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∼100% of benchmarks are wrong.

The energy needed to refute benchmarks is orders of magnitude
bigger than to run them (so, no one does)

– Brendan Gregg, Senior Performance Architect
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Abstract
Context Cloud computing has become the de facto standard for deploying
modern web-based software systems, which makes its performance crucial to
the efficient functioning of many applications. However, the unabated growth
of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the
emergence of new serverless services, such as Function-as-a-Service (FaaS), has
led to an unprecedented diversity of cloud services with different performance
characteristics. Measuring these characteristics is difficult in dynamic cloud
environments due to performance variability in large-scale distributed systems
with limited observability.

Objective This thesis aims to enable reproducible performance evaluation
of serverless applications and their underlying cloud infrastructure.

Method A combination of literature review and empirical research established
a consolidated view on serverless applications and their performance. New
solutions were developed through engineering research and used to conduct
performance benchmarking field experiments in cloud environments.

Findings The review of 112 FaaS performance studies from academic and
industrial sources found a strong focus on a single cloud platform using artificial
micro-benchmarks and discovered that most studies do not follow reproducibility
principles on cloud experimentation. Characterizing 89 serverless applications
revealed that they are most commonly used for short-running tasks with low
data volume and bursty workloads. A novel trace-based serverless application
benchmark shows that external service calls often dominate the median end-
to-end latency and cause long tail latency. The latency breakdown analysis
further identifies performance challenges of serverless applications, such as long
delays through asynchronous function triggers, substantial runtime initialization
for coldstarts, increased performance variability under bursty workloads, and
heavily provider-dependent performance characteristics. The evaluation of
different cloud benchmarking methodologies has shown that only selected micro-
benchmarks are suitable for estimating application performance, performance
variability depends on the resource type, and batch testing on the same instance
with repetitions should be used for reliable performance testing.

Conclusions The insights of this thesis can guide practitioners in building
performance-optimized serverless applications and researchers in reproducibly
evaluating cloud performance using suitable execution methodologies and
different benchmark types.
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Chapter 1

Synopsis

Cloud computing [1, 2] has transformed the delivery of modern software sys-
tems. The established cloud computing paradigm Infrastructure-as-a-Service
(IaaS) grows unabatedly [3–5] and the emerging paradigm Serverless computing
experiences rapid adoption [6–10]. IaaS can be seen as the core of cloud environ-
ments offering low-level computing resources (e.g., CPU processing time or disk
space) as self-service, prevalently in the form of virtual machines (VMs). As
cloud computing evolves towards higher-level abstractions such as the serverless
paradigm, it aims to liberate users entirely from operational concerns, such as
managing or scaling server infrastructure. Function-as-a-Service (FaaS) is one
embodiment of serverless and offers a high-level fully-managed service with
fine-grained billing to execute event-triggered code snippets (i.e., functions).

The continuing growth of the cloud computing market has led to an un-
precedented diversity of cloud services offered in many different configurations
with varying performance characteristics. Hence, selecting an appropriate
cloud service with an optimal configuration for application performance and
cost-efficiency is a non-trivial challenge.

Performance evaluation is a field of research that systematically measures
characteristics such as latency or throughput to build an understanding of
performance in a given environment. Serverless performance evaluation is a
young but very active area of research that lacks a consolidated understanding
and application-level performance insights. In contrast, performance evaluation
in IaaS clouds is an established area of research but requires new methods for
reproducible experimentation and for understanding the relationship between
different types of performance benchmarks (i.e., performance tests). Therefore,
this thesis formulates the following goal:

Goal

My PhD thesis aims to enable reproducible performance evaluation
of serverless applications and their underlying cloud infrastructure.

To achieve this goal, this thesis performs empirical research on serverless
applications and performance, contributes novel approaches and benchmarks
for serverless and their underlying cloud infrastructure, and conducts field
experiments in real cloud environments.

1
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The remainder of this chapter is organized as follows. Section 1.1 introduces
relevant background on cloud computing and the foundations of performance
evaluation. Section 1.2 summarizes related work in the fields of FaaS and
IaaS performance evaluation. Section 1.3 describes challenges that motivate
the high-level research questions in Section 1.4. Section 1.5 summarizes the
research methodology used to address the research questions. The contributions
of the individual papers are summarized and linked to the research questions
in Section 1.6. The research questions are then answered in Section 1.7 and
discussed in a larger context in Section 1.8. Section 1.9 outlines future research
directions and Section 1.10 concludes this thesis.

1.1 Background

This section defines cloud computing, serverless computing, and Function-
as-a-Service (FaaS). It further introduces the foundations of performance
evaluation, distinguishes between micro- and application-level benchmarks,
describes distributed tracing, and discusses reproducibility in science.

1.1.1 Cloud Computing

Cloud computing [2, 11–14] is most commonly defined as:

a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort
or service provider interaction.

—The NIST Definition [1]

Cloud computing continues to evolve, moving from low-level generalist
services towards more specialized high-level services. Early Infrastructure-as-a-
Service (IaaS) clouds offer a low-level abstraction of computing resources. These
resources are most commonly provided in the form of self-administered virtual
machines (VMs) where users have near full control of the software stack [15].
Cloud VMs are offered in many different sizes (also called instance types) with
different performance and cost characteristics. A prominent example of an
IaaS compute service is the Amazon Elastic Compute Cloud (EC2), which
was initially introduced by the cloud provider Amazon Web Services (AWS) in
2006 [16].

As cloud computing matures, new services push towards more fine-grained
deployment units of increasingly specialized services as depicted in Figure 1.1.
VMs virtualized the hardware of bare metal machines, containers provide
virtualization on top of a shared operating system, and Function-as-a-Service
(FaaS) offers prepackaged runtimes for high-level application development. FaaS
deployment units are small code functions written in high-level programming
languages such as JavaScript or Python. Hence, FaaS allows developers to
focus on business logic while abstracting away operational concerns, such as
autoscaling VMs.
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Figure 1.1: Progression of deployment options (adapted from [17–20]).

1.1.2 Serverless Computing and Function-as-a-Service
Despite several popular definitions for serverless computing and Function-as-
a-Service (FaaS) [19, 21–25], both terms are often used inconsistently and
sometimes even with contradicting interpretations [19]. The term serverless
(i.e., without managing servers) can be considered confusing because serverless
platforms are technically built on servers but they are managed by a cloud
provider rather than a cloud user. Nevertheless, the term serverless is widely
adopted by academics and practitioners [22, 23]. This thesis adopts an inter-
pretation based on an accessible introduction to serverless computing [21], the
vision on FaaS and serverless architectures from the SPEC Cloud research
group [24], and a definition based on broad discussions in a Dagstuhl seminar
on serverless computing [25].

Serverless computing is a cloud computing paradigm that aims to
liberate users entirely from operational concerns, such as managing
or scaling server infrastructure, by offering a fully-managed high-
level service with fine-grained billing.

Function-as-a-Service (FaaS) is one embodiment of serverless com-
puting and is defined through FaaS platforms (e.g., AWS Lambda)
executing event-triggered code snippets (i.e., functions).

Figure 1.2 visualizes the relationship between serverless and FaaS and lists
example FaaS platforms1. This thesis focuses on serverless applications using
FaaS and does not explicitly cover serverless or event-driven computing without
FaaS. For example, the performance of serverless storage (e.g., Amazon S3)
can be relevant as part of serverless applications using FaaS and external
services [26] but is not considered in isolation [27]. Paper α is framed as
FaaS from that perspective, while the subsequent Papers β to ε are framed

1https://landscape.cncf.io/format=serverless

https://landscape.cncf.io/format=serverless
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Figure 1.2: Relationship between serverless and FaaS (adapted from [19]).

as serverless to emphasize the tight integration with external services of FaaS.
Practitioners [22, 23] define serverless as a combination of FaaS and Backend-
as-a-Service (BaaS). BaaS refers to managed services such as Amazon S3 and is
also dubbed external services from a FaaS perspective. In practice, the terms
FaaS and serverless are often used interchangeably and therefore this thesis
uses serverless functions to distinguish FaaS (e.g., AWS Lambda) from BaaS
(e.g., Amazon S3).

1.1.3 Performance Evaluation

Performance evaluation, also known as performance benchmarking or perfor-
mance testing, is the process of systematically evaluating performance features
(e.g., latency or throughput [28]) of computing resources (e.g., CPU, memory)
and applications (e.g., Web serving, scientific computing).

The fundamental performance testing terminology includes the following
components: system under test, workload, benchmark, and benchmark suite.
A system under test (SUT) refers to environments or components that are
evaluated according to clearly defined metrics, such as response time. In the
context of this thesis, the SUT is typically either a cloud environment (i.e., IaaS
or FaaS) or an application within a cloud environment. A workload refers to
the stimulation that is applied to a SUT to observe a certain effect (e.g., change
in performance). This thesis distinguishes between synthetic workloads for
micro-benchmarks and realistic workloads for application-benchmarks, which
intend to imitate real-world scenarios. A benchmark tests performance in a
controlled setup by applying a workload to a SUT. A benchmark suite groups a
set of related benchmarks and defines an execution methodology for combined
execution.

Concrete performance features [28], metrics [29], and evaluation methods [30,
31] are cataloged in related work and described within the thesis where relevant.
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1.1.4 Micro- and Application-Benchmarks

Figure 1.3 compares two common types of benchmarks [32–34], namely micro-
and application-benchmarks. Micro-benchmarks target a narrow performance
aspect (e.g., floating-point CPU performance) with synthetic workloads. These
generic benchmarks are not bound to a certain domain (e.g., Web serving) but
can provide performance insights that are potentially transferable within certain
execution environments (e.g., VM instance type). Application-benchmarks, also
known as macro-benchmarks, aim to cover the overall performance of real-
world application scenarios. Typical metrics are end-to-end response time or
throughput. Their results are either specific to a certain application under a
given workload or a domain of related applications (e.g., Web serving or scientific
computing). Their resource usage profile might be complex and dynamic as they
are designed to solve a real-world task rather than testing a specific resource
in isolation. Application-benchmarks tend to be long-running, complex to
configure, and hard to explain due to their large scope [34]. Examples of both
benchmark types are described in Section ζ.3.3 for IaaS and in Section α.2 for
FaaS.

For synchronously invoked applications, the overall performance can be
measured as client-side response time. However, the end-to-end latency for
serverless applications is hard to measure due to asynchronous call boundaries
across external services. Therefore, distributed tracing is required for full
observability and will be discussed in the next section.

1.1.5 Distributed Tracing

Distributed tracing [35–38] aims to achieve end-to-end observability of a request
across distributed components. In 1994, Schwarz and Mattern [39] formally
introduced detection models for causual relationships in distributed systems
and tracing solutions started to emerge in the 2000s, for example Magpie [40] or
X-Trace [36]. Google popularized distributed tracing [41] with Dapper [37] and
many other companies adopted the practice as shown in an industry adoption
report [42].

Figure 1.4 visualizes an end-to-end backend trace for a synchronous applica-
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Figure 1.4: Simplified causal-time trace diagram of a synchronous invocation.

tion with a causal invocation chain starting from Service1 over Function1 into
Service2. The service receiving an incoming request (e.g., Service1 ) generates a
unique tracing token 1 for each request. This tracing token is then used to label
each timestamp captured at trace points of interest and needs to be passed 2
into every downstream service along the invocation chain. Two consecutive
trace points are grouped into a trace span if they encompass a specific operation
(e.g., computation) from the same component (e.g., Service2 ). A centralized
tracing service correlates spans of the same request from all components using
the tracing token to build a trace graph with causal relationships.

1.1.6 Reproducibility

“Repeatability and reproducibility are cornerstones of the scientific process” [43]
but often neglected in natural [44] and computer [43] science research. Repeata-
bility refers to the extent successive measurements with the same method under
the same conditions yield the same results [45]. A repeatability study [43] found
that more than half of 601 papers from top-rated ACM systems conferences
around 2012 lack functional code. Even after spending ample efforts to fix
build failures, repeatability was impossible for the results of at least half of
these papers. However, reproducibility could still be achieved as it refers to the
extent the same results can be achieved with the same method under changed
conditions of measurements [45].

Following these definitions, repeatability is practically impossible in public
cloud environments due to the lack of control over a multi-tenant environ-
ment (i.e., shared among many users) offered by a third-party cloud provider.
Therefore, this thesis focuses on technical reproducibility of cloud experimenta-
tion, which requires several aspects to ensure an experiment can be repeated
with the same methodology. A complete description is often unrealistic for
space-constrained research papers [46] or for blogposts that aim for a short
attention span. Therefore, technical artifacts should be published as an online
appendix in a usable form [47]. This might include source code, input data
(e.g., workloads), and technical descriptions. Access to the same infrastructure
is fundamentally given for public clouds but hampered due to their continuous
evolution and potentially high costs. Due to the fast evolution of modern com-
putational environments, Lin and Zhang [48] advocate for an understanding of
reproducibility as a process rather than as an achievement.
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1.2 Related Work
This section discusses related work on (i) serverless performance evaluation
and application characteristics, (ii) serverless application benchmarking and
distributed trace analysis, and (iii) IaaS performance evaluation and reliable
performance testing in cloud environments.

1.2.1 Serverless Performance Evaluation
Performance evaluation in serverless and FaaS has a 6-year history with first
studies [49, 50] appearing around 2016. The first reports followed the public
release of AWS Lambda in 20152, which is considered the first FaaS offer-
ing by a large public cloud provider. Systematic mapping studies [51, 52]
indicate that performance is the most popular research direction in the field
of serverless computing. However, current reports on FaaS performance are
disparate originating from different studies executed with different setups and
different experimental assumptions. The serverless community is lacking a
consolidated view on the state of research on FaaS performance. To the best
of my knowledge, there exists no unified view on FaaS performance apart from
a literature review reporting on preliminary results [53]. Kuhlenkamp and
Werner [53] proposed a methodology for a collaborative literature review on
FaaS performance evaluation and reported preliminary results from 10 academic
studies. Otherwise, the FaaS performance evaluation landscape has only been
discussed as part of limited related work sections in primary studies, most
thoroughly by Somu et al. [54] across 7 studies.

1.2.2 Serverless Application Characteristics
The most extensive curated collection of real-world serverless applications
lists 15 applications [55] and another collection of 13 applications summarizes
how serverless is used for four common use cases [21]. Cloud providers (e.g.,
AWS Serverless Application Repository3) and FaaS frameworks (e.g., Server-
less Framework4) publish their collections of serverless applications but these
examples typically serve rather as developer documentation than real-world
applications. Other studies addressed developer experience [56] and patterns
for serverless functions [57]. However, the characteristics of individual serverless
applications have not been systematically analyzed by prior work.

1.2.3 Serverless Application Benchmarks
Existing application-level benchmarks and empirical performance evaluations
focus on the overall response times of single-function applications. Serverless-
Bench [58] presents a diverse application benchmark with four multi-function ap-
plications but is limited to synchronous invocations and therefore doesn’t cover
typical serverless applications coordinated by asynchronous function triggers.
From a cloud providers perspective, vHive [59] and faas-profiler [60] evaluate
server-level overheads caused by CPU branch mispredictions or hypervisor load

2https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
3https://aws.amazon.com/serverless/serverlessrepo/
4https://github.com/serverless/examples

https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
https://aws.amazon.com/serverless/serverlessrepo/
https://github.com/serverless/examples
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times for coldstarts. From a developer’s perspective, FunctionBench [61] and
SeBS [62] offer diverse single-function applications and BeFaaS [63] presents
a single multi-function application. However, none of the existing applica-
tion performance studies supports diverse external services and asynchronous
function coordination, which are both core premises of event-based serverless
architectures.

1.2.4 Distributed Trace Analysis

Distributed tracing is common in microservice architectures but its practice
and analysis are big challenges across all software engineering [64–66]. A survey
among 106 practitioners working with microservices showed that distributed
tracing is among the top observability challenges mentioned by 45% of the
respondents [64]. A related interview study across ten companies identified
many challenges and raised intelligent trace analysis techniques as a new big
data problem for software engineering [65]. Bento et al. [66] outline challenges
and research directions for automated analysis of distributed traces. Current
production systems such as Canopy [67] from Facebook are primarily used
for ad hoc manual analysis [66, 67] but research proposed several techniques
for automated trace analysis. Schwarz and Mattern [39] introduce a formal
notation for causality and time and survey approaches for detecting causal
relationships in distributed systems. Pivot tracing [68] introduces an efficient
happened-before join operator to facilitate cross-component event correlation.
Hendriks et al. [69] present algorithms for critical path analysis and trace
graph comparison based on their generalized graph representation of execution
traces [70]. FIRM [71] combines critical path and critical component analysis
with machine learning models to identify and mitigate service level objective
(SLO) violations. Luo et al. [72] use graph clustering to characterize the call
graph dependency structure and performance of production microservice at
Alibaba.

Although tracing for serverless computing raises several new challenges, it
has received little attention. GammaRay [73] augments AWS X-Ray to track
casual ordering and Lowgo [74] proposes a tracing tool for multi-cloud serverless
applications. A comparison study of different serverless tracing tools investigates
how well they detect different types of faults [75] and Costradamus [76] uses
distributed tracing to estimate per-request costs. However, serverless tracing
is still emerging and trace analysis remains a largely manual process [77].
Provider-managed infrastructure limits access to fine-grained instrumentation
and developers need to rely on distributed tracing services offered by cloud
providers. This leads to observability gaps and typically requires implicit
tracing of downstream services due to missing tracing support. Further, the
event-based nature of serverless requires adaptations to traditional critical path
analysis for synchronous invocation patterns as performed in FIRM [71].

1.2.5 Infrastructure-as-a-Service Performance Evaluation

Performance evaluation in IaaS cloud environments has a 15-year history with
the first reports [78–80] appearing around 2007. The first reports followed the
beta release of Amazon EC2 in 2006 [16], which is considered to be the first
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Figure 1.5: Different execution methodologies for three alternatives A, B, C
(reproduced from [93]).

commercially available IaaS cloud provider. Since then, cloud performance eval-
uation has become a popular research area with hundreds of papers published on
topics such as benchmarking expectations [81, 82], performance metrics [28, 29],
benchmarking approaches [30, 31], performance benchmarks [83], performance
experiments [84–87], or hardware heterogeneity [88, 89]. Secondary studies
classified existing research [90] and experimentally validated hypotheses derived
by codifying primary studies [91]. Unfortunately, the rapid evolution of cloud
systems requires continuous re-evaluation [91] and new methods towards repro-
ducible experimentation in inherently unstable cloud environments [91, 92].

1.2.6 Cloud Benchmarking Execution Methodology

Existing measurement methodology often makes incorrect assumptions about
the underlying system under test when combining multiple performance bench-
marks. Abedi and Brecht [93] proposed a new execution methodology called
Randomized Multiple Interleaved Trials (RMIT). Figure 1.5 visualizes RMIT
with three alternatives, which could represent different benchmarks. Single-trial
and multiple consecutive trials (MCT) are currently the most common method-
ologies in practice but could lead to erroneous conclusions. Therefore, RMIT
should be used to account for potential periodic effects in cloud environments
beyond the control of experimenters. RMIT was evaluated through simulation
based on measurements of micro-benchmarks collected by other researchers [87].

Several IaaS cloud experiment automation frameworks have been pro-
posed [94–97] but only IBM’s Cloud Rapid Experimentation and Analysis
Toolkit (CBTOOL)5 described by Silva et al. [94] and Google’s PerfKitBench-
marker6 are still actively maintained. None of the existing frameworks provide
execution methodologies beyond serial trials. Hence, I am not aware of any
IaaS benchmark suite that systematically combines multiple benchmarks using
a state-of-the-art execution methodology.

5https://github.com/ibmcb/cbtool
6https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

https://github.com/ibmcb/cbtool
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
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1.2.7 Cloud Application Performance Prediction
Application performance prediction for optimizing cloud service selection is a
common area of research, especially in the context of cloud migration. Initial
prediction methods, such as CloudProphet [98], primarily focused on predicting
application performance in cloud environments when migrating an application
from an on-premise application, for example through trace-and-replay. As
cloud offerings started to become more diverse, holistic methods and tools for
cloud rightsizing [99, 100] have been proposed to support cloud migration and
optimal service selection. Optimization methods based on micro-benchmarking
were proposed and validated for scientific applications [101]. So far, these
methods are typically limited to few service types and applications from a
single domain. Further, training and validation of existing studies might be
negatively impacted by the lack of a state-of-the-art execution methodology.

Three of the most related studies were published shortly before and after
Paper ζ. Yadwadkar et al. [102] predict the performance of video-encoding and
Web serving applications with diverse resource profiles for 11 to 15 VM instance
types in two cloud providers using hybrid online and offline data collection and
modeling. Their profiling benchmarks are limited to cherry-picked workload
requirements, described in insufficient detail, and unavailable, neither as code
nor dataset. Wang et al. [103] use two micro-benchmarks to predict the
performance of seven programs from a CPU-intensive benchmark suite for three
different VM instance types across two cloud providers. Baughman et al. [104]
predict the performance of bioinformatic workflows for 14 VM instance types
by combining historical resource traces with online profiling. None of the three
studies use interleaved or randomized trials.

1.2.8 Performance Testing in Cloud Environments
Traditional performance testing is conducted as a laboratory experiment in
a contrived setting using self-managed bare metal hardware for maximum
precision of the measurements. Cloud environments have become attractive
testbeds for long-running test performances test suites due to their rapid
availability of seemingly unlimited computational resources. Further, with
cloud environments becoming the deployment target of many applications,
cloud-specific performance characteristics might only be observable in real cloud
environments. However, performance fluctuations (i.e., unstable or variable
performance) are common in cloud environments [87, 91, 92, 105–107] due to
virtualization [108], noisy neighbors [109], or hardware heterogeneity [88, 89].

Software microbenchmarks are a type of performance test where source
code at method-level is used as a workload and repeatedly executed to obtain
a performance distribution. A benchmarking harness such as JMH for Java
orchestrates the testing process and reports summary statistics such as average
execution time, throughput, or resource utilization. They are sometimes referred
to as unit tests for performance [110, 111] but are seldomly used in open source
projects according to Github mining studies [111, 112] due to challenges related
to automation [111] and implementation [112]. An empirical study of 123
open source Java microbenchmarks has shown that bad practices can severely
impact the outcome of these tests [113]. Chen and Shang [114] execute software
microbenchmarks in a cloud environment and found that most code changes
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lead to both performance improvements and performance regressions at the
same time. Hence, the unstable nature of cloud-based execution environments
for software microbenchmarks might affect their reliability.

1.3 Challenges

This section describes six challenges that motivate my research based on gaps
outlined in related work.

Challenge 1 (C1): No consolidated view on serverless performance
evaluation Previous research has indicated performance-related challenges
common to many FaaS platforms such as slow coldstarts, unpredictable perfor-
mance, or substantial platform overheads. So far, reports about performance-
related challenges in FaaS are disparate and originate from different studies
(see Section 1.2.1), executed with different setups and different experimental
assumptions. The serverless community is lacking a consolidated view on the
state of research on FaaS performance.

Challenge 2 (C2): No consolidated view on serverless application
characteristics Current reports about serverless applications regarding their
motivation, context, and implementation are scattered and sometimes conflict-
ing. Cloud developers seek guidance on questions such as why developers build
serverless applications, when are they well-suited, or how are they implemented.
However, there are currently no systematic studies about serverless applications
and their common characteristics (see Section 1.2.2).

Challenge 3 (C3): Insufficient application benchmarks Existing ap-
plication benchmarks are typically limited to single-function applications and
integrated with at most a single type of external service. Most importantly, no
prior work covers asynchronous applications although serverless architectures
are inherently event-driven, and most event-based function triggers behave
asynchronously. Hence, the serverless community lacks a realistic applica-
tion benchmark designed based on real-world application characteristics (see
Section 1.2.3).

Challenge 4 (C4): No fine-grained performance characterization of
common serverless applications Existing serverless performance studies
typically report the overall response time and derive insights through extensive
experimentation and sensitivity analysis of several factors. Such coarse-grained
results are hardly actionable and current approaches for distributed trace
analysis are primarily manual (see Section 1.2.4). Further, solely focusing on
synchronous response times ignores an important class of applications given
the asynchronous nature of many serverless applications. Therefore, serverless
studies should provide fine-grained insights into asynchronously coordinated
applications.
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Challenge 5 (C5): Unclear relationship between micro- and application-
level benchmarks Given the strong focus on micro-benchmarks in both
FaaS and IaaS, it remains unclear how relevant these artificial benchmarks are
to gaining insights into the performance of real-world applications. Despite
extensive research of IaaS cloud infrastructures (see Section 1.2.5), existing
work does not systematically combine different types of benchmarks using
state-of-the-art execution methodology (see Section 1.2.6) and approaches for
application performance prediction are limited in scope (see Section 1.2.7).
Therefore, a systematic study of different benchmark types is needed to evaluate
the usefulness of micro-benchmarks for application performance prediction.

Challenge 6 (C6): Unclear reliability of performance evaluation in
the cloud Multi-tenant cloud infrastructures are known to cause unstable
performance (see Section 1.2.8) and flawed measurement methodologies in
cloud environments could lead to erroneous conclusions (see Section 1.2.5).
However, it remains unclear to what extent different benchmarks are affected
by performance variability, and how reliable software performance tests can be
in unstable cloud environments.

1.4 Research Questions

To address the goal of this PhD thesis, I formulate the following high-level
research questions (RQs) motivated by the six challenges raised in the previous
section:

RQ1 What is the current state of serverless applications and their perfor-
mance?

Serverless computing is a very active field of research but lacks a con-
solidated view on performance evaluation (C1) and application charac-
teristics (C2). To address this gap, RQ1 aims to systematically map
the landscape of existing work on serverless performance evaluation and
identify common characteristics of serverless applications from diverse
sources.

RQ2 What are the performance challenges of serverless applications?

Studies on serverless performance evaluation focus on artificial micro-
benchmarks and realistic applications remain insufficiently studied (C3).
To address this gap, RQ2 aims to propose a novel application bench-
mark constructed based on insights from RQ1 and subsequently conduct
benchmarking experiments to identify performance challenges in realistic
serverless applications through fine-grained trace analysis (C4).

RQ3 How can limitations of benchmarking cloud infrastructure be addressed?

The underlying cloud infrastructure of serverless platforms can affect
the validity of performance measurements. Such limitations of cloud
benchmarking can hamper the usefulness of benchmarks in predicting
application performance and compromise the reliability in detecting per-
formance regressions. Therefore, RQ3 targets IaaS clouds to clarify
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Table 1.1: Mapping of research methodologies to research questions.

Research Methodology Section RQ

Literature Review 1.5.1 RQ1
Sample Study 1.5.2 RQ1
Engineering Research 1.5.3 RQ2+RQ3
Field Experiment 1.5.4 RQ2+RQ3

the relationship between micro- and application-benchmarks (C5) and
quantify the performance variability and reliability in cloud benchmark-
ing (C6).

1.5 Research Methodology

This section summarizes the research methodology used to answer the research
questions of this thesis. The terminology is based on the framework “ABC of
Software Engineering Research” [115] for knowledge-seeking primary studies
and complemented with the “ACM SIGSOFT Empirical Standards” [116] and
established research guidelines for solution-seeking [117] and secondary research
studies [118, 119].

Table 1.1 summarizes the mapping of research methodologies (this section)
to the research questions of this thesis (Section 1.4). For RQ1, a literature
review and sample study were selected to address the lack of a consolidated view
on FaaS performance evaluation and serverless application characteristics. The
literature review on FaaS performance evaluation was suitable because many
individual studies existed but a systematic topic mapping and synthesis of evi-
dence were missing. The sample study on serverless application characteristics
was suitable because no systematic collection of applications was available and
the goal was to study the serverless applications (i.e., primary research) and
not the contributions of existing studies (i.e., secondary research). The results
of these knowledge-seeking research methodologies identify relevant gaps in the
literature and practical problems to be addressed in subsequent solution-seeking
research. Therefore, RQ2 and RQ3 adopt engineering research to propose novel
approaches, tools, and algorithms (i.e., solution-seeking research) and use field
experimentation to evaluate the proposed solutions.

1.5.1 Literature Review

A systematic literature review is a type of secondary research study that
maps topics and synthesis evidence from original primary studies in a defined
field of research. Figure 1.6 summarizes the taxonomy of systematic secondary
studies by clarifying the types of analyses and sources under study. A multivocal
literature review (MLR) [119] combines topic mapping and synthesis of evidence
(i.e., aggregation of insights) for academic and grey literature. Non-peer-
reviewed grey literature includes sources such as white papers, presentations, or
blog posts. Including grey literature about FaaS performance was relevant given
the strong industrial interest and the goal to identify potential mismatches
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Figure 1.6: Taxonomy of systematic secondary studies (adapted from [119]).
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Figure 1.7: Multivocal literature review process summary.

between the academic and industrial perspectives. The mapping of FaaS
experiment designs helps to identify research gaps and aggregated insights on
reproducibility challenges can guide future studies.

Figure 1.7 summarizes the MLR process of Paper α, which identified 112
relevant primary studies from academic (51) and grey (41) literature. Peer-
reviewed papers (e.g., papers published in journals, conferences, and workshops)
are classified as academic literature (i.e., white literature) and other studies
(e.g., preprints of unpublished papers, student theses, blog posts) as grey
literature. The search process and source selection for academic literature
follow a conventional systematic literature review (SLR) process [118]. It was
guided through an initial seed of studies [120] discovered through manual
search [121] and refined through complementary search strategies, such as
alert-based search. The search and selection process for grey literature is based
on guidelines for including grey literature [119].
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Figure 1.8: Sample study process.

1.5.2 Sample Study

A sample study is conducted in a neutral setting (i.e., desk research) and
involves a purely observational analysis of artifacts such as documentation
or source code [115]. This research strategy was suitable for characterizing
serverless applications in Paper β to achieve high generalizability of findings
by including applications from a broad range of different sources. A follow-up
meta-analysis across related primary studies improves the generalizability of
the findings even further. The direct analysis of documentation and source
code related to subject applications qualifies as primary research. The inclusion
of academic literature in the broad data collection might initially hint towards
secondary research but the goal was to study serverless applications and not
the contributions of primary studies. A sample study is inherently limited to
the data available because data collection is not interactive (i.e., “data comes
as is” [115]). Therefore, 6 characteristics were excluded due to insufficient
information available.

Figure 1.8 summarizes the process of analyzing 89 serverless applications
from four different sources. First, descriptions of 89 serverless applications E
were collected from open-source projects A , academic literature B , industrial
literature C , and a scientific computing organization D . Second, two randomly
assigned reviewers out of seven available reviewers characterized each applica-
tion along 22 characteristics in a structured collaborative review sheet. The
characteristics and potential values were defined a priori by the authors and
iteratively refined, extended, and generalized during the review process. After
an initial moderate inter-rater agreement [122], a discussion and consolidation
phase resolved all differences between the two reviewers with consultation
among all authors if necessary. The six scientific applications were not publicly
available and therefore characterized by a single domain expert, who is either
involved in the development of the applications or in direct contact with the
development team.

The sampling strategy of serverless applications is important to achieve
a varied sample from different sources, although the characterization is the
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Figure 1.9: Research process of engineering research and field experiment.

primary goal of this study (i.e., following a positivist and reductionist philo-
sophical stance [123]). Following the terminology and guidelines by Baltes and
Ralph [124], this study applied different kinds of purposive sampling for the 83
publicly available serverless applications and convenience sampling for the six
internal scientific computing applications analyzed by an author employed at
the German Aerospace Center. Heterogeneity sampling motivated a roughly
balanced selection of open source projects, academic literature (including scien-
tific computing), and industrial literature. Search-based sampling was applied
for open source projects through an initial keyword search of the offline GitHub
mirror GHTorrent [125] and refined through filtering based on date range,
repository activity, repository popularity, and manual selection following inclu-
sion and exclusion criteria. Search-based sampling was applied for academic
literature mainly based upon manual selection from the “Serverless Literature
Dataset” [126]. Collaborative referral-chain sampling was the main source for
grey literature seeded by case studies reported by cloud providers, an existing
survey article [21], blog posts, discussion forums, and podcasts known to the
authors.

1.5.3 Engineering Research

Engineering research is a type of solution-seeking research that invents and
evaluates technical artifacts [115, 116] to solve a practical problem previ-
ously identified through knowledge-seeking research [117]. This thesis uses
benchmarking studies (i.e., a specific type of field experiment) to evaluate the
proposed solutions, which is a common combination according to the “ACM
SIGSOFT Empirical Standards” [116, 127]. Figure 1.9 visualizes this common
research process used in Papers γ to η. First 1 , benchmark design involves
developing workloads and measurement tools, typically in the form of a kit-
based benchmark suite [128]. This process is guided by literature on benchmark
construction [33, 127–129], cloud benchmarking [31, 81, 130], and existing
benchmarks (see literature review in Paper α). It often includes a combination
of configuring, porting, and implementing several performance benchmarks
into a new benchmark suite. The artifact descriptions in Papers γ to η cover
relevant aspects such design principles, architecture overview, measurement
methodology, algorithms, applications, fairness design, and configurability. Im-
plementations of key aspects are covered by unit and integration test suites. All
artifacts are available as open source software and accompanied by extensive
documentation.
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A benchmarking field experiment uses the proposed solutions through en-
gineering research (i.e., benchmark suite). Second 2 , benchmark execution
involves defining experiment plans, scheduling executions, and monitoring
potentially multi-week experiments in public cloud environments. Benchmark
execution generates large amounts of raw performance data (e.g., >70GB in
Paper γ). Third 3 , data pre-processing prepares the raw data for analysis
through filtering (e.g., skip irrelevant executions), validation (e.g., skip erro-
neous executions), re-shaping (e.g., transpose or rename), and refinement (e.g.,
convert units). Fourth 4 , data analysis calculates summary statistics, applies
statistical models, and visualizes performance distributions to answer specific
research questions.

1.5.4 Field Experiment

According to the ABC of Software Engineering by Stol and Fitzgerald [115],
a field experiment is a research strategy conducted in a natural setting (e.g.,
in a real public cloud environment) where the researcher manipulates some
variables (e.g., instance type, benchmark configurations) to observe some ef-
fect (e.g., performance metrics). Public cloud environments are massive-scale
multi-tenant systems and their emergent performance properties cannot be
replicated in a fully contrived setting as a laboratory experiment. Therefore,
only a natural setting can provide maximum realism for cloud benchmarking.
Unfortunately, the limited control within real cloud environments impedes
reproducible performance evaluation [46], which is an ongoing challenge in
both IaaS [46] and in FaaS clouds (Paper α). Mitigating these reproducibility
challenges is a cross-cutting concern throughout the field experiment studies in
Papers γ to θ. In particular, these studies strive for full automation by leverag-
ing infrastructure as code, configuration management, container technology,
and programmable experiments. Each experiment provides a documented repli-
cation package including dataset, analysis scripts, and executable experiment
plans. Finally, limited generalizability is an inherent limitation of this type of
more intrusive research compared to less intrusive research (e.g., sample study
described in Section 1.5.2).

The field experiments in this thesis are conducted as benchmarking re-
search [127] to evaluate the performance characteristics of software systems
in cloud environments. Benchmarking research in this thesis builds upon
methodological guidance from the ACM SIGSOFT Empirical Standards [127],
benchmark construction [128], requirements of a good benchmark [129], and
generic approaches for IaaS cloud benchmarking [30, 31]. Benchmarking field
experiments are often combined with engineering research as demonstrated in
Figure 1.9.

Figure 1.10 visualizes the high-level architecture of a benchmarking field
experiment used in Papers γ to ε. First 1 , an application is deployed into
a cloud provider using an automated deployment script. The application is
instrumented with detailed trace points and forwards trace spans to a provider-
specific tracing service. Second 2 , a workload profile is applied to invoke the
application. Third 3 , the benchmark orchestrator retrieves raw traces from the
tracing service. For traditional benchmarking of synchronous cloud applications
in Papers ζ and η, distributed tracing is not necessary and performance is
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Figure 1.10: Field experiment process.

instead measured from the invoking client 2 . For micro-benchmarks in Papers ζ
to θ, no external invoker 2 is needed because these benchmarks are directly
invoked within a cloud VM deployed in a cloud provider. Fourth 4 , raw traces
need to be pre-processed (e.g., filtered, validated, refined) before they can be
visualized 5 as results.

1.6 Contributions
This section summarizes the appended papers in Chapters α to θ, their main
contributions this thesis is built on, and their relation to the challenges derived
from the research questions of this thesis (see Section 1.4). The main results of
this thesis are summarized in the next section (see Section 1.7).

Figure 1.11 visualizes the contributions of the appended papers in context
of the research questions targeting serverless (RQ1 and RQ2) and cloud infras-
tructure (RQ3). To consolidate the current state in serverless computing (RQ1),
Paper α contributes a literature review (Section 1.5.1) on FaaS performance
evaluation and Paper β conducts a sample study (Section 1.5.2) on application
characteristics. To address gaps in serverless application performance (RQ2),
Paper γ proposes a realistic trace-based application benchmark, Paper δ dis-
cusses fair cross-provider application benchmarking, and Paper ε contributes a
function trigger benchmark. To address the limitations of benchmarking cloud
infrastructure, Paper ζ contributes an integrated benchmark suite, which is
used in Paper η to estimate application performance through micro-benchmarks,
and its execution methodology is applied in Paper θ to evaluate the reliabil-
ity of software micro-benchmarking in cloud environments. For more details,
Table 1.2 provides a per-paper summary including publication venue, main
contribution, and a mapping to the challenges described in Section 1.3.

1.6.α Function-as-a-Service Performance Evaluation
Context Performance evaluation in FaaS environments (Section 1.2.1) is
the most popular area of research in the field of FaaS computing [51] and
previous research has indicated many performance-related challenges such as
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Table 1.2: Overview of papers with main contributions.

Paper Venue Main Contribution Challenge

α JSS’20 Review of 112 FaaS performance studies
regarding performance characteristics, con-
figurations, and reproducibility.

C1

β TSE’21 Characterization of 89 serverless applica-
tions along 16 dimensions regarding moti-
vation, context, and implementation.
Meta-analysis across 10 studies.

C2

γ Under
submission

Realistic benchmark suite of 10 serverless
applications.
Large-scale performance experiment collect-
ing over 7.5 million end-to-end traces.
Novel approach for detailed latency break-
down analysis across asynchronous call
boundaries.

C3
+
C4

δ Under
submission

Tracing model for fair cross-provider bench-
marking.

C4

ε IC2E’22
(to appear)

Cross-provider benchmark for evaluating
serverless function triggers.

C4

ζ QUDOS’18 Automated benchmark suite that combines
23 micro- and 2 application-benchmarks.

C5

η CLOUD’18 Cloud benchmarking methodology for
application-benchmark estimation based on
micro-benchmark profiling.

C5

θ EMSE’19 Large-scale experiment collecting over 4.5
million software microbenchmark results.

C6



20 CHAPTER 1. SYNOPSIS

coldstarts [131], hardware heterogeneity [132], or function triggering delays [133].
So far, these reports are disparate and originate from different studies, executed
with different setups, and different experimental assumptions. The FaaS
communication is lacking a consolidated view on the state of research on FaaS
performance.

Contribution Paper α fills this gap by conducting the first systematic and
comprehensive literature review on FaaS performance evaluation studies from
academic and grey literature. It maps the landscape of existing isolated FaaS
performance studies, identifies gaps in current research, and systematically in-
vestigates their reproducibility based on principles for reproducible performance
evaluation [46].

Method The literature review (Section 1.5.1) was designed based on guide-
lines for systematic literature reviews [118] and multivocal literature reviews [119].
A total of 112 studies were selected from academic (51) and grey (61) literature.
The analysis visualizes, describes, and discusses results related to publica-
tion trends, benchmarked platforms, evaluated performance characteristics,
used platform configurations, and reproducibility of experiments. The paper
also highlights and discusses notable differences between academic and grey
literature studies.

Relationship to Thesis The implications and gaps in the literature identified
in this paper directly aim to guide future work on serverless performance
evaluation. The lack of realistic application benchmarks motivated the empirical
study in Paper β of real-world serverless applications. Based on these insights,
Paper γ proposes a comprehensive application benchmark that addresses
several gaps identified in this paper, including benchmark types, platform
configurations, and reproducibility. Further research gaps in fair cross-provider
comparison and function trigger types are targeted in Papers δ and ε.

1.6.β Serverless Application Characteristics

Context The emerging cloud computing paradigms Function-as-a-Service
and serverless computing are increasingly adopted by the industry (shown by
market analyses [134] and surveys [135]) and academics [26, 136–138]. Initial
case studies from early adopters [139, 140] indicate significant cost reduction
and time-to-market benefits for serverless applications compared to traditional
cloud applications [141]. However, such existing reports are scattered and
unstructured. The serverless community lacks an understanding of typical
applications, which is crucial for designing relevant performance benchmarks.

Contribution Paper β characterizes 89 serverless applications along 16
dimensions regarding motivation, context, and implementation to answer ques-
tions such as: Why do so many companies adopt serverless?, When are server-
less applications well-suited?, and How are serverless applications currently
implemented? In addition to the 7 main findings of the sample study, a meta-
analysis across 10 related studies identified 8 consensuses supported by evidence
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from multiple studies. This contribution extends our related IEEE Software
article [l].

Method A sample study (Section 1.5.2) was used to collect and characterize
existing serverless applications following a structured collaborative review
process. Descriptions of serverless applications were collected from diverse
sources including open source projects, academic literature, industrial literature,
and a scientific computing organization. Each application was either reviewed by
two researchers followed by a discussion and consolidation of all disagreements
or by a single domain expert for the six scientific applications unavailable to
the public. Finally, a meta-analysis compares the results of the sample study to
10 mostly industrial studies and datasets. This enables to validate results and
identify points of agreement and disagreement towards building a community
consensus.

Relationship to Thesis This paper shares several characteristics with the
literature review on performance evaluation in Paper α, for example, cloud
providers, programming languages/runtimes, external services, and trigger
types. Such common characteristics help identify relevant research gaps by
comparing to what extent performance studies evaluate characteristics common
in real-world serverless applications (see Section 1.9.1). These research gaps
motivated and guided further performance studies in Papers γ to ε. Most
importantly, the empirical insights of this paper were essential for designing a
realistic benchmark suite in Paper γ.

1.6.γ Serverless Application Benchmark
Context Most serverless performance studies focus on single-purpose micro-
benchmarks that are not representative of real applications. Existing application
benchmarks are insufficient because they are typically limited to single-function
applications using at most one type of external service. Most importantly, no
prior application benchmark includes asynchronously coordinated applications
although serverless is inherently event-based and event-driven architectures are
common in real-world applications.

Contribution Paper γ presents ServiTrace, a comprehensive benchmark
suite of 10 heterogeneous applications with support for fine-grained tracing
and invocation patterns derived from real-world invocation logs. It introduces
a novel algorithm and heuristics for detailed latency breakdown analysis of
asynchronously coordinated applications across a variety of external services.
Using ServiTrace, a large-scale empirical performance study was conducted in
the market-leading AWS environment, collecting over 7.5 million traces. The
novel latency breakdown analysis enabled detailed insights into median latency,
cold starts, and tail latency for different application types and invocation
patterns. Finally, ServiTrace is released as a tested, extensible open-source tool
under FAIR principles including software, data, results, and documentation.

Method ServiTrace was designed and implemented using engineering research
(Section 1.5.3) based on insights from real-world application characteristics
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in Paper β and guided by goals from the literature review in Paper α. The
field experiment (Section 1.5.4) follows guidelines on benchmarking [127] and
reproducible cloud experimentation [46].

Relationship to Thesis Beyond essential methodological guidance of prior
work from Papers α and β, the results of this paper motivate further research to
extend ServiTrace and analyze important aspects for application performance
in more detail. CrossFit in Paper δ extends ServiTrace with fair cross-provider
comparison and disconnected trace correlation by refining a specific application
scenario from this paper. TriggerBench in Paper ε specifically analyzes the
latency of serverless function triggers for different external services because the
results of this paper have shown that slow trigger latency can add substantial
latency delay.

1.6.δ Cross-provider Application Benchmarking

Context Fair cross-provider comparison is challenging in serverless applica-
tions due to heterogeneous complex ecosystems. FaaS platforms are highly
provider-specific and lack standardized interfaces such as VMs for IaaS. Further-
more, FaaS platforms are not intended as standalone systems but rather deeply
integrated with other provider-specific external services through integrations
with event sources. Another challenge is that existing comparisons provide no
observability on why performance differs because they only compare overall
response times.

Contribution Paper δ contributes CrossFit. It introduces a provider-
independent tracing model for serverless applications, provides guidelines for
fair cross-provider benchmarking, and demonstrates detailed drill-down anal-
ysis for an application in two leading cloud providers. The tracing model
identifies matching trace points available in multiple providers. The fairness
guidelines cover 12 important aspects related to architecting applications for
fair performance comparison across cloud providers. The drill-down analysis
identifies performance challenges for a realistic application under different cloud
providers and workloads.

Method Engineering research (Section 1.5.3) was used to refine an application
from ServiTrace in Paper γ and port it to another cloud provider inspired
by prior work on serverless application migration [142]. A field experiment
(Section 1.5.4) subsequently demonstrated the utility of the tracing model for
cross-provider drill-down analysis using constant and bursty workloads.

Relationship to Thesis This paper addresses several research gaps identified
in the literature review in Paper α such as cross-provider application bench-
marking and insufficiently studied platform configurations. It also leverages
ServiTrace from Paper γ to alleviate reproducibility challenges.
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1.6.ε Serverless Function Trigger Benchmark

Context Function triggers are essential building blocks in serverless, as
they initiate any function execution. However, Paper α shows that function
triggering is insufficiently studied despite being a core building block of serverless
applications in practice, as shown in Paper β. Additionally, function triggering is
inherently hard to measure given the distributed, ephemeral, and asynchronous
nature of event-based function coordination.

Contribution Paper ε introduces TriggerBench, a cross-provider benchmark
for evaluating serverless function triggers based on distributed tracing. It
describes a measurement methodology for synchronous and asynchronous
function triggers and supports trace correlation of disconnected partial traces.
TriggerBench implements three of the most popular trigger types [β] in AWS
and Microsoft Azure [143], namely HTTP, storage, and queue triggers. The
Azure implementation supports the following additional trigger types: database,
event, stream, message, and timer.

Method TriggerBench was developed with engineering research (Section 1.5.3)
building upon ServiTrace introduced in Paper γ. Subsequently, TriggerBench
was used in a benchmarking field experiment (Section 1.5.4) to evaluate a total
of 11 trigger types in two cloud providers.

Relationship to Thesis This paper addresses the research gap of insuffi-
ciently studied triggers raised by Paper α, especially across cloud providers. It
is also motivated by the results on poor trigger performance in Papers γ and δ.
It builds upon ServiTrace from Paper γ and generalizes trace correlation of
disconnected traces first demonstrated in Paper δ.

1.6.ζ Integrated Cloud Benchmark Suite

Context In contrast to the more recent trend (starting 2015) of serverless
performance evaluation (Section 1.2.1), the performance of IaaS clouds has
been extensively studied for over a decade (starting 2008) using micro- and
application-level benchmarks (Section 1.2.5). However, existing work largely
focuses on evaluating performance benchmarks in isolation without systemati-
cally combining multiple types of performance benchmarks and often comes
with several reproducibility challenges [46, 93].

Contribution Paper ζ addresses this gap by presenting an execution method-
ology that combines micro- and application-benchmarks into a new benchmark
suite, integrating this suite into an automated cloud benchmarking framework,
and implementing a repeatable execution methodology proposed in related
work (Section 1.2.6). The execution methodology was instantiated in the AWS
EC2 cloud and the paper presents selected results related to cost-performance
efficiency, network bandwidth, and disk utilization.
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Method Based on cloud benchmarking guidelines [31, 81, 82, 144], relevant
benchmarks that cover different cloud resources and application domains were
selected, designed, and integrated into the CWB [97] execution framework.
The execution of these benchmarks was then automated following the RMIT
execution methodology proposed by Abedi and Brecht [93].

Relationship to Thesis IaaS provides the underlying infrastructure of
serverless computing platforms covered in Papers α to ε. Therefore, its per-
formance characteristics are also relevant and similarly evaluated by micro-
and application-benchmarks. Moreover, certain aspects are hard to measure
within restricted serverless platforms (e.g., due to execution time limits and
unavailable direct communication).

Paper ζ layed the methodological and technical foundations for the follow-
up study in Paper η. The ability to systematically collect performance mea-
surements for multiple benchmarks enables the investigation of benchmark
correlations under different configurations to support cloud service selection.

1.6.η Cloud Application Performance Estimation

Context The continuing growth of the cloud computing market has led to an
unprecedented diversity of cloud services. To support service selection, micro-
benchmarks are commonly used to identify the best-performing cloud service.
However, it remains unclear how relevant these synthetic micro-benchmarks
are for gaining insights into the performance of real-world applications.

Contribution Paper η describes a cloud benchmarking methodology for esti-
mating application performance based on micro-benchmark profiling, evaluates
this methodology in an IaaS cloud provider, and releases a dataset for micro-
and application-benchmarks of over 60 000 measurements from over 240 virtual
machines across 11 distinct virtual machine types.

Method A field experiment in the AWS EC2 cloud environment quantified
performance variability and evaluated the proposed methodology. A linear
regression model was trained across 11 VM instance types using 38 metrics
from 23 micro-benchmarks and evaluated in terms of relative error for two
applications from different domains. To select the most relevant estimators,
forward feature selection was used to identify the most useful micro-benchmarks
and compare them against three common baselines.

Relationship to Thesis This paper uses the benchmark suite from Paper ζ
to evaluate the idea of using synthetic resource-specific micro-benchmarks to
estimate the performance of application-benchmarks inspired by real-world
scenarios. It bridges the gap between ubiquitous micro-benchmarks (as shown
by Paper α) and application benchmarks (as proposed in Paper γ and extended
in Papers δ and ε). Although this papers targets IaaS, optimal VM instance type
selection seems transferable to serverless function size selection as demonstrated
in Sizeless [145] and SAAF [146] for FaaS and discussed in the threats to external
validity (Section 1.8.5.3).
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1.6.θ Software Microbenchmarking in the Cloud

Context The availability of seemingly infinite resources and on-demand
elasticity makes public clouds attractive for software performance testing as
an alternative to traditional controlled bare-metal environments. However,
massive multi-tenant public cloud environments are susceptible to stochastic
variation caused by noisy neighbors and potentially other opaque performance
changes (e.g., hardware and software updates, network instabilities). Therefore,
it remains unclear how suitable inherently unstable cloud environments are for
software microbenchmarks and to what extent slowdowns can still be reliably
detected.

Contribution Paper θ quantifies the effect of cloud environments on the vari-
ability of software performance tests and explores their reliability in detecting
slowdowns. Performance variability is reported as the coefficient of variation
for 19 performance tests in 9 cloud execution environments. Further, drill-down
analysis reveals different sources of variability (i.e., benchmark vs. trial vs.
total). For reliable slowdown detection, this paper compares two execution
strategies and two statistical tests in terms of their false positive rate and
minimal-detectable slowdown.

Method A large-scale field experiment (Section 1.5.4) collected over 4.5
million microbenchmark results across three cloud providers, three classes of
instance types, two programming languages, 19 software microbenchmarks, and
two execution strategies. Two standard statistical tests were used to detect
software performance changes (i.e., A/B test) and investigate false positives (i.e.,
A/A test), namely Wilcoxon Rank-sum and overlapping confidence intervals.
An experimental simulation explores minimal-detectable slowdowns through
simulated performance regressions (i.e., slowdowns) without exceeding a 5%
false positive threshold during A/A testing.

Relationship to Thesis The surprisingly stable performance results from
Paper η in comparison to prior work motivated this more in-depth study about
software performance testing because predictable system performance is essen-
tial for efficient performance testing. Additionally, the toolkit for conducting
cloud experiments in this study builds upon the Cloud WorkBench [97] ex-
tensions and the experiment scheduling methodology from Paper ζ. Finally,
performance variability and reliability are important for mitigating repro-
ducibility challenges, as discussed in Paper α for FaaS and in related work for
IaaS [46].

1.7 Results

This section answers the research questions and summarizes solutions to the
challenges raised in Section 1.4.
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1.7.1 Current State of Serverless (RQ1)

RQ1 What is the current state of serverless applications and their perfor-
mance?

Answer: Synthetic micro-benchmarks have been studied extensively but the
serverless community lacks a detailed performance understanding of realistic
applications that integrate with external services.

Landscape of serverless performance evaluation The review of 112
performance evaluation studies in Paper α found that AWS Lambda is the
most evaluated FaaS platform (88%), that micro-benchmarks are the most
common type of benchmark (75%), and that application-benchmarks are
prevalently evaluated on a single platform. It also indicates a broad coverage
of language runtimes but shows that other platform configurations focus on
very few function triggers and external services.

Serverless application characteristics The analysis of 89 serverless ap-
plications in Paper β has shown that serverless is adopted to save costs for
irregular or bursty workloads, avoid operational concerns, and for built-in
scalability. Serverless applications are most commonly used for short-running
tasks with low data volume and bursty workloads but are also frequently used
for latency-critical, high-volume core functionality. Serverless applications are
mostly implemented on AWS, in either Python or JavaScript, and make heavy
use of external services for persistence and coordination functionality.

1.7.2 Serverless Application Performance (RQ2)

RQ2 What are the performance challenges of serverless applications?

Answer: External service calls and trigger-based function coordination are
slow and suffer from long tail latency.

Serverless application benchmark Paper γ contributes a heterogeneous,
representative, reproducible, and extensible application benchmark that im-
plements end-to-end functionality and provides detailed insights through dis-
tributed tracing. The application benchmark is the most diverse to date by
covering different external services, function triggers, programming languages,
coordination architectures (synchronous and asynchronously), and applica-
tion types. A novel algorithm and heuristics support tracing of asynchronous
event-driven serverless architectures. The implementation is well-tested, has
processed over 7.5 million traces, demonstrated its automated capabilities in
long-running experiments over days and weeks, and has been used by several
master thesis projects.
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Fine-grained performance insights for serverless applications Per-
formance experiments in Paper γ show that the median and 99th percentile
of end-to-end application latency is often dominated by external service calls
rather than computation. Some of the largest delays are caused by function trig-
gers. Their performance differs substantially across cloud providers (Paper δ)
and can add multi-second delays for asynchronously coordinated applications
(Paper ε). Coldstart overhead is not limited to container initialization (i.e.,
the time to provision a new function instance) for serverless applications. In
comparison, language runtime initialization adds more overhead and other
factors such as one-off computation tasks can also contribute substantially.

1.7.3 Limitations of Cloud Benchmarking (RQ3)

RQ3 How can limitations of benchmarking cloud infrastructure be addressed?

Answer: Only selected micro-benchmarks are suitable for estimating appli-
cation performance, performance variability depends on the resource type,
and batch testing on the same instance with repetitions should be used for
reliable performance testing.

Relationship between micro- and application-benchmarks The sys-
tematic combination of micro- and application-benchmarks in Papers ζ and η
has shown that selected micro-benchmarks are better in estimating application
performance than specification-based metrics. However, micro-benchmarks
cannot necessarily be used interchangeably even if they seemingly test the same
resource because benchmark parameters can have a profound impact.

Performance variability for different benchmark types Extensive per-
formance experiments in Papers ζ to θ have shown that performance variability
depends on the resource type and cloud provider but can also be caused by
unstable benchmarks, which should be avoided for performance testing. For
comparing alternative versions, Paper θ shows that batch testing (i.e., trial-
based) significantly reduces false-positive rates and the number of repetitions
required to reliability detect performance changes compared to version testing
(i.e., instance-based).

1.8 Discussion

This section discusses the main findings and implications of this thesis for
research and industry.

1.8.1 Serverless Observability

This thesis emphasizes the importance of detailed tracing and trace analysis
for actionable insights into complex architectures for serverless applications.
Without tracing, the client-side response time might cover the most latency-
critical synchronous invocations but misses any asynchronous event-driven
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backend processing. Detailed tracing provides observability into the end-to-end
lifecycle of a request and supports root cause analysis of performance challenges.
Without detailed tracing, time-intensive experimentation of many configurations
is required in an attempt to isolate a performance issue. Therefore, observability
should provide application-level insights enriched with system-level information
to comprehensively understand serverless performance. The need for some
system-level performance information might sound counter-intuitive in the
inherently opaque serverless paradigm. However, providers should offer APIs to
expose certain performance-relevant information such as container and runtime
initialization times to optimize coldstarts. An initial academic approach to
serverless observability is limited to FaaS [147] but several companies aim to
offer full end-to-end observability, including Lumigo7, Epsagon8, Dashbird9,
Thundra10, and several others [148].

Tracing in serverless and cloud computing is complex and trace analysis
raises “a new big data problem for software engineering” [65]. Current commer-
cial solutions focus on collecting monitoring data but still face many challenges
before advancing to generate better insights and optimization recommenda-
tions. An industrial interview study [65] revealed major difficulties in trace
data quality and missing trace annotations. ServiTrace faced the same issues
due to limitations in AWS X-Ray. Therefore, Paper γ proposes enhanced trace
annotations to indicate the invocation type (i.e., synchronous or asynchronous).
Such annotations enable more robust trace analysis than heuristics, which
cannot detect asynchronous invocations that terminate before their invoker.
The tracing community also discusses such annotations to enhance the spec-
ification of the OpenTelemetry [149] standard. To mitigate bad trace data
quality, Paper γ validates each trace and reports missing or inconsistent fields
(e.g., if the sum of a trace duration does not match the elapsed time between
two timestamps). Disconnected traces are another issue in serverless due to
unsupported trace token propagation for several external services. Paper ε
demonstrates a solution to merge disconnected traces to enable end-to-end
analysis. Finally, trace analysis only just started to develop and more robust
and intelligent techniques are needed.

Serverless tracing comes with several limitations related to semantic chal-
lenges and tracing overheads. The event-driven serverless architecture causes
semantic challenges related to passive tracing and batch execution. Asyn-
chronous event-based triggers are often traced passively (or indirectly) in
contrast to actively traced compute services such as FaaS. Tracing services such
as X-Ray implement reparenting strategies to build a properly connected trace
graph. However, such strategies can fail in rare cases and cause erroneous traces.
Batch execution is a common feature for serverless queue or stream processing
services. It introduces a one-to-many mapping, which violates the assumption
that each span can only have one parent. Therefore, batch receiving remains
an unsolved semantic challenge in the OpenTelemetry tracing community [149].
Tracing overhead has a limited impact on application performance but causes
additional processing and storage demands. Tracing might add additional

7https://lumigo.io/
8https://epsagon.com/
9https://dashbird.io/serverless-observability/

10https://thundra.io/

https://lumigo.io/
https://epsagon.com/
https://dashbird.io/serverless-observability/
https://thundra.io/
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coldstart overhead caused by tracing libraries and background initialization
but it is often negligible during runtime when implemented asynchronously.
The main overhead is caused by dedicated tracing services, which need to scale
themselves for supporting high loads. To mitigate this overhead, sampling
strategies (e.g., fixed rate or reservoir) can be used to limit ingestion rates and
short retention periods (e.g., 30 days) to cap aggregated trace data.

1.8.2 Interactive Applications with Serverless

User-centric performance models describe the human perception of performance
based on user experience research. According to long-standing research [150,
Chapter 5], the guidelines related to human perception of performance remain
the same since they were first formalized in 1968 [151]. These performance
thresholds are determined by human perceptual abilities and interpreted for
modern (web) applications by Nielsen [152, 153] and the RAIL model from
Google [154]. Users perceive reactions below 0.1 s as immediate. Reactions
below 1 s cause noticable delay but are not yet interrupting the flow of thought.
Users lose attention for reactions beyond 10 s and seek alternative tasks.

This thesis shows that latency-sensitive applications are feasible with server-
less but face many challenges, such as appropriate service selection. For example,
interactive applications should adopt the synchronous HTTP trigger, choose
a provider and language runtime with low coldstart overhead, and perform
trace analysis to optimize slow application segments. Paper ε shows that
HTTP triggers in multiple providers can achieve sub-0.1 s latency but Paper γ
indicated that any external data service (e.g., Amazon S3) likely exceeds the
limit for immediate response. Therefore, today’s serverless offerings struggle
with interactive applications unless data is served from low-latency caches or
data services are exposed directly rather than hidden from the user behind a
serverless function. Most user-facing applications cause noticeable delay but
serverless enables building highly scalable applications within the 1 s limit. For
example, BBC Online demonstrated that navigating to different pages in a per-
sonalized server-side rendered website is doable within 220ms (90th percentile)
while running 100million function invocations daily [155]. Nevertheless, the
latency breakdown in Papers γ and δ indicates that end-to-end latency quickly
adds up, and especially tail latency is challenging to control. Further, the choice
of appropriate function triggers and external services is essential, not only for
maximizing performance but also for building cost-effective applications under
specific performance requirements. A related study demonstrated massive
differences in their cost-performance comparison of alternative mechanisms for
serverless function coordination [156]. Finally, Paper β indicates that other
factors such as cost can be more important than performance for certain classes
of applications.

1.8.3 Reproducibility Challenges in Cloud Performance

This section discusses challenges and mitigation strategies for reproducible
performance evaluation in cloud environments based on the methodological
principles proposed by Papadopoulos et al. [46] (summarized in Section α.5.5).
This discussion enriches observed challenges from the literature review in
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Paper α with challenges faced in engineering research and field experimentation
in Papers γ to θ.

P1 Repeated Experiments: Ideally, every experiment configuration should be
repeated many times until a statistically sound stopping criterion [157]
is reached. Unfortunately, the nature of field experimentation in unsta-
ble cloud environments [87, 91–93] can make it hard to reliably detect
performance changes within reasonable budget and time constraints, as
shown for certain configurations in Paper θ. Further, repetitions can
be implemented at different levels as exemplified in Papers ζ to θ and
scheduling strategies profoundly impact the utility of different types of
repetitions (e.g., trials, forks, iterations/executions) as shown in Paper θ.
Robust statistical methods using hierarchical bootstrapping can be com-
putationally intensive and are not (yet) widely known.
Beyond the statistical aspect, ensuring configuration equivalence across
repetitions is hampered by incomplete experimental setup descriptions
(P3) and lacking automation. The nature of field experimentation (Sec-
tion 1.5.4) makes an exact replication of the measurements rarely possible
but technical reproducibility is desired to be able to repeat the exact
same measurement methodology [46]. Paper α shows that incomplete
experimental setup descriptions make it hard to repeat any experiment.
For example, the integration of existing applications into ServiTrace
in Paper γ demonstrated that unpinned dependencies change or even
break the experiment setup. Furthermore, reusable benchmarks should
prevent naming conflicts due to global namespaces to support repeated
experiments in different contexts (e.g., different tenants, data-center re-
gions). Experiment designs with dynamic re-deployments require a high
level of experiment automation and are essential for measuring coldstarts
more reliably and efficiently rather than waiting for undocumented idle
timeouts. Therefore, ServiTrace strives for full experiment automation
by supporting executable experiment plans used in Papers γ to ε.

P2 Workload and Configuration Coverage: Papers α and β collect empirical
evidence to motivate workloads and configurations for Papers γ to ε in
terms of applications, cloud providers, programming languages, external
services, trigger types, control flow (synchronous vs. asynchronous), and
invocation patterns (e.g., bursty). Overall, Papers γ to ε focus on covering
application aspects, Papers ζ and η cover a broad range of system-
level resources through micro-benchmarks, and Paper θ covers software
microbenchmarks from popular projects in multiple cloud providers.

P3 Experimental Setup Description: Only about half of the studies provide
a sufficient experiment setup description, both in serverless performance
evaluation as shown in Paper α and in cloud infrastructure performance
evaluation [46]. To mitigate this issue, a replication package is available
for every paper, and experiment plans are made executable. A replication
package complements a paper with a detailed experiment description,
instructions on how to replicate each experiment to obtain a new dataset
with the same methodology as well as replication of the data analysis
based on a documented dataset. Such a full experiment description
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Table 1.3: Overview of open access artifacts.

Paper Code (Github) Dataset

α joe4dev/faas-performance-mlr [158]
β ServerlessApplications/ReplicationPackage [159]
γ ServiTrace/ReplicationPackage [160]
δ serverless-crossfit/replication-package [161]
ε joe4dev/trigger-bench [162]

ζ + η sealuzh/cwb-benchmarks [163]
θ sealuzh/cwb-benchmarks [164]

provided in a replication package is often not possible nor desired within
a paper due to space constraints and restricted presentation formats. This
thesis strives for fully automated experiments to minimize manual steps,
which are prone to human error and often incomplete. Nevertheless, some
manual steps are often necessary for bootstrapping or security-sensitive
tasks.

P4 Open Access Artifact: All papers in this thesis are complemented with
technical artifacts including datasets (raw and processed) and software
for experiment orchestration, benchmarks, and data analysis. Table 1.3
summarizes the open access artifacts produced in this thesis. Unit and
integration tests are also provided for core functionality such as trace
analysis or experiment orchestration.

P5 Probabilistic Result Description: This thesis favors plots that visualize the
full empirical distribution such as violin plots and empirical cumulative
distribution function (ECDF) plots. Otherwise, robust aggregations with
respect to outliers are used by representing typical latency as median
(p50) and tail latency as 99th percentile (p99), with one exception using
average aggregation in Paper η. Due to space constraints, additional plots
and statistics are sometimes provided as part of a replication package.
Papers η and θ specifically investigate performance variability by reporting
the coefficient of variation and Paper θ performs A/A tests to evaluate
false positive rates of software microbenchmarks in cloud environments.

P6 Statistical Evaluation: In the context of this thesis, statistical evalu-
ation is most relevant for comparing alternative versions of software
microbenchmarks in Paper θ. The evaluation of A/A tests with Wilcoxon
rank-sum and overlapping confidence intervals using hierarchical boot-
strapping [165, 166] has shown that Wilcoxon is more sensitive towards
changes in the tested configurations. For other aspects in the thesis
such as cross-provider comparisons in Paper δ, visualizing differences in
the result distributions is often more insightful than reporting a binary
outcome of a statistical test. Automation enables collecting large sample
sizes, which might lead to statistically significant differences although the
practical difference might be negligible and distribution characteristics
such as tail latency are more relevant. Paper δ uses split violin plots
to compare two distributions. Alternative options are the shift func-

https://github.com/joe4dev/faas-performance-mlr
https://github.com/ServerlessApplications/ReplicationPackage
https://github.com/ServiTrace/ReplicationPackage
https://github.com/serverless-crossfit/replication-package
https://github.com/joe4dev/trigger-bench
https://github.com/sealuzh/cwb-benchmarks
https://github.com/sealuzh/cwb-benchmarks
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tion [167], ratio function [168], or nonparametric Cohen’s d-consistent
effect size [169].

P7 Measurement Units: This thesis consistently reports measurement units
and Paper α finds that this principle is generally followed in FaaS perfor-
mance studies with only a few exceptions in grey literature figures.

P8 Cost: Reporting a conceptual cost model based on individual service
pricing should be generally possible but is often incomplete because
some cost factors are determined at runtime (e.g., based on memory
consumption or execution time). Reporting actual costs is often difficult
when running multiple services or using research credits.

1.8.4 Cross-Provider Portability

The portability of applications across providers remains a major challenge in
serverless, which requires trade-off decisions as discussed in Paper δ. Unlike
in IaaS where the standardized VM abstraction enables full code reuse across
providers, serverless APIs are highly provider-specific, both for source code
as well as for deployment options (e.g., memory size, shared storage layers,
provisioned concurrency). Prior work confirms this issue in a migration study
of multiple applications [142] and in a developer survey [56] where one-third
of the respondents mentioned vendor lock-in as a significant challenge. Exist-
ing solutions are limited to specific domains such as data analytics through
Lithops [170, 171] or simple single-function scenarios [172]. Vendor lock-in
also remains one of the core obstacles for multi-cloud approaches [173]. Due
to this lack of a common interface, it is not possible to implement a single
provider-agnostic benchmark. Therefore, cross-provider support requires care-
ful application migration [142] as discussed in Section δ.3.2 and demonstrated
with the trigger types mapping of external services in Section ε.2.2.

1.8.5 Threats to Validity

This section discusses threats to the validity of the results of this thesis,
limitations of the applied research methods, and a summary of mitigation
strategies. It is structured based on the four common criteria for validity
for empirical research [123, 174]: construct validity, internal validity, external
validity, and reliability.

1.8.5.1 Construct Validity

Construct validity relates to measuring the right thing, i.e., the extent a study
actually measures what it aims to measure according to the research questions.

For RQ1, construct validity mainly relates to inappropriate selection criteria
and a lack of standard language and terminology. To mitigate these threats, the
selection criteria were refined based on related work and documented insights
from trial classifications. The lack of standard language is a major threat as
there exist no established definitions of FaaS and serverless [19]. This threat
was mitigated by clarifying selected definitions and providing illustrational
examples where applicable.
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For the field experiments in RQ2 and RQ3, construct validity in bench-
marking is the threat to test or measure something different than intended.
Performance benchmarking is “incredibly error prone” [130], especially in cloud
environments. Therefore, this thesis performs active benchmarking [175] and
focuses on reproducible experimentation. Active benchmarking uses observ-
ability tools to analyze performance while the benchmark is running to collect
evidence that the benchmark tests what it intends to test. For example, Paper γ
performs workload validation to compare the planned vs. sent vs. received
invocation rates and uses detailed tracing to explain and validate end-to-end
latency results. Another example includes resource monitoring in Papers ζ
and η as demonstrated in Figure ζ.6 by utilization rate monitoring during I/O
benchmarking. Reproducible experimentation (see Section 1.8.3) encourages a
complete reporting of the experimental setup, which enables a thorough review
of the experiment design.

1.8.5.2 Internal Validity

Internal validity relates to measuring right, i.e., the extent a study measures a
causal relationship without interference from external factors.

For RQ1, the most common threats in literature reviews are bias in study
selection, bias in data extraction, and inappropriate or incomplete database
search terms. To mitigate selection bias, Paper α combines and refines [120]
different established search strategies, and complements them with targeted
strategies (e.g., alert-based search to discover recent studies). Search terms
were iteratively refined and motivated in detail (see replication package [158]).
Potential inaccuracies in data extraction were mitigated through traceability
with over 700 additional comments and a well-defined MLR process based on
established guidelines for SLR [118] and MLR [119] studies, methodologically
related publications [176], and topically relevant publications [51, 53]. The
main threat remains individual researcher bias as the majority of studies were
reviewed or validated by a single researcher.

For RQ1, a sample study has inherent limitations in measurement precision
due to its neutral setting and lack of interactivity (i.e., research must deal
with discoverable data as is) [115]. To mitigate this threat, each serverless
application in Paper β was reviewed by two researchers and after an initial
moderate agreement, all differences were discussed and consolidated. The
lack of interactive data collection could only be mitigated partially through
explorative web search and backward snowballing for discovering new sources.
Reviewers assigned the “Unknown” value to applications and characteristics
where insufficient information was available. These “Unknowns” are excluded
in the presented results (ranging from 0% to 19% with two outliers at 25%
and 30%) and reported in the accompanying replication package [159].

For RQ2 and RQ3, cloud experimentation is inherently susceptible to
confounding factors as a field experiment due to its natural setting [115].
Public clouds cannot be under full control of an experimenter but appropriate
execution methodologies as used in RQ3 can mitigate this threat. Further
mitigation includes careful experimental design based on cloud experimentation
guidelines [30, 31, 46] and fully automated experiment execution [97]. For RQ2,
the limited access to serverless infrastructure impedes detailed tracing and
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provider-internal tracing is sometimes impossible to validate independently. In
some cases, inquiry with providers is essential to clarify potential inconsistencies.
Another source of inconsistencies concerns clock synchronization common to
distributed systems [177], both in terms of precision and accuracy. To mitigate
this threat, trace analysis in Paper γ combines an error margin for timestamp
comparison with logical trace validation of causal relationships. Finally, test
suites of unit and integration tests are integrated into continuous integration
pipelines to mitigate implementation errors.

1.8.5.3 External Validity

External validity relates to generalizability, i.e., the extent the results of a study
can be transferred to other contexts.

For RQ1, the literature review (Section 1.5.1) was designed to systematically
cover the field of FaaS performance benchmarking for peer-reviewed academic
literature (i.e., white literature) and unpublished grey literature including
preprints, theses, and articles on the internet. The inclusion of grey literature
targets an industrial perspective but is limited to published and indexed content
freely available and discoverable on the internet (e.g., excluding paywall articles
or internal corporate feasibility studies). For RQ1, the sample study (Sec-
tion 1.5.2) aims to collect a diverse collection of realistic serverless applications.
Therefore its sampling strategy combines purposive sampling from different
sources with snowballing. About half of the serverless applications are used
in production and about half of them are open source, but only few of them
are both used in production and open source. Generalizability of the results
cannot be claimed to all serverless applications, in particular not for private
serverless applications.

For RQ2 and RQ3, field experimentation inherently lacks statistical gener-
alizability [115]. Thus, generalizability cannot be claimed beyond the specific
study settings. RQ2 covers a wide variety of serverless applications and external
services guided by the insights from RQ1 but does not include data-analytic
applications [178–181] and serverless-optimized machine learning applications
for training [182] and serving [183]. Nevertheless, the trace analysis proposed
in Paper γ is generic for serverless and the trace analyzer is directly applicable
to production applications instrumented with AWS X-Ray.

RQ3 highlighted differences in performance variability across three major
cloud providers but the cross-VM performance estimation approach in Paper η
was demonstrated for two geographically distinct data centers of a single cloud
provider. Although related work also focuses almost exclusively on AWS as a
single cloud provider, another study [102] indicated that a similar methodology
can also work across multiple cloud providers. This is unsurprising given that
most IaaS clouds build upon the same abstractions (i.e., virtualization technol-
ogy) and individual benchmarks within the benchmark suite were previously
used across four different cloud providers [91] with the same benchmark man-
ager [97]. A related study published shortly after Paper η reports comparable
results for scientific computing workflow applications [104].

Newer related studies also indicate that the results from IaaS are applicable
to FaaS. For example, Sizeless [145] uses multi-target regression modeling
to predict the execution time of a serverless function for all memory sizes.



1.8. DISCUSSION 35

BATCH [183] uses simple regression and proposes an analytical model to predict
latency percentiles. COSE [184] uses Bayesian Optimization to find the optimal
configuration. Further, Wang et al. [185] indicated that the underlying hardware
infrastructure of AWS Lambda shares the same specifications as VM instance
types evaluated for answering RQ3. When transferring the prediction approach
to serverless, the configuration space becomes larger as envisioned for tailorable
VM instance types because serverless functions of certain providers offer fine-
grained memory configurations (e.g., up to 10 240MB in 1MB increments for
AWS Lambda), which determine the CPU power. Conversely, function runtime
prediction is less important in serverless because brute-force approaches such
as AWS Lambda Power Tuning [186] are readily available and more viable with
the fast elasticity of serverless.

1.8.5.4 Reliability

Reliability relates to replicability by others, i.e., the extent to which the results
of a study can be replicated by other researchers.

For RQ1, structured review sheets with actionable guidance were used and
published in online replication packages [158, 159]. The sample study alleviated
subjective interpretation of the extracted data through multiple reviews from a
total of seven reviewers. Bi-lateral and group discussions were an important part
of the data consolidation process and captured through systematic spreadsheet
commenting and meeting notes. The literature review mitigated this threat
through detailed documentation and traceability annotations.

For RQ2 and RQ3, the field experiments strive for technical reproducibil-
ity [46] of the data collection and replicability [187] of the data analysis based
on documented online replication packages. Technical reproducibility enables
other researchers to conduct the same experiment and collect a new dataset
representing the current state of performance because the exact reproduction
of the measurement results is impossible in cloud experimentation due to
limited control over the environment [46]. Such a new dataset will be sub-
ject to internal changes of the cloud provider, which continuously updates
underlying software and hardware infrastructure. Therefore, it is essential
to additionally provide the raw dataset and analysis scripts for independent
inspection. All performance benchmarks are available as open source software
together with extensive documentation, test suites, and scripts to automate
their execution. The benchmark orchestration tools ServiTrace (Paper γ) and
Cloud WorkBench (CWB) [97] are purposefully built for technically repro-
ducible cloud performance evaluation and used in other studies beyond this
thesis [97, 188, 189].

The data analysis process strives for replicability [187] based on documented
online replication packages providing datasets and analysis code. The ability to
re-run (R1 as introduced by Benureau and Rougier [187]) the code is facilitated
by automation and dependency management but could be further improved by
adopting Docker containerization [190], similarly to ServiTrace for benchmark
orchestration. Repeatability (R2) requires repeated code executions to produce
the same expected results [187] and was validated by managing interim data
with version control. Reproducible (R3) results require other researchers to be
able to re-obtain the same result [187] and are fostered by publicly available
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data and code under version control but could also be improved by adopting
Docker containerization [190]. Reusability (R4) is addressed by documentation
and testing by collaborators but hampered by using a commercial analysis tool
in Paper η. Replicability (R5) refers to the ability of independent investigators
to obtain the same results without re-using the technical artifacts [190] and
was partially addressed by re-implementing parts of the analysis in another
tool for validation purposes in Paper η.

1.9 Future Work

This section discusses future work in serverless performance evaluation, trace
analysis, and approaches towards automated performance optimization.

1.9.1 Relevant Gaps in Serverless Performance Evaluation

Combining the results of Papers α and β reveals similarities and differences
between the evaluated characteristics by performance studies and the actual
characteristics of serverless applications. Overall, cloud providers and pro-
gramming languages are represented similarly in terms of relative frequency
except for under-represented language runtimes in academic studies. The
clearest differences occur between function triggers and external services. Most
notably, performance studies seldomly use event-based triggers (<16%) in ap-
plications although cloud events are common in serverless applications (41%).
Further, most external services are under-represented in performance studies
and databases in particular as they are used in 10% to 15% of the academic
and industrial studies although being used by 48% of applications. The only
external services well-covered by academic studies are the API gateway and
cloud storage. More studies are needed to test common external services such
as publish/subscribe, streaming, and queues.

The field of serverless performance evaluation remains very active since
the literature review in Paper α and several of the mentioned research gaps
received more attention. Within the two years since the literature review in
Paper α, the number of potentially related studies more than doubled11 and
complementary literature reviews have been published afterwards [191, 192]. For
example, Raza et al. [191] discuss FaaS measurement studies from a developer’s
perspective and explicitly categorize studies by causal relationships, i.e., the
relationship between the controlled variable (configuration) and dependent
variable (measured performance). There are promising signs that additional
providers are covered, including hosted platforms such as Alibaba [193, 194],
open-source platforms such as Knative, Kubeless, OpenFaaS [195, 196], and
open-source platforms used in hosted platforms such as Firecracker [59, 197] and
OpenWhisk [198, 199]. However, these studies still focus on micro-benchmarks
without covering external services with a few exceptions for specific domains
such as workflows [194] or parallel data processing with Lithops [170, 171].
Finally, another recent publication trend is the rising interest in performance
evaluation for edge computing platforms.

11Based on the updated list of 139 new studies identified through alert-based complementary
search as described in Section 1.5.1
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1.9.2 Serverless Trace Analysis

Traditional distributed tracing focused on microservice architectures with syn-
chronous remote procedure calls (RPCs) and serverless architectures raise
novel challenges with asynchronous invocations. Despite its usefulness, tracing
still suffers from many challenges related to collection, analysis, and visualiza-
tion [35, 65, 66]. Serverless aggravates existing challenges and introduces novel
conceptual challenges. According to a recent interview study [65], bad trace
quality is a common issue and becomes even harder to manage in serverless
due to the lack of control over parts of the serverless and tracing infrastruc-
ture, as experienced in Papers γ to ε. Currently, manual instrumentation and
custom trace correlation are required to fix disconnected traces and sampling
is necessary for high invocation rates to prevent missing trace segments, which
cause incomplete traces that need to be ignored. Therefore, future research
should explore more robust methods for handling bad quality traces during
trace analysis. Tracing standards such as OpenTelemetry12 deserve further
attention and guidance, for example by suggesting useful trace annotations. In
traditional synchronous invocation chains, every trace segment can have at most
one casual parent relationship (i.e., invoked by). In serverless architectures,
batch invocations violate this assumption and require novel tracing concepts
(e.g., batch receiving [149]).

1.9.3 Automated Performance Optimizations

The research of this thesis focuses on evaluating (i.e., assessing) performance
but future work could go a step further by leveraging the methodology and
insights from this thesis to automate the exploration and exploitation of the
configuration space towards self-optimizing applications. A key motivation for
this research direction is to make performance insights more actionable in the
context of application development through tighter integration of performance
aspects into the development lifecycle. My vision paper [200] outlines a dy-
namic transpilation approach and FUSIONIZE [201] explores feedback-driven
function fusion at runtime to optimize the latency of multi-function workflows.
Recently, new optimization approaches started to emerge for optimal function
sizing [145], application-aware data passing [202], workload-specific configura-
tion tuning for video processing [203], and a combination of several workflow
tuning strategies [204]. In addition to function fusion, WISEFUSE [204] also op-
timizes resource allocation and co-locates parallel function invocations through
bundling. Existing approaches focus on serverless functions but trace-based
optimization suggestions could include external services, for example by recom-
mending suitable trigger types.

1.10 Conclusions

This PhD thesis consolidated (RQ1) and extended (RQ2) the body of research
on reproducible performance evaluation for serverless applications and their
underlying infrastructure (RQ3).

12https://opentelemetry.io/

https://opentelemetry.io/
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RQ1 This thesis established a consolidated understanding of serverless appli-
cations and their performance through a sample study and literature review.
The most comprehensive literature review on FaaS performance evaluation to
date found that AWS Lambda is the most evaluated FaaS platform, that micro-
benchmarks are the most common type of benchmark, and that application-
benchmarks are prevalently evaluated on a single platform. It also indicated
a broad coverage of language runtimes but showed that other platform con-
figurations focus on very few function triggers and external services. Finally,
the majority of studies did not follow principles on reproducible cloud experi-
mentation from prior work [46]. The largest analysis of serverless applications
to date identified common performance requirements and other characteristics
related to adoption and implementation. In particular, serverless applications
are most commonly used for short-running tasks with low data volume and
bursty workloads but are also frequently used for latency-critical, high-volume
core functionality.

RQ2 This understanding guided the construction of ServiTrace, a novel
trace-based benchmark for serverless applications, which is used in field stud-
ies to identify performance challenges of serverless applications. ServiTrace
contributes a novel algorithm and heuristics for detailed latency breakdown
analysis of distributed serverless traces across asynchronous call boundaries and
external services. Its comprehensive benchmark suite of 10 realistic open-source
applications covers heterogeneous characteristics such as the form of coordi-
nation, programming language, size, and external service usage. Large-scale
field experimentation in the market-leading AWS cloud environment has shown
that external service calls often dominate the median end-to-end latency and
cause excessive tail latency. Different forms of orchestration or trigger-based
coordination caused substantial delay and were evaluated in further bench-
marking experiments in addition to other aspects such as fair cross-provider
benchmarking or different workload types.

RQ3 Targeting the underlying FaaS infrastructure in IaaS clouds, the utility
of different benchmark types is evaluated in terms of insights for applications
and reliability. Field experiments with system-level micro- and application-
benchmarks and software microbenchmarks have shown that only selected
micro-benchmarks are suitable for estimating application performance, per-
formance variability depends on the resource type, and batch testing on the
same instance with repetitions should be used for reliable performance testing.
Benchmark-based metrics are better estimators for application performance of
the tested applications than specification-based metrics (e.g., number of vCPUs,
provider-defined unit for computational power), which are currently used as
common baselines. However, the results also highlighted that presumably
similar micro-benchmark estimators cannot necessarily be used interchangeably
because benchmark parameters can have a profound impact on performance.
The findings for software microbenchmarking indicate that state-of-the-art
statistical tests (i.e., Wilcoxon rank-sum and overlapping bootstrapped con-
fidence intervals of the mean) can reliably detect slowdowns in inherently
unstable cloud environments but depending on the cloud provider and instance
type, a substantial number of trials or instances is required. Further, batch
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testing might be required to detect small slowdowns reliably while avoiding
false positives by co-locating the test and control group on the same instance.
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