improve substantially upon the von Neumann

'world, it is necessary to create a new set of self-consistent systems

ideas. We outline this new set of ideas here, and then present the

details and critique of the DDMl implementation.

There are two primary ways in which the performance of

traditional single sequential processor systems can be improved:

1. To use faster components in existing architectures, and

2. To design new architectures and programming methods, w’hich

3. A Case Study of The DDMl Machine

57

The first approach is inherently limited in that the effects of

reduced 'integrated circuit geometry and new logic families can

reasonably be'expected to increase overall system performance by only

two orders of magnitude. While this is initially impressive, it does

not meet the desired machine performance estimates necessary to solve

large physics problems, or that needed for accurate weather prediction

[37] . The second approach is not inherently limited by the physical

properties cf switching devices. The bound on the performance

increase which can be obtained by exploiting concurrency is only

inherently limited by the problem and human imagination (both on the

part of the programmer and by the machine system designer).

There are numerous levels at which concurrency can be exploited

in digital computers, i.e. multiple cat? paths, more concurrent

realization of low-level circuit functions, overlapped and pipelined

processing within a single processing element, multiple processors,

etc. In developing any new "fast as possible" machine, it is

important to attempt to implement all of these suggestions. We feel

however that raw speed is not the primary reason for investigating the

class of machines presented here. In fact, judgment of the merit of

the data-driven approach on the basis of raw sp>eed measures made on

machines such as DDMl is somewhat unfair to the new approach.

Data-driven systems ideas are still in their infancy when compared to

the long development history of Von Neumann structures, and therefore

it is unlikely that the data-driven ideas will have reached comparable

levels of sophistication. In addition, the actual performance of any

of the proposed data-driven architectures is based on the assumption

that the programs being executed contain very high levels of

concurrency, and that the machine is composed of a large number of
functional units. Such data-driven machines have not yet been

are capable of exploiting high degrees of concurrency.

constructed in even a prototype form. Furthermore, the types of
programs which are currently being run on prototype hardware or

simulation systems are quite simple end do not contain tremendous

amounts cf exploitable parallelism. The bast v.'ay to judge data-driven

system concepts at the current time is to analyze the various system

approaches in a qualitative sense, and decide whether or not these

systems are likely to meet their stated coals. The DPMI project has

been mainly concerned with solving the problem of how to utilize and

organize systems containing large numbers of independent processors.

The result of this concern is that a number of low level issues

relevant to the creation of single, very high performance processors

have been neglected. Among these ere, high speed arithmetic, fast

internal circuit design, the use of high speed circuit families, etc.

Tne influence cf integrated circuit technology permeates the

entire spectrum of commercially available digital systems. It is

clear that any machine architecture intended to have a general

commercial appeal must be viable with respect to the changing

constraints of integrated circuit technology. For architectures which

fit nicely into the VLSI (very large scale integration) realm, the

advantages are numerous. Among these are lower cost, increased

reliability, increased speed, and decreased power consumption. The

architectures which do not fit well into the VLSI world are at most

only ideological points of interest or they may be successful only in

a very special purpose sense. '

There are a number of additional design goals which heavily

influence the class of machine structures presented here. Namely it

is intended that these machines be general purpose, extensible,

reliable, easily programmable, support very high levels of

concurrency, and also be economical with respect to their performance

and existing technology. In particular this effort is not concerned

58

with one of a kind or special purpose machines. Special purpose

machines are perhaps ideal for a given environment, but suffer from

inherent limits in their applicability to other problems.

3.2 Architectural Principles

The implications of VLSI implementation constraints imply that

machines which consist of a number of similar part types are

attractive economically. In addition, if the systems can exploit a

high degree of program locality, then higher performance can be

obtained because on chip transmission paths are both short and fast

(small capacitive load). Drastic additional speed up can be obtained

if these systems can also support very high levels of concurrency.

Cne approach to meet these objectives is to create an architecture

which consists of a large number of identical processing sites. This

approach has been taken by many architects and is particularly

prevalent today where microprocessors are used as a replicated

processing element in a number of different topologies. The DDMl

project had a number of design goals which made the use of existing

microprocessor modules impossible. The design goals did require that

the system support very high levels of concurrency and consist of a

set cf processing sites capable of performing localized storage and

computation of a reasonable complexity. These sites should be

essentially the same physical module, which can be constructed from
one (ideal) or a set of chip types. An additional goal of the

architecture presented here is that of extensibility, namely that DDMl

should consist of a finite but unbounded number of processing

elements. More specifically, the architecture should be indefinitely

extensible in the following way:

- Machine pow’er should be enhanced by the addition of more
processing nodules (i.e. allow greater concurrency due to
the increased number of processing sites);

- The addition of new modules should not require any change to
the existing operating sy'stem in order to manage the

- Additional resources should be added simply by "plugging in
new modules" without any special tuning of the existing
hardware to create consistent system timing and
communication for the expanding system; and

- Extensions should, be available in small quantums.

The first and last points indicate that a user should be able to

purchase only the power needed, rather than much more or much less

than the amount desired. The other points demonstrate that the

manufacturer should only need to support a single module, rather than

a large number of system configurations and size ranges. If such

goals can be met in practice then such systems would have an

enormously attractive economic appeal to both the user and the system

vendor.

Extensible systems cannot be implemented in a synchronous,

centrally controlled manner. Central control of arbitrarily

extensible systams implies that the control must be able to function

on an arbitrarily large amount of state information, which either

slows system timing drastically or requires controller modification to

access the new state information. One major purpose of the

multiprocessor approach is to increase performance, and a drastic

slowing of system timing would therefore be considered unacceptable.

Controller modification is equally 'unacceptable in that it conflicts

with the stated design goals. In an arbitrarily extensible synchronous

system the problem of unbounded clock skew (maximum difference in the

perceived clock time between any two processing sites in the system)

will cause failure. The systems described here will therefore be

asynchronous, fully distributed systems. Fully distributed systems
have the following characteristics:

- No module of a fully distributed system can determine the
total system state, and

- No module of a fully distributed system can enforce

60

resulting larger system;

51

simultaneity in other modules.

Holt [13] has shown that the notion of total system state in complex

asynchronous systems is intellectually counter productive.

Furthermore the enforcement of simultaneity in physically separate,

asynchronous devices is impossible.

There are many ways to organize an extensible set of modules in a

distributed control system. One possible choice is a hierarchy. The

advantages of hierarchical organizations are:

- A simplification in the amount of complexity to be dealt
with at a given level.

- Verification by inductive methods can be dene for uniform
nierarchic systems.

- The natural superior-inferior relationships of elements in
' hierarchic systems can be utilized to resolve important

multi-resource system problems such as contention for shared
resources and deadlock.

It will be seen that hierarchy can be further exploited and

facilitates a nice resource allocation policy. Recursive hierarchies

are cf particular interest. In a recursive hierarchy the structure of

the system at one level of the hierarchy is the same as the structure

cf the system at any other level in the hierarchy. Recursion

inherently implies that some element is defined in terms of itself.

In the case of DDMl it will be seen that this implies that the same

module (and ultimately the same chip) can be used at each level.
Recursive systems are nicely extensible. Clearly physical recursion

rust terminate at some point. This point will be seen to be the
logically deepest set of resources in the physical hierarchy.

Additional advantages of recursively structured systems have been

demonstrated by Glusnkov [18] . It will be shown that the width of a

level in these recursive hierarchic structures can be used to execute

independent operations, while the depth of the hierarchy will be used

to facilitate pipelined operations.

It is also our basic belief that machine ideas and language ideas
should be based on the same fundamental concepts to provide a nice

"fit". This fit is an important property of a self-consistent set of
systems ideas. In this case the local, hierarchic, asynchronous

behavior of the architecture nicely fits intrinsic properties of

data-criven programs.

3.3 The Machine Language

The machine language of DDM1 (Data-Driven Machine #1) is the DDN

(Data-Driven Net) representation. It is not intended that anyone

should program directly in the DEN representation, but rather that the

language used for the actual programming be translated into DDN form

fcr execution. It is possible to translate veil-structured programs

in conventional languages (ALGOL, FORTRAN, etc.) into DDN's, but these

languages are not 'well suited to the sp-ec if ication of parallel

algorithms. Bone recently developed high-level languages are

particularly well suited for the specification of concurrency, and can

be easily and efficiently translated into DDN form

[31, 42, 24, 29, 20].

The main advantage of DDN's over the other data-driven schemata

[13, 8 , 1, 27] is that no distinction need be made in DDN's between

control and data. The lack of this distinction yields increased

simplicity in DDN processes with no less of representational power.

In addition the DDN primitives, while not being any more numerous than

those of the other low-level dataflow languages, are more general.

Seven distinct cell types are used in data-driven nets. A DDN

cell type corresponds to the choice of statement types in conventional

programming languages, and as such reflects a particular style and

area of emphasis. Often times such choices are guided by theoretical

considerations to find a minimal set cr a maximally powerful

collection of types. DDN cell type selection was influenced primarily

• . 62

. ' • fi3

by pragmatic considerations. The DDN cells were chosen for simplicity
and generality, and each cell type was chosen to clearly characterize

a particular type of activity that was felt to exist in parallel

programs. Each cell type is represented by a unique graphical symbol.
Figure 3-1 shows the cell types, with their firing sets (the set of

inputs which are required to be present before the cell type can be

executed), and cell functions (a description of the functional action

taken by each cell type). Notational conventions adopted here are:

- Each type of data path is named: I for input, 0 for output,
F for feedback, C for condition, and X for index.

- Subscripts indicate data paths which may receive different
valued tokens.

- Superscripts indicate data paths which will carry identical
valued copies of output data items.

Since each data item of a firing set is destroyed when the cell fires,

any time a data item is to be used in more than one place (due to

either pipelining or concurrency requirements), more than one copy of

that output item will need to be be produced. This implies that the

destination for any output may be a list of destinations. If there

are n elements in the list, then n copies of the result data will be

produced and sent to the respective destinations. Note that input

paths will never have superscripted names, but outputs always do,

indicating that any output result may be copied many times.

Tne SYNCH cell allows parallel streams of data to be

synchronized. Such synchronization may indicate that a number of

concurrent activities have reached a certain point or state. For

example, the inputs to some process may be produced by a number of

parallel processes. The inputs could be passed through a SYNCH cell

to the called process. If it were desirable'to determine whether the

called process is reedy to be executed or not, then it would be

possible to look at the input SYNCH cell and determine the answer to

the question. If the SYNCH cell were fireable then the called process

CTLL

o1: output*
:ir:_n j wt; (I. I.)
cfc.ll fur-ctlnni for every i , j i 0̂ j"1̂

O.Ti
11 1-T-lt-liJ. Input
Ti feedback Input
C: condit-ion Input
0ii output* ,
lor the cell function *j*i firing *et rif. 4.

Input*
oji output*
fi.das *ett V
ctU . icr rvtry i , j i 0J !- f (I ,

3 - o

I, i inpati
k0̂ i eratputJ

firing »eti (I V
ctil function: for every *, fc

0, I- PFOr.KA.KI (I o *---— ---- c

.0 *0 0

04: outputs
X! Inicx
firing *et: (I, X)

„icell function: 0 r-I for til i «-ivi
x v>x-re x Is the

ViJue of X

Inputs
oS output*
X; Index
firing *eti fl , X} vh*r« x is tbe v±lue
ceil function i 0 *",I for * 11 1

XKBITTK HTJ«
i Input*

0 i output*
X* t index output*
firing *et: at le_nrt coe Inpjt:
c e ll function: O^r- f i r s t I , I 2*r-'j for *11 1, *.?
(Hot*j in cam of * tl« *jjy icpct X which It pr»wmt Is c±*o*«n) • c

Figure 3-1: DEt'J Cell Types

65

could be considered to be fireable. If no such input SYNCH cell
existed, then the decision would be much more complicated, in that it

v.’ould require the ability to perceive action in all of the distributed

parallel producers of the called process' inputs. This inforriation

'would then have to be correlated to create some consistent view of the

state of the system. It has already been stated that such a global

state view is counter productive. In this sample case, the state

infomation is very expensive to obtain, and a better solution exists

(the SYNCH cell).

The OPERATOR cell is used to perform normal operations such as

arithmetic, relational tests, etc. The OPERATOR cell type is actually

a class of individual OPERATOR cells. The actual operator definition

is mace by a small symbol placed in the OPERATOR cell, which indicates

the actual operation (e.g. *+' indicates add, etc.). Each operator

type will inherently indicate how many actual inputs and outputs will

be required. For example addition is normally thought of as a 2 input

and 1 output operation. Tne LISP operation CAR, on the other hand, is

a single input and double output operation. Any DDN output may be

further replicated for the reasons previously discussed.

The CALL cell is used to invoke a named data-driven process, and

in that respect acts just like call constructs in languages such as

ALGOL. If the firing sets and the cell functions of the CALL cell and

the OPERATOR cell in Figure 3-1 are compared, then it is apparent that

the OPERATOR and CALL cells act in very similar manners. This

similarity allows CALL cells and OPERATOR cells to be semantically

interchangeable in DEN programs. In essence they both perform

functions, the only difference being that an OPERATOR cell indicates

that the function is a machine or system provided function whereas the

CALL indicates that the function being performed has been defined by

the programmer. The CALL cell also allows the usual program hierarchy

66

Conditional expressions in DDN programs are implemented by the

conditional routing of data items to the desired parts of the program

graph. There'are two DDN cell types which can be used to perform this

to be constructed.

he DISTRIBUTE cell, and the SELECT cell. Tne DISTRIBUTE cell

allows an input data item to be routed onto one of n (programmer

defines n) possible outputs. The desired output is specified by the

index input. If the index value is out of range then an error

condition exists. Tne method for handling errors will be described

later. The SELECT cell allows one of n inputs (again n is a variable

and is specified by the prograrmer) to be selected end placed on the

sr i~~ 16 c u c u t » Ths inc-j“ to l>9 s0 sc^sci is s c ^ £i6c c-v t ~ s Ipc^x

ir.pur. to the SELECT cell. Tvso simple programs are shown in Figure 3-2

•which illustrate the use of SELECT and DISTRIBUTE cells to represent

conditional program constructions.

E D

a) If C < 0 then D:=l else E:=1 b) If C < 0 then D:=0 else D:=5

Figure 3-2: Two DDN methods for reoresentino condition statements

In a concurrent environment, there are times w;hen two parallel

67

events will need to be merged on a first come first served basis.

This action is performed in DDN programs by the ARBITER cell. The

primary problem with such a merge is that information is lest about
the sources of the merged data items. The index output of the ARBITER

allows the information about this choice to be preserved. This

information can be used in DEN programs to create program structures

which are deterministic in their behavior. A sample program which

exhibits such a construction will be shown later in Figure 3-8.

Another form of merge operation is required in iterative DDN

programs and is provided by the GATE cell. Unlike the other cells,

the GATE cell operates on the basis of an internal state. The cell

function and firing set are functions of this internal state.
Iterative DDN's appear as a net with a set of input paths I, a set of

feedback paths F, and a set of output paths 0. The recycling of data

on the F paths is done once for each iteration of the iterative

program. The program is initially started with the values which

arrive on the I paths, and when the iteration terminates the results

of the program are sent out on the 0 paths. The basic function of the

GATE cell is to perform a merge operation on inputs I and F, as

specified by the input C. The value on the C path corresponds to a

condition which controls the iteration. A TRUE value indicates that

another pass will be taken through the body of the iterated code.

This will result in a set of feedback values on the F paths. If the C

value is FALSE then the iteration is terminated and no new feedback

values will be produced. Initially the GATE cell's state is set

"open" to pass a single I data item, then the GATE "closes" to inhibit

further I's and allow F's to pass. After a C=FALSE input arrives the

GATE again opens. The general form of an iterative DDN program
contains the following:

- A net or process to be iterated,

- A set of initial data paths,

68

- A set of feedback data paths, and

- A set of output data paths.
is structure is illustrated in Figure 3-3.

-feedback paths

. Figure 3-3: Data-Driven Iteration

Proper sequencing for such an iteration would be:

- When each initial data path has an item, the net fires.

- When the net has fired, output items are placed on the
feedback paths, and the net is then primed to iterate.

- Step 2 is repeated until the iteration started by the first
set of initial inputs terminates and produces outputs.

- The sequence is then restarted.

The GATE cell is used to prevent non-deterministic merging of data

paths in iterative situations. Loop termination is implemented by the

joint use of DISTRIBUTE, and OPERATOR cells. A sample iteration is

shown in Figure 3-4, which increments a value iteratively until it

becomes 3, and outputs it. Data items not delimited by parentheses

are of type CONSTANT and are considered to be part of the program

definition. Constants are therefore not destroyed by the firing of a

"he situation where several data paths terminate at a single

<S9

Figure 2-4: A Simple Iterative Net

destination is not allowed, as this would imply that non-deterministic

merging could occur at such a junction. Merging of data paths is

allowed only in well-controlled instances as provided by the GATE,

SELECTION, and ARBITER cells. .

As in other data-driven schemata, DDN's naturally represent two

types of concurrency (pipelining and independent operations). DDN's,

due to their asynchronous behavior, are non-deterministic with respect

to execution histories. However the important point is that in a

functional sense, DDN structures are deterministic. That is, if a

sequence of values is sent into a DDN program any number of times, the

resulting sequences of output values will always be the same. This

property is known as output functionality. Certain DDN program

topologies are not output functional and correspond to a programmer

error. It is possible in a "DDN compiler" to find all such

non-deterministic topologies and flag them as errors.

The inherent operational asynchrony of distributed control

systems makes it virtually impossible to recreate an error situation

for debugging purposes. It is therefore important to be able to

guarantee correct system operation through analytic techniques.

70

Analysis of DEN structures is in general very difficult. For example

it is difficult to answer such questions as:

- V.hen does a DDN begin execution?

- When does a DDN terminate?

Answers to these questions require global perception of the net

activity. Since DDN mechanics are defined in local terms, global

behavior cannot be perceived. The general problem lies in the lack of

ability to observe state phenomenon in fully distributed systems.

If all of the input paths to a DEN are synchronized at an input

SYNCH cell, then important state information can be observed locally

a; thst point.. A similar argument can be made about the output paths.

The "delimiting" of a DDN by SYNCH cells yields a form for a

data-driven process (DP?). This process form is shown in Figure 3-5.

Figure 3-5: Data-Driven Process Form

The DDP form simplifies comprehension of the program

considerably. The single input SYNCH cell acts as a collector for the

process working set, and the output SYNCH cell acts as a termination

point for the process and a distributer for the results of the

process. In addition, EDP's have the same operational characteristics

as CALL and OP cells. In fact, CALL cells invoke only DDP's.

When the input SYNCH cell becomes fireable, then the DDP is said

to be fireable. When the output SYNCH cell has fired, then the DDP is

said to have terminated. Between these two times, the DD? is said to

be active. Under pipelining, the definitions of active, fireable, and

terminated have to be modified as there may be many instances of each.

A new definition for termination may be made by counting the number of

input SYNCH cell firings and the number of output SYNCH cell firings.

When these numbers are equal then the pipelined DDP can be said to

have terminated.

Since a DDP exhibits the same behavior as a simple OPERATOR cell,

a clear, substitution rule can be formulated. Within anv DDN, a DDP

•which performs a function F nav be substituted for any OPERATOR cell

performing F without changing the functional operation of the original

DEN. This substitution rule allows a call mechanism to be defined
(the CALL cell), which allows for recursive and/or hierarchically

defined DDN's and DDP's. The name of trie called DD? is indicated

inside the CALL cell box.

While the DDP model has some very nice properties with respect to

abstraction, substitution, and hierarchical structure, it is more

limited in what it can represent than the more general DDN's. The

general problem is that DDP structures use one input set for each

output set produced. Many problems use an arbitrary number of inputs

to produce a single output (or vice-versa). This problem can be

corrected using a type of message structuring discipline known as

streams [43]. A discussion of streams and the operations of DEW

programs using streams as an intrinsic data structure type is not

presented in this chapter, as it is felt that such a discussion is not

necessary to understand the material presented here. Due to the

functional form of DDP's, the formal verification of program

properties is simplified.

. 71

72

Figure 3-6 shows two DDP's, each containing two parallel

recursive calls to calculate the nth Fibonacci number, for positive

integers n. Figure 3-6a shows the obvious net, while 3-6b shows a net

which will execute as fast with two processors as 3-6a does with three

processors (assuming that > and - operations require equal time to

compute) ■
Find the nth Fibonacci number:

where F(l) = 0
F(2) = 1
F (n>2) = F (n-1) +F (n-2)

C H B O

b) faat rr-q-cJ-r*# only
2 for

Figure 3-6: Fibonacci DDP's
i

A detailed discussion of data structure handling is beyond the

sccp-e cf the issues discussed here. It is appropriate to mention a

few considerations relating to better program structure. One can

consider DDN's to consist of two files:

1. A static file (so far - the net description), and

2. A dynamic file (until now - the data items).
A no re general approach is to allow the data item file to be either

static or dynamic (and similarly for the net description). The basic

nature of data-driven computation indicates that the dynamic file

elements will be destroyed upon cell firing, and some copying will be

inherently necessary. The proper choice for the dynamic file would be

the file (data item or net) which would minimize the copying

requirements. In instances where large data structures are used, the

static file would be the data structure and the net description would

be the dynamic file. In this instance the data structure would be

treated as a static resource which could then be shared by a number of

concurrent processes. To avoid the possibility of access conflicts to

the structure, an ARBITER cell can be used to guarantee first come

first served (but sequential) access to the structure.

Figure 3-7 shows a net for controlling read access to a shared

vector. Tne inputs Pi, P2, and P3 are the indices from concurrent

processes 1, 2, and 3 respectively. The vector input is the vector to

be loaded into place. It is assumed that the load input arrives

before any of the Pn inputs. The SHARED RESOURCE box of this net acts

as a sequential interpreter for instructions flowing into it. The net

also shows how order-preserving parallel to serial to parallel

conversion takes place using the ARBITER and DISTRIBUTE cells. The

DDN’ ARBITER cell does not perform just the normal arbiter function,

but also generates an index indicating which input was selected. This

index preserves enough information to allow the sequenced items to be

correctly "reparallelized". Any time an ARBITER cell is used in a

net, it must be used in exactly the same ARBITER - DISTRIBUTE cell

pair topology as shown in Figure 3-7. Otherwise the ARBITER cell will

cause non-deterministic sequencing and the result will be a net which

is not output functional. Figure 3-8 illustrates how order-preserving

73

14

serial to parallel to serial conversion is handled.

Figure 3-7: Shared Resource DDN

o c t p o t p i p *

Figure 3-8: Serial to Parallel to Serial Conversion

The basic nature of data-driven processes is that operations are

pushed into action by the arrival of the required set of inputs. If

one of these inputs is prevented from arriving at the intended

destination (due to a programming problem or other type of error),

then that destination cell v/ill never fire. Consequently, all cells

having firing sets with outputs from the unfireable cell will never

75

fire and so on. A cell or a net which can never fire is said to hang.
A cell or net which can never hang is said to be live. Since no cell

can determine whether it is waiting for an input that will never

arrive (i.e. whether it is live or not), it is inportent to be able to

guarantee liveness from a topological examination of the net process.

This examination can be performed in a compiler-like operation and a

special ERROR data item can be inserted where necessary to maintain

liveness. For example, if a DDP contained a conditionally defined

output, then that DDP could hang if the condition was never met. Tne

compiler (or the programmer) could produce a net which, on failure of

:r.e condition, would send an ERROR item,

•hown in Figure 3-9.

?xanple c; a net is

D
D

A net. which can hang A corrected net which can
. not hang

Figure 3-9: Correcting a hangable net

When a conditional expression is described as a DDN, only one

path of the condition will fire for a given set of inputs. For this

reason, the notion of whether a particular cell is live or not is not

of much practical worth, and in fact, it is impossible to determine

tcpelogically. Similarly for general DDU's the notion of liveness is
somewhat nebulous, but for a DDP, liveness is an important and

7 6

Two other important characteristics of DDP's are whether they are

safe or clean. A DDP is said to be clean if when it terminates, there

are no non-constant data items existing in the DDP. EDP's are clean

when they are defined. If they were not, then the output values would

be history dependent upon the values of the existing non-constant data
items. A live DDP which terminates without error and is always clean

is said to be safe. It can be shown that safe DDP's execute in an

output functional manner under pipelining.

It is possible to determine by topological analysis of any DDN

v:hether it is safe or net. The machine algorithms for such analysis

are lengthy and will not be presented here. Such analysis would be an

important part of a DDN compiler, and should be performed before

execution cf any DDP.

3.4 The Architecture

The architecture consists of a set of asynchronous modules which

communicate by passing messages. The fundamental computational unit

of the architecture is a processor-store element (PSE). A PSE

consists cf a processor module (P) and its associated local storage

module (S). Any PSE can execute any machine language program,

topologically verifiable property.

. l. : ?e. Tne

architecture is a recursively organized set of these PSE1s. The

recursive definition cf the structure is:

<PSEn> ::= <PnXSn>

<^n> ::= <ASUn>

<Pn> ::= <APn> I <APnXPSE.GROUPn+l>

<?SE.GROUPn+1> ::= <pSEn+i> | <PSEn+i><PSE.GROU?n+i>

77

Subscripts denote the recursive level at which the module

physically resides. <AP> is an atomic processor module, which has no

further sub-structure (contains no PSE's). Similarly an atonic
storage unit, <ASU> has no PSE substructure. The width of a

<P5E.C-R0'JP> has a physical bound. For the DDMl prototype, this bound

is eight. The structure is depicted in Figure 3-10.

psz ‘&

Figure 3-10: Recursive definition of a PSE at level n

This structure allows for a hierarchical distributed storage

organization. Any S or ASU may consist of an arbitrary amount of

storage of any desired medium. Higher levels of PSE's are considered

logically superior to lower level PSE's. It is advantageous if higher

level stores (ASU's) are slower and larger than the stores of lower

levels. This reflects the notion that the functional ability of the

father node should be greater than or equal to the abilities of all of

the son nodes. Tne interface and functional ability of any ASU

(regardless of size, speed, and level) is the same. The structure

also allows for an arbitrary number of processors to be used

concurrently. It is important to note that' all AP's are identical

regardless of level. However, the processors at higher levels will be

more powerful, in that they contain more substructure than the

processors at lower levels. More substructure implies more internal

Viewing the DDMl system in this recursive sense is the best way

to understand the operational nature of the system. The recursive

view is somewhat disconcerting when it cones to understanding v;hat the

system looks like physically. When viewed ncn-recursively this

structure is simply a tree structure with a single root and a

possibility for up to eight sons at any node. Each node of the tree

is a PSE and is capable of executing any machine language program.

The leaf nodes have no substructure and therefore consist of an AP and

an ASU.. At each node the fan-out is fixed but the depth of the tree

is arbitrary. In this manner the architecture allows any desired

number of PSE's to be included into a given machine. Each PSE is a

completely asynchronous nodule, and therefore as new PSE's are added

to the system no system tuning need be performed. The desired goal is

for machine 'performance to improve with the addition of more PSE's.

There are a number of ways to map this logical tree structure

onto a collection of PSE's. All involve some form of a connection

network to implement the desired communication paths. A number of

general interconnection networks have been considered: busses,

crossbars, Banyan nets [12], and permutation networks [17]. For

tree-like machines, full connectivity is not required. The expense of

crossbar switches vary as the square of the connected elements. Eus

conflict (and therefore bus contention) would drastically reduce

actual parallelism in the machine. Permutation networks present a

tremendous problem in that they may need to be totally reconfigured

when a single new connection is necessary. Tnis is difficult to do

reliably in a multi-path distributed control environment. Banyan

networks have some merit, but do not allow the desired hierarchic

pipelined communication. Therefore in the DZv'l prototype, a simple 1

to 8 switch was chosen as the interface unit between successive levels

78

concurrent processing capability.

79

cf PSE's. The result is that the physical and logical recursive

structures are the same. The structure is fixed and cannot be

dynamically changed.

Information is passed between PSE’s as nessages v.’hich are

variable length character strings. Upward traveling messages are

passed by the switch in an arbiter like manner. Downward going

messages contain header fields which indicate their destination. This

header is processed by the switch hardware in order to enable the

desired routing through the switch. The header is also deleted by the

switch hardware as the message is passed. Downward and upward

messages are manipulated by independent hardware in the switch, and

therefore are capable cf being controlled concurrently.

The character serial nature of the machine has the following
cCVSr.w6C£S l

- Hardware modules are made simpler and are more applicable
for VLSI implementation due to the reduced pin count.

- Hardware communication paths are more general in that
information units can be transmitted as varying numbers of
fixed-width base characters. This facilitates a hardware
substitution strategy for modules. Each module can
interpret the variable length message and perform the
indicated function.

These advantages aid in greatly reducing the cost of the hardware
modules. Some low-level performance is lost by doing everything

serially. The philosophy for this architecture is to regain that lost

performance many times over by providing a systems organization that

allows for many highly concurrent levels of activity.

Physical queues are placed between levels of PSE's in order to

facilitate pipelining and increase physical module independence.

V'ithout queues, the sender of a message would need to wait on receiver

availability. If a queue becomes full, only then must the sender wait

until the receiver has released some queue space. If queue sizes are

adjusted so that a sender is rarely required to wait for space, then
the system would be well tuned for efficient processing. Optimal

queue size depends on the average message length. It is therefore

impossible to, guarantee that no waiting will occur. It can be shown

that the strict hierarchical control and a restricted process

structure insures that the system does not deadlock. A block diagram

of the PSE structure is shown in Figure 3-11. In the DDMl prototype,

all communication paths except for the path between the ASU and the

AP, consist of 6 wires (a 2 wire request-acknowleage control link ana

a 4 wire, character-width data bus) .

fttber FSE

80

f

0 1 7

' Figure 3-11: PSE Structure

The variable length, character serial message structure and DDN

representation requires a highly flexible storage structure. This

needed flexibility has been implemented in- the low level hardware

functions of the ASU. In order to increase efficiency of the PSE, all

storage management functions are performed internally by the ASU. The

ASU appears to the AP as a variable field length file system, which

directly executes commands, such as: initialize, skip, insert, read,

v.-rite, delete, and index. The free space is managed automatically by

the ASU. • . ■... '

The PSE structure allows for a high degree of processing locality

in that any PSE can execute any DDN program (assuming that there is

sufficient storage in its local ASU). In addition the PSE admits
nicely to VLSI implementation. The 1 to 8 switch can be implemented

using a cascaded set of 1 to 2 switches. Using 1:2 switches, module

complexities for the DDMl prototype (pin and gate count) are shown in

Figure 3-12. Tnese pin counts include connections for power, ground,

initialization, and extension. The indicated module pin counts are

rounded up to coincide with standard package sizes. A cate in these

counts corresponds to a 2 input NAND gate.
Module Gate Count Pin Count

IQ, OQ (4K) 3,COO 16

Ap 20,000 64

ASU (4K) 47,000 64

1:2 Switch 2,000 64

Ad + ASU 67,000 64

AP+ASU+IO+OQ 73,000 64

AP+ASU+swi tch 69,000 64

PSE 75,000 64

Figure 3-12: PSE Module Complexities

These counts are well within the limits of modern circuit and

packaging technology, especially since much of the logic is storage

and therefore has a highly regular geometry.

82

3.5 Internal structure of DDMl

The internal structure of DDMl is a rather flexible prototyping

architecture. A number of decisions were made to cive a large degree

cf flexibility to what is a special purpose data-driven machine. Some

of these decisions result in decreased performance, but are considered

to be worth it as the hardware is continually being upgraded to

reflect new implementation ideas. In this section we present the

fundamental structure of the atomic storage unit (ASU) and the atomic

processor (AP). The other components in the PSE are simple queues and

switches of a very straightforward design.

Inherent in a DDN process is the need for the net to grow end

shrink in size c urine? execution. This, end £ ceneral belief in ether

advantages associated with a variable field size storage

representation, led to the adoption of The Storage Model (TSM) as the

basis for storage in DDMl. TSM is a storage structuring discipline

invented by R. S. Barton. DDN processes exist in DDMl, as "Storage

Model" files. Tne goal of the TSM discipline is to provide a location

independent method for dealing with an arbitrary structure of variable

length fields.

Tne TSM structure is a field. A field is a variable number of

characters enclosed between two reserved characters. These special

delineation characters may not appear in the data, and will be denoted

by left and right parentheses. A field may also be a sequence cf any

number of fields enclosed in parentheses.

TSM structures appear as well nested parenthesized expressions.

One view of these structures is that they represent data structures,

which are generalized trees. Straight forward mappings of scalars,

tuples, strings, lists, vectors, and n-ary arrays can be mace onto

these tree structures. Any field which does not contain subfielcs is

called a record, while any field which contains some subfields (i.e.

has substructure) is called a file. In any file the first subfield
(which may itself be a file) is the descriptor for the remaining

subfielcs. Tne remaining subfielcs are the contents of the field. A

sir.ple TS.V. vector may be represented by the template:

((ordered vector)(element value 1) (value 2) ... (value n))

Similarly a matrix may be represented by:

(((ordered matrix)
((ordered row 1) (value 1) ... (value n))

. • . 83

((ordered row m)(value 1) ... (value n))
))

The non-cescriptor fields of any file may b-e ordered or

ur.crcered. Unordered fields must be named and are accessed by name.

Ordered fields may also be named, but can be accessed either by name

or by position via an index. TSM fields may contain an arbitrarily

deep substructure and are indexed by an access vector. Each element

of the access vector may be either a name or an index number. If the

nth element of the access vector is a number then the TSM file must be

ordered or an error will occur. If the nth element of the access

vector is a name, then there must exist an equivalently named subfield

ir. the TSM structure being accessed. If no matching name exists at

that level, an error condition will also occur. One notational

convenience in specifying TS.M structures is allowed. Any pair of back

to beck parentheses may be replaced by a comma. Hence ((6) (4)(5)) can

also be written as (6,4,5).

TSK also specifies how free space is stored and used, but these

details are not germane to the programmer's world and are omitted

here.

The ASU is simply a TS.M file system. The file commands which the

84

- Initialize - initializes memory contents.

- Skip - cursor skips.over field currently under the cursor.

- Insert - inserts field prior to <the charecter or file
pointed to by the cursor.

- Delete - deletes field pointed to by the cursor.

- Assign - assigns a character or a file to the character or
file pointed to by the cursor.

- Read - reads the field pointed to by the cursor.

- Head - positions the cursor to the leading "(" of the father
field of the character currently under the cursor.

ASU performs are:

— z-irn'sx ~ u i r c e y) i co^s i^cGy^no 009rations
rtinc 5t tne ri^st chcr’scter in tne store*

- ?.ir.dex - (relative index) : does indexing operations
starting from the current cursor position.

The ASU is a 4K 4 bit character store using random access storaqe

chips. Hie ASU is organized so that dynamic storage can be easily

accommodated. RAM storage was picked to minimize the number of

variables effecting performance measures. A black box view of the ASU

is shown in Figure 3-13. ec <

A 4 cycle self-timed signaling convention (handshaking) controls

the inputs to the ASU. The two wires which are necessary to support

this convention carry request and acknowledge signals. These two

vires are called a link. The input link controls both the command and

the input busses. Commands are placed on the command bus and data

characters are sent via the input bus. Similarly, output characters

■ (output bus) and error conditions are controlled by the output link.

Eighteen lines are also present to communicate with the mapping unit

vrich is strictly a speed-up device used during index commands. If no

mapper is present, no change to the ASU is necessary.

85

ASU

n£~o£r

4
<5--- \------

input
interface <

4 tW
-a---- \------

mapper
> interface

J 4
------\

output
interface <

2
------ ^

data bus

request
acknowledge

command bus

-tw output data bus

c. C s'IZ'i 0 V L- £

Figure 3-13: ASU Black Box Model

The internal architecture of the ASU is shown in Figure 3-14.

This architecture has proven to be a nice structure for prototyping.

Sub-icchines may be added, deleted, and modified with negligible impact

on the rest of the rx>dules.

The soft control consists of an asynchronous micro-controller, a

read/write microcode store, and a condition-select unit. The

ccndition-select unit selects a condition line and places it in a

condition register.

The Ap architecture is the same flexible prototyping structure

that is used in the .ASU. Different submachines and microcode formats

are used to support Ap functional requirements. The Ap is intended to

execute the DEN program structures, with cells cf type; SYNCH, CALL,

CP, CATE, DISTRIBUTE, SELECT, and ARBITER. Tne sub-types of OP cell

85

Figure 3-14: Elock Architecture of ASU

which ere allowed reflect the machine operation primitives which the

DDMi hardware supports. These operators perform actions such as add,

subtract, relational tests, indexed reads and writes on TSM

structures, maximum, minimum, not, negate, and absolute value.

DD;%'1 operates on sign magnitude decimal integers. TRUE is

represented as a 1 digit while FALSE is a 0 digit. The presence of a

sign indicates negative numbers, no sign indicates positive

numbers. Integers may be of arbitrary length. All data transmissions

are in storage model format end are performed in a character-serial

fashion. Numbers are transmitted low-order digit first followed by

the sign.

The combination of the Ap, ASU, two asynchronous queues (IQ and

Op), end the 1:8 switch are a PSE.

ivhen a message corresponding to a DDN program enters a PSE at any

level, the PSE may take one of tv/o actions:

1. DECOMPOSITION1 AND ALLOCATION: If the PSE has substructure
and if there exists some set of concurrent subnets in the
DDN process, then the PSE may split trie DDN and send
concurrent subnets to PSE's at the next lower level.

2. EXECUTION: if the PSE has no subresources, or if there is
no exploitable concurrency in the DDN, then the PSE
executes the DDN at that level.

To aid the decomposition process, a structural descriptor may

precede the incoming DDN in the message. This additional storage can

greatly reduce the time required for decomposition decisions in the

PSE. Ir. addition, each PEE must contain information about the number

of available PSE's and the sizes of their respective stores. Problems

would result if, a DDN were sent to a PSE that did not have sufficient

memory to store the DDN. Only the local store sizes of immediate

subresources are known. This insures the recursive nature of the

decomposition process.

The decomposition process takes some time. It is important that

the speed-up gained by the extra concurrency resulting from

decomposition is not overshadowed by the time to decompose.

Experiments have indicated that a "first fit" decomposition is

generally better than a "best fit" decomposition strategy. It also

appears not to be worthwhile to completely decompose a DDN on this

architecture. At fine granularities, the slowdown resulting from loss

of locality is not regained by the concurrent execution of very small

subtasks. An exception to this rule would be in the case of

pipelining, where subtasks remain allocated for relatively long

periods of time and sustain high activity at each site.

If decomposition and resource allocation occur at run-time, it is

important that they be simplified as much as possible. It is possible

. 87

3.d Automatic Resource Allocation and Evaluation

88

to perform these tasks completely at compile-tine. This however is

inadvisable since it is based on an assumption of the run-time

availability of PSE's in the system. In a system containing large

numbers cf PSE's, the probability is high that some PSE's will fail or

be busy doing other things. In addition, large portions of a process

may only be evaluated conditionally. A compile-time allocation would

have to allocate tasks which may never be executed. The strategy is

taken here to split the decomposition task into two phases:

1. At compile time: do all of the resource and condition
independent work, and

2. At run-tine: dynamically make the actual allocation of
executable tasks to available physical resources.

DDN's are quite irregularly structured graphs anc DDMl is a very

regularly structured set of resources. Direct run-time allocation

would be too slew, due to the structural disparity between program and

machine. At compile-time, the two-terminal DDN process structure is

transformed into a well structured and functionally equivalent series

parallel graph (SP-^graph). "Two-terminal" means that the graph

contains a single "first" cell and a single "last" cell. Tnis matches

the DDP form and facilitates determination of net termination and

initiation. SP-graphs are acyclic, two terminal, directed graph

structures which can be formed by successively combining cells and/or

SP-graphs in series or in parallel. The SP-craph structures are then

allocated as necessary at run-time. Dataflow graphs in general admit

nicely to arbitrary restructuring cue to their asynchronous and local

control characteristics.

The allocation of SP-graphs onto tree-structured physical

resources is an easy task. If the SP-araph -of Figure 3-15 is folded

back onto itself about the middle, the result is a tree-structured

EP—graph. The SF-grsph, its folding, and the allocation onto a tree

of physical resources are all shown in Figure 3-15. In this way full

89

middle

to tree of PSE's

Figure 3-15: The allocation of SP-Graph programs onto a PSE tree

upward and downward communication can be carried on concurrently to

achieve pipelining. Horizontal parallelism can be achieved by

spreading independent subtasks across a given level of the

architecture. Resource allocation is performed automatically by the

hardware in DDMl to achieve very high degrees of parallelism. Tne

amount of obtainable concurrency is a function of available hardware

resources ana the program structure.

3.7 DDM1 in retrospect

DDMl represents a particular architecture and evaluation scheme

for dataflow programs. The architecture exploits a recursive

hierarchy to reduce complexity and allows for the arbitrary expansion

cf system resources. Physical resources are organized such that they

can be used to exploit both pipelined and independent tasks. The

system exploits the notion of locality which is irportant for both the

increased speed and decreased cost aspects of a VLSI implementation.

This notion of locality also indicates that this system is not

intended to exploit concurrency at the lowest possible level. It is
felt that the additional overhead involved would actually reduce

overall performance levels. •

DPMI is operational and executes DDK’ programs. DDMl communicates

'with 5 DECSYSTEM 20/60, which is used to support conventional software

tools such as compilers, simulators, and measurement programs. The

current programming language for the DDMl system is the DDN

representation. Programs can be created by working at a Tektronix

storage tube display terminal and simply drawing the program. The

programs which support this graphical programmer station run on the

DECSYSTEM 20/60. The main problem with this station is the lack of

interaction which results from the slow storage tube graphics

terminal. An interactive graphical programming language is in

progress (in both a high-level and a low-level form). A simulator is

being written on the DEC-20 which will manage any specified tree of

resources (virtual) and use the DDMl for actual evaluation. A number

cf large application programs are being written for DDMl. Detailed

statistics will be taken during the execution of these programs to aid

in formal evaluation of the DDMl hardware. There is also a graphical

high-level language GPL [20] which has been defined (preliminary

form) and is currently being implemented in the form of an on-line

graphical programming environment and a language compiler.

Tne main points of departure of the "Utah" approach and that of

Dennis [26] is the use of a recursive hierarchy of physical

resources, the exploitation of physical locality to decrease message

frequency and increase the speed of VLSI implementations, dynamic

hierarchical resource allocation, the lack of specialized functional

modules to reduce the chip type count, and a slight difference in the

structure of the low-level schema. The architecture of DDMl differs

from that of Arvind and Gostelow [2] in that it does not try to

. . 90

chi eve concurrency at all possible levels (because of the locality

ssue) , the interconnection scheme is nuch sir.pler and no bus

cntention is possible, no special address space management needs to

e cone, allocated tasks may consist of many cells rather than just a

ingle operation, and tasks are allocated only when all of their

ecessary input operands are present.

The disadvantages of the system described ere:

- The current ASU design is not nicely extensible to allow
more storage capacity to just be "plugged in" et a PSE site.

- The fixed, harc-vire tree structure is not flexible and
results in certain PSE's in one subtree remaining idle when
another heavilv leaded subtree fcsclv needs more resources.

- There is currently net enough empirical data from test runs
on very large programs to accurately quantify the overhead
involved in decomposition.

- Failure cf a PSE will cause the entire subtree below the
failure to become unusable. In general, the issues of fault
tolerance nave not been properly attended to.

- Certain "perverse" SP-graph topologies can not easily be
allocated such that full pipelining can be supported. '

We have presented a rather detailed view of a non von Neumann

computing model. The biggest problems with this model lie in
overcoming the tremendous intellectual and commercial momentum of von

Neumann structures. The parts of the cult which seem most likely to

succeed are the highly functional programming style, the method by

which a multiplicity of tasks can be coordinated in a concurrent

environment, and the basic notion that local control is an important

property for a module of a large system. It is possible to build

these ideas into existent commercial systems which run on conventional

hardware structures. The weakest point of the work done to date is

the failure cf all researchers to find acceptable new mechanisms for

vcr. Neumann artifacts like data structures ant file systems. Given

time and some good ideas perhaps these problems can be solved. If

they can, the payoff is potentially enormous.

4. Conclusions '

53

We would like to acknowledge the help of fellow researchers Jack

5. Dennis, Arvind, Kim Gcstelov, Ian Watson, and Jean Claude Syre for

their comments, and corrections of this manuscript. If the manuscript

still contains some errors about their work, then it is solely the

fault of the authors. We also greatly appreciate the efforts of our

incredible secretary, Kathy Burgi, who always seemed capable of any

request (no matter how unreasonable). Most importantly, we would like

to thank our sponsor, Burroughs Corporation, whose support allows us

to continue our work.

5. Acknowledgments

94

1. D. A. Adams. A computation model with data flow sequencing.
Tech. Rept. CS117, Stanford University, Computer Science Dept., 1968.
2. Arvina, K. P. C-ostelow. A computer capable of exchanging
processors for time. Information Processing 77, AFIPS, 1977, pp. 849
- C r ‘r . -
3. A. L. Davis. The Architecture of DDMl: A Recursively Structured
Data-Driven Machine. Tech. Rept. UUCS-77-113, University of Utah,
Computer Science Dept., 1977.
4. A. L. Davis. Data-Driven Nets: A Maximally Concurrent,
Procedural, Parallel Process Representation for Distributed Control
Systems. Tech. Rept. UUCS-78-108, University of Utah, Computer
Science Dept., 1978.
5. A. L. Davis. SPL - A structured programming language. Ph.D. Ih.,
University of Utah, 1972.
6. R. M. Keller, G. E. Lindstrom, S. S. Patil. An architecture for a
loosely coupled parallel processor. Tech. Rept. UUCS-78-105, Univ. of
Utah, Computer Science Dept., 1978.
7. J . Backus. "Can programming be liberated from the von Neumann
stvle? A functional stvle and its algebra cf programs." CACM 21, 8
(1978), 613-641. ' "
8. A. Eahrs. Programming language semantics and closed applicative
languages. Proc. of the ACM Symposium on Principles of Programming
languages, ACM,' 1972, pp. 71-86.
9. K. J. Berkling. Reduction Languages for Reduction Machines.
Proc. 2nd Annual Symposium on Computer Architecture, IEEE, 1975, pp.
133-140.
10. Per Brinch Hansen. Operating Systems Principles. Prentice-Hall,
Englewood Cliffs, New Jersey, 1973.
11. C. A. Petri. Fundamentals of a theory of asynchronous
information flow. Information Processing 62, IFIPS, 1962, pp.
386-391.
12. D.D. Chamberlin. A Parallel Implementation of a Single
Assignment Language. Pn.D. Tn.,Stanford University, 1971.
13. J. B. Dennis. First version of a data flow procedure language.
Lecture Notes in Computer Science, SPRINGER-VERLAG, 1974, pp. 362-376.
14. P. J. Drcngowski. Application of Hardware Description Languages
to Microprogramming: Method, Practice amd Limitations. MICRO-12
Proceedings, ACM and IEEE Computer Society, Hershey, Pennsylvania,
: CTO n;c._pn -
— 1 s f J-' • .— w' 1 ' W •

15. G. Durrieu. Extension of the LAU System: global specification of
synchronizations in a data driven language. 1st European Conference
on Parallel & Distributed Processing, AFCET, CNRS and IEEE,
February, 1979, pp. 149 - 155.
16. T. Agerwala, M. Flynn. Comments on capabilities, limitations,
and correctness of Petri Nets. Proc. First Annual Symposium on
Computer Architecture, IEEE, 1973, pp. 81-86.

REFERENCES

95

17. D. P. Friedman, D. S. Wise. "The impact of applicative
programming on multiprocessing." IEEE TC C-27, 4 (1978), 289-296.
18. V. M. Glushkov, et al. Recursive Machines and Computing
Technology. Inforriation Processing 74, IFIPS, 1974, pp. 65-70.
IS. K. Gostelow and R. Thomas. Performance of a Dataflow Computer.
To appear in IEEE Transactions on Computers
20. A. L. Davis, K. Boekelheide. GPL - a Graphical Programming
Language. Preliminary manuscript
21. J. Gurd, I. Watson, and J. Glauert. A Multilayered Data Flow
Architecture. Dept, of Computer Science, University of Manchester,
July, 1978.
22. M. Hack. Petri net languages. Tech. Rept. 161, MIT Laboratory
for Computer Science, 1976.
23. A. Holt, F. Commoner. Events and Conditions. Record of the
Project MAC conference on concurrent systems and parallel computation,
MIT Project MAC, 1970, pp. 3-52.
24. Arvind, K. P. Gostelow, W. Plouffe. The Id Report: An
Asynchronous Programming Language and Computing Machine. Tech. Rept.
11.4A, Univ. Calif. Irvine Comp. Sci. Dept., 1978.
21. J. S. Dennis. Programming generality, parallelism, and computer
architecture. Proceedings IFIPS Congress, IFIPS, 1959, pp. 484-492.
25. J. B. Dennis, D. P. Misunas. A preliminary architecture for a
basic data-flow processor. Proc. of the 2nd Annual Symposium on
Computer Architecture, ACM, IEEE, 1974, pp. 126-132.
27. J. D. Rodriguez. A Graph Model for Parallel Computation. Tech.
Rept. TR-64, MIT Project MAC, 1969. ' .
28. R. M. Karp, R. E. Miller. "Parallel program schemata." Journal
cf Computing and System Sciences 3, 2 (1969), 147-195.
29. D. Comte, N. Hifdi. LAU Multiprocessor: Microfunctional
Description and Technological Choices. First European Conference on
Parallel and Distributed Processing, IFIPS, AFCET, CNRS, 1979, pp.
8-15.
30. D. Comte, G. Durrieu, 0. Geliy, A. Plas, J. C. Syre. Etude at
specifications d'une architecture de calculateurs a controlle
decentralise exploitant le concept d'assignation unique. Centre
d'Etude et de Recherch.es de Toulouse, Department d'etude at de
recherch.es en INFORMATIQUE, October, 1976.
31. E. A. Ashcroft, W. W. Wadge. "Lucid, a nonprocedural language
with iteration." CACM 20, 7 (1977), 519-526.
32. G. A. Mago. "A Network of Microprocessors to Execute Reduction
Languages, Part I." International Journal of Computer end Information
Sciences _8, 5 (March 1979 revised) , 349-385T-
33. J. B. Dennis, D. P. Misunas. A computer architecture for highly
parallel signal processing. Proceedings of the ACM National
Conference, ACM, 1974, pp. 402 - 409.
34. J. B. Dennis, D. P. Misunas, and C. K. Leung. A Highly Parallel
Processor Using a Data Flow Machine Language. MIT LCS, January, 1977.

’ 96

35. J. L. Peterson. "Petri Nets.” Computing Surveys 9, 3 (1977),
223-252. "
36. C. A. Petri. General Net Tneory. Conference on Petri Nets and
Related Methods, MIT Project MAC, 1975, pp. 26-41.
37. T. E. Rudy. Megaflops from Multiprocessors. Proceedings of the
Second Rocky Mountain Symposium on Microprocessors, Colorado State
University, 1978, pp. 99-107.
38. D. Scott. "Data tvpes as lattices." SIAM J. Comput. 5, 3
(September 1976), 522-587. ‘
39. J. A. Stanek. Exploration of Concurrent Digital Sound Synthesis
on a Prototype Data-Driven Machine. Master Tn., University of Utah,
September 1979.
40. L.G. Tesler and H.G. Enea. A Language Design for Parallel
Processes. Proceedings of the 1968 SJCC, AFIPS, 1968, pp. 403-408.
41. K. P. C-ostelow and R. E. Thomas. Performance of a Dataflow
Computer, preprint
42. W. B. Ackerman, J. B. Dennis. VAL - A Value-Oriented Algorithmic
Language Preliminary Reference Manual. Tech. Rept. LCS/TR-218, MIT,
'--w-̂ c: i. : u ,
4 3. S. Weng. Stream-Oriented Computation in Recursive Data-Flow
Schemas. Tech" Rept. MIT/LCS/TM-68, MIT LCS, 1975.

