56 research outputs found

    Function-as-a-Service Performance Evaluation: A Multivocal Literature Review

    Get PDF
    Function-as-a-Service (FaaS) is one form of the serverless cloud computing paradigm and is defined through FaaS platforms (e.g., AWS Lambda) executing event-triggered code snippets (i.e., functions). Many studies that empirically evaluate the performance of such FaaS platforms have started to appear but we are currently lacking a comprehensive understanding of the overall domain. To address this gap, we conducted a multivocal literature review (MLR) covering 112 studies from academic (51) and grey (61) literature. We find that existing work mainly studies the AWS Lambda platform and focuses on micro-benchmarks using simple functions to measure CPU speed and FaaS platform overhead (i.e., container cold starts). Further, we discover a mismatch between academic and industrial sources on tested platform configurations, find that function triggers remain insufficiently studied, and identify HTTP API gateways and cloud storages as the most used external service integrations. Following existing guidelines on experimentation in cloud systems, we discover many flaws threatening the reproducibility of experiments presented in the surveyed studies. We conclude with a discussion of gaps in literature and highlight methodological suggestions that may serve to improve future FaaS performance evaluation studies.Comment: improvements including postprint update

    Performance Evaluation of Serverless Applications and Infrastructures

    Get PDF
    Context. Cloud computing has become the de facto standard for deploying modern web-based software systems, which makes its performance crucial to the efficient functioning of many applications. However, the unabated growth of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of new serverless services, such as Function-as-a-Service (FaaS), has led to an unprecedented diversity of cloud services with different performance characteristics. Measuring these characteristics is difficult in dynamic cloud environments due to performance variability in large-scale distributed systems with limited observability.Objective. This thesis aims to enable reproducible performance evaluation of serverless applications and their underlying cloud infrastructure.Method. A combination of literature review and empirical research established a consolidated view on serverless applications and their performance. New solutions were developed through engineering research and used to conduct performance benchmarking field experiments in cloud environments.Findings. The review of 112 FaaS performance studies from academic and industrial sources found a strong focus on a single cloud platform using artificial micro-benchmarks and discovered that most studies do not follow reproducibility principles on cloud experimentation. Characterizing 89 serverless applications revealed that they are most commonly used for short-running tasks with low data volume and bursty workloads. A novel trace-based serverless application benchmark shows that external service calls often dominate the median end-to-end latency and cause long tail latency. The latency breakdown analysis further identifies performance challenges of serverless applications, such as long delays through asynchronous function triggers, substantial runtime initialization for coldstarts, increased performance variability under bursty workloads, and heavily provider-dependent performance characteristics. The evaluation of different cloud benchmarking methodologies has shown that only selected micro-benchmarks are suitable for estimating application performance, performance variability depends on the resource type, and batch testing on the same instance with repetitions should be used for reliable performance testing.Conclusions. The insights of this thesis can guide practitioners in building performance-optimized serverless applications and researchers in reproducibly evaluating cloud performance using suitable execution methodologies and different benchmark types

    FaaSdom: A Benchmark Suite for Serverless Computing

    Full text link
    Serverless computing has become a major trend among cloud providers. With serverless computing, developers fully delegate the task of managing the servers, dynamically allocating the required resources, as well as handling availability and fault-tolerance matters to the cloud provider. In doing so, developers can solely focus on the application logic of their software, which is then deployed and completely managed in the cloud. Despite its increasing popularity, not much is known regarding the actual system performance achievable on the currently available serverless platforms. Specifically, it is cumbersome to benchmark such systems in a language- or runtime-independent manner. Instead, one must resort to a full application deployment, to later take informed decisions on the most convenient solution along several dimensions, including performance and economic costs. FaaSdom is a modular architecture and proof-of-concept implementation of a benchmark suite for serverless computing platforms. It currently supports the current mainstream serverless cloud providers (i.e., AWS, Azure, Google, IBM), a large set of benchmark tests and a variety of implementation languages. The suite fully automatizes the deployment, execution and clean-up of such tests, providing insights (including historical) on the performance observed by serverless applications. FaaSdom also integrates a model to estimate budget costs for deployments across the supported providers. FaaSdom is open-source and available at https://github.com/bschitter/benchmark-suite-serverless-computing.Comment: ACM DEBS'2

    Towards Measuring and Understanding Performance in Infrastructure- and Function-as-a-Service Clouds

    Get PDF
    Context. Cloud computing has become the de facto standard for deploying modern software systems, which makes its performance crucial to the efficient functioning of many applications. However, the unabated growth of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of new services, such as Function-as-a-Service (FaaS), has led to an unprecedented diversity of cloud services with different performance characteristics.Objective. The goal of this licentiate thesis is to measure and understand performance in IaaS and FaaS clouds. My PhD thesis will extend and leverage this understanding to propose solutions for building performance-optimized FaaS cloud applications.Method.\ua0To achieve this goal, quantitative and qualitative research methods are used, including experimental research, artifact analysis, and literature review.Findings.\ua0The thesis proposes a cloud benchmarking methodology to estimate application performance in IaaS clouds, characterizes typical FaaS applications, identifies gaps in literature on FaaS performance evaluations, and examines the reproducibility of reported FaaS performance experiments. The evaluation of the benchmarking methodology yielded promising results for benchmark-based application performance estimation under selected conditions. Characterizing 89 FaaS applications revealed that they are most commonly used for short-running tasks with low data volume and bursty workloads. The review of 112 FaaS performance studies from academic and industrial sources found a strong focus on a single cloud platform using artificial micro-benchmarks and discovered that the majority of studies do not follow reproducibility principles on cloud experimentation.Future Work. Future work will propose a suite of application performance benchmarks for FaaS, which is instrumental for evaluating candidate solutions towards building performance-optimized FaaS applications

    AccTEE: A WebAssembly-based Two-way Sandbox for Trusted Resource Accounting

    Get PDF
    Remote computation has numerous use cases such as cloud computing, client-side web applications or volunteer computing. Typically, these computations are executed inside a sandboxed environment for two reasons: first, to isolate the execution in order to protect the host environment from unauthorised access, and second to control and restrict resource usage. Often, there is mutual distrust between entities providing the code and the ones executing it, owing to concerns over three potential problems: (i) loss of control over code and data by the providing entity, (ii) uncertainty of the integrity of the execution environment for customers, and (iii) a missing mutually trusted accounting of resource usage. In this paper we present AccTEE, a two-way sandbox that offers remote computation with resource accounting trusted by consumers and providers. AccTEE leverages two recent technologies: hardware-protected trusted execution environments, and Web-Assembly, a novel platform independent byte-code format. We show how AccTEE uses automated code instrumentation for fine-grained resource accounting while maintaining confidentiality and integrity of code and data. Our evaluation of AccTEE in three scenarios – volunteer computing, serverless computing, and pay-by-computation for the web – shows a maximum accounting overhead of 10%

    Systems Support for Trusted Execution Environments

    Get PDF
    Cloud computing has become a default choice for data processing by both large corporations and individuals due to its economy of scale and ease of system management. However, the question of trust and trustoworthy computing inside the Cloud environments has been long neglected in practice and further exacerbated by the proliferation of AI and its use for processing of sensitive user data. Attempts to implement the mechanisms for trustworthy computing in the cloud have previously remained theoretical due to lack of hardware primitives in the commodity CPUs, while a combination of Secure Boot, TPMs, and virtualization has seen only limited adoption. The situation has changed in 2016, when Intel introduced the Software Guard Extensions (SGX) and its enclaves to the x86 ISA CPUs: for the first time, it became possible to build trustworthy applications relying on a commonly available technology. However, Intel SGX posed challenges to the practitioners who discovered the limitations of this technology, from the limited support of legacy applications and integration of SGX enclaves into the existing system, to the performance bottlenecks on communication, startup, and memory utilization. In this thesis, our goal is enable trustworthy computing in the cloud by relying on the imperfect SGX promitives. To this end, we develop and evaluate solutions to issues stemming from limited systems support of Intel SGX: we investigate the mechanisms for runtime support of POSIX applications with SCONE, an efficient SGX runtime library developed with performance limitations of SGX in mind. We further develop this topic with FFQ, which is a concurrent queue for SCONE's asynchronous system call interface. ShieldBox is our study of interplay of kernel bypass and trusted execution technologies for NFV, which also tackles the problem of low-latency clocks inside enclave. The two last systems, Clemmys and T-Lease are built on a more recent SGXv2 ISA extension. In Clemmys, SGXv2 allows us to significantly reduce the startup time of SGX-enabled functions inside a Function-as-a-Service platform. Finally, in T-Lease we solve the problem of trusted time by introducing a trusted lease primitive for distributed systems. We perform evaluation of all of these systems and prove that they can be practically utilized in existing systems with minimal overhead, and can be combined with both legacy systems and other SGX-based solutions. In the course of the thesis, we enable trusted computing for individual applications, high-performance network functions, and distributed computing framework, making a <vision of trusted cloud computing a reality

    Using Unused: Non-Invasive Dynamic FaaS Infrastructure with HPC-Whisk

    Full text link
    Modern HPC workload managers and their careful tuning contribute to the high utilization of HPC clusters. However, due to inevitable uncertainty it is impossible to completely avoid node idleness. Although such idle slots are usually too short for any HPC job, they are too long to ignore them. Function-as-a-Service (FaaS) paradigm promisingly fills this gap, and can be a good match, as typical FaaS functions last seconds, not hours. Here we show how to build a FaaS infrastructure on idle nodes in an HPC cluster in such a way that it does not affect the performance of the HPC jobs significantly. We dynamically adapt to a changing set of idle physical machines, by integrating open-source software Slurm and OpenWhisk. We designed and implemented a prototype solution that allowed us to cover up to 90\% of the idle time slots on a 50k-core cluster that runs production workloads

    Latency and resource consumption analysis for serverless edge analytics

    Get PDF
    The serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages for the deployment of data analytics solutions in IoT environments, such as agile and on-demand resource provisioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine-grained cost model. Nonetheless, in case of applications with strict latency requirements, the cold start problem in FaaS platforms can represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance pre-warming and instance reusing mechanisms, are usually not well adapted to different application profiles and, in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre-warming and instance reusing on both, application latency (response time) and resource consumption, for a typical data analytics use case (a machine learning application for image classification) with different input data patterns. Furthermore, we propose to extend the classical centralized cloud-based serverless FaaS platform to a two-tier distributed edge-cloud platform to bring the platform closer to the data source and reduce network latencies
    • 

    corecore