
Thesis for the Degree of Doctor of Philosophy

Performance Evaluation of Serverless Applications and
Infrastructures

Joel Scheuner

Division of Interaction Design and Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2022

Performance Evaluation of Serverless Applications and Infrastruc-
tures

Joel Scheuner

Copyright ©2022 Joel Scheuner
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-677-3
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 5143.
ISSN 0346-718X
Electronic: https://research.chalmers.se/en/publication/531473

Technical Report No 224D
Department of Computer Science & Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

Cover picture: sdecoret / stock.adobe.com

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

ii

https://research.chalmers.se/en/publication/531473

∼100% of benchmarks are wrong.

The energy needed to refute benchmarks is orders of magnitude
bigger than to run them (so, no one does)

– Brendan Gregg, Senior Performance Architect

iv

Abstract
Context Cloud computing has become the de facto standard for deploying
modern web-based software systems, which makes its performance crucial to
the efficient functioning of many applications. However, the unabated growth
of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the
emergence of new serverless services, such as Function-as-a-Service (FaaS), has
led to an unprecedented diversity of cloud services with different performance
characteristics. Measuring these characteristics is difficult in dynamic cloud
environments due to performance variability in large-scale distributed systems
with limited observability.

Objective This thesis aims to enable reproducible performance evaluation
of serverless applications and their underlying cloud infrastructure.

Method A combination of literature review and empirical research established
a consolidated view on serverless applications and their performance. New
solutions were developed through engineering research and used to conduct
performance benchmarking field experiments in cloud environments.

Findings The review of 112 FaaS performance studies from academic and
industrial sources found a strong focus on a single cloud platform using artificial
micro-benchmarks and discovered that most studies do not follow reproducibility
principles on cloud experimentation. Characterizing 89 serverless applications
revealed that they are most commonly used for short-running tasks with low
data volume and bursty workloads. A novel trace-based serverless application
benchmark shows that external service calls often dominate the median end-
to-end latency and cause long tail latency. The latency breakdown analysis
further identifies performance challenges of serverless applications, such as long
delays through asynchronous function triggers, substantial runtime initialization
for coldstarts, increased performance variability under bursty workloads, and
heavily provider-dependent performance characteristics. The evaluation of
different cloud benchmarking methodologies has shown that only selected micro-
benchmarks are suitable for estimating application performance, performance
variability depends on the resource type, and batch testing on the same instance
with repetitions should be used for reliable performance testing.

Conclusions The insights of this thesis can guide practitioners in building
performance-optimized serverless applications and researchers in reproducibly
evaluating cloud performance using suitable execution methodologies and
different benchmark types.

Keywords

Cloud Computing, Performance, Benchmarking, Serverless, Function-as-a-
Service, Infrastructure-as-a-Service

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor
and long-term mentor Philipp Leitner for his advice, trust, and collaboration
during the over 8 year long journey starting from my undergraduate studies
towards this PhD thesis. Philipp fostered my growth in becoming an indepen-
dent researcher through his right balance between guidance and autonomy. I
also thank my co-supervisor Jan-Philipp Steghöfer for his valuable detailed
feedback. Further, I am grateful for the freedom my examiner Robert Feldt
gave me in conducting my research.

I wish to thank my amazing collaborators for all contributions, feedback,
and fruitful discussions in shaping my research. I am extremely grateful to
Christoph Laaber from our extended ICET-lab in Zurich, Alexandru Iosup,
Cristina Abad, Simon Eismann, Sacheendra Talluri, Erwin van Eyk, and others
from the international SPEC-RG Cloud group, and to my excellent master
students Rui Deng, Marcus Bertilsson, Oskar Grönqvist, Henrik Tao, and
Henrik Lagergren.

Thank you to all my colleagues at the Interaction Design and Software
Engineering Division for shaping a great work environment and engaging in
many fun social activities. My gratitude also includes the s.e.a.l. alumni in
Zurich and WASP colleagues at Chalmers and from other Swedish universities.
Special thanks go to my office friends in Kuggen Linda, Hamdy, Razan, Georgios,
and Peter.

I appreciate the support and visits of my family and friends from Switzerland
and abroad. I am eternally grateful to my wife Yao for her positivity ☼, love,
care, and continuos encouragement.

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, and by the Swedish Research Council VR under grant number
2018-04127 (Developer-Targeted Performance Engineering for Immersed Release
and Software Engineers).

vii

List of Publications

Appended Publications

This thesis is based on the following publications appended in Chapters α to θ:

[α] J. Scheuner, P. Leitner
“Function-as-a-Service Performance Evaluation: A Multivocal Literature
Review”
Journal of Systems and Software (JSS), 2020.
doi:10.1016/j.jss.2020.110708
Chapter α

[β] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, A. Iosup
“The State of Serverless Applications: Collection, Characterization, and
Community Consensus”
IEEE Transactions on Software Engineering (TSE), 2021.
doi:10.1109/TSE.2021.3113940
Chapter β

[γ] J. Scheuner, S. Eismann, S. Talluri, E. v. Eyk, C. L. Abad, A. Iosup,
P. Leitner
“Let’s Trace It: Fine-Grained Serverless Benchmarking for Synchronous
and Asynchronous Applications”
Under submission to a journal.
Chapter γ

[δ] J. Scheuner, R Deng, JP. Steghöfer, P. Leitner
“CrossFit: Fine-grained Benchmarking of Serverless Application Perfor-
mance across Cloud Providers”
Under submission to a conference.
Chapter δ

[ε] J. Scheuner, M. Bertilsson, O. Grönqvist, H. Tao, H. Lagergren,
JP. Steghöfer, P. Leitner
“TriggerBench: A Performance Benchmark for Serverless Function Trig-
gers”
Proceedings of the 10th IEEE International Conference on Cloud Engi-
neering (IC2E), 2022 (to appear as short paper).
Chapter ε

ix

https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1109/TSE.2021.3113940

x

[ζ] J. Scheuner, P. Leitner
“A Cloud Benchmark Suite Combining Micro and Applications Bench-
marks”
Companion of the 9th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE): 4th Workshop on Quality-Aware DevOps
(QUDOS), 2018.
doi:10.1145/3185768.3186286
Chapter ζ

[η] J. Scheuner, P. Leitner
“Estimating Cloud Application Performance Based on Micro-Benchmark
Profiling”
Proceedings of the 11th IEEE International Conference on Cloud Com-
puting (CLOUD), 2018.
doi:10.1109/CLOUD.2018.00019
Chapter η

[θ] C. Laaber, J. Scheuner, P. Leitner
“Software Microbenchmarking in the Cloud. How bad is it really?”
Empirical Software Engineering (EMSE), 2019.
doi:10.1007/s10664-019-09681-1
Chapter θ

https://doi.org/10.1145/3185768.3186286
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1007/s10664-019-09681-1

xi

Other Publications
The following publications were published before or during my PhD studies.
However, they are not appended to this thesis because they were published
before my PhD studies [a-f], unrelated to the thesis, or overlapping with the
thesis content.

An updated list of all my publications is available on my website1 and
Google Scholar profile2.

[a] J. Scheuner, P. Leitner, J. Cito, H. Gall
“Cloud WorkBench – Infrastructure-as-Code Based Cloud Benchmarking”
Proceedings of the 6th IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom), 2014.
doi:10.1109/CloudCom.2014.98

[b] J. Scheuner, P. Leitner, J. Cito, H. Gall
“Cloud WorkBench: Benchmarking IaaS Providers based on Infrastructure-
as-Code”
Companion of the 24th International Conference on World Wide Web
(WWW Demo), 2015.
doi:10.1145/2740908.2742833

[c] P. Leitner, J. Scheuner
“Bursting With Possibilities – an Empirical Study of Credit-Based Burst-
ing Cloud Instance Types”
Proceedings of the 8th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2015.
doi:10.1109/UCC.2015.39

[d] J. Scheuner, G. Mazlami, D. Schöni, S. Stephan, A. De Carli, T. Bocek,
B. Stiller
“Probr – A Generic and Passive WiFi Tracking System”
Proceedings of the 41st IEEE Conference on Local Computer Networks
(LCN), 2016.
doi:10.1109/LCN.2016.30

[e] J. Scheuner, G. Mazlami, D. Schöni, S. Stephan, A. De Carli, T. Bocek,
B. Stiller
“Probr Demonstration – Visualizing Passive WiFi Data”
Proceedings of the 41st IEEE Conference on Local Computer Networks
(LCN Demo), 2016. Best Demo Award LCN’16.
doi:10.1109/LCN.2016.135

[f] J. Scheuner, P. Leitner, J. Cito, H. Gall
“An Approach and Case Study of Cloud Instance Type Selection for
Multi-Tier Web Applications”
Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2017.
doi:10.1109/CCGRID.2017.12

1https://joelscheuner.com/
2https://scholar.google.com/citations?user=EfD_tnUAAAAJ

https://doi.org/10.1109/CloudCom.2014.98
https://doi.org/10.1145/2740908.2742833
https://doi.org/10.1109/UCC.2015.39
https://doi.org/10.1109/LCN.2016.30
https://doi.org/10.1109/LCN.2016.135
https://doi.org/10.1109/CCGRID.2017.12
https://joelscheuner.com/
https://scholar.google.com/citations?user=EfD_tnUAAAAJ

xii

[g] J. Scheuner, P. Leitner
“Performance Benchmarking of Infrastructure-as-a-Service (IaaS) Clouds
with Cloud WorkBench”
Companion of the 10th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE Tutorial), 2019.
doi:10.1145/3302541.3310294

[h] J. Scheuner, P. Leitner
“Transpiling Applications into Optimized Serverless Orchestrations”
Proceedings of the 4th IEEE FAS*W: 2nd Workshop on Hot Topics in
Cloud Computing Performance (HotCloudPerf) at ICAC/SASO, 2019.
doi:10.1109/FAS-W.2019.00031

[i] J. Scheuner, P. Leitner
“Tutorial – Performance Benchmarking of Infrastructure-as-a-Service
(IaaS) Clouds with Cloud WorkBench”
Proceedings of the 4th IEEE International Workshops on Foundations
and Applications of Self* Systems (FAS*W) at ICAC/SASO, 2019.
doi:10.1109/FAS-W.2019.00070

[j] E. v. Eyk, J. Scheuner, S. Eismann, C. L. Abad, A. Iosup
“Beyond Microbenchmarks: The SPEC-RG Vision for a Comprehensive
Serverless Benchmark”
Companion of the 11th ACM/SPEC International Conference on Per-
formance Engineering (ICPE): 3rd Workshop on Hot Topics in Cloud
Computing Performance (HotCloudPerf), 2020.
doi:10.1145/3375555.3384381

[k] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L Abad, A. Iosup
“A Review of Serverless Use Cases and their Characteristics”
SPEC-RG-2020-5 Technical Report, 2020. Endorsed by SPEC-RG but
not formally peer reviewed.
doi:10.48550/arxiv.2008.11110

[l] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, A. Iosup
“Serverless Applications: Why, When, and How?”
IEEE Software, 2021.
doi:10.1109/MS.2020.3023302

[m] JC. Carver, B. Penzenstadler, J. Scheuner, M. Staron
“(Research) Insights for Serverless Application Engineering”
IEEE Software, 2021.
doi:10.1109/MS.2020.3028659

[n] T. Schirmer, J. Scheuner, T. Pfandzelter, D. Bermbach
“FUSIONIZE: Improving Serverless Application Performance through
Feedback-Driven Function Fusion”
Proceedings of the 10th IEEE International Conference on Cloud Engi-
neering (IC2E), 2022 (to appear).
doi:10.48550/arxiv.2204.11533

https://doi.org/10.1145/3302541.3310294
https://doi.org/10.1109/FAS-W.2019.00031
https://doi.org/10.1109/FAS-W.2019.00070
https://doi.org/10.1145/3375555.3384381
https://doi.org/10.48550/arxiv.2008.11110
https://doi.org/10.1109/MS.2020.3023302
https://doi.org/10.1109/MS.2020.3028659
https://doi.org/10.48550/arxiv.2204.11533

Personal Contribution
Following the Contributor Roles Taxonomy (CRediT)3 as summarized in
Table 1:

I was the main contributor for all papers except for Papers β and θ.
In Paper β, I was involved in Conceptualization, Data curation, Investigation,

Methodology, Validation, Writing – Original Draft, Writing – Review & Editing,
and Supervision of a bachelor thesis that seeded the collection of open-source
applications. Investigation and Data curation was split equally among the
authors. The first author contributed Visualization and lead the Writing –
Original Draft based on the underlying technical report SPEC-RG-2020-5 [k],
where Writing – Original Draft was largely split equally among the authors of
this SPEC-RG Cloud4 project.

In Paper γ, I led an international research project in the SPEC-RG Cloud
group4. I built the core of the Software and coordinated with my collaborators
and research assistants to integrate a suite of applications. I conducted all
experiments and most of the data analysis where I received support in finalizing
and improving visualizations. I wrote the majority of the publication and
my collaborators contributed individual paragraphs and figures, provided
continuous feedback, and supported Writing – Review & Editing.

In Paper δ, I was the main contributor for Conceptualization, Methodology,
Formal analysis, Writing – Original Draft, Writing – Review & Editing, and
Visualization. A master student implemented the Software based on Paper γ
and collected the data under my Supervision but I re-wrote parts of the analysis
and the entire publication from scratch.

In Paper ε, the Software was originally developed based on Paper γ in
two master thesis projects under my Supervision but I re-wrote core parts of
the Software to integrate the projects. I did the remaining work from scratch
including experimentation, data analysis, and writing.

In Paper θ, I was involved in Conceptualization, Investigation, Methodology,
Software, Validation, and Writing – Review & Editing. I contributed to the
design and implementation of the field experiment. The execution methodology
is based on my work from Paper ζ and I extended Cloud WorkBench [a]
to enable large-scale experimentation across many configurations. Hence,
my main writing contributions are primarily related to the approach and
execution methodology, in addition to Writing – Review & Editing for the
entire publication.

3https://casrai.org/credit/
4https://research.spec.org/home.html

https://casrai.org/credit/
https://research.spec.org/home.html

xiv

Table 1: Summary of personal contributions per paper according to the Con-
tributor Roles Taxonomy (CRediT)3

C
on

ce
pt

ua
liz

at
io

n

D
at

a
C

ur
at

io
n

Fo
rm

al
A

na
ly

si
s

Fu
nd

in
g

A
cq

ui
si

ti
on

In
ve

st
ig

at
io

n

M
et

ho
do

lo
gy

P
ro

je
ct

A
dm

in
is

tr
at

io
n

R
es

ou
rc

es

So
ft

w
ar

e

Su
pe

rv
is

io
n

V
al

id
at

io
n

V
is

ua
liz

at
io

n

W
ri

ti
ng

–
O

ri
gi

na
lD

ra
ft

W
ri

ti
ng

–
R

ev
ie

w
&

E
di

ti
ng

Paper α ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper β ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper γ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper δ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper ε ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper ζ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper η ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Paper θ ✓ ✓ ✓ ✓ ✓ ✓

Contents

Abstract v

Acknowledgements vii

List of Publications ix

Personal Contribution xiii

1 Synopsis 1
1.1 Background . 2

1.1.1 Cloud Computing . 2
1.1.2 Serverless Computing and Function-as-a-Service 3
1.1.3 Performance Evaluation 4
1.1.4 Micro- and Application-Benchmarks 5
1.1.5 Distributed Tracing . 5
1.1.6 Reproducibility . 6

1.2 Related Work . 7
1.2.1 Serverless Performance Evaluation 7
1.2.2 Serverless Application Characteristics 7
1.2.3 Serverless Application Benchmarks 7
1.2.4 Distributed Trace Analysis 8
1.2.5 Infrastructure-as-a-Service Performance Evaluation . . . 8
1.2.6 Cloud Benchmarking Execution Methodology 9
1.2.7 Cloud Application Performance Prediction 10
1.2.8 Performance Testing in Cloud Environments 10

1.3 Challenges . 11
1.4 Research Questions . 12
1.5 Research Methodology . 13

1.5.1 Literature Review . 13
1.5.2 Sample Study . 15
1.5.3 Engineering Research 16
1.5.4 Field Experiment . 17

1.6 Contributions . 18
1.6.α Function-as-a-Service Performance Evaluation 18
1.6.β Serverless Application Characteristics 20
1.6.γ Serverless Application Benchmark 21
1.6.δ Cross-provider Application Benchmarking 22
1.6.ε Serverless Function Trigger Benchmark 23

xv

xvi CONTENTS

1.6.ζ Integrated Cloud Benchmark Suite 23
1.6.η Cloud Application Performance Estimation 24
1.6.θ Software Microbenchmarking in the Cloud 25

1.7 Results . 25
1.7.1 Current State of Serverless (RQ1) 26
1.7.2 Serverless Application Performance (RQ2) 26
1.7.3 Limitations of Cloud Benchmarking (RQ3) 27

1.8 Discussion . 27
1.8.1 Serverless Observability 27
1.8.2 Interactive Applications with Serverless 29
1.8.3 Reproducibility Challenges in Cloud Performance 29
1.8.4 Cross-Provider Portability 32
1.8.5 Threats to Validity . 32

1.8.5.1 Construct Validity 32
1.8.5.2 Internal Validity 33
1.8.5.3 External Validity 34
1.8.5.4 Reliability . 35

1.9 Future Work . 36
1.9.1 Relevant Gaps in Serverless Performance Evaluation . . 36
1.9.2 Serverless Trace Analysis 37
1.9.3 Automated Performance Optimizations 37

1.10 Conclusions . 37

α Function-as-a-Service Performance Evaluation 41
α.1 Introduction . 41
α.2 Background . 42

α.2.1 Micro-Benchmarks . 42
α.2.2 Application-Benchmarks 43

α.3 Research Questions . 44
α.4 Study Design . 45

α.4.1 MLR Process Overview 45
α.4.2 Search Strategies . 47

α.4.2.1 Manual Search for Academic Literature 47
α.4.2.2 Database Search for Academic Literature . . . 48
α.4.2.3 Web Search for Grey Literature 48
α.4.2.4 Complementary Search 49
α.4.2.5 Snowballing 49

α.4.3 Selection Strategy . 49
α.4.4 Data Extraction and Synthesis 50
α.4.5 Threats to Validity . 51

α.5 Study Results and Discussion 52
α.5.1 Publication Trends (RQ1) 52
α.5.2 Benchmarked Platforms (RQ2) 54
α.5.3 Evaluated Performance Characteristics (RQ3) 57

α.5.3.1 Evaluated Benchmark Types (RQ3.1) 57
α.5.3.2 Evaluated Micro-Benchmarks (RQ3.2) 58
α.5.3.3 Evaluated General Characteristics (RQ3.3) . . 59

α.5.4 Used Platform Configurations (RQ4) 60
α.5.4.1 Used Language Runtimes (RQ4.1) 60

CONTENTS xvii

α.5.4.2 Used Function Triggers (RQ4.2) 62
α.5.4.3 Used External Services (RQ4.3) 62

α.5.5 Reproducibility (RQ5) 63
α.6 Implications and Gaps in Literature 68

α.6.1 Publication Trends (RQ1) 68
α.6.2 Benchmarked Platforms (RQ2) 68
α.6.3 Evaluated Performance Characteristics (RQ3) 68

α.6.3.1 Evaluated Benchmark Types (RQ3.1) 68
α.6.3.2 Evaluated Micro-Benchmarks (RQ3.2) 69
α.6.3.3 Evaluated General Characteristics (RQ3.3) . . 69

α.6.4 Used Platform Configurations (RQ4) 69
α.6.4.1 Used Language Runtimes (RQ4.1) 69
α.6.4.2 Used Function Triggers (RQ4.2) 70
α.6.4.3 Used External Services (RQ4.3) 70

α.6.5 Reproducibility (RQ5) 70
α.7 Related Work . 71

α.7.1 Literature Reviews on FaaS 71
α.7.2 Literature Reviews on Cloud Performance 72
α.7.3 Reproducibility Principles 72

α.8 Conclusion . 72

β Serverless Application Characteristics 79
β.1 Introduction . 79
β.2 Serverless Application Collection 81

β.2.1 Methodology . 81
β.2.2 Resulting collection . 83

β.3 Serverless Application Characteristics 83
β.3.1 Methodology . 84
β.3.2 Resulting Characteristics 86

β.3.2.1 How are serverless applications implemented? . 86
β.3.2.2 How does a typical serverless architecture look? 87
β.3.2.3 What are common traffic patterns for serverless

applications? 88
β.3.2.4 What are serverless applications used for? . . . 90
β.3.2.5 Why are practitioners choosing serverless? . . 91
β.3.2.6 How complex are serverless applications? . . . 91

β.4 Finding community consensus 93
β.4.1 Methodology . 93

β.4.1.1 Identification of Related Study 93
β.4.1.2 Mapping the Results to our Framework 95
β.4.1.3 Quantifying the Degree of Agreement 95

β.4.2 Results of Consensus Analysis 96
β.4.2.1 Platform and Programming Language 97
β.4.2.2 Number of Functions 99
β.4.2.3 Trigger Types 100
β.4.2.4 Burstiness . 101
β.4.2.5 Application Type 101
β.4.2.6 Function runtime 101
β.4.2.7 Motivation . 102

xviii CONTENTS

β.5 Threats to Validity . 102
β.5.1 Internal Validity . 103
β.5.2 Construct Validity . 103
β.5.3 External Validity . 104

β.6 Conclusion . 104

γ Serverless Application Benchmark 107
γ.1 Introduction . 107
γ.2 System Model for Serverless Applications 109
γ.3 Principled Design for Fine-Grained Serverless Benchmarking . 110

γ.3.1 Design Principles . 110
γ.3.2 High-Level Design . 111

γ.4 Distributed Trace Analysis for Serverless Architectures 112
γ.4.1 Challenges and Background 112
γ.4.2 Latency Breakdown Extraction 114

γ.5 ServiTrace Benchmarking Suite 115
γ.5.1 Serverless Applications 116
γ.5.2 Serverless Workloads . 117

γ.5.2.1 Application Scenarios 117
γ.5.2.2 Invocation Scenarios 117

γ.5.3 ServiTrace Reference Implementation 117
γ.5.4 Extending ServiTrace to Other Cloud Providers 118

γ.6 Experimental Results . 118
γ.6.1 Experiment Design . 119
γ.6.2 Latency Breakdown . 119

γ.6.2.1 Warm Invocations 120
γ.6.2.2 Cold Starts . 121
γ.6.2.3 Tail Latency 122

γ.6.3 Invocation Patterns . 123
γ.6.4 Discussion . 125
γ.6.5 Limitations . 126

γ.7 Related Work . 128
γ.8 Conclusion . 130
γ.A Replication Package . 131
γ.B Serverless Application Description 132

δ Cross-provider Application Benchmarking 135
δ.1 Introduction . 135
δ.2 Background . 136

δ.2.1 Serverless Computing 136
δ.2.2 Distributed Tracing . 137

δ.3 Benchmark Design . 137
δ.3.1 Application Design . 138
δ.3.2 Fairness Design . 138
δ.3.3 Instrumentation Design 141
δ.3.4 Workload Design . 143
δ.3.5 Implementation . 143

δ.4 Case Study . 144
δ.4.1 Experiment Setup . 144

CONTENTS xix

δ.4.2 Latency Breakdown . 144
δ.4.3 Workload Types . 146

δ.5 Discussion . 147
δ.5.1 Importance of Detailed Tracing 147
δ.5.2 Scalability Implications of Serverless 147
δ.5.3 Fairly Comparing Cloud Providers 148
δ.5.4 Threats to Validity . 149

δ.5.4.1 Construct Validity 149
δ.5.4.2 Internal Validity 149
δ.5.4.3 External Validity 149

δ.6 Related Work . 149
δ.6.1 Serverless Benchmarking 149
δ.6.2 Serverless Application Benchmarking 150

δ.7 Conclusion . 150

ε Serverless Function Trigger Benchmark 153
ε.1 Introduction . 153
ε.2 TriggerBench . 154

ε.2.1 Measurement Methodology 154
ε.2.2 Trigger Types . 156
ε.2.3 Workload Profile . 157
ε.2.4 Trace Analysis . 157
ε.2.5 Implementation . 158

ε.3 Experimental Results . 158
ε.3.1 Setup . 158
ε.3.2 Results . 159

ε.4 Discussion . 161
ε.4.1 Trigger types for interactive applications 161
ε.4.2 Latency-sensitive function coordination 161
ε.4.3 Threats to Validity . 162

ε.4.3.1 Construct Validity 162
ε.4.3.2 Internal Validity 162
ε.4.3.3 External Validity 162
ε.4.3.4 Reliability . 162

ε.5 Related Work . 163
ε.6 Conclusion . 163

ζ Integrated Cloud Benchmark Suite 165
ζ.1 Introduction . 165
ζ.2 Related Work . 166
ζ.3 Benchmarking Methodology . 167

ζ.3.1 Architecture . 167
ζ.3.2 Cloud WorkBench Extensions 167
ζ.3.3 Benchmarks . 168

ζ.3.3.1 Micro-Benchmarks 168
ζ.3.3.2 Application-Benchmarks 169

ζ.4 Case Study . 171
ζ.4.1 Setup . 171
ζ.4.2 Results . 172

xx CONTENTS

ζ.4.3 Discussion . 173
ζ.5 Conclusion . 174

η Cloud Application Performance Estimation 177
η.1 Introduction . 177
η.2 Related Work . 179
η.3 Methodology . 180
η.4 Benchmarking Dataset . 182
η.5 Variability for the same Instance Types 183

η.5.1 Results . 183
η.5.2 Discussion . 183
η.5.3 Implications . 184

η.6 Results and Discussion . 185
η.6.1 RQ1 – Estimation Accuracy 185

η.6.1.1 Results . 185
η.6.1.2 Discussion . 186
η.6.1.3 Implications 187

η.6.2 RQ2 – Micro-Benchmark Selection 187
η.6.2.1 Results . 187
η.6.2.2 Discussion . 189
η.6.2.3 Implications 189

η.7 Conclusion . 190

θ Software Microbenchmarking in the Cloud 193
θ.1 Introduction . 193
θ.2 Background . 196

θ.2.1 Software Microbenchmarking 196
θ.2.2 Infrastructure-as-a-Service Clouds 197

θ.3 Approach . 197
θ.3.1 Project and Benchmark Selection 198
θ.3.2 Cloud Provider Selection 199
θ.3.3 Execution . 201

θ.4 Benchmark Variability in the Cloud 203
θ.4.1 Differences between Benchmarks and Instance Types . . 204
θ.4.2 Sources of Variability 207

θ.5 Reliably Detecting Slowdowns 210
θ.5.1 Statistical Tests . 210

θ.5.1.1 Wilcoxon Rank-Sum 210
θ.5.1.2 Confidence Intervals 211

θ.5.2 Sampling Strategies . 211
θ.5.2.1 Instance-Based Sampling 212
θ.5.2.2 Trial-Based Sampling 213

θ.5.3 A/A Testing . 214
θ.5.3.1 Example . 214
θ.5.3.2 Impact of Sampling Strategy 215
θ.5.3.3 Minimal Number of Required Samples 217

θ.5.4 Minimal Detectable Slowdown Sizes 219
θ.5.4.1 Approach . 220
θ.5.4.2 Instance-Based Sampling 220

CONTENTS xxi

θ.5.4.3 Trial-Based Sampling 223
θ.6 Discussion . 226

θ.6.1 Implications and Main Lessons Learned 226
θ.6.1.1 Cloud Provider and Instance Type 227
θ.6.1.2 Measurement Strategy 227
θ.6.1.3 Required Number of Measurements 228
θ.6.1.4 Minimal Detectable Slowdown Size 228
θ.6.1.5 Testing Using Wilcoxon vs. Overlapping Confi-

dence Intervals 229
θ.6.2 Threats to Validity . 229

θ.6.2.1 Threats to Internal and Construct Validity . . 229
θ.6.2.2 Threats to External Validity 230

θ.6.3 Future Directions . 230
θ.7 Related Work . 231

θ.7.1 Comparison to Our Previous Work 232
θ.8 Conclusions . 233

Bibliography 235

xxii CONTENTS

Chapter 1

Synopsis

Cloud computing [1, 2] has transformed the delivery of modern software sys-
tems. The established cloud computing paradigm Infrastructure-as-a-Service
(IaaS) grows unabatedly [3–5] and the emerging paradigm Serverless computing
experiences rapid adoption [6–10]. IaaS can be seen as the core of cloud environ-
ments offering low-level computing resources (e.g., CPU processing time or disk
space) as self-service, prevalently in the form of virtual machines (VMs). As
cloud computing evolves towards higher-level abstractions such as the serverless
paradigm, it aims to liberate users entirely from operational concerns, such as
managing or scaling server infrastructure. Function-as-a-Service (FaaS) is one
embodiment of serverless and offers a high-level fully-managed service with
fine-grained billing to execute event-triggered code snippets (i.e., functions).

The continuing growth of the cloud computing market has led to an un-
precedented diversity of cloud services offered in many different configurations
with varying performance characteristics. Hence, selecting an appropriate
cloud service with an optimal configuration for application performance and
cost-efficiency is a non-trivial challenge.

Performance evaluation is a field of research that systematically measures
characteristics such as latency or throughput to build an understanding of
performance in a given environment. Serverless performance evaluation is a
young but very active area of research that lacks a consolidated understanding
and application-level performance insights. In contrast, performance evaluation
in IaaS clouds is an established area of research but requires new methods for
reproducible experimentation and for understanding the relationship between
different types of performance benchmarks (i.e., performance tests). Therefore,
this thesis formulates the following goal:

Goal

My PhD thesis aims to enable reproducible performance evaluation
of serverless applications and their underlying cloud infrastructure.

To achieve this goal, this thesis performs empirical research on serverless
applications and performance, contributes novel approaches and benchmarks
for serverless and their underlying cloud infrastructure, and conducts field
experiments in real cloud environments.

1

2 CHAPTER 1. SYNOPSIS

The remainder of this chapter is organized as follows. Section 1.1 introduces
relevant background on cloud computing and the foundations of performance
evaluation. Section 1.2 summarizes related work in the fields of FaaS and
IaaS performance evaluation. Section 1.3 describes challenges that motivate
the high-level research questions in Section 1.4. Section 1.5 summarizes the
research methodology used to address the research questions. The contributions
of the individual papers are summarized and linked to the research questions
in Section 1.6. The research questions are then answered in Section 1.7 and
discussed in a larger context in Section 1.8. Section 1.9 outlines future research
directions and Section 1.10 concludes this thesis.

1.1 Background

This section defines cloud computing, serverless computing, and Function-
as-a-Service (FaaS). It further introduces the foundations of performance
evaluation, distinguishes between micro- and application-level benchmarks,
describes distributed tracing, and discusses reproducibility in science.

1.1.1 Cloud Computing

Cloud computing [2, 11–14] is most commonly defined as:

a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort
or service provider interaction.

—The NIST Definition [1]

Cloud computing continues to evolve, moving from low-level generalist
services towards more specialized high-level services. Early Infrastructure-as-a-
Service (IaaS) clouds offer a low-level abstraction of computing resources. These
resources are most commonly provided in the form of self-administered virtual
machines (VMs) where users have near full control of the software stack [15].
Cloud VMs are offered in many different sizes (also called instance types) with
different performance and cost characteristics. A prominent example of an
IaaS compute service is the Amazon Elastic Compute Cloud (EC2), which
was initially introduced by the cloud provider Amazon Web Services (AWS) in
2006 [16].

As cloud computing matures, new services push towards more fine-grained
deployment units of increasingly specialized services as depicted in Figure 1.1.
VMs virtualized the hardware of bare metal machines, containers provide
virtualization on top of a shared operating system, and Function-as-a-Service
(FaaS) offers prepackaged runtimes for high-level application development. FaaS
deployment units are small code functions written in high-level programming
languages such as JavaScript or Python. Hence, FaaS allows developers to
focus on business logic while abstracting away operational concerns, such as
autoscaling VMs.

1.1. BACKGROUND 3

VM VM

VM

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

Le
ve

l o
f A

bs
tra

ct
io

n

Unit of DeploymentCoarse-grained Fine-grained

Lo
w

H
ig

h

Bare Metal

Virtual Machines
(IaaS)

Containers

Functions
(FaaS)

Figure 1.1: Progression of deployment options (adapted from [17–20]).

1.1.2 Serverless Computing and Function-as-a-Service
Despite several popular definitions for serverless computing and Function-as-
a-Service (FaaS) [19, 21–25], both terms are often used inconsistently and
sometimes even with contradicting interpretations [19]. The term serverless
(i.e., without managing servers) can be considered confusing because serverless
platforms are technically built on servers but they are managed by a cloud
provider rather than a cloud user. Nevertheless, the term serverless is widely
adopted by academics and practitioners [22, 23]. This thesis adopts an inter-
pretation based on an accessible introduction to serverless computing [21], the
vision on FaaS and serverless architectures from the SPEC Cloud research
group [24], and a definition based on broad discussions in a Dagstuhl seminar
on serverless computing [25].

Serverless computing is a cloud computing paradigm that aims to
liberate users entirely from operational concerns, such as managing
or scaling server infrastructure, by offering a fully-managed high-
level service with fine-grained billing.

Function-as-a-Service (FaaS) is one embodiment of serverless com-
puting and is defined through FaaS platforms (e.g., AWS Lambda)
executing event-triggered code snippets (i.e., functions).

Figure 1.2 visualizes the relationship between serverless and FaaS and lists
example FaaS platforms1. This thesis focuses on serverless applications using
FaaS and does not explicitly cover serverless or event-driven computing without
FaaS. For example, the performance of serverless storage (e.g., Amazon S3)
can be relevant as part of serverless applications using FaaS and external
services [26] but is not considered in isolation [27]. Paper α is framed as
FaaS from that perspective, while the subsequent Papers β to ε are framed

1https://landscape.cncf.io/format=serverless

https://landscape.cncf.io/format=serverless

4 CHAPTER 1. SYNOPSIS

Function-as-a-Service

Event-driven ComputingServerless Computing

AWS Lambda

Google Cloud
Functions

IBM Cloud
Functions

Knative

Figure 1.2: Relationship between serverless and FaaS (adapted from [19]).

as serverless to emphasize the tight integration with external services of FaaS.
Practitioners [22, 23] define serverless as a combination of FaaS and Backend-
as-a-Service (BaaS). BaaS refers to managed services such as Amazon S3 and is
also dubbed external services from a FaaS perspective. In practice, the terms
FaaS and serverless are often used interchangeably and therefore this thesis
uses serverless functions to distinguish FaaS (e.g., AWS Lambda) from BaaS
(e.g., Amazon S3).

1.1.3 Performance Evaluation

Performance evaluation, also known as performance benchmarking or perfor-
mance testing, is the process of systematically evaluating performance features
(e.g., latency or throughput [28]) of computing resources (e.g., CPU, memory)
and applications (e.g., Web serving, scientific computing).

The fundamental performance testing terminology includes the following
components: system under test, workload, benchmark, and benchmark suite.
A system under test (SUT) refers to environments or components that are
evaluated according to clearly defined metrics, such as response time. In the
context of this thesis, the SUT is typically either a cloud environment (i.e., IaaS
or FaaS) or an application within a cloud environment. A workload refers to
the stimulation that is applied to a SUT to observe a certain effect (e.g., change
in performance). This thesis distinguishes between synthetic workloads for
micro-benchmarks and realistic workloads for application-benchmarks, which
intend to imitate real-world scenarios. A benchmark tests performance in a
controlled setup by applying a workload to a SUT. A benchmark suite groups a
set of related benchmarks and defines an execution methodology for combined
execution.

Concrete performance features [28], metrics [29], and evaluation methods [30,
31] are cataloged in related work and described within the thesis where relevant.

1.1. BACKGROUND 5

Micro-Benchmarks Application-Benchmarks

Overall performance

Domain

Workload

Resource
Usage

Generic Specific

Real-worldSynthetic

HeterogenousNarrow

NetworkStorageMemoryCPU

Figure 1.3: Micro- vs. application-benchmarks.

1.1.4 Micro- and Application-Benchmarks

Figure 1.3 compares two common types of benchmarks [32–34], namely micro-
and application-benchmarks. Micro-benchmarks target a narrow performance
aspect (e.g., floating-point CPU performance) with synthetic workloads. These
generic benchmarks are not bound to a certain domain (e.g., Web serving) but
can provide performance insights that are potentially transferable within certain
execution environments (e.g., VM instance type). Application-benchmarks, also
known as macro-benchmarks, aim to cover the overall performance of real-
world application scenarios. Typical metrics are end-to-end response time or
throughput. Their results are either specific to a certain application under a
given workload or a domain of related applications (e.g., Web serving or scientific
computing). Their resource usage profile might be complex and dynamic as they
are designed to solve a real-world task rather than testing a specific resource
in isolation. Application-benchmarks tend to be long-running, complex to
configure, and hard to explain due to their large scope [34]. Examples of both
benchmark types are described in Section ζ.3.3 for IaaS and in Section α.2 for
FaaS.

For synchronously invoked applications, the overall performance can be
measured as client-side response time. However, the end-to-end latency for
serverless applications is hard to measure due to asynchronous call boundaries
across external services. Therefore, distributed tracing is required for full
observability and will be discussed in the next section.

1.1.5 Distributed Tracing

Distributed tracing [35–38] aims to achieve end-to-end observability of a request
across distributed components. In 1994, Schwarz and Mattern [39] formally
introduced detection models for causual relationships in distributed systems
and tracing solutions started to emerge in the 2000s, for example Magpie [40] or
X-Trace [36]. Google popularized distributed tracing [41] with Dapper [37] and
many other companies adopted the practice as shown in an industry adoption
report [42].

Figure 1.4 visualizes an end-to-end backend trace for a synchronous applica-

6 CHAPTER 1. SYNOPSIS

1
Service1

Function1

Service2

Create tracing token

2 Pass tracing token

Trace point Causal relationshipTrace span
Time

Figure 1.4: Simplified causal-time trace diagram of a synchronous invocation.

tion with a causal invocation chain starting from Service1 over Function1 into
Service2. The service receiving an incoming request (e.g., Service1) generates a
unique tracing token 1 for each request. This tracing token is then used to label
each timestamp captured at trace points of interest and needs to be passed 2
into every downstream service along the invocation chain. Two consecutive
trace points are grouped into a trace span if they encompass a specific operation
(e.g., computation) from the same component (e.g., Service2). A centralized
tracing service correlates spans of the same request from all components using
the tracing token to build a trace graph with causal relationships.

1.1.6 Reproducibility

“Repeatability and reproducibility are cornerstones of the scientific process” [43]
but often neglected in natural [44] and computer [43] science research. Repeata-
bility refers to the extent successive measurements with the same method under
the same conditions yield the same results [45]. A repeatability study [43] found
that more than half of 601 papers from top-rated ACM systems conferences
around 2012 lack functional code. Even after spending ample efforts to fix
build failures, repeatability was impossible for the results of at least half of
these papers. However, reproducibility could still be achieved as it refers to the
extent the same results can be achieved with the same method under changed
conditions of measurements [45].

Following these definitions, repeatability is practically impossible in public
cloud environments due to the lack of control over a multi-tenant environ-
ment (i.e., shared among many users) offered by a third-party cloud provider.
Therefore, this thesis focuses on technical reproducibility of cloud experimenta-
tion, which requires several aspects to ensure an experiment can be repeated
with the same methodology. A complete description is often unrealistic for
space-constrained research papers [46] or for blogposts that aim for a short
attention span. Therefore, technical artifacts should be published as an online
appendix in a usable form [47]. This might include source code, input data
(e.g., workloads), and technical descriptions. Access to the same infrastructure
is fundamentally given for public clouds but hampered due to their continuous
evolution and potentially high costs. Due to the fast evolution of modern com-
putational environments, Lin and Zhang [48] advocate for an understanding of
reproducibility as a process rather than as an achievement.

1.2. RELATED WORK 7

1.2 Related Work
This section discusses related work on (i) serverless performance evaluation
and application characteristics, (ii) serverless application benchmarking and
distributed trace analysis, and (iii) IaaS performance evaluation and reliable
performance testing in cloud environments.

1.2.1 Serverless Performance Evaluation
Performance evaluation in serverless and FaaS has a 6-year history with first
studies [49, 50] appearing around 2016. The first reports followed the public
release of AWS Lambda in 20152, which is considered the first FaaS offer-
ing by a large public cloud provider. Systematic mapping studies [51, 52]
indicate that performance is the most popular research direction in the field
of serverless computing. However, current reports on FaaS performance are
disparate originating from different studies executed with different setups and
different experimental assumptions. The serverless community is lacking a
consolidated view on the state of research on FaaS performance. To the best
of my knowledge, there exists no unified view on FaaS performance apart from
a literature review reporting on preliminary results [53]. Kuhlenkamp and
Werner [53] proposed a methodology for a collaborative literature review on
FaaS performance evaluation and reported preliminary results from 10 academic
studies. Otherwise, the FaaS performance evaluation landscape has only been
discussed as part of limited related work sections in primary studies, most
thoroughly by Somu et al. [54] across 7 studies.

1.2.2 Serverless Application Characteristics
The most extensive curated collection of real-world serverless applications
lists 15 applications [55] and another collection of 13 applications summarizes
how serverless is used for four common use cases [21]. Cloud providers (e.g.,
AWS Serverless Application Repository3) and FaaS frameworks (e.g., Server-
less Framework4) publish their collections of serverless applications but these
examples typically serve rather as developer documentation than real-world
applications. Other studies addressed developer experience [56] and patterns
for serverless functions [57]. However, the characteristics of individual serverless
applications have not been systematically analyzed by prior work.

1.2.3 Serverless Application Benchmarks
Existing application-level benchmarks and empirical performance evaluations
focus on the overall response times of single-function applications. Serverless-
Bench [58] presents a diverse application benchmark with four multi-function ap-
plications but is limited to synchronous invocations and therefore doesn’t cover
typical serverless applications coordinated by asynchronous function triggers.
From a cloud providers perspective, vHive [59] and faas-profiler [60] evaluate
server-level overheads caused by CPU branch mispredictions or hypervisor load

2https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
3https://aws.amazon.com/serverless/serverlessrepo/
4https://github.com/serverless/examples

https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
https://aws.amazon.com/serverless/serverlessrepo/
https://github.com/serverless/examples

8 CHAPTER 1. SYNOPSIS

times for coldstarts. From a developer’s perspective, FunctionBench [61] and
SeBS [62] offer diverse single-function applications and BeFaaS [63] presents
a single multi-function application. However, none of the existing applica-
tion performance studies supports diverse external services and asynchronous
function coordination, which are both core premises of event-based serverless
architectures.

1.2.4 Distributed Trace Analysis

Distributed tracing is common in microservice architectures but its practice
and analysis are big challenges across all software engineering [64–66]. A survey
among 106 practitioners working with microservices showed that distributed
tracing is among the top observability challenges mentioned by 45% of the
respondents [64]. A related interview study across ten companies identified
many challenges and raised intelligent trace analysis techniques as a new big
data problem for software engineering [65]. Bento et al. [66] outline challenges
and research directions for automated analysis of distributed traces. Current
production systems such as Canopy [67] from Facebook are primarily used
for ad hoc manual analysis [66, 67] but research proposed several techniques
for automated trace analysis. Schwarz and Mattern [39] introduce a formal
notation for causality and time and survey approaches for detecting causal
relationships in distributed systems. Pivot tracing [68] introduces an efficient
happened-before join operator to facilitate cross-component event correlation.
Hendriks et al. [69] present algorithms for critical path analysis and trace
graph comparison based on their generalized graph representation of execution
traces [70]. FIRM [71] combines critical path and critical component analysis
with machine learning models to identify and mitigate service level objective
(SLO) violations. Luo et al. [72] use graph clustering to characterize the call
graph dependency structure and performance of production microservice at
Alibaba.

Although tracing for serverless computing raises several new challenges, it
has received little attention. GammaRay [73] augments AWS X-Ray to track
casual ordering and Lowgo [74] proposes a tracing tool for multi-cloud serverless
applications. A comparison study of different serverless tracing tools investigates
how well they detect different types of faults [75] and Costradamus [76] uses
distributed tracing to estimate per-request costs. However, serverless tracing
is still emerging and trace analysis remains a largely manual process [77].
Provider-managed infrastructure limits access to fine-grained instrumentation
and developers need to rely on distributed tracing services offered by cloud
providers. This leads to observability gaps and typically requires implicit
tracing of downstream services due to missing tracing support. Further, the
event-based nature of serverless requires adaptations to traditional critical path
analysis for synchronous invocation patterns as performed in FIRM [71].

1.2.5 Infrastructure-as-a-Service Performance Evaluation

Performance evaluation in IaaS cloud environments has a 15-year history with
the first reports [78–80] appearing around 2007. The first reports followed the
beta release of Amazon EC2 in 2006 [16], which is considered to be the first

1.2. RELATED WORK 9

i) Single Trial

A B C

A

ii) Multiple Consecutive Trials (MCT)

B C

iii) Multiple Interleaved Trials (MIT)

A B C A B C A B C

iv) Randomized Multiple Interleaved Trials (RMIT)

AB C AB A BC

A A B B CC

C

Figure 1.5: Different execution methodologies for three alternatives A, B, C
(reproduced from [93]).

commercially available IaaS cloud provider. Since then, cloud performance eval-
uation has become a popular research area with hundreds of papers published on
topics such as benchmarking expectations [81, 82], performance metrics [28, 29],
benchmarking approaches [30, 31], performance benchmarks [83], performance
experiments [84–87], or hardware heterogeneity [88, 89]. Secondary studies
classified existing research [90] and experimentally validated hypotheses derived
by codifying primary studies [91]. Unfortunately, the rapid evolution of cloud
systems requires continuous re-evaluation [91] and new methods towards repro-
ducible experimentation in inherently unstable cloud environments [91, 92].

1.2.6 Cloud Benchmarking Execution Methodology

Existing measurement methodology often makes incorrect assumptions about
the underlying system under test when combining multiple performance bench-
marks. Abedi and Brecht [93] proposed a new execution methodology called
Randomized Multiple Interleaved Trials (RMIT). Figure 1.5 visualizes RMIT
with three alternatives, which could represent different benchmarks. Single-trial
and multiple consecutive trials (MCT) are currently the most common method-
ologies in practice but could lead to erroneous conclusions. Therefore, RMIT
should be used to account for potential periodic effects in cloud environments
beyond the control of experimenters. RMIT was evaluated through simulation
based on measurements of micro-benchmarks collected by other researchers [87].

Several IaaS cloud experiment automation frameworks have been pro-
posed [94–97] but only IBM’s Cloud Rapid Experimentation and Analysis
Toolkit (CBTOOL)5 described by Silva et al. [94] and Google’s PerfKitBench-
marker6 are still actively maintained. None of the existing frameworks provide
execution methodologies beyond serial trials. Hence, I am not aware of any
IaaS benchmark suite that systematically combines multiple benchmarks using
a state-of-the-art execution methodology.

5https://github.com/ibmcb/cbtool
6https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

https://github.com/ibmcb/cbtool
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

10 CHAPTER 1. SYNOPSIS

1.2.7 Cloud Application Performance Prediction
Application performance prediction for optimizing cloud service selection is a
common area of research, especially in the context of cloud migration. Initial
prediction methods, such as CloudProphet [98], primarily focused on predicting
application performance in cloud environments when migrating an application
from an on-premise application, for example through trace-and-replay. As
cloud offerings started to become more diverse, holistic methods and tools for
cloud rightsizing [99, 100] have been proposed to support cloud migration and
optimal service selection. Optimization methods based on micro-benchmarking
were proposed and validated for scientific applications [101]. So far, these
methods are typically limited to few service types and applications from a
single domain. Further, training and validation of existing studies might be
negatively impacted by the lack of a state-of-the-art execution methodology.

Three of the most related studies were published shortly before and after
Paper ζ. Yadwadkar et al. [102] predict the performance of video-encoding and
Web serving applications with diverse resource profiles for 11 to 15 VM instance
types in two cloud providers using hybrid online and offline data collection and
modeling. Their profiling benchmarks are limited to cherry-picked workload
requirements, described in insufficient detail, and unavailable, neither as code
nor dataset. Wang et al. [103] use two micro-benchmarks to predict the
performance of seven programs from a CPU-intensive benchmark suite for three
different VM instance types across two cloud providers. Baughman et al. [104]
predict the performance of bioinformatic workflows for 14 VM instance types
by combining historical resource traces with online profiling. None of the three
studies use interleaved or randomized trials.

1.2.8 Performance Testing in Cloud Environments
Traditional performance testing is conducted as a laboratory experiment in
a contrived setting using self-managed bare metal hardware for maximum
precision of the measurements. Cloud environments have become attractive
testbeds for long-running test performances test suites due to their rapid
availability of seemingly unlimited computational resources. Further, with
cloud environments becoming the deployment target of many applications,
cloud-specific performance characteristics might only be observable in real cloud
environments. However, performance fluctuations (i.e., unstable or variable
performance) are common in cloud environments [87, 91, 92, 105–107] due to
virtualization [108], noisy neighbors [109], or hardware heterogeneity [88, 89].

Software microbenchmarks are a type of performance test where source
code at method-level is used as a workload and repeatedly executed to obtain
a performance distribution. A benchmarking harness such as JMH for Java
orchestrates the testing process and reports summary statistics such as average
execution time, throughput, or resource utilization. They are sometimes referred
to as unit tests for performance [110, 111] but are seldomly used in open source
projects according to Github mining studies [111, 112] due to challenges related
to automation [111] and implementation [112]. An empirical study of 123
open source Java microbenchmarks has shown that bad practices can severely
impact the outcome of these tests [113]. Chen and Shang [114] execute software
microbenchmarks in a cloud environment and found that most code changes

1.3. CHALLENGES 11

lead to both performance improvements and performance regressions at the
same time. Hence, the unstable nature of cloud-based execution environments
for software microbenchmarks might affect their reliability.

1.3 Challenges

This section describes six challenges that motivate my research based on gaps
outlined in related work.

Challenge 1 (C1): No consolidated view on serverless performance
evaluation Previous research has indicated performance-related challenges
common to many FaaS platforms such as slow coldstarts, unpredictable perfor-
mance, or substantial platform overheads. So far, reports about performance-
related challenges in FaaS are disparate and originate from different studies
(see Section 1.2.1), executed with different setups and different experimental
assumptions. The serverless community is lacking a consolidated view on the
state of research on FaaS performance.

Challenge 2 (C2): No consolidated view on serverless application
characteristics Current reports about serverless applications regarding their
motivation, context, and implementation are scattered and sometimes conflict-
ing. Cloud developers seek guidance on questions such as why developers build
serverless applications, when are they well-suited, or how are they implemented.
However, there are currently no systematic studies about serverless applications
and their common characteristics (see Section 1.2.2).

Challenge 3 (C3): Insufficient application benchmarks Existing ap-
plication benchmarks are typically limited to single-function applications and
integrated with at most a single type of external service. Most importantly, no
prior work covers asynchronous applications although serverless architectures
are inherently event-driven, and most event-based function triggers behave
asynchronously. Hence, the serverless community lacks a realistic applica-
tion benchmark designed based on real-world application characteristics (see
Section 1.2.3).

Challenge 4 (C4): No fine-grained performance characterization of
common serverless applications Existing serverless performance studies
typically report the overall response time and derive insights through extensive
experimentation and sensitivity analysis of several factors. Such coarse-grained
results are hardly actionable and current approaches for distributed trace
analysis are primarily manual (see Section 1.2.4). Further, solely focusing on
synchronous response times ignores an important class of applications given
the asynchronous nature of many serverless applications. Therefore, serverless
studies should provide fine-grained insights into asynchronously coordinated
applications.

12 CHAPTER 1. SYNOPSIS

Challenge 5 (C5): Unclear relationship between micro- and application-
level benchmarks Given the strong focus on micro-benchmarks in both
FaaS and IaaS, it remains unclear how relevant these artificial benchmarks are
to gaining insights into the performance of real-world applications. Despite
extensive research of IaaS cloud infrastructures (see Section 1.2.5), existing
work does not systematically combine different types of benchmarks using
state-of-the-art execution methodology (see Section 1.2.6) and approaches for
application performance prediction are limited in scope (see Section 1.2.7).
Therefore, a systematic study of different benchmark types is needed to evaluate
the usefulness of micro-benchmarks for application performance prediction.

Challenge 6 (C6): Unclear reliability of performance evaluation in
the cloud Multi-tenant cloud infrastructures are known to cause unstable
performance (see Section 1.2.8) and flawed measurement methodologies in
cloud environments could lead to erroneous conclusions (see Section 1.2.5).
However, it remains unclear to what extent different benchmarks are affected
by performance variability, and how reliable software performance tests can be
in unstable cloud environments.

1.4 Research Questions

To address the goal of this PhD thesis, I formulate the following high-level
research questions (RQs) motivated by the six challenges raised in the previous
section:

RQ1 What is the current state of serverless applications and their perfor-
mance?

Serverless computing is a very active field of research but lacks a con-
solidated view on performance evaluation (C1) and application charac-
teristics (C2). To address this gap, RQ1 aims to systematically map
the landscape of existing work on serverless performance evaluation and
identify common characteristics of serverless applications from diverse
sources.

RQ2 What are the performance challenges of serverless applications?

Studies on serverless performance evaluation focus on artificial micro-
benchmarks and realistic applications remain insufficiently studied (C3).
To address this gap, RQ2 aims to propose a novel application bench-
mark constructed based on insights from RQ1 and subsequently conduct
benchmarking experiments to identify performance challenges in realistic
serverless applications through fine-grained trace analysis (C4).

RQ3 How can limitations of benchmarking cloud infrastructure be addressed?

The underlying cloud infrastructure of serverless platforms can affect
the validity of performance measurements. Such limitations of cloud
benchmarking can hamper the usefulness of benchmarks in predicting
application performance and compromise the reliability in detecting per-
formance regressions. Therefore, RQ3 targets IaaS clouds to clarify

1.5. RESEARCH METHODOLOGY 13

Table 1.1: Mapping of research methodologies to research questions.

Research Methodology Section RQ

Literature Review 1.5.1 RQ1
Sample Study 1.5.2 RQ1
Engineering Research 1.5.3 RQ2+RQ3
Field Experiment 1.5.4 RQ2+RQ3

the relationship between micro- and application-benchmarks (C5) and
quantify the performance variability and reliability in cloud benchmark-
ing (C6).

1.5 Research Methodology

This section summarizes the research methodology used to answer the research
questions of this thesis. The terminology is based on the framework “ABC of
Software Engineering Research” [115] for knowledge-seeking primary studies
and complemented with the “ACM SIGSOFT Empirical Standards” [116] and
established research guidelines for solution-seeking [117] and secondary research
studies [118, 119].

Table 1.1 summarizes the mapping of research methodologies (this section)
to the research questions of this thesis (Section 1.4). For RQ1, a literature
review and sample study were selected to address the lack of a consolidated view
on FaaS performance evaluation and serverless application characteristics. The
literature review on FaaS performance evaluation was suitable because many
individual studies existed but a systematic topic mapping and synthesis of evi-
dence were missing. The sample study on serverless application characteristics
was suitable because no systematic collection of applications was available and
the goal was to study the serverless applications (i.e., primary research) and
not the contributions of existing studies (i.e., secondary research). The results
of these knowledge-seeking research methodologies identify relevant gaps in the
literature and practical problems to be addressed in subsequent solution-seeking
research. Therefore, RQ2 and RQ3 adopt engineering research to propose novel
approaches, tools, and algorithms (i.e., solution-seeking research) and use field
experimentation to evaluate the proposed solutions.

1.5.1 Literature Review

A systematic literature review is a type of secondary research study that
maps topics and synthesis evidence from original primary studies in a defined
field of research. Figure 1.6 summarizes the taxonomy of systematic secondary
studies by clarifying the types of analyses and sources under study. A multivocal
literature review (MLR) [119] combines topic mapping and synthesis of evidence
(i.e., aggregation of insights) for academic and grey literature. Non-peer-
reviewed grey literature includes sources such as white papers, presentations, or
blog posts. Including grey literature about FaaS performance was relevant given
the strong industrial interest and the goal to identify potential mismatches

14 CHAPTER 1. SYNOPSIS

Types of secondary studies

SLM/SM

MLM MLR

GLRSLR GLM

Synthesis of
evidenceMapping

Types of analysis

Sources under study
! academic literature
" grey literature

! " MLM: Multivocal literature mapping
! " MLR: Multivocal literature review
! " SLM/SM: Systematic (literature) mapping (i.e., classification)
! " SLR: Systematic literature review
! " GLM: Grey literature mapping
! " GLR: Grey literature review includes

"!

Figure 1.6: Taxonomy of systematic secondary studies (adapted from [119]).

Academic Literature

Grey Literature

Selection Strategy

Structured
Review Sheet Results ~900 51

 ~650 41

 112

Figure 1.7: Multivocal literature review process summary.

between the academic and industrial perspectives. The mapping of FaaS
experiment designs helps to identify research gaps and aggregated insights on
reproducibility challenges can guide future studies.

Figure 1.7 summarizes the MLR process of Paper α, which identified 112
relevant primary studies from academic (51) and grey (41) literature. Peer-
reviewed papers (e.g., papers published in journals, conferences, and workshops)
are classified as academic literature (i.e., white literature) and other studies
(e.g., preprints of unpublished papers, student theses, blog posts) as grey
literature. The search process and source selection for academic literature
follow a conventional systematic literature review (SLR) process [118]. It was
guided through an initial seed of studies [120] discovered through manual
search [121] and refined through complementary search strategies, such as
alert-based search. The search and selection process for grey literature is based
on guidelines for including grey literature [119].

1.5. RESEARCH METHODOLOGY 15

Scientific
Computing

2 Researchers

22 Characteristics

83 Serverless
Applications

Review 1

Review 2

89 Analyzed
Serverless Applications

6 Serverless
Applications

Review

Domain Expert

Open-source
Projects

Academic
Literature

Industrial
Literature

Discussion and
Consolidation32

23

28

Fleiss' kappa

A

B

C

D

E

Figure 1.8: Sample study process.

1.5.2 Sample Study

A sample study is conducted in a neutral setting (i.e., desk research) and
involves a purely observational analysis of artifacts such as documentation
or source code [115]. This research strategy was suitable for characterizing
serverless applications in Paper β to achieve high generalizability of findings
by including applications from a broad range of different sources. A follow-up
meta-analysis across related primary studies improves the generalizability of
the findings even further. The direct analysis of documentation and source
code related to subject applications qualifies as primary research. The inclusion
of academic literature in the broad data collection might initially hint towards
secondary research but the goal was to study serverless applications and not
the contributions of primary studies. A sample study is inherently limited to
the data available because data collection is not interactive (i.e., “data comes
as is” [115]). Therefore, 6 characteristics were excluded due to insufficient
information available.

Figure 1.8 summarizes the process of analyzing 89 serverless applications
from four different sources. First, descriptions of 89 serverless applications E
were collected from open-source projects A , academic literature B , industrial
literature C , and a scientific computing organization D . Second, two randomly
assigned reviewers out of seven available reviewers characterized each applica-
tion along 22 characteristics in a structured collaborative review sheet. The
characteristics and potential values were defined a priori by the authors and
iteratively refined, extended, and generalized during the review process. After
an initial moderate inter-rater agreement [122], a discussion and consolidation
phase resolved all differences between the two reviewers with consultation
among all authors if necessary. The six scientific applications were not publicly
available and therefore characterized by a single domain expert, who is either
involved in the development of the applications or in direct contact with the
development team.

The sampling strategy of serverless applications is important to achieve
a varied sample from different sources, although the characterization is the

16 CHAPTER 1. SYNOPSIS

① Benchmark Design ② Benchmark Execution ③ Data Pre-processing ④ Data Analysis

Engineering Research Benchmarking Field Experiment

Figure 1.9: Research process of engineering research and field experiment.

primary goal of this study (i.e., following a positivist and reductionist philo-
sophical stance [123]). Following the terminology and guidelines by Baltes and
Ralph [124], this study applied different kinds of purposive sampling for the 83
publicly available serverless applications and convenience sampling for the six
internal scientific computing applications analyzed by an author employed at
the German Aerospace Center. Heterogeneity sampling motivated a roughly
balanced selection of open source projects, academic literature (including scien-
tific computing), and industrial literature. Search-based sampling was applied
for open source projects through an initial keyword search of the offline GitHub
mirror GHTorrent [125] and refined through filtering based on date range,
repository activity, repository popularity, and manual selection following inclu-
sion and exclusion criteria. Search-based sampling was applied for academic
literature mainly based upon manual selection from the “Serverless Literature
Dataset” [126]. Collaborative referral-chain sampling was the main source for
grey literature seeded by case studies reported by cloud providers, an existing
survey article [21], blog posts, discussion forums, and podcasts known to the
authors.

1.5.3 Engineering Research

Engineering research is a type of solution-seeking research that invents and
evaluates technical artifacts [115, 116] to solve a practical problem previ-
ously identified through knowledge-seeking research [117]. This thesis uses
benchmarking studies (i.e., a specific type of field experiment) to evaluate the
proposed solutions, which is a common combination according to the “ACM
SIGSOFT Empirical Standards” [116, 127]. Figure 1.9 visualizes this common
research process used in Papers γ to η. First 1 , benchmark design involves
developing workloads and measurement tools, typically in the form of a kit-
based benchmark suite [128]. This process is guided by literature on benchmark
construction [33, 127–129], cloud benchmarking [31, 81, 130], and existing
benchmarks (see literature review in Paper α). It often includes a combination
of configuring, porting, and implementing several performance benchmarks
into a new benchmark suite. The artifact descriptions in Papers γ to η cover
relevant aspects such design principles, architecture overview, measurement
methodology, algorithms, applications, fairness design, and configurability. Im-
plementations of key aspects are covered by unit and integration test suites. All
artifacts are available as open source software and accompanied by extensive
documentation.

1.5. RESEARCH METHODOLOGY 17

A benchmarking field experiment uses the proposed solutions through en-
gineering research (i.e., benchmark suite). Second 2 , benchmark execution
involves defining experiment plans, scheduling executions, and monitoring
potentially multi-week experiments in public cloud environments. Benchmark
execution generates large amounts of raw performance data (e.g., >70GB in
Paper γ). Third 3 , data pre-processing prepares the raw data for analysis
through filtering (e.g., skip irrelevant executions), validation (e.g., skip erro-
neous executions), re-shaping (e.g., transpose or rename), and refinement (e.g.,
convert units). Fourth 4 , data analysis calculates summary statistics, applies
statistical models, and visualizes performance distributions to answer specific
research questions.

1.5.4 Field Experiment

According to the ABC of Software Engineering by Stol and Fitzgerald [115],
a field experiment is a research strategy conducted in a natural setting (e.g.,
in a real public cloud environment) where the researcher manipulates some
variables (e.g., instance type, benchmark configurations) to observe some ef-
fect (e.g., performance metrics). Public cloud environments are massive-scale
multi-tenant systems and their emergent performance properties cannot be
replicated in a fully contrived setting as a laboratory experiment. Therefore,
only a natural setting can provide maximum realism for cloud benchmarking.
Unfortunately, the limited control within real cloud environments impedes
reproducible performance evaluation [46], which is an ongoing challenge in
both IaaS [46] and in FaaS clouds (Paper α). Mitigating these reproducibility
challenges is a cross-cutting concern throughout the field experiment studies in
Papers γ to θ. In particular, these studies strive for full automation by leverag-
ing infrastructure as code, configuration management, container technology,
and programmable experiments. Each experiment provides a documented repli-
cation package including dataset, analysis scripts, and executable experiment
plans. Finally, limited generalizability is an inherent limitation of this type of
more intrusive research compared to less intrusive research (e.g., sample study
described in Section 1.5.2).

The field experiments in this thesis are conducted as benchmarking re-
search [127] to evaluate the performance characteristics of software systems
in cloud environments. Benchmarking research in this thesis builds upon
methodological guidance from the ACM SIGSOFT Empirical Standards [127],
benchmark construction [128], requirements of a good benchmark [129], and
generic approaches for IaaS cloud benchmarking [30, 31]. Benchmarking field
experiments are often combined with engineering research as demonstrated in
Figure 1.9.

Figure 1.10 visualizes the high-level architecture of a benchmarking field
experiment used in Papers γ to ε. First 1 , an application is deployed into
a cloud provider using an automated deployment script. The application is
instrumented with detailed trace points and forwards trace spans to a provider-
specific tracing service. Second 2 , a workload profile is applied to invoke the
application. Third 3 , the benchmark orchestrator retrieves raw traces from the
tracing service. For traditional benchmarking of synchronous cloud applications
in Papers ζ and η, distributed tracing is not necessary and performance is

18 CHAPTER 1. SYNOPSIS

Tracing Service

Application Package
+ Deployment Scripts Serverless Application

Cloud ProviderBenchmark Orchestrator

Workload Profile

① Deploy

② Invoke

Raw Traces
③ Retrieve

Latency
Breakdown

④ Analyze

Results
⑤ Visualize

Figure 1.10: Field experiment process.

instead measured from the invoking client 2 . For micro-benchmarks in Papers ζ
to θ, no external invoker 2 is needed because these benchmarks are directly
invoked within a cloud VM deployed in a cloud provider. Fourth 4 , raw traces
need to be pre-processed (e.g., filtered, validated, refined) before they can be
visualized 5 as results.

1.6 Contributions
This section summarizes the appended papers in Chapters α to θ, their main
contributions this thesis is built on, and their relation to the challenges derived
from the research questions of this thesis (see Section 1.4). The main results of
this thesis are summarized in the next section (see Section 1.7).

Figure 1.11 visualizes the contributions of the appended papers in context
of the research questions targeting serverless (RQ1 and RQ2) and cloud infras-
tructure (RQ3). To consolidate the current state in serverless computing (RQ1),
Paper α contributes a literature review (Section 1.5.1) on FaaS performance
evaluation and Paper β conducts a sample study (Section 1.5.2) on application
characteristics. To address gaps in serverless application performance (RQ2),
Paper γ proposes a realistic trace-based application benchmark, Paper δ dis-
cusses fair cross-provider application benchmarking, and Paper ε contributes a
function trigger benchmark. To address the limitations of benchmarking cloud
infrastructure, Paper ζ contributes an integrated benchmark suite, which is
used in Paper η to estimate application performance through micro-benchmarks,
and its execution methodology is applied in Paper θ to evaluate the reliabil-
ity of software micro-benchmarking in cloud environments. For more details,
Table 1.2 provides a per-paper summary including publication venue, main
contribution, and a mapping to the challenges described in Section 1.3.

1.6.α Function-as-a-Service Performance Evaluation
Context Performance evaluation in FaaS environments (Section 1.2.1) is
the most popular area of research in the field of FaaS computing [51] and
previous research has indicated many performance-related challenges such as

1.6. CONTRIBUTIONS 19

Serverless

Cloud
Infrastructure

RQ1: Current State of Serverless

RQ2: Serverless Application Performance

RQ3: Limitations of Cloud Benchmarking

Paper β
Application

Characteristics

Paper α
Performance

Evaluation LitRev

Paper γ
Application
Benchmark

Paper δ
Cross-provider
Benchmarking

Paper ε
Function Trigger

Benchmark

Paper ζ
Integrated

Benchmark Suite

Paper η
App. Performance

Estimation

Paper θ
Software

Microbenchmarking

Figure 1.11: Overview of Contributions.

Table 1.2: Overview of papers with main contributions.

Paper Venue Main Contribution Challenge

α JSS’20 Review of 112 FaaS performance studies
regarding performance characteristics, con-
figurations, and reproducibility.

C1

β TSE’21 Characterization of 89 serverless applica-
tions along 16 dimensions regarding moti-
vation, context, and implementation.
Meta-analysis across 10 studies.

C2

γ Under
submission

Realistic benchmark suite of 10 serverless
applications.
Large-scale performance experiment collect-
ing over 7.5 million end-to-end traces.
Novel approach for detailed latency break-
down analysis across asynchronous call
boundaries.

C3
+
C4

δ Under
submission

Tracing model for fair cross-provider bench-
marking.

C4

ε IC2E’22
(to appear)

Cross-provider benchmark for evaluating
serverless function triggers.

C4

ζ QUDOS’18 Automated benchmark suite that combines
23 micro- and 2 application-benchmarks.

C5

η CLOUD’18 Cloud benchmarking methodology for
application-benchmark estimation based on
micro-benchmark profiling.

C5

θ EMSE’19 Large-scale experiment collecting over 4.5
million software microbenchmark results.

C6

20 CHAPTER 1. SYNOPSIS

coldstarts [131], hardware heterogeneity [132], or function triggering delays [133].
So far, these reports are disparate and originate from different studies, executed
with different setups, and different experimental assumptions. The FaaS
communication is lacking a consolidated view on the state of research on FaaS
performance.

Contribution Paper α fills this gap by conducting the first systematic and
comprehensive literature review on FaaS performance evaluation studies from
academic and grey literature. It maps the landscape of existing isolated FaaS
performance studies, identifies gaps in current research, and systematically in-
vestigates their reproducibility based on principles for reproducible performance
evaluation [46].

Method The literature review (Section 1.5.1) was designed based on guide-
lines for systematic literature reviews [118] and multivocal literature reviews [119].
A total of 112 studies were selected from academic (51) and grey (61) literature.
The analysis visualizes, describes, and discusses results related to publica-
tion trends, benchmarked platforms, evaluated performance characteristics,
used platform configurations, and reproducibility of experiments. The paper
also highlights and discusses notable differences between academic and grey
literature studies.

Relationship to Thesis The implications and gaps in the literature identified
in this paper directly aim to guide future work on serverless performance
evaluation. The lack of realistic application benchmarks motivated the empirical
study in Paper β of real-world serverless applications. Based on these insights,
Paper γ proposes a comprehensive application benchmark that addresses
several gaps identified in this paper, including benchmark types, platform
configurations, and reproducibility. Further research gaps in fair cross-provider
comparison and function trigger types are targeted in Papers δ and ε.

1.6.β Serverless Application Characteristics

Context The emerging cloud computing paradigms Function-as-a-Service
and serverless computing are increasingly adopted by the industry (shown by
market analyses [134] and surveys [135]) and academics [26, 136–138]. Initial
case studies from early adopters [139, 140] indicate significant cost reduction
and time-to-market benefits for serverless applications compared to traditional
cloud applications [141]. However, such existing reports are scattered and
unstructured. The serverless community lacks an understanding of typical
applications, which is crucial for designing relevant performance benchmarks.

Contribution Paper β characterizes 89 serverless applications along 16
dimensions regarding motivation, context, and implementation to answer ques-
tions such as: Why do so many companies adopt serverless?, When are server-
less applications well-suited?, and How are serverless applications currently
implemented? In addition to the 7 main findings of the sample study, a meta-
analysis across 10 related studies identified 8 consensuses supported by evidence

1.6. CONTRIBUTIONS 21

from multiple studies. This contribution extends our related IEEE Software
article [l].

Method A sample study (Section 1.5.2) was used to collect and characterize
existing serverless applications following a structured collaborative review
process. Descriptions of serverless applications were collected from diverse
sources including open source projects, academic literature, industrial literature,
and a scientific computing organization. Each application was either reviewed by
two researchers followed by a discussion and consolidation of all disagreements
or by a single domain expert for the six scientific applications unavailable to
the public. Finally, a meta-analysis compares the results of the sample study to
10 mostly industrial studies and datasets. This enables to validate results and
identify points of agreement and disagreement towards building a community
consensus.

Relationship to Thesis This paper shares several characteristics with the
literature review on performance evaluation in Paper α, for example, cloud
providers, programming languages/runtimes, external services, and trigger
types. Such common characteristics help identify relevant research gaps by
comparing to what extent performance studies evaluate characteristics common
in real-world serverless applications (see Section 1.9.1). These research gaps
motivated and guided further performance studies in Papers γ to ε. Most
importantly, the empirical insights of this paper were essential for designing a
realistic benchmark suite in Paper γ.

1.6.γ Serverless Application Benchmark
Context Most serverless performance studies focus on single-purpose micro-
benchmarks that are not representative of real applications. Existing application
benchmarks are insufficient because they are typically limited to single-function
applications using at most one type of external service. Most importantly, no
prior application benchmark includes asynchronously coordinated applications
although serverless is inherently event-based and event-driven architectures are
common in real-world applications.

Contribution Paper γ presents ServiTrace, a comprehensive benchmark
suite of 10 heterogeneous applications with support for fine-grained tracing
and invocation patterns derived from real-world invocation logs. It introduces
a novel algorithm and heuristics for detailed latency breakdown analysis of
asynchronously coordinated applications across a variety of external services.
Using ServiTrace, a large-scale empirical performance study was conducted in
the market-leading AWS environment, collecting over 7.5 million traces. The
novel latency breakdown analysis enabled detailed insights into median latency,
cold starts, and tail latency for different application types and invocation
patterns. Finally, ServiTrace is released as a tested, extensible open-source tool
under FAIR principles including software, data, results, and documentation.

Method ServiTrace was designed and implemented using engineering research
(Section 1.5.3) based on insights from real-world application characteristics

22 CHAPTER 1. SYNOPSIS

in Paper β and guided by goals from the literature review in Paper α. The
field experiment (Section 1.5.4) follows guidelines on benchmarking [127] and
reproducible cloud experimentation [46].

Relationship to Thesis Beyond essential methodological guidance of prior
work from Papers α and β, the results of this paper motivate further research to
extend ServiTrace and analyze important aspects for application performance
in more detail. CrossFit in Paper δ extends ServiTrace with fair cross-provider
comparison and disconnected trace correlation by refining a specific application
scenario from this paper. TriggerBench in Paper ε specifically analyzes the
latency of serverless function triggers for different external services because the
results of this paper have shown that slow trigger latency can add substantial
latency delay.

1.6.δ Cross-provider Application Benchmarking

Context Fair cross-provider comparison is challenging in serverless applica-
tions due to heterogeneous complex ecosystems. FaaS platforms are highly
provider-specific and lack standardized interfaces such as VMs for IaaS. Further-
more, FaaS platforms are not intended as standalone systems but rather deeply
integrated with other provider-specific external services through integrations
with event sources. Another challenge is that existing comparisons provide no
observability on why performance differs because they only compare overall
response times.

Contribution Paper δ contributes CrossFit. It introduces a provider-
independent tracing model for serverless applications, provides guidelines for
fair cross-provider benchmarking, and demonstrates detailed drill-down anal-
ysis for an application in two leading cloud providers. The tracing model
identifies matching trace points available in multiple providers. The fairness
guidelines cover 12 important aspects related to architecting applications for
fair performance comparison across cloud providers. The drill-down analysis
identifies performance challenges for a realistic application under different cloud
providers and workloads.

Method Engineering research (Section 1.5.3) was used to refine an application
from ServiTrace in Paper γ and port it to another cloud provider inspired
by prior work on serverless application migration [142]. A field experiment
(Section 1.5.4) subsequently demonstrated the utility of the tracing model for
cross-provider drill-down analysis using constant and bursty workloads.

Relationship to Thesis This paper addresses several research gaps identified
in the literature review in Paper α such as cross-provider application bench-
marking and insufficiently studied platform configurations. It also leverages
ServiTrace from Paper γ to alleviate reproducibility challenges.

1.6. CONTRIBUTIONS 23

1.6.ε Serverless Function Trigger Benchmark

Context Function triggers are essential building blocks in serverless, as
they initiate any function execution. However, Paper α shows that function
triggering is insufficiently studied despite being a core building block of serverless
applications in practice, as shown in Paper β. Additionally, function triggering is
inherently hard to measure given the distributed, ephemeral, and asynchronous
nature of event-based function coordination.

Contribution Paper ε introduces TriggerBench, a cross-provider benchmark
for evaluating serverless function triggers based on distributed tracing. It
describes a measurement methodology for synchronous and asynchronous
function triggers and supports trace correlation of disconnected partial traces.
TriggerBench implements three of the most popular trigger types [β] in AWS
and Microsoft Azure [143], namely HTTP, storage, and queue triggers. The
Azure implementation supports the following additional trigger types: database,
event, stream, message, and timer.

Method TriggerBench was developed with engineering research (Section 1.5.3)
building upon ServiTrace introduced in Paper γ. Subsequently, TriggerBench
was used in a benchmarking field experiment (Section 1.5.4) to evaluate a total
of 11 trigger types in two cloud providers.

Relationship to Thesis This paper addresses the research gap of insuffi-
ciently studied triggers raised by Paper α, especially across cloud providers. It
is also motivated by the results on poor trigger performance in Papers γ and δ.
It builds upon ServiTrace from Paper γ and generalizes trace correlation of
disconnected traces first demonstrated in Paper δ.

1.6.ζ Integrated Cloud Benchmark Suite

Context In contrast to the more recent trend (starting 2015) of serverless
performance evaluation (Section 1.2.1), the performance of IaaS clouds has
been extensively studied for over a decade (starting 2008) using micro- and
application-level benchmarks (Section 1.2.5). However, existing work largely
focuses on evaluating performance benchmarks in isolation without systemati-
cally combining multiple types of performance benchmarks and often comes
with several reproducibility challenges [46, 93].

Contribution Paper ζ addresses this gap by presenting an execution method-
ology that combines micro- and application-benchmarks into a new benchmark
suite, integrating this suite into an automated cloud benchmarking framework,
and implementing a repeatable execution methodology proposed in related
work (Section 1.2.6). The execution methodology was instantiated in the AWS
EC2 cloud and the paper presents selected results related to cost-performance
efficiency, network bandwidth, and disk utilization.

24 CHAPTER 1. SYNOPSIS

Method Based on cloud benchmarking guidelines [31, 81, 82, 144], relevant
benchmarks that cover different cloud resources and application domains were
selected, designed, and integrated into the CWB [97] execution framework.
The execution of these benchmarks was then automated following the RMIT
execution methodology proposed by Abedi and Brecht [93].

Relationship to Thesis IaaS provides the underlying infrastructure of
serverless computing platforms covered in Papers α to ε. Therefore, its per-
formance characteristics are also relevant and similarly evaluated by micro-
and application-benchmarks. Moreover, certain aspects are hard to measure
within restricted serverless platforms (e.g., due to execution time limits and
unavailable direct communication).

Paper ζ layed the methodological and technical foundations for the follow-
up study in Paper η. The ability to systematically collect performance mea-
surements for multiple benchmarks enables the investigation of benchmark
correlations under different configurations to support cloud service selection.

1.6.η Cloud Application Performance Estimation

Context The continuing growth of the cloud computing market has led to an
unprecedented diversity of cloud services. To support service selection, micro-
benchmarks are commonly used to identify the best-performing cloud service.
However, it remains unclear how relevant these synthetic micro-benchmarks
are for gaining insights into the performance of real-world applications.

Contribution Paper η describes a cloud benchmarking methodology for esti-
mating application performance based on micro-benchmark profiling, evaluates
this methodology in an IaaS cloud provider, and releases a dataset for micro-
and application-benchmarks of over 60 000 measurements from over 240 virtual
machines across 11 distinct virtual machine types.

Method A field experiment in the AWS EC2 cloud environment quantified
performance variability and evaluated the proposed methodology. A linear
regression model was trained across 11 VM instance types using 38 metrics
from 23 micro-benchmarks and evaluated in terms of relative error for two
applications from different domains. To select the most relevant estimators,
forward feature selection was used to identify the most useful micro-benchmarks
and compare them against three common baselines.

Relationship to Thesis This paper uses the benchmark suite from Paper ζ
to evaluate the idea of using synthetic resource-specific micro-benchmarks to
estimate the performance of application-benchmarks inspired by real-world
scenarios. It bridges the gap between ubiquitous micro-benchmarks (as shown
by Paper α) and application benchmarks (as proposed in Paper γ and extended
in Papers δ and ε). Although this papers targets IaaS, optimal VM instance type
selection seems transferable to serverless function size selection as demonstrated
in Sizeless [145] and SAAF [146] for FaaS and discussed in the threats to external
validity (Section 1.8.5.3).

1.7. RESULTS 25

1.6.θ Software Microbenchmarking in the Cloud

Context The availability of seemingly infinite resources and on-demand
elasticity makes public clouds attractive for software performance testing as
an alternative to traditional controlled bare-metal environments. However,
massive multi-tenant public cloud environments are susceptible to stochastic
variation caused by noisy neighbors and potentially other opaque performance
changes (e.g., hardware and software updates, network instabilities). Therefore,
it remains unclear how suitable inherently unstable cloud environments are for
software microbenchmarks and to what extent slowdowns can still be reliably
detected.

Contribution Paper θ quantifies the effect of cloud environments on the vari-
ability of software performance tests and explores their reliability in detecting
slowdowns. Performance variability is reported as the coefficient of variation
for 19 performance tests in 9 cloud execution environments. Further, drill-down
analysis reveals different sources of variability (i.e., benchmark vs. trial vs.
total). For reliable slowdown detection, this paper compares two execution
strategies and two statistical tests in terms of their false positive rate and
minimal-detectable slowdown.

Method A large-scale field experiment (Section 1.5.4) collected over 4.5
million microbenchmark results across three cloud providers, three classes of
instance types, two programming languages, 19 software microbenchmarks, and
two execution strategies. Two standard statistical tests were used to detect
software performance changes (i.e., A/B test) and investigate false positives (i.e.,
A/A test), namely Wilcoxon Rank-sum and overlapping confidence intervals.
An experimental simulation explores minimal-detectable slowdowns through
simulated performance regressions (i.e., slowdowns) without exceeding a 5%
false positive threshold during A/A testing.

Relationship to Thesis The surprisingly stable performance results from
Paper η in comparison to prior work motivated this more in-depth study about
software performance testing because predictable system performance is essen-
tial for efficient performance testing. Additionally, the toolkit for conducting
cloud experiments in this study builds upon the Cloud WorkBench [97] ex-
tensions and the experiment scheduling methodology from Paper ζ. Finally,
performance variability and reliability are important for mitigating repro-
ducibility challenges, as discussed in Paper α for FaaS and in related work for
IaaS [46].

1.7 Results

This section answers the research questions and summarizes solutions to the
challenges raised in Section 1.4.

26 CHAPTER 1. SYNOPSIS

1.7.1 Current State of Serverless (RQ1)

RQ1 What is the current state of serverless applications and their perfor-
mance?

Answer: Synthetic micro-benchmarks have been studied extensively but the
serverless community lacks a detailed performance understanding of realistic
applications that integrate with external services.

Landscape of serverless performance evaluation The review of 112
performance evaluation studies in Paper α found that AWS Lambda is the
most evaluated FaaS platform (88%), that micro-benchmarks are the most
common type of benchmark (75%), and that application-benchmarks are
prevalently evaluated on a single platform. It also indicates a broad coverage
of language runtimes but shows that other platform configurations focus on
very few function triggers and external services.

Serverless application characteristics The analysis of 89 serverless ap-
plications in Paper β has shown that serverless is adopted to save costs for
irregular or bursty workloads, avoid operational concerns, and for built-in
scalability. Serverless applications are most commonly used for short-running
tasks with low data volume and bursty workloads but are also frequently used
for latency-critical, high-volume core functionality. Serverless applications are
mostly implemented on AWS, in either Python or JavaScript, and make heavy
use of external services for persistence and coordination functionality.

1.7.2 Serverless Application Performance (RQ2)

RQ2 What are the performance challenges of serverless applications?

Answer: External service calls and trigger-based function coordination are
slow and suffer from long tail latency.

Serverless application benchmark Paper γ contributes a heterogeneous,
representative, reproducible, and extensible application benchmark that im-
plements end-to-end functionality and provides detailed insights through dis-
tributed tracing. The application benchmark is the most diverse to date by
covering different external services, function triggers, programming languages,
coordination architectures (synchronous and asynchronously), and applica-
tion types. A novel algorithm and heuristics support tracing of asynchronous
event-driven serverless architectures. The implementation is well-tested, has
processed over 7.5 million traces, demonstrated its automated capabilities in
long-running experiments over days and weeks, and has been used by several
master thesis projects.

1.8. DISCUSSION 27

Fine-grained performance insights for serverless applications Per-
formance experiments in Paper γ show that the median and 99th percentile
of end-to-end application latency is often dominated by external service calls
rather than computation. Some of the largest delays are caused by function trig-
gers. Their performance differs substantially across cloud providers (Paper δ)
and can add multi-second delays for asynchronously coordinated applications
(Paper ε). Coldstart overhead is not limited to container initialization (i.e.,
the time to provision a new function instance) for serverless applications. In
comparison, language runtime initialization adds more overhead and other
factors such as one-off computation tasks can also contribute substantially.

1.7.3 Limitations of Cloud Benchmarking (RQ3)

RQ3 How can limitations of benchmarking cloud infrastructure be addressed?

Answer: Only selected micro-benchmarks are suitable for estimating appli-
cation performance, performance variability depends on the resource type,
and batch testing on the same instance with repetitions should be used for
reliable performance testing.

Relationship between micro- and application-benchmarks The sys-
tematic combination of micro- and application-benchmarks in Papers ζ and η
has shown that selected micro-benchmarks are better in estimating application
performance than specification-based metrics. However, micro-benchmarks
cannot necessarily be used interchangeably even if they seemingly test the same
resource because benchmark parameters can have a profound impact.

Performance variability for different benchmark types Extensive per-
formance experiments in Papers ζ to θ have shown that performance variability
depends on the resource type and cloud provider but can also be caused by
unstable benchmarks, which should be avoided for performance testing. For
comparing alternative versions, Paper θ shows that batch testing (i.e., trial-
based) significantly reduces false-positive rates and the number of repetitions
required to reliability detect performance changes compared to version testing
(i.e., instance-based).

1.8 Discussion

This section discusses the main findings and implications of this thesis for
research and industry.

1.8.1 Serverless Observability

This thesis emphasizes the importance of detailed tracing and trace analysis
for actionable insights into complex architectures for serverless applications.
Without tracing, the client-side response time might cover the most latency-
critical synchronous invocations but misses any asynchronous event-driven

28 CHAPTER 1. SYNOPSIS

backend processing. Detailed tracing provides observability into the end-to-end
lifecycle of a request and supports root cause analysis of performance challenges.
Without detailed tracing, time-intensive experimentation of many configurations
is required in an attempt to isolate a performance issue. Therefore, observability
should provide application-level insights enriched with system-level information
to comprehensively understand serverless performance. The need for some
system-level performance information might sound counter-intuitive in the
inherently opaque serverless paradigm. However, providers should offer APIs to
expose certain performance-relevant information such as container and runtime
initialization times to optimize coldstarts. An initial academic approach to
serverless observability is limited to FaaS [147] but several companies aim to
offer full end-to-end observability, including Lumigo7, Epsagon8, Dashbird9,
Thundra10, and several others [148].

Tracing in serverless and cloud computing is complex and trace analysis
raises “a new big data problem for software engineering” [65]. Current commer-
cial solutions focus on collecting monitoring data but still face many challenges
before advancing to generate better insights and optimization recommenda-
tions. An industrial interview study [65] revealed major difficulties in trace
data quality and missing trace annotations. ServiTrace faced the same issues
due to limitations in AWS X-Ray. Therefore, Paper γ proposes enhanced trace
annotations to indicate the invocation type (i.e., synchronous or asynchronous).
Such annotations enable more robust trace analysis than heuristics, which
cannot detect asynchronous invocations that terminate before their invoker.
The tracing community also discusses such annotations to enhance the spec-
ification of the OpenTelemetry [149] standard. To mitigate bad trace data
quality, Paper γ validates each trace and reports missing or inconsistent fields
(e.g., if the sum of a trace duration does not match the elapsed time between
two timestamps). Disconnected traces are another issue in serverless due to
unsupported trace token propagation for several external services. Paper ε
demonstrates a solution to merge disconnected traces to enable end-to-end
analysis. Finally, trace analysis only just started to develop and more robust
and intelligent techniques are needed.

Serverless tracing comes with several limitations related to semantic chal-
lenges and tracing overheads. The event-driven serverless architecture causes
semantic challenges related to passive tracing and batch execution. Asyn-
chronous event-based triggers are often traced passively (or indirectly) in
contrast to actively traced compute services such as FaaS. Tracing services such
as X-Ray implement reparenting strategies to build a properly connected trace
graph. However, such strategies can fail in rare cases and cause erroneous traces.
Batch execution is a common feature for serverless queue or stream processing
services. It introduces a one-to-many mapping, which violates the assumption
that each span can only have one parent. Therefore, batch receiving remains
an unsolved semantic challenge in the OpenTelemetry tracing community [149].
Tracing overhead has a limited impact on application performance but causes
additional processing and storage demands. Tracing might add additional

7https://lumigo.io/
8https://epsagon.com/
9https://dashbird.io/serverless-observability/

10https://thundra.io/

https://lumigo.io/
https://epsagon.com/
https://dashbird.io/serverless-observability/
https://thundra.io/

1.8. DISCUSSION 29

coldstart overhead caused by tracing libraries and background initialization
but it is often negligible during runtime when implemented asynchronously.
The main overhead is caused by dedicated tracing services, which need to scale
themselves for supporting high loads. To mitigate this overhead, sampling
strategies (e.g., fixed rate or reservoir) can be used to limit ingestion rates and
short retention periods (e.g., 30 days) to cap aggregated trace data.

1.8.2 Interactive Applications with Serverless

User-centric performance models describe the human perception of performance
based on user experience research. According to long-standing research [150,
Chapter 5], the guidelines related to human perception of performance remain
the same since they were first formalized in 1968 [151]. These performance
thresholds are determined by human perceptual abilities and interpreted for
modern (web) applications by Nielsen [152, 153] and the RAIL model from
Google [154]. Users perceive reactions below 0.1 s as immediate. Reactions
below 1 s cause noticable delay but are not yet interrupting the flow of thought.
Users lose attention for reactions beyond 10 s and seek alternative tasks.

This thesis shows that latency-sensitive applications are feasible with server-
less but face many challenges, such as appropriate service selection. For example,
interactive applications should adopt the synchronous HTTP trigger, choose
a provider and language runtime with low coldstart overhead, and perform
trace analysis to optimize slow application segments. Paper ε shows that
HTTP triggers in multiple providers can achieve sub-0.1 s latency but Paper γ
indicated that any external data service (e.g., Amazon S3) likely exceeds the
limit for immediate response. Therefore, today’s serverless offerings struggle
with interactive applications unless data is served from low-latency caches or
data services are exposed directly rather than hidden from the user behind a
serverless function. Most user-facing applications cause noticeable delay but
serverless enables building highly scalable applications within the 1 s limit. For
example, BBC Online demonstrated that navigating to different pages in a per-
sonalized server-side rendered website is doable within 220ms (90th percentile)
while running 100million function invocations daily [155]. Nevertheless, the
latency breakdown in Papers γ and δ indicates that end-to-end latency quickly
adds up, and especially tail latency is challenging to control. Further, the choice
of appropriate function triggers and external services is essential, not only for
maximizing performance but also for building cost-effective applications under
specific performance requirements. A related study demonstrated massive
differences in their cost-performance comparison of alternative mechanisms for
serverless function coordination [156]. Finally, Paper β indicates that other
factors such as cost can be more important than performance for certain classes
of applications.

1.8.3 Reproducibility Challenges in Cloud Performance

This section discusses challenges and mitigation strategies for reproducible
performance evaluation in cloud environments based on the methodological
principles proposed by Papadopoulos et al. [46] (summarized in Section α.5.5).
This discussion enriches observed challenges from the literature review in

30 CHAPTER 1. SYNOPSIS

Paper α with challenges faced in engineering research and field experimentation
in Papers γ to θ.

P1 Repeated Experiments: Ideally, every experiment configuration should be
repeated many times until a statistically sound stopping criterion [157]
is reached. Unfortunately, the nature of field experimentation in unsta-
ble cloud environments [87, 91–93] can make it hard to reliably detect
performance changes within reasonable budget and time constraints, as
shown for certain configurations in Paper θ. Further, repetitions can
be implemented at different levels as exemplified in Papers ζ to θ and
scheduling strategies profoundly impact the utility of different types of
repetitions (e.g., trials, forks, iterations/executions) as shown in Paper θ.
Robust statistical methods using hierarchical bootstrapping can be com-
putationally intensive and are not (yet) widely known.
Beyond the statistical aspect, ensuring configuration equivalence across
repetitions is hampered by incomplete experimental setup descriptions
(P3) and lacking automation. The nature of field experimentation (Sec-
tion 1.5.4) makes an exact replication of the measurements rarely possible
but technical reproducibility is desired to be able to repeat the exact
same measurement methodology [46]. Paper α shows that incomplete
experimental setup descriptions make it hard to repeat any experiment.
For example, the integration of existing applications into ServiTrace
in Paper γ demonstrated that unpinned dependencies change or even
break the experiment setup. Furthermore, reusable benchmarks should
prevent naming conflicts due to global namespaces to support repeated
experiments in different contexts (e.g., different tenants, data-center re-
gions). Experiment designs with dynamic re-deployments require a high
level of experiment automation and are essential for measuring coldstarts
more reliably and efficiently rather than waiting for undocumented idle
timeouts. Therefore, ServiTrace strives for full experiment automation
by supporting executable experiment plans used in Papers γ to ε.

P2 Workload and Configuration Coverage: Papers α and β collect empirical
evidence to motivate workloads and configurations for Papers γ to ε in
terms of applications, cloud providers, programming languages, external
services, trigger types, control flow (synchronous vs. asynchronous), and
invocation patterns (e.g., bursty). Overall, Papers γ to ε focus on covering
application aspects, Papers ζ and η cover a broad range of system-
level resources through micro-benchmarks, and Paper θ covers software
microbenchmarks from popular projects in multiple cloud providers.

P3 Experimental Setup Description: Only about half of the studies provide
a sufficient experiment setup description, both in serverless performance
evaluation as shown in Paper α and in cloud infrastructure performance
evaluation [46]. To mitigate this issue, a replication package is available
for every paper, and experiment plans are made executable. A replication
package complements a paper with a detailed experiment description,
instructions on how to replicate each experiment to obtain a new dataset
with the same methodology as well as replication of the data analysis
based on a documented dataset. Such a full experiment description

1.8. DISCUSSION 31

Table 1.3: Overview of open access artifacts.

Paper Code (Github) Dataset

α joe4dev/faas-performance-mlr [158]
β ServerlessApplications/ReplicationPackage [159]
γ ServiTrace/ReplicationPackage [160]
δ serverless-crossfit/replication-package [161]
ε joe4dev/trigger-bench [162]

ζ + η sealuzh/cwb-benchmarks [163]
θ sealuzh/cwb-benchmarks [164]

provided in a replication package is often not possible nor desired within
a paper due to space constraints and restricted presentation formats. This
thesis strives for fully automated experiments to minimize manual steps,
which are prone to human error and often incomplete. Nevertheless, some
manual steps are often necessary for bootstrapping or security-sensitive
tasks.

P4 Open Access Artifact: All papers in this thesis are complemented with
technical artifacts including datasets (raw and processed) and software
for experiment orchestration, benchmarks, and data analysis. Table 1.3
summarizes the open access artifacts produced in this thesis. Unit and
integration tests are also provided for core functionality such as trace
analysis or experiment orchestration.

P5 Probabilistic Result Description: This thesis favors plots that visualize the
full empirical distribution such as violin plots and empirical cumulative
distribution function (ECDF) plots. Otherwise, robust aggregations with
respect to outliers are used by representing typical latency as median
(p50) and tail latency as 99th percentile (p99), with one exception using
average aggregation in Paper η. Due to space constraints, additional plots
and statistics are sometimes provided as part of a replication package.
Papers η and θ specifically investigate performance variability by reporting
the coefficient of variation and Paper θ performs A/A tests to evaluate
false positive rates of software microbenchmarks in cloud environments.

P6 Statistical Evaluation: In the context of this thesis, statistical evalu-
ation is most relevant for comparing alternative versions of software
microbenchmarks in Paper θ. The evaluation of A/A tests with Wilcoxon
rank-sum and overlapping confidence intervals using hierarchical boot-
strapping [165, 166] has shown that Wilcoxon is more sensitive towards
changes in the tested configurations. For other aspects in the thesis
such as cross-provider comparisons in Paper δ, visualizing differences in
the result distributions is often more insightful than reporting a binary
outcome of a statistical test. Automation enables collecting large sample
sizes, which might lead to statistically significant differences although the
practical difference might be negligible and distribution characteristics
such as tail latency are more relevant. Paper δ uses split violin plots
to compare two distributions. Alternative options are the shift func-

https://github.com/joe4dev/faas-performance-mlr
https://github.com/ServerlessApplications/ReplicationPackage
https://github.com/ServiTrace/ReplicationPackage
https://github.com/serverless-crossfit/replication-package
https://github.com/joe4dev/trigger-bench
https://github.com/sealuzh/cwb-benchmarks
https://github.com/sealuzh/cwb-benchmarks

32 CHAPTER 1. SYNOPSIS

tion [167], ratio function [168], or nonparametric Cohen’s d-consistent
effect size [169].

P7 Measurement Units: This thesis consistently reports measurement units
and Paper α finds that this principle is generally followed in FaaS perfor-
mance studies with only a few exceptions in grey literature figures.

P8 Cost: Reporting a conceptual cost model based on individual service
pricing should be generally possible but is often incomplete because
some cost factors are determined at runtime (e.g., based on memory
consumption or execution time). Reporting actual costs is often difficult
when running multiple services or using research credits.

1.8.4 Cross-Provider Portability

The portability of applications across providers remains a major challenge in
serverless, which requires trade-off decisions as discussed in Paper δ. Unlike
in IaaS where the standardized VM abstraction enables full code reuse across
providers, serverless APIs are highly provider-specific, both for source code
as well as for deployment options (e.g., memory size, shared storage layers,
provisioned concurrency). Prior work confirms this issue in a migration study
of multiple applications [142] and in a developer survey [56] where one-third
of the respondents mentioned vendor lock-in as a significant challenge. Exist-
ing solutions are limited to specific domains such as data analytics through
Lithops [170, 171] or simple single-function scenarios [172]. Vendor lock-in
also remains one of the core obstacles for multi-cloud approaches [173]. Due
to this lack of a common interface, it is not possible to implement a single
provider-agnostic benchmark. Therefore, cross-provider support requires care-
ful application migration [142] as discussed in Section δ.3.2 and demonstrated
with the trigger types mapping of external services in Section ε.2.2.

1.8.5 Threats to Validity

This section discusses threats to the validity of the results of this thesis,
limitations of the applied research methods, and a summary of mitigation
strategies. It is structured based on the four common criteria for validity
for empirical research [123, 174]: construct validity, internal validity, external
validity, and reliability.

1.8.5.1 Construct Validity

Construct validity relates to measuring the right thing, i.e., the extent a study
actually measures what it aims to measure according to the research questions.

For RQ1, construct validity mainly relates to inappropriate selection criteria
and a lack of standard language and terminology. To mitigate these threats, the
selection criteria were refined based on related work and documented insights
from trial classifications. The lack of standard language is a major threat as
there exist no established definitions of FaaS and serverless [19]. This threat
was mitigated by clarifying selected definitions and providing illustrational
examples where applicable.

1.8. DISCUSSION 33

For the field experiments in RQ2 and RQ3, construct validity in bench-
marking is the threat to test or measure something different than intended.
Performance benchmarking is “incredibly error prone” [130], especially in cloud
environments. Therefore, this thesis performs active benchmarking [175] and
focuses on reproducible experimentation. Active benchmarking uses observ-
ability tools to analyze performance while the benchmark is running to collect
evidence that the benchmark tests what it intends to test. For example, Paper γ
performs workload validation to compare the planned vs. sent vs. received
invocation rates and uses detailed tracing to explain and validate end-to-end
latency results. Another example includes resource monitoring in Papers ζ
and η as demonstrated in Figure ζ.6 by utilization rate monitoring during I/O
benchmarking. Reproducible experimentation (see Section 1.8.3) encourages a
complete reporting of the experimental setup, which enables a thorough review
of the experiment design.

1.8.5.2 Internal Validity

Internal validity relates to measuring right, i.e., the extent a study measures a
causal relationship without interference from external factors.

For RQ1, the most common threats in literature reviews are bias in study
selection, bias in data extraction, and inappropriate or incomplete database
search terms. To mitigate selection bias, Paper α combines and refines [120]
different established search strategies, and complements them with targeted
strategies (e.g., alert-based search to discover recent studies). Search terms
were iteratively refined and motivated in detail (see replication package [158]).
Potential inaccuracies in data extraction were mitigated through traceability
with over 700 additional comments and a well-defined MLR process based on
established guidelines for SLR [118] and MLR [119] studies, methodologically
related publications [176], and topically relevant publications [51, 53]. The
main threat remains individual researcher bias as the majority of studies were
reviewed or validated by a single researcher.

For RQ1, a sample study has inherent limitations in measurement precision
due to its neutral setting and lack of interactivity (i.e., research must deal
with discoverable data as is) [115]. To mitigate this threat, each serverless
application in Paper β was reviewed by two researchers and after an initial
moderate agreement, all differences were discussed and consolidated. The
lack of interactive data collection could only be mitigated partially through
explorative web search and backward snowballing for discovering new sources.
Reviewers assigned the “Unknown” value to applications and characteristics
where insufficient information was available. These “Unknowns” are excluded
in the presented results (ranging from 0% to 19% with two outliers at 25%
and 30%) and reported in the accompanying replication package [159].

For RQ2 and RQ3, cloud experimentation is inherently susceptible to
confounding factors as a field experiment due to its natural setting [115].
Public clouds cannot be under full control of an experimenter but appropriate
execution methodologies as used in RQ3 can mitigate this threat. Further
mitigation includes careful experimental design based on cloud experimentation
guidelines [30, 31, 46] and fully automated experiment execution [97]. For RQ2,
the limited access to serverless infrastructure impedes detailed tracing and

34 CHAPTER 1. SYNOPSIS

provider-internal tracing is sometimes impossible to validate independently. In
some cases, inquiry with providers is essential to clarify potential inconsistencies.
Another source of inconsistencies concerns clock synchronization common to
distributed systems [177], both in terms of precision and accuracy. To mitigate
this threat, trace analysis in Paper γ combines an error margin for timestamp
comparison with logical trace validation of causal relationships. Finally, test
suites of unit and integration tests are integrated into continuous integration
pipelines to mitigate implementation errors.

1.8.5.3 External Validity

External validity relates to generalizability, i.e., the extent the results of a study
can be transferred to other contexts.

For RQ1, the literature review (Section 1.5.1) was designed to systematically
cover the field of FaaS performance benchmarking for peer-reviewed academic
literature (i.e., white literature) and unpublished grey literature including
preprints, theses, and articles on the internet. The inclusion of grey literature
targets an industrial perspective but is limited to published and indexed content
freely available and discoverable on the internet (e.g., excluding paywall articles
or internal corporate feasibility studies). For RQ1, the sample study (Sec-
tion 1.5.2) aims to collect a diverse collection of realistic serverless applications.
Therefore its sampling strategy combines purposive sampling from different
sources with snowballing. About half of the serverless applications are used
in production and about half of them are open source, but only few of them
are both used in production and open source. Generalizability of the results
cannot be claimed to all serverless applications, in particular not for private
serverless applications.

For RQ2 and RQ3, field experimentation inherently lacks statistical gener-
alizability [115]. Thus, generalizability cannot be claimed beyond the specific
study settings. RQ2 covers a wide variety of serverless applications and external
services guided by the insights from RQ1 but does not include data-analytic
applications [178–181] and serverless-optimized machine learning applications
for training [182] and serving [183]. Nevertheless, the trace analysis proposed
in Paper γ is generic for serverless and the trace analyzer is directly applicable
to production applications instrumented with AWS X-Ray.

RQ3 highlighted differences in performance variability across three major
cloud providers but the cross-VM performance estimation approach in Paper η
was demonstrated for two geographically distinct data centers of a single cloud
provider. Although related work also focuses almost exclusively on AWS as a
single cloud provider, another study [102] indicated that a similar methodology
can also work across multiple cloud providers. This is unsurprising given that
most IaaS clouds build upon the same abstractions (i.e., virtualization technol-
ogy) and individual benchmarks within the benchmark suite were previously
used across four different cloud providers [91] with the same benchmark man-
ager [97]. A related study published shortly after Paper η reports comparable
results for scientific computing workflow applications [104].

Newer related studies also indicate that the results from IaaS are applicable
to FaaS. For example, Sizeless [145] uses multi-target regression modeling
to predict the execution time of a serverless function for all memory sizes.

1.8. DISCUSSION 35

BATCH [183] uses simple regression and proposes an analytical model to predict
latency percentiles. COSE [184] uses Bayesian Optimization to find the optimal
configuration. Further, Wang et al. [185] indicated that the underlying hardware
infrastructure of AWS Lambda shares the same specifications as VM instance
types evaluated for answering RQ3. When transferring the prediction approach
to serverless, the configuration space becomes larger as envisioned for tailorable
VM instance types because serverless functions of certain providers offer fine-
grained memory configurations (e.g., up to 10 240MB in 1MB increments for
AWS Lambda), which determine the CPU power. Conversely, function runtime
prediction is less important in serverless because brute-force approaches such
as AWS Lambda Power Tuning [186] are readily available and more viable with
the fast elasticity of serverless.

1.8.5.4 Reliability

Reliability relates to replicability by others, i.e., the extent to which the results
of a study can be replicated by other researchers.

For RQ1, structured review sheets with actionable guidance were used and
published in online replication packages [158, 159]. The sample study alleviated
subjective interpretation of the extracted data through multiple reviews from a
total of seven reviewers. Bi-lateral and group discussions were an important part
of the data consolidation process and captured through systematic spreadsheet
commenting and meeting notes. The literature review mitigated this threat
through detailed documentation and traceability annotations.

For RQ2 and RQ3, the field experiments strive for technical reproducibil-
ity [46] of the data collection and replicability [187] of the data analysis based
on documented online replication packages. Technical reproducibility enables
other researchers to conduct the same experiment and collect a new dataset
representing the current state of performance because the exact reproduction
of the measurement results is impossible in cloud experimentation due to
limited control over the environment [46]. Such a new dataset will be sub-
ject to internal changes of the cloud provider, which continuously updates
underlying software and hardware infrastructure. Therefore, it is essential
to additionally provide the raw dataset and analysis scripts for independent
inspection. All performance benchmarks are available as open source software
together with extensive documentation, test suites, and scripts to automate
their execution. The benchmark orchestration tools ServiTrace (Paper γ) and
Cloud WorkBench (CWB) [97] are purposefully built for technically repro-
ducible cloud performance evaluation and used in other studies beyond this
thesis [97, 188, 189].

The data analysis process strives for replicability [187] based on documented
online replication packages providing datasets and analysis code. The ability to
re-run (R1 as introduced by Benureau and Rougier [187]) the code is facilitated
by automation and dependency management but could be further improved by
adopting Docker containerization [190], similarly to ServiTrace for benchmark
orchestration. Repeatability (R2) requires repeated code executions to produce
the same expected results [187] and was validated by managing interim data
with version control. Reproducible (R3) results require other researchers to be
able to re-obtain the same result [187] and are fostered by publicly available

36 CHAPTER 1. SYNOPSIS

data and code under version control but could also be improved by adopting
Docker containerization [190]. Reusability (R4) is addressed by documentation
and testing by collaborators but hampered by using a commercial analysis tool
in Paper η. Replicability (R5) refers to the ability of independent investigators
to obtain the same results without re-using the technical artifacts [190] and
was partially addressed by re-implementing parts of the analysis in another
tool for validation purposes in Paper η.

1.9 Future Work

This section discusses future work in serverless performance evaluation, trace
analysis, and approaches towards automated performance optimization.

1.9.1 Relevant Gaps in Serverless Performance Evaluation

Combining the results of Papers α and β reveals similarities and differences
between the evaluated characteristics by performance studies and the actual
characteristics of serverless applications. Overall, cloud providers and pro-
gramming languages are represented similarly in terms of relative frequency
except for under-represented language runtimes in academic studies. The
clearest differences occur between function triggers and external services. Most
notably, performance studies seldomly use event-based triggers (<16%) in ap-
plications although cloud events are common in serverless applications (41%).
Further, most external services are under-represented in performance studies
and databases in particular as they are used in 10% to 15% of the academic
and industrial studies although being used by 48% of applications. The only
external services well-covered by academic studies are the API gateway and
cloud storage. More studies are needed to test common external services such
as publish/subscribe, streaming, and queues.

The field of serverless performance evaluation remains very active since
the literature review in Paper α and several of the mentioned research gaps
received more attention. Within the two years since the literature review in
Paper α, the number of potentially related studies more than doubled11 and
complementary literature reviews have been published afterwards [191, 192]. For
example, Raza et al. [191] discuss FaaS measurement studies from a developer’s
perspective and explicitly categorize studies by causal relationships, i.e., the
relationship between the controlled variable (configuration) and dependent
variable (measured performance). There are promising signs that additional
providers are covered, including hosted platforms such as Alibaba [193, 194],
open-source platforms such as Knative, Kubeless, OpenFaaS [195, 196], and
open-source platforms used in hosted platforms such as Firecracker [59, 197] and
OpenWhisk [198, 199]. However, these studies still focus on micro-benchmarks
without covering external services with a few exceptions for specific domains
such as workflows [194] or parallel data processing with Lithops [170, 171].
Finally, another recent publication trend is the rising interest in performance
evaluation for edge computing platforms.

11Based on the updated list of 139 new studies identified through alert-based complementary
search as described in Section 1.5.1

1.10. CONCLUSIONS 37

1.9.2 Serverless Trace Analysis

Traditional distributed tracing focused on microservice architectures with syn-
chronous remote procedure calls (RPCs) and serverless architectures raise
novel challenges with asynchronous invocations. Despite its usefulness, tracing
still suffers from many challenges related to collection, analysis, and visualiza-
tion [35, 65, 66]. Serverless aggravates existing challenges and introduces novel
conceptual challenges. According to a recent interview study [65], bad trace
quality is a common issue and becomes even harder to manage in serverless
due to the lack of control over parts of the serverless and tracing infrastruc-
ture, as experienced in Papers γ to ε. Currently, manual instrumentation and
custom trace correlation are required to fix disconnected traces and sampling
is necessary for high invocation rates to prevent missing trace segments, which
cause incomplete traces that need to be ignored. Therefore, future research
should explore more robust methods for handling bad quality traces during
trace analysis. Tracing standards such as OpenTelemetry12 deserve further
attention and guidance, for example by suggesting useful trace annotations. In
traditional synchronous invocation chains, every trace segment can have at most
one casual parent relationship (i.e., invoked by). In serverless architectures,
batch invocations violate this assumption and require novel tracing concepts
(e.g., batch receiving [149]).

1.9.3 Automated Performance Optimizations

The research of this thesis focuses on evaluating (i.e., assessing) performance
but future work could go a step further by leveraging the methodology and
insights from this thesis to automate the exploration and exploitation of the
configuration space towards self-optimizing applications. A key motivation for
this research direction is to make performance insights more actionable in the
context of application development through tighter integration of performance
aspects into the development lifecycle. My vision paper [200] outlines a dy-
namic transpilation approach and FUSIONIZE [201] explores feedback-driven
function fusion at runtime to optimize the latency of multi-function workflows.
Recently, new optimization approaches started to emerge for optimal function
sizing [145], application-aware data passing [202], workload-specific configura-
tion tuning for video processing [203], and a combination of several workflow
tuning strategies [204]. In addition to function fusion, WISEFUSE [204] also op-
timizes resource allocation and co-locates parallel function invocations through
bundling. Existing approaches focus on serverless functions but trace-based
optimization suggestions could include external services, for example by recom-
mending suitable trigger types.

1.10 Conclusions

This PhD thesis consolidated (RQ1) and extended (RQ2) the body of research
on reproducible performance evaluation for serverless applications and their
underlying infrastructure (RQ3).

12https://opentelemetry.io/

https://opentelemetry.io/

38 CHAPTER 1. SYNOPSIS

RQ1 This thesis established a consolidated understanding of serverless appli-
cations and their performance through a sample study and literature review.
The most comprehensive literature review on FaaS performance evaluation to
date found that AWS Lambda is the most evaluated FaaS platform, that micro-
benchmarks are the most common type of benchmark, and that application-
benchmarks are prevalently evaluated on a single platform. It also indicated
a broad coverage of language runtimes but showed that other platform con-
figurations focus on very few function triggers and external services. Finally,
the majority of studies did not follow principles on reproducible cloud experi-
mentation from prior work [46]. The largest analysis of serverless applications
to date identified common performance requirements and other characteristics
related to adoption and implementation. In particular, serverless applications
are most commonly used for short-running tasks with low data volume and
bursty workloads but are also frequently used for latency-critical, high-volume
core functionality.

RQ2 This understanding guided the construction of ServiTrace, a novel
trace-based benchmark for serverless applications, which is used in field stud-
ies to identify performance challenges of serverless applications. ServiTrace
contributes a novel algorithm and heuristics for detailed latency breakdown
analysis of distributed serverless traces across asynchronous call boundaries and
external services. Its comprehensive benchmark suite of 10 realistic open-source
applications covers heterogeneous characteristics such as the form of coordi-
nation, programming language, size, and external service usage. Large-scale
field experimentation in the market-leading AWS cloud environment has shown
that external service calls often dominate the median end-to-end latency and
cause excessive tail latency. Different forms of orchestration or trigger-based
coordination caused substantial delay and were evaluated in further bench-
marking experiments in addition to other aspects such as fair cross-provider
benchmarking or different workload types.

RQ3 Targeting the underlying FaaS infrastructure in IaaS clouds, the utility
of different benchmark types is evaluated in terms of insights for applications
and reliability. Field experiments with system-level micro- and application-
benchmarks and software microbenchmarks have shown that only selected
micro-benchmarks are suitable for estimating application performance, per-
formance variability depends on the resource type, and batch testing on the
same instance with repetitions should be used for reliable performance testing.
Benchmark-based metrics are better estimators for application performance of
the tested applications than specification-based metrics (e.g., number of vCPUs,
provider-defined unit for computational power), which are currently used as
common baselines. However, the results also highlighted that presumably
similar micro-benchmark estimators cannot necessarily be used interchangeably
because benchmark parameters can have a profound impact on performance.
The findings for software microbenchmarking indicate that state-of-the-art
statistical tests (i.e., Wilcoxon rank-sum and overlapping bootstrapped con-
fidence intervals of the mean) can reliably detect slowdowns in inherently
unstable cloud environments but depending on the cloud provider and instance
type, a substantial number of trials or instances is required. Further, batch

1.10. CONCLUSIONS 39

testing might be required to detect small slowdowns reliably while avoiding
false positives by co-locating the test and control group on the same instance.

40 CHAPTER 1. SYNOPSIS

Bibliography

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” Na-
tional Institute of Standards and Technology (NIST), Tech. Rep., 2011.
doi:10.6028/NIST.SP.800-145

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech. Rep., 2009. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[3] Gartner, “Gartner says worldwide iaas public cloud ser-
vices market grew 40.7% in 2020,” 2021. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-
gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-
percent-in-2020

[4] R. Bala, B. Gill, D. Smith, D. Wright, and K. Ji, “Magic quadrant for
cloud infrastructure and platform services,” Gartner, 2021. [Online].
Available: https://aws.amazon.com/resources/analyst-reports/gartner-
mq-cips-2021/

[5] Foundry, “Cloud computing study,” 2022. [Online]. Avail-
able: https://resources.foundryco.com/download/cloud-computing-
executive-summary

[6] Markets and Markets, “Serverless architecture market,” 2020.
[Online]. Available: https://www.marketsandmarkets.com/Market-
Reports/serverless-architecture-market-64917099.html

[7] Allied Market Research, “Function-as-a-service market,” 2020. [Online].
Available: https://www.alliedmarketresearch.com/function-as-a-service-
market-A06072

[8] Global Market Insights, “Serverless architecture market to exceed $30
bn by 2027,” 2021. [Online]. Available: https://www.globenewswire.
com/news-release/2021/06/16/2247916/0/en/Serverless-Architecture-
Market-to-exceed-30-Bn-by-2027-Global-Market-Insights-Inc.html

[9] Datadog, “The state of serverless,” 2021. [Online]. Available:
https://www.datadoghq.com/state-of-serverless-2021/

235

https://doi.org/10.6028/NIST.SP.800-145
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://aws.amazon.com/resources/analyst-reports/gartner-mq-cips-2021/
https://aws.amazon.com/resources/analyst-reports/gartner-mq-cips-2021/
https://resources.foundryco.com/download/cloud-computing-executive-summary
https://resources.foundryco.com/download/cloud-computing-executive-summary
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.alliedmarketresearch.com/function-as-a-service-market-A06072
https://www.alliedmarketresearch.com/function-as-a-service-market-A06072
https://www.globenewswire.com/news-release/2021/06/16/2247916/0/en/Serverless-Architecture-Market-to-exceed-30-Bn-by-2027-Global-Market-Insights-Inc.html
https://www.globenewswire.com/news-release/2021/06/16/2247916/0/en/Serverless-Architecture-Market-to-exceed-30-Bn-by-2027-Global-Market-Insights-Inc.html
https://www.globenewswire.com/news-release/2021/06/16/2247916/0/en/Serverless-Architecture-Market-to-exceed-30-Bn-by-2027-Global-Market-Insights-Inc.html
https://www.datadoghq.com/state-of-serverless-2021/

236 BIBLIOGRAPHY

[10] ——, “The state of serverless,” 2022. [Online]. Available: https:
//www.datadoghq.com/state-of-serverless/

[11] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in
the clouds: Towards a cloud definition,” ACM SIGCOMM Computer Com-
munication Review, vol. 39, pp. 50–55, 2008. doi:10.1145/1496091.1496100

[12] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” Georgia Institute of Technology, Tech.
Rep., 2009. [Online]. Available: http://www.cercs.gatech.edu/tech-
reports/tr2009/git-cercs-09-13.pdf

[13] S. A. Ahson and M. Ilyas, Cloud Computing and Software Services:
Theory and Techniques. CRC Press, Inc., 2010.

[14] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: Principles
and Paradigms. John Wiley & Sons, 2011, vol. 87.

[15] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond IaaS
and PaaS: An extended cloud taxonomy for computation, storage
and networking,” in Proceedings of the 6th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC), 2013, pp. 75–2.
doi:10.1109/UCC.2013.28

[16] J. Barr, “Amazon EC2 Beta,” Amazon Web Services, 2006. [Online].
Available: https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

[17] R. S. Barga, “Serverless computing redefining the cloud,” Keynote of 1st
International Workshop on Serverless Computing (WoSC), 2017. [Online].
Available: https://www.serverlesscomputing.org/wosc17/presentations/
barga-keynote-serverless.pdf

[18] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in 37th IEEE International Con-
ference on Distributed Computing Systems (ICDCS), 2017, pp. 2658–659.
doi:10.1109/ICDCS.2017.305

[19] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status
of serverless computing and function-as-a-service (FaaS) in industry
and research,” CoRR, vol. abs/1708.08028, 2017. [Online]. Available:
http://arxiv.org/abs/1708.08028

[20] S. Fink, “Serverless – where have we come? where are we going?”
Keynote talk at the 3rd International Workshop on Serverless Computing
(WoSC), 2018. [Online]. Available: https://www.serverlesscomputing.org/
wosc3/presentations/keynote-Serverless0718.pdf

[21] P. C. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, pp. 44–54,
2019. doi:10.1145/3368454

[22] M. Roberts and J. Chapin, What is Serverless? O’Reilly Media, Inc.,
2017.

https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://doi.org/10.1145/1496091.1496100
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
https://doi.org/10.1109/UCC.2013.28
https://aws.amazon.com/blogs/aws/amazon_ec2_beta/
https://www.serverlesscomputing.org/wosc17/presentations/barga-keynote-serverless.pdf
https://www.serverlesscomputing.org/wosc17/presentations/barga-keynote-serverless.pdf
https://doi.org/10.1109/ICDCS.2017.305
http://arxiv.org/abs/1708.08028
https://www.serverlesscomputing.org/wosc3/presentations/keynote-Serverless0718.pdf
https://www.serverlesscomputing.org/wosc3/presentations/keynote-Serverless0718.pdf
https://doi.org/10.1145/3368454

BIBLIOGRAPHY 237

[23] M. Roberts, “Serverless architectures,” Martin Fowler, 2018. [Online].
Available: https://martinfowler.com/articles/serverless.html

[24] E. van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC Cloud group’s
research vision on FaaS and serverless architectures,” in Proceedings of
the 2nd International Workshop on Serverless Computing (WOSC), 2017,
pp. 1–4. doi:10.1145/3154847.3154848

[25] S. Kounev, C. Abad, I. T. Foster, N. Herbst, A. Iosup, S. Al-Kiswany,
A. A.-E. Hassan, B. Balis, A. Bauer, A. B. Bondi, K. Chard, R. L.
Chard, R. Chatley, A. A. Chien, A. J. J. Davis, J. Donkervliet,
S. Eismann, E. Elmroth, N. Ferrier, H.-A. Jacobsen, P. Jamshidi,
G. Kousiouris, P. Leitner, P. G. Lopez, M. Maggio, M. Malawski, B. Met-
zler, V. Muthusamy, A. V. Papadopoulos, P. Patros, G. Pierre, O. F. Rana,
R. P. Ricci, J. Scheuner, M. Sedaghat, M. Shahrad, P. Shenoy, J. Spillner,
D. Taibi, D. Thain, A. Trivedi, A. Uta, V. van Beek, E. van Eyk, A. van
Hoorn, S. Vasani, F. Wamser, G. Wirtz, and V. Yussupov, “Toward a
definition for serverless computing,” in Serverless Computing (Dagstuhl
Seminar 21201), 2021, vol. 11, pp. 34–93. doi:10.4230/DagRep.11.4.34

[26] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Oc-
cupy the cloud: distributed computing for the 99%,” in Proceed-
ings of the 2017 Symposium on Cloud Computing, 2017, pp. 445–451.
doi:10.1145/3127479.3128601

[27] V. Persico, A. Montieri, and A. Pescapè, “On the network performance
of amazon S3 cloud-storage service,” in Proceedings of the 5th IEEE
International Conference on Cloud Networking (Cloudnet), 2016, pp.
113–118. doi:10.1109/CloudNet.2016.16

[28] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On the conceptualization of
performance evaluation of IaaS services,” IEEE Transactions on Services
Computing, vol. 7, pp. 628–41, 2014. doi:10.1109/TSC.2013.39

[29] ——, “On a catalogue of metrics for evaluating commercial cloud services,”
in Proceedings of the 13th ACM/IEEE International Conference on Grid
Computing (GRID), 2012, pp. 164–173. doi:10.1109/Grid.2012.15

[30] Z. Li, L. O’Brien, and H. Zhang, “CEEM: A practical method-
ology for cloud services evaluation,” in Proceedings of the 9th
IEEE World Congress on Services (SERVICES), 2013, pp. 44–51.
doi:10.1109/SERVICES.2013.73

[31] A. Iosup, R. Prodan, and D. H. J. Epema, “IaaS cloud benchmarking:
Approaches, challenges, and experience,” in Cloud Computing for Data-
Intensive Applications, 2014, pp. 83–104. doi:10.1007/978-1-4939-1905-
5_4

[32] D. J. Lilja, Measuring computer performance: a practitioner’s guide.
Cambridge university press, 2005.

[33] S. Kounev, K. Lange, and J. von Kistowski, Systems Benchmarking - For
Scientists and Engineers. Springer, 2020. doi:10.1007/978-3-030-41705-5

https://martinfowler.com/articles/serverless.html
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.4230/DagRep.11.4.34
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/CloudNet.2016.16
https://doi.org/10.1109/TSC.2013.39
https://doi.org/10.1109/Grid.2012.15
https://doi.org/10.1109/SERVICES.2013.73
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/10.1007/978-3-030-41705-5

238 BIBLIOGRAPHY

[34] N. Gibbs, “Microbenchmarks vs macrobenchmarks (i.e.
what’s a microbenchmark?),” 2019. [Online]. Avail-
able: https://engineering.appfolio.com/appfolio-engineering/2019/1/
7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark

[35] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger,
“So, you want to trace your distributed system? key design
insights from years of practical experience,” Parallel Data Laboratory,
Carnegie Mellon University, Tech. Rep., 2014. [Online]. Available:
https://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf

[36] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A
pervasive network tracing framework,” in 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2007. [Online].
Available: http://www.usenix.org/events/nsdi07/tech/fonseca.html

[37] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure,” Google, Tech. Rep., 2010.
[Online]. Available: https://research.google/pubs/pub36356/

[38] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs, Dis-
tributed tracing in practice: Instrumenting, analyzing, and debugging
microservices. O’Reilly Media, 2020.

[39] R. Schwarz and F. Mattern, “Detecting causal relationships in distributed
computations: In search of the holy grail,” Distributed Computation,
vol. 7, pp. 149–174, 1994. doi:10.1007/BF02277859

[40] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online
modelling and performance-aware systems,” in Proceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS), 2003, pp.
85–90. [Online]. Available: https://www.usenix.org/conference/hotos-
ix/magpie-online-modelling-and-performance-aware-systems

[41] J. Zhou, “Distributed tracing, a survey of past and future,” Spectro
Cloud, 2020. [Online]. Available: https://www.spectrocloud.com/blog/
distributed-tracing-past-and-future/

[42] J. Mace, “End-to-end tracing: Adoption and use cases,” Brown
University, Tech. Rep., 2017. [Online]. Available: https://cs.brown.edu/
~jcmace/papers/mace2017survey.pdf

[43] C. S. Collberg and T. A. Proebsting, “Repeatability in computer sys-
tems research,” Communications of the ACM, vol. 59, pp. 62–69, 2016.
doi:10.1145/2812803

[44] M. Baker, “Reproducibility crisis,” Nature, vol. 533, pp. 353–66, 2016.
[Online]. Available: https://www.nature.com/news/1-500-scientists-lift-
the-lid-on-reproducibility-1.19970

[45] B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing
the uncertainty of NIST measurement results,” National Institute

https://engineering.appfolio.com/appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark
https://engineering.appfolio.com/appfolio-engineering/2019/1/7/microbenchmarks-vs-macrobenchmarks-ie-whats-a-microbenchmark
https://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf
http://www.usenix.org/events/nsdi07/tech/fonseca.html
https://research.google/pubs/pub36356/
https://doi.org/10.1007/BF02277859
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://www.spectrocloud.com/blog/distributed-tracing-past-and-future/
https://www.spectrocloud.com/blog/distributed-tracing-past-and-future/
https://cs.brown.edu/~jcmace/papers/mace2017survey.pdf
https://cs.brown.edu/~jcmace/papers/mace2017survey.pdf
https://doi.org/10.1145/2812803
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

BIBLIOGRAPHY 239

of Standards and Technology, Tech. Rep., 1994. [Online]. Available:
https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf

[46] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup, “Method-
ological principles for reproducible performance evaluation in cloud com-
puting,” IEEE Transactions on Software Engineering (TSE), vol. 47, pp.
93–94, 2019. doi:10.1109/TSE.2019.2927908

[47] D. G. Feitelson, “Experimental computer science: The need for a cultural
change,” The Hebrew University of Jerusalem, Tech. Rep., 2006.

[48] J. Lin and Q. Zhang, “Reproducibility is a process, not an achievement:
The replicability of IR reproducibility experiments,” in Proceedings of
the 42nd European Conference on Advances in Information Retrieval IR,
vol. 12036, 2020, pp. 43–49. doi:10.1007/978-3-030-45442-5_6

[49] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation
with OpenLambda,” in Proceedings of the 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud), vol. 60, 2016. [Online].
Available: https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/hendrickson

[50] G. McGrath, J. Short, S. Ennis, B. Judson, and P. Brenner, “Cloud event
programming paradigms: Applications and analysis,” in Proceedings of
the 9th IEEE International Conference on Cloud Computing (CLOUD),
2016, pp. 400–06. doi:10.1109/CLOUD.2016.0060

[51] V. Yussupov, U. Breitenbücher, F. Leymann, and M. Wurster, “A sys-
tematic mapping study on engineering function-as-a-service platforms
and tools,” in Proceedings of the 12th IEEE/ACM International Con-
ference on Utility and Cloud Computing (UCC), 2019, pp. 229–240.
doi:10.1145/3344341.3368803

[52] J. Wen, Z. Chen, and X. Liu, “A literature review on serverless computing,”
CoRR, vol. abs/2206.12275, 2022. doi:10.48550/arXiv.2206.12275

[53] J. Kuhlenkamp and S. Werner, “Benchmarking FaaS platforms: Call for
community participation,” in Companion of the 11th IEEE/ACM UCC:
4th International Workshop on Serverless Computing (WoSC), 2018, pp.
189–194. doi:10.1109/UCC-Companion.2018.00055

[54] N. Somu, N. Daw, U. Bellur, and P. Kulkarni, “PanOpticon: A comprehen-
sive benchmarking tool for serverless applications,” in Proceedings of the
International Conference on COMmunication Systems NETworkS (COM-
SNETS), 2020, pp. 144–51. doi:10.1109/COMSNETS48256.2020.9027346

[55] P. Swail, “Case studies of aws serverless apps in production,”
ServerlessFirst, 2018. [Online]. Available: https://serverlessfirst.com/real-
world-serverless-case-studies/

https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1007/978-3-030-45442-5_6
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://doi.org/10.1109/CLOUD.2016.0060
https://doi.org/10.1145/3344341.3368803
https://doi.org/10.48550/arXiv.2206.12275
https://doi.org/10.1109/UCC-Companion.2018.00055
https://doi.org/10.1109/COMSNETS48256.2020.9027346
https://serverlessfirst.com/real-world-serverless-case-studies/
https://serverlessfirst.com/real-world-serverless-case-studies/

240 BIBLIOGRAPHY

[56] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of function-as-a-service software development in industrial
practice,” Journal of Systems and Software (JSS), vol. 149, pp. 340–359,
2019. doi:10.1016/j.jss.2018.12.013

[57] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, “Patterns for
serverless functions (function-as-a-service): A multivocal literature re-
view,” Proceedings of the 10th International Conference on Cloud Comput-
ing and Services Science (CLOSER), 2020. doi:10.5220/0009578501810192

[58] T. Yu, Q. Liu, D. Du, Y. Xia, B. Zang, Z. Lu, P. Yang, C. Qin, and
H. Chen, “Characterizing serverless platforms with serverlessbench,” in
Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2020,
pp. 30–44. doi:10.1145/3419111.3421280

[59] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Benchmark-
ing, analysis, and optimization of serverless function snapshots,” in 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2021, pp. 559–572.
doi:10.1145/3445814.3446714

[60] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of
function-as-a-service computing,” in Proceedings of the 52nd IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019, pp. 1063–
1075. doi:10.1145/3352460.3358296

[61] J. Kim and K. Lee, “FunctionBench: A suite of workloads for serverless
cloud function service,” in Proceedings of the 12th IEEE International
Conference on Cloud Computing (CLOUD WIP), 2019, pp. 502–504.
doi:10.1109/CLOUD.2019.00091

[62] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“SeBS: a serverless benchmark suite for function-as-a-service computing,”
in Proceedings of the 22nd International Middleware Conference, 2021,
pp. 64–78. doi:10.1145/3464298.3476133

[63] M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “Befaas: An application-centric benchmarking framework
for faas platforms,” in IEEE International Conference on Cloud Engi-
neering (IC2E), 2021, pp. 1–8. doi:10.1109/IC2E52221.2021.00014

[64] M. Waseem, P. Liang, M. Shahin, A. D. Salle, and G. Márquez, “Design,
monitoring, and testing of microservices systems: The practitioners’
perspective,” Journal of Systems and Software (JSS), vol. 182, 2021.
doi:10.1016/j.jss.2021.111061

[65] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
your observability: an industrial survey of microservice tracing and
analysis,” Empirical Software Engineering (EMSE), vol. 27, p. 25, 2021.
doi:10.1007/s10664-021-10063-9

[66] A. Bento, J. Correia, R. Filipe, F. Araújo, and J. S. Cardoso, “Automated
analysis of distributed tracing: Challenges and research directions,” J.
Grid Comput., vol. 19, p. 9, 2021. doi:10.1007/s10723-021-09551-5

https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/10.5220/0009578501810192
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1109/IC2E52221.2021.00014
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10723-021-09551-5

BIBLIOGRAPHY 241

[67] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi, V. Venkataraman, K. Veeraragha-
van, and Y. J. Song, “Canopy: An end-to-end performance tracing and
analysis system,” in Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP), 2017, pp. 34–50. doi:10.1145/3132747.3132749

[68] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: dynamic causal
monitoring for distributed systems,” Communications of the ACM, vol. 63,
pp. 94–102, 2020. doi:10.1145/3378933

[69] M. Hendriks, J. Verriet, T. Basten, B. D. Theelen, M. Brassé, and L. J.
Somers, “Analyzing execution traces: critical-path analysis and distance
analysis,” Int. J. Softw. Tools Technol. Transf., vol. 19, pp. 487–510, 2017.
doi:10.1007/s10009-016-0436-z

[70] M. Hendriks and F. W. Vaandrager, “Reconstructing critical paths
from execution traces,” in 15th IEEE International Conference on
Computational Science and Engineering (CSE), 2012, pp. 524–531.
doi:10.1109/ICCSE.2012.78

[71] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“FIRM: An intelligent fine-grained resource management framework for
slo-oriented microservices,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020, pp. 805–825. [Online].
Available: https://www.usenix.org/conference/osdi20/presentation/qiu

[72] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu,
“Characterizing microservice dependency and performance: Alibaba trace
analysis,” in ACM Symposium on Cloud Computing (SoCC), 2021, pp.
412–426. doi:10.1145/3472883.3487003

[73] W. Lin, C. Krintz, R. Wolski, M. Zhang, X. Cai, T. Li, and W. Xu,
“Tracking causal order in AWS lambda applications,” in Proceedings of
the IEEE International Conference on Cloud Engineering (IC2E), 2018,
pp. 50–60. doi:10.1109/IC2E.2018.00027

[74] W. Lin, C. Krintz, and R. Wolski, “Tracing function dependencies across
clouds,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018, pp. 253–60. doi:10.1109/CLOUD.2018.00039

[75] M. C. Borges, S. Werner, and A. Kilic, “FaaSter troubleshooting - evalu-
ating distributed tracing approaches for serverless applications,” in IEEE
International Conference on Cloud Engineering (IC2E), 2021, pp. 83–90.
doi:10.1109/IC2E52221.2021.00022

[76] J. Kuhlenkamp and M. Klems, “Costradamus: A cost-tracing system for
cloud-based software services,” in Proceedings of the 15th International
Conference on Service-Oriented Computing (ICSOC), vol. 10601, 2017,
pp. 657–672. doi:10.1007/978-3-319-69035-3_48

[77] V. Lenarduzzi and A. Panichella, “Serverless testing: Tool vendors’
and experts’ points of view,” IEEE Software, vol. 38, pp. 54–60, 2021.
doi:10.1109/MS.2020.3030803

https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3378933
https://doi.org/10.1007/s10009-016-0436-z
https://doi.org/10.1109/ICCSE.2012.78
https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1109/IC2E.2018.00027
https://doi.org/10.1109/CLOUD.2018.00039
https://doi.org/10.1109/IC2E52221.2021.00022
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.1109/MS.2020.3030803

242 BIBLIOGRAPHY

[78] S. L. Garfinkel, “An evaluation of Amazon’s grid computing services:
EC2, S3, and SQS,” Harvard University Cambridge, Tech. Rep., 2007.
[Online]. Available: https://dash.harvard.edu/handle/1/24829568

[79] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone:
Multi-platform, multi-language benchmark and measurement tools for
web 2.0,” in 1st Workshop on Cloud Computing and Its Applications
(CCA), 2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.163.7403&rep=rep1&type=pdf

[80] E. Walker, “Benchmarking amazon EC2 for high-performance scientific
computing,” Usenix Login, vol. 33, pp. 18–23, 2008. [Online]. Available:
https://www.usenix.org/system/files/login/articles/277-walker.pdf

[81] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: Towards a benchmark for the cloud,” in Proceedings of the
2nd International Workshop on Testing Database Systems (DBTest), 2009,
pp. 9:1–9:6. doi:10.1145/1594156.1594168

[82] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the cloud: What it should, can, and cannot be,” in
Proceedings of the 4th TPC Technology Conference on Selected Topics in
Performance Evaluation and Benchmarking (TPCTC), vol. 7755, 2012,
pp. 173–188. doi:10.1007/978-3-642-36727-4_12

[83] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
Proceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), vol. 40,
pp. 37–48, 2012. doi:10.1145/2189750.2150982

[84] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. J. Epema, “A performance analysis of EC2 cloud computing services
for scientific computing,” in Cloud Computing, vol. 34, 2009, pp. 115–131.
doi:10.1007/978-3-642-12636-9_9

[85] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, pp. 931–945, 2011. doi:10.1109/TPDS.2011.66

[86] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–154.
doi:10.1145/1807128.1807152

[87] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measure-
ments in the cloud: Observing, analyzing, and reducing variance,”
Proceedings of the VLDB Endowment, vol. 3, pp. 460–471, 2010.
doi:10.14778/1920841.1920902

https://dash.harvard.edu/handle/1/24829568
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.7403&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.7403&rep=rep1&type=pdf
https://www.usenix.org/system/files/login/articles/277-walker.pdf
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1007/978-3-642-36727-4_12
https://doi.org/10.1145/2189750.2150982
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1109/TPDS.2011.66
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/1920841.1920902

BIBLIOGRAPHY 243

[88] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui,
“Exploiting hardware heterogeneity within the same instance type
of amazon EC2,” in Proceedings of the 4th USENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2012. [Online].
Available: https://www.usenix.org/conference/hotcloud12/workshop-
program/presentation/ou

[89] Z. Ou, H. Zhuang, A. Lukyanenko, J. K. Nurminen, P. Hui, V. Mazalov,
and A. Ylä-Jääski, “Is the same instance type created equal? exploiting
heterogeneity of public clouds,” IEEE Transactions on Cloud Computing,
vol. 1, pp. 201–14, 2013. doi:10.1109/TCC.2013.12

[90] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint, “On evaluating com-
mercial cloud services: A systematic review,” Journal of Systems and
Software, vol. 86, pp. 2371–2393, 2013. doi:10.1016/j.jss.2013.04.021

[91] P. Leitner and J. Cito, “Patterns in the chaos – a study of performance
variation and predictability in public IaaS clouds,” ACM Transactions
on Internet Technology, vol. 16, pp. 1–23, 2016. doi:10.1145/2885497

[92] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of
production cloud services,” in Proceedings of the 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2011, pp. 104–13. doi:10.1109/CCGrid.2011.22

[93] A. Abedi and T. Brecht, “Conducting repeatable experiments in highly
variable cloud computing environments,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
(ICPE), 2017, pp. 287–292. doi:10.1145/3030207.3030229

[94] M. Silva, M. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva, “Cloud-
bench: Experiment automation for cloud environments,” in Proceedings
of the IEEE International Conference on Cloud Engineering (IC2E), 2013,
pp. 302–11. doi:10.1109/IC2E.2013.33

[95] M. Cunha, N. das Chagas Mendonça, and A. Sampaio, “Cloud Crawler:
a declarative performance evaluation environment for infrastructure-as-a-
service clouds,” Concurrency and Computation: Practice and Experience,
vol. 29, 2017. doi:10.1002/cpe.3825

[96] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and C. Pu,
“Expertus: A generator approach to automate performance testing in IaaS
clouds,” in Proceedings of the 5th IEEE International Conference on Cloud
Computing (CLOUD), 2012, pp. 115–22. doi:10.1109/CLOUD.2012.98

[97] J. Scheuner, P. Leitner, J. Cito, and H. Gall, “Cloud WorkBench –
infrastructure-as-code based cloud benchmarking,” in Proceedings of the
6th IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2014, pp. 246–253. doi:10.1109/CloudCom.2014.98

[98] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “CloudProphet:
Towards application performance prediction in cloud,” in Proceedings of
the ACM SIGCOMM 2011 Conference (SIGCOMM), 2011, pp. 426–427.
doi:10.1145/2018436.2018502

https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/ou
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/ou
https://doi.org/10.1109/TCC.2013.12
https://doi.org/10.1016/j.jss.2013.04.021
https://doi.org/10.1145/2885497
https://doi.org/10.1109/CCGrid.2011.22
https://doi.org/10.1145/3030207.3030229
https://doi.org/10.1109/IC2E.2013.33
https://doi.org/10.1002/cpe.3825
https://doi.org/10.1109/CLOUD.2012.98
https://doi.org/10.1109/CloudCom.2014.98
https://doi.org/10.1145/2018436.2018502

244 BIBLIOGRAPHY

[99] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris,
and T. Varvarigou, “Enterprise applications cloud rightsizing through
a joint benchmarking and optimization approach,” Future Generation
Computer Systems, pp. 102–114, 2016. doi:10.1016/j.future.2016.11.002

[100] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017, pp. 469–482. [Online]. Available: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/alipourfard

[101] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker, “Cloud
benchmarking for maximising performance of scientific applications,”
IEEE Transactions on Cloud Computing (TCC), vol. 7, pp. 170–182,
2019. doi:10.1109/TCC.2016.2603476

[102] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,
“Selecting the best VM across multiple public clouds: a data-driven per-
formance modeling approach,” in Proceedings of the Symposium on Cloud
Computing (SoCC), 2017, pp. 452–465. doi:10.1145/3127479.3131614

[103] W. Wang, N. Tian, S. Huang, S. He, A. Srivastava, M. L. Soffa, and
L. Pollock, “Testing cloud applications under cloud-uncertainty perfor-
mance effects,” in 11th IEEE Conference on Software Testing, Validation
and Verification (ICST), 2018. doi:10.1109/ICST.2018.00018

[104] M. Baughman, R. Chard, L. T. Ward, J. Pitt, K. Chard, and I. T. Foster,
“Profiling and predicting application performance on the cloud,” in Pro-
ceedings of the 11th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC), 2018, pp. 21–30. doi:10.1109/UCC.2018.00011

[105] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the perfor-
mance fluctuations of HPC workloads on clouds,” in Proceedings of the
2nd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2010, pp. 383–87. doi:10.1109/CloudCom.2010.84

[106] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. S. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance
reproducible in modern cloud networks?” in Proceedings of
the 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2020, pp. 513–527. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/uta

[107] J. Eickhoff, J. Donkervliet, and A. Iosup, “Meterstick: Benchmarking
performance variability in cloud and self-hosted minecraft-like games
extended technical report,” CoRR, vol. abs/2112.06963, 2021. [Online].
Available: https://arxiv.org/abs/2112.06963

[108] L. Kotthoff, “Reliability of computational experiments on virtualised
hardware,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 26, pp. 33–9, 2014. doi:10.1080/0952813X.2013.784812

https://doi.org/10.1016/j.future.2016.11.002
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1109/TCC.2016.2603476
https://doi.org/10.1145/3127479.3131614
https://doi.org/10.1109/ICST.2018.00018
https://doi.org/10.1109/UCC.2018.00011
https://doi.org/10.1109/CloudCom.2010.84
https://www.usenix.org/conference/nsdi20/presentation/uta
https://arxiv.org/abs/2112.06963
https://doi.org/10.1080/0952813X.2013.784812

BIBLIOGRAPHY 245

[109] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understand-
ing performance interference of I/O workload in virtualized cloud en-
vironments,” in IEEE International Conference on Cloud Computing
(CLOUD), 2010, pp. 51–58. doi:10.1109/CLOUD.2010.65

[110] V. Horký, P. Libic, L. Marek, A. Steinhauser, and P. Tuma, “Utilizing
performance unit tests to increase performance awareness,” in Proceed-
ings of the 6th ACM/SPEC International Conference on Performance
Engineering (ICPE), 2015, pp. 289–300. doi:10.1145/2668930.2688051

[111] P. Stefan, V. Horký, L. Bulej, and P. Tuma, “Unit testing performance in
java projects: Are we there yet?” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering (ICPE), 2017,
pp. 401–412. doi:10.1145/3030207.3030226

[112] P. Leitner and C. Bezemer, “An exploratory study of the state of practice
of performance testing in java-based open source projects,” in Proceedings
of the 8th ACM/SPEC on International Conference on Performance
Engineering, ICPE 2017, L’Aquila, Italy, April 22-26, 2017, 2017, pp.
373–384. doi:10.1145/3030207.3030213

[113] D. Costa, C. Bezemer, P. Leitner, and A. Andrzejak, “What’s wrong
with my benchmark results? studying bad practices in JMH bench-
marks,” IEEE Trans. Software Eng., vol. 47, pp. 1452–1467, 2021.
doi:10.1109/TSE.2019.2925345

[114] J. Chen and W. Shang, “An exploratory study of performance re-
gression introducing code changes,” in IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2017, pp. 341–352.
doi:10.1109/ICSME.2017.13

[115] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology, vol. 27,
pp. 1–51, 2018. doi:10.1145/3241743

[116] P. Ralph, S. Baltes, D. Bianculli, Y. Dittrich, M. Felderer, R. Feldt,
A. Filieri, C. A. Furia, D. Graziotin, P. He, R. Hoda, N. Juristo,
B. Kitchenham, R. Robbes, D. Mendez, J. Molleri, D. Spinellis,
M. Staron, K. Stol, D. Tamburri, M. Torchiano, C. Treude, B. Turhan,
and S. Vegas, “Acm sigsoft empirical standards,” 2020. [Online]. Available:
https://github.com/acmsigsoft/EmpiricalStandards

[117] R. J. Wieringa, “Design science as nested problem solving,” in Pro-
ceedings of the 4th International Conference on Design Science Re-
search in Information Systems and Technology (DESRIST), 2009.
doi:10.1145/1555619.1555630

[118] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University, Tech.
Rep., 2007. [Online]. Available: http://cdn.elsevier.com/promis_misc/
525444systematicreviewsguide.pdf

https://doi.org/10.1109/CLOUD.2010.65
https://doi.org/10.1145/2668930.2688051
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1145/3030207.3030213
https://doi.org/10.1109/TSE.2019.2925345
https://doi.org/10.1109/ICSME.2017.13
https://doi.org/10.1145/3241743
https://github.com/acmsigsoft/EmpiricalStandards
https://doi.org/10.1145/1555619.1555630
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf

246 BIBLIOGRAPHY

[119] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp. 101–121,
2019. doi:10.1016/j.infsof.2018.09.006

[120] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, vol. 53, pp.
625–637, 2011. doi:10.1016/j.infsof.2010.12.010

[121] Y. Zacchia Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D. a.
Di Benedetto, “State of the art of cyber-physical systems security: An
automatic control perspective,” Journal of Systems and Software (JSS),
vol. 149, pp. 174–216, 2019. doi:10.1016/j.jss.2018.12.006

[122] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977. doi:10.2307/2529310

[123] S. Easterbrook, J. Singer, M. D. Storey, and D. E. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering, 2008, pp. 285–311. doi:10.1007/978-1-
84800-044-5_11

[124] S. Baltes and P. Ralph, “Sampling in software engineering research: a
critical review and guidelines,” Empir. Softw. Eng., vol. 27, p. 94, 2022.
doi:10.1007/s10664-021-10072-8

[125] G. Gousios, “The GHTorent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR),
2013, pp. 233–236. doi:10.1109/MSR.2013.6624034

[126] J. Spillner and M. Al-Ameen, “Serverless literature dataset,” 2019.
doi:10.5281/zenodo.2649001

[127] W. Hasselbring, “Benchmarking as empirical standard in software engi-
neering research,” in Evaluation and Assessment in Software Engineering
(EASE), 2021, pp. 365–372. doi:10.1145/3463274.3463361

[128] J. von Kistowski, J. A. Arnold, K. Huppler, K. Lange, J. L. Hen-
ning, and P. Cao, “How to build a benchmark,” in Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering
(ICPC), 2015, pp. 333–336. doi:10.1145/2668930.2688819

[129] K. Huppler, “The art of building a good benchmark,” in Performance
Evaluation and Benchmarking, 1st TPC Technology Conference, vol. 5895,
2009, pp. 18–30. doi:10.1007/978-3-642-10424-4_3

[130] B. Gregg, Systems Performance: Enterprise and the Cloud. Prentice
Hall, 2013. [Online]. Available: http://books.google.ch/books?id=
pTYkAQAAQBAJ

[131] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in Companion of the 11th IEEE/ACM
UCC: 4th International Workshop on Serverless Computing (WoSC),
2018, pp. 181–88. doi:10.1109/UCC-Companion.2018.00054

https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1016/j.jss.2018.12.006
https://doi.org/10.2307/2529310
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.5281/zenodo.2649001
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1007/978-3-642-10424-4_3
http://books.google.ch/books?id=pTYkAQAAQBAJ
http://books.google.ch/books?id=pTYkAQAAQBAJ
https://doi.org/10.1109/UCC-Companion.2018.00054

BIBLIOGRAPHY 247

[132] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Performance
evaluation of heterogeneous cloud functions,” Concurrency and Compu-
tation: Practice and Experience, vol. 30, 2018. doi:10.1002/cpe.4792

[133] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive
cloud native applications: A performance study on AWS,” in Proceed-
ings of the 12th IEEE International Conference on Cloud Computing
(CLOUD), 2019, pp. 272–280. doi:10.1109/CLOUD.2019.00054

[134] Markets and Markets, “Function-as-a-service market,” 2017.
[Online]. Available: https://www.marketsandmarkets.com/Market-
Reports/function-as-a-service-market-127202409.html

[135] R. Magoulas and C. Guzikowski, “O’reilly serverless survey 2019:
Concerns, what works, and what to expect,” O’Reilly, 2019. [Online].
Available: https://www.oreilly.com/radar/oreilly-serverless-survey-2019-
concerns-what-works-and-what-to-expect/

[136] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads,” in Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017, pp. 363–376.
[Online]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[137] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2019,
pp. 475–488. [Online]. Available: https://www.usenix.org/conference/
atc19/presentation/fouladi

[138] S. Bebortta, S. K. Das, M. Kandpal, R. K. Barik, and H. Dubey, “Geospa-
tial serverless computing: Architectures, tools and future directions,”
International Journal of Geo-Information (ISPRS), vol. 9, p. 311, 2020.
doi:10.3390/ijgi9050311

[139] S. Brisals, “Accelerating with serverless!” LEGO at Medium, 2020.
[Online]. Available: https://medium.com/lego-engineering/accelerating-
with-serverless-625da076964b

[140] T. Rehemägi, “Companies using serverless in production,” Dashbird,
2018. [Online]. Available: https://dashbird.io/blog/companies-using-
serverless-in-production/

[141] G. Adzic and R. Chatley, “Serverless computing: Economic and archi-
tectural impact,” in Proceedings of the 11th Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE), 2017, pp. 884–889.
doi:10.1145/3106237.3117767

https://doi.org/10.1002/cpe.4792
https://doi.org/10.1109/CLOUD.2019.00054
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.3390/ijgi9050311
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://dashbird.io/blog/companies-using-serverless-in-production/
https://dashbird.io/blog/companies-using-serverless-in-production/
https://doi.org/10.1145/3106237.3117767

248 BIBLIOGRAPHY

[142] V. Yussupov, U. Breitenbücher, F. Leymann, and C. Müller, “Facing
the unplanned migration of serverless applications: A study on porta-
bility problems, solutions, and dead ends,” in Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), 2019, pp. 273–283. doi:10.1145/3344341.3368813

[143] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich, and
R. Bianchini, “Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider,” in USENIX Annual
Technical Conference (ATC), 2020, pp. 205–218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[144] V. Vedam and J. Vemulapati, “Demystifying cloud benchmarking
paradigm – an in depth view,” in Proceedings of the 36th IEEE Computer
Software and Applications Conference (COMPSAC), 2012, pp. 416–21.
doi:10.1109/COMPSAC.2012.61

[145] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the optimal size of serverless functions,” in Proceed-
ings of the 22nd International Middleware Conference, 2021, pp. 248–259.
doi:10.1145/3464298.3493398

[146] R. Cordingly, W. Shu, and W. J. Lloyd, “Predicting performance and
cost of serverless computing functions with SAAF,” in IEEE Interna-
tional Conference on Cloud and Big Data (CBDCom), 2020, pp. 640–649.
doi:10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111

[147] R. Cordingly, N. Heydari, H. Yu, V. Hoang, Z. Sadeghi, and W. Lloyd,
“Enhancing observability of serverless computing with the serverless
application analytics framework,” in Companion of the ACM/SPEC
International Conference on Performance Engineering (ICPE Tutorial),
2021, pp. 161–164. doi:10.1145/3447545.3451173

[148] Anibal et al., “Awesome serverless: A curated list of awesome services,
solutions and resources for serverless / nobackend applications.” 2022.
[Online]. Available: https://github.com/anaibol/awesome-serverless

[149] OpenTelemetry, “Opentelemetry specification (experimen-
tal): Messaging systems,” 2022. [Online]. Avail-
able: https://github.com/open-telemetry/opentelemetry-
specification/blob/70fecd2dcba505b3ac3a7cb1851f947047743d24/
specification/trace/semantic_conventions/messaging.md

[150] J. Nielsen, Usability engineering. Morgan Kaufmann, 1994. [Online].
Available: https://www.nngroup.com/books/usability-engineering/

[151] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, 1968, pp. 267–277. doi:10.1145/1476589.1476628

[152] J. Nielsen, “Powers of 10: Time scales in user experience,” Nielsen
Norman Group, 2009. [Online]. Available: https://www.nngroup.com/
articles/powers-of-10-time-scales-in-ux/

https://doi.org/10.1145/3344341.3368813
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1109/COMPSAC.2012.61
https://doi.org/10.1145/3464298.3493398
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00111
https://doi.org/10.1145/3447545.3451173
https://github.com/anaibol/awesome-serverless
https://github.com/open-telemetry/opentelemetry-specification/blob/70fecd2dcba505b3ac3a7cb1851f947047743d24/specification/trace/semantic_conventions/messaging.md
https://github.com/open-telemetry/opentelemetry-specification/blob/70fecd2dcba505b3ac3a7cb1851f947047743d24/specification/trace/semantic_conventions/messaging.md
https://github.com/open-telemetry/opentelemetry-specification/blob/70fecd2dcba505b3ac3a7cb1851f947047743d24/specification/trace/semantic_conventions/messaging.md
https://www.nngroup.com/books/usability-engineering/
https://doi.org/10.1145/1476589.1476628
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/

BIBLIOGRAPHY 249

[153] ——, “Response times: The 3 important limits,” Nielsen Norman Group,
1993. [Online]. Available: https://www.nngroup.com/articles/response-
times-3-important-limits/

[154] Google, “Measure performance with the rail model,” 2015. [Online]. Avail-
able: https://www.smashingmagazine.com/2015/10/rail-user-centric-
model-performance/

[155] J. Ishmael, “Optimising serverless for bbc online,” BBC at
Medium, 2021. [Online]. Available: https://medium.com/bbc-design-
engineering/optimising-serverless-for-bbc-online-118fe2c04beb

[156] S. Quinn, R. Cordingly, and W. Lloyd, “Implications of alternative
serverless application control flow methods,” in Proceedings of the Seventh
International Workshop on Serverless Computing (WoSC), 2021, pp. 17–
22. doi:10.1145/3493651.3493668

[157] C. Laaber, S. Würsten, H. C. Gall, and P. Leitner, “Dynamically reconfig-
uring software microbenchmarks: reducing execution time without sacri-
ficing result quality,” in 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2020, pp. 989–1001. doi:10.1145/3368089.3409683

[158] J. Scheuner and P. Leitner, “Replication package for "function-as-a-
service performance evaluation: a multivocal literature review",” v1.0,
2020, dataset. doi:10.5281/zenodo.3906613

[159] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, and C. Abad, “The state of serverless applications: Collection,
characterization, and community consensus – replication package,” 2021.
doi:10.5281/zenodo.5185055

[160] Anonymous, “Let’s Trace It: Fine-Grained Serverless Benchmarking using
Synchronous and Asynchronous Orchestrated Applications - Dataset,”
Zenodo, 2022. doi:10.5281/zenodo.5879446

[161] J. Scheuner, R. Deng, J.-P. Steghöfer, and P. Leitner, “Serverless crossfit
replication package,” Github, 2022, to be released on Zenodo. [Online].
Available: https://github.com/serverless-crossfit/replication-package

[162] J. Scheuner, M. Bertilsson, O. Grönqvist, H. Tao, H. Lagergren, J.-
P. Steghöfer, and P. Leitner, “Replication package for "TriggerBench:
A performance benchmark for serverless function triggers",” 2022.
doi:10.5281/zenodo.6907484

[163] J. Scheuner and P. Leitner, “Replication package for "estimating cloud
application performance based on micro-benchmark profiling",” Github,
2018. [Online]. Available: https://github.com/joe4dev/cwb-analysis

[164] C. Laaber, J. Scheuner, and P. Leitner, “Dataset, scripts, and online ap-
pendix "software microbenchmarking in the cloud. how bad is it really?",”
2019. doi:10.6084/m9.figshare.7546703.v1

https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.smashingmagazine.com/2015/10/rail-user-centric-model-performance/
https://www.smashingmagazine.com/2015/10/rail-user-centric-model-performance/
https://medium.com/bbc-design-engineering/optimising-serverless-for-bbc-online-118fe2c04beb
https://medium.com/bbc-design-engineering/optimising-serverless-for-bbc-online-118fe2c04beb
https://doi.org/10.1145/3493651.3493668
https://doi.org/10.1145/3368089.3409683
https://doi.org/10.5281/zenodo.3906613
https://doi.org/10.5281/zenodo.5185055
https://doi.org/10.5281/zenodo.5879446
https://github.com/serverless-crossfit/replication-package
https://doi.org/10.5281/zenodo.6907484
https://github.com/joe4dev/cwb-analysis
https://doi.org/10.6084/m9.figshare.7546703.v1

250 BIBLIOGRAPHY

[165] T. Kalibera and R. Jones, “Quantifying performance changes with effect
size confidence intervals,” University of Kent, Tech. Rep., 2012. [Online].
Available: http://www.cs.kent.ac.uk/pubs/2012/3233

[166] ——, “Rigorous benchmarking in reasonable time,” SIGPLAN Not.,
vol. 48, pp. 63–74, 2013. doi:10.1145/2555670.2464160

[167] G. A. Rousselet, C. R. Pernet, and R. R. Wilcox, “Beyond differences
in means: robust graphical methods to compare two groups in neuro-
science,” European Journal of Neuroscience, vol. 46, pp. 1738–1748, 2017.
doi:https://doi.org/10.1111/ejn.13610

[168] J. Chen and Y. Liu, “Quantile and quantile-function estimations under
density ratio model,” The Annals of Statistics, vol. 41, pp. 1669 – 1692,
2013. doi:10.1214/13-AOS1129

[169] A. Akinshin, “Nonparametric cohen’s d-consistent effect size,” 2020.
[Online]. Available: https://aakinshin.net/posts/nonparametric-effect-
size/

[170] J. Sampé, P. G. López, M. S. Artigas, G. Vernik, P. Roca-Llaberia, and
A. Arjona, “Toward multicloud access transparency in serverless comput-
ing,” IEEE Softw., vol. 38, pp. 68–74, 2021. doi:10.1109/MS.2020.3029994

[171] J. Sampe, M. Sanchez-Artigas, G. Vernik, I. Yehekzel, and
P. Garcia-Lopez, “Outsourcing data processing jobs with lithops,”
IEEE Transactions on Cloud Computing (TCC), pp. 1–1, 2021.
doi:10.1109/TCC.2021.3129000

[172] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, , and V. Yussupov,
“Modeling and automated deployment of serverless applications using
TOSCA,” in Proceedings of the IEEE 11th International Conference on
Service-Oriented Computing and Applications (SOCA), 2018, pp. 73–80.
doi:10.1109/SOCA.2018.00017

[173] A. F. Baarzi, G. Kesidis, C. Joe-Wong, and M. Shahrad, “On merits
and viability of multi-cloud serverless,” in ACM Symposium on Cloud
Computing (SoCC), 2021, pp. 600–608. doi:10.1145/3472883.3487002

[174] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary guidelines for em-
pirical research in software engineering,” IEEE Transactions on Software
Engineering (TSE), vol. 28, pp. 721–734, 2002.

[175] B. Gregg, “Benchmarking the cloud,” 2014. [Online]. Avail-
able: https://www.brendangregg.com/blog/2014-01-10/benchmarking-
the-cloud.html

[176] V. Garousi, M. Felderer, and T. Hacaloglu, “Software test maturity
assessment and test process improvement: A multivocal literature re-
view,” Information and Software Technology, vol. 85, pp. 16–42, 2017.
doi:10.1016/j.infsof.2017.01.001

http://www.cs.kent.ac.uk/pubs/2012/3233
https://doi.org/10.1145/2555670.2464160
https://doi.org/https://doi.org/10.1111/ejn.13610
https://doi.org/10.1214/13-AOS1129
https://aakinshin.net/posts/nonparametric-effect-size/
https://aakinshin.net/posts/nonparametric-effect-size/
https://doi.org/10.1109/MS.2020.3029994
https://doi.org/10.1109/TCC.2021.3129000
https://doi.org/10.1109/SOCA.2018.00017
https://doi.org/10.1145/3472883.3487002
https://www.brendangregg.com/blog/2014-01-10/benchmarking-the-cloud.html
https://www.brendangregg.com/blog/2014-01-10/benchmarking-the-cloud.html
https://doi.org/10.1016/j.infsof.2017.01.001

BIBLIOGRAPHY 251

[177] A. Najafi, A. Tai, and M. Wei, “Systems research is running out of time,”
in Workshop on Hot Topics in Operating Systems (HotOS), 2021, pp.
65–71. doi:10.1145/3458336

[178] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow:
Scalable analytics on serverless infrastructure,” in Proceedings of
the 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019, pp. 193–206. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/pu

[179] I. Müller, R. Marroquín, and G. Alonso, “Lambada: Interactive data
analytics on cold data using serverless cloud infrastructure,” in Proceedings
of the International Conference on Management of Data (SIGMOD), 2020,
pp. 115–130. doi:10.1145/3318464.3389758

[180] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless analytics,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2018,
pp. 789–794. [Online]. Available: https://www.usenix.org/conference/
atc18/presentation/klimovic-serverless

[181] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018, pp. 427–444. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/klimovic

[182] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine learning
training,” in ACM International Conference on Management of Data
(SIGMOD), 2021, pp. 857–871. doi:10.1145/3448016.3459240

[183] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2020, pp. 1–15.
doi:10.1109/SC41405.2020.00073

[184] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: configuring
serverless functions using statistical learning,” in 39th IEEE Confer-
ence on Computer Communications (INFOCOM), 2020, pp. 129–138.
doi:10.1109/INFOCOM41043.2020.9155363

[185] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[186] A. Casalboni, “AWS Lambda Power Tuning,” 2019. [Online]. Available:
https://github.com/alexcasalboni/aws-lambda-power-tuning

[187] F. C. Y. Benureau and N. P. Rougier, “Re-run, repeat, reproduce, reuse,
replicate: Transforming code into scientific contributions,” Frontiers in
Neuroinformatics, vol. 11, p. 69, 2018. doi:10.3389/fninf.2017.00069

https://doi.org/10.1145/3458336
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/3318464.3389758
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1109/SC41405.2020.00073
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.3389/fninf.2017.00069

252 BIBLIOGRAPHY

[188] P. Leitner and J. Scheuner, “Bursting with possibilities – an empirical
study of credit-based bursting cloud instance types,” in Proceedings of the
8th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), 2015, pp. 227–36. doi:10.1109/UCC.2015.39

[189] C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach and
case study of cloud instance type selection for multi-tier web applica-
tions,” in Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 534–543.
doi:10.1109/CCGRID.2017.12

[190] C. Boettiger, “An introduction to docker for reproducible re-
search,” Operating Systems Review, vol. 49, pp. 71–79, 2015.
doi:10.1145/2723872.2723882

[191] A. Raza, I. Matta, N. Akhtar, V. Kalavri, and V. Isahagian, “Sok:
Function-as-a-service: From an application developer’s perspective,” Jour-
nal of Systems Research (JSys), vol. 1, 2021. doi:10.5070/SR31154815

[192] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on server-
less computing,” Journal of Cloud Computing, vol. 10, p. 39, 2021.
doi:10.1186/s13677-021-00253-7

[193] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and
Y. Cheng, “FaaSNet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute,” in USENIX
Annual Technical Conference (ATC), 2021, pp. 443–457. [Online].
Available: https://www.usenix.org/conference/atc21/presentation/wang-
ao

[194] J. Wen and Y. Liu, “A measurement study on serverless workflow services,”
in IEEE International Conference on Web Services (ICWS), 2021, pp.
741–750. doi:10.1109/ICWS53863.2021.00102

[195] D. Xie, Y. Hu, and L. Qin, “An evaluation of serverless computing on
X86 and ARM platforms: Performance and design implications,” in IEEE
14th International Conference on Cloud Computing (CLOUD), 2021, pp.
313–321. doi:10.1109/CLOUD53861.2021.00045

[196] Y. Lin, K. Ye, Y. Li, P. Lin, Y. Tang, and C. Xu, “Bbserverless: A bursty
traffic benchmark for serverless,” in 14th International Conference on
Cloud Computing CLOUD 2021, 2022, pp. 45–60. doi:10.1007/978-3-030-
96326-2_4

[197] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2020, pp. 419–434. [Online].
Available: https://www.usenix.org/conference/nsdi20/presentation/
agache

[198] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless ar-
chitectures: an evaluation of apache openwhisk,” in 13th IEEE/ACM

https://doi.org/10.1109/UCC.2015.39
https://doi.org/10.1109/CCGRID.2017.12
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.5070/SR31154815
https://doi.org/10.1186/s13677-021-00253-7
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1109/ICWS53863.2021.00102
https://doi.org/10.1109/CLOUD53861.2021.00045
https://doi.org/10.1007/978-3-030-96326-2_4
https://doi.org/10.1007/978-3-030-96326-2_4
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache

BIBLIOGRAPHY 253

International Conference on Utility and Cloud Computing (UCC), 2020,
pp. 329–335. doi:10.1109/UCC48980.2020.00052

[199] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source
serverless computing frameworks support at the edge,” in IEEE World
Congress on Services (SERVICES), vol. 2642-939X, 2019, pp. 206–11.
doi:10.1109/SERVICES.2019.00057

[200] J. Scheuner and P. Leitner, “Transpiling applications into optimized
serverless orchestrations,” in Proceedings of the 4th IEEE FAS*W: 2nd
Workshop on Hot Topics in Cloud Computing Performance (HotCloud-
Perf) at ICAC/SASO, 2019, pp. 72–73. doi:10.1109/FAS-W.2019.00031

[201] T. Schirmer, J. Scheuner, T. Pfandzelter, and D. Bermbach, “FUSIONIZE:
Improving serverless application performance through feedback-driven
function fusion,” in IEEE International Conference on Cloud Engineering
(IC2E), 2022, to appear.

[202] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji,
and S. Bagchi, “SONIC: Application-aware data passing for
chained serverless applications,” in USENIX Annual Technical
Conference (ATC), 2021, pp. 285–301. [Online]. Available: https:
//www.usenix.org/conference/atc21/presentation/mahgoub

[203] M. Zhang, Y. Zhu, J. Liu, F. Wang, and F. Wang, “Charm-
Seeker: Automated pipeline configuration for serverless video pro-
cessing,” IEEE/ACM Transactions on Networking, pp. 1–14, 2022.
doi:10.1109/TNET.2022.3183231

[204] A. Mahgoub, E. B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi,
and S. Chaterji, “WISEFUSE: workload characterization and DAG trans-
formation for serverless workflows,” Proc. ACM Meas. Anal. Comput.
Syst., vol. 6, pp. 26:1–26:28, 2022. doi:10.1145/3530892

[205] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learn-
ing models in a serverless platform,” in Proceedings of the IEEE Inter-
national Conference on Cloud Engineering (IC2E), 2018, pp. 257–62.
doi:10.1109/IC2E.2018.00052

[206] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell, Experi-
mentation in Software Engineering. Springer, 2012. doi:10.1007/978-3-
642-29044-2

[207] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and
M. M. Swift, “More for your money: exploiting performance heterogeneity
in public clouds,” in Proceedings of the 3rd ACM Symposium on Cloud
Computing (SoCC), 2012. doi:10.1145/2391229.2391249

[208] J. Scheuner and P. Leitner, “Estimating cloud application performance
based on micro-benchmark profiling,” in Proceedings of the 11th IEEE
International Conference on Cloud Computing (CLOUD), 2018, pp. 90–97.
doi:10.1109/CLOUD.2018.00019

https://doi.org/10.1109/UCC48980.2020.00052
https://doi.org/10.1109/SERVICES.2019.00057
https://doi.org/10.1109/FAS-W.2019.00031
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1109/TNET.2022.3183231
https://doi.org/10.1145/3530892
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/2391229.2391249
https://doi.org/10.1109/CLOUD.2018.00019

254 BIBLIOGRAPHY

[209] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wenzel,
“Benchmarking elasticity of FaaS platforms as a foundation for objective-
driven design of serverless applications,” in Proceedings of the 35th
ACM/SIGAPP Symposium on Applied Computing (SAC), 2020, pp. 1576–
1585. doi:10.1145/3341105.3373948

[210] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The
correct way to summarize benchmark results,” Communications of the
ACM, vol. 29, pp. 218–221, 1986. doi:10.1145/5666.5673

[211] E. van Eyk, J. Scheuner, S. Eismann, C. L. Abad, and A. Iosup, “Beyond
microbenchmarks: The SPEC-RG vision for a comprehensive serverless
benchmark,” in Companion of the 11th ACM/SPEC ICPE: 3rd Workshop
on Hot Topics in Cloud Computing Performance (HotCloudPerf), 2020,
pp. 26–31. doi:10.1145/3375555.3384381

[212] C. Laaber, J. Scheuner, and P. Leitner, “Software microbenchmarking
in the cloud. How bad is it really?” Empirical Software Engineering
(EMSE), vol. 24, pp. 2469–2508, 2019. doi:10.1007/s10664-019-09681-1

[213] M. Al-Ameen and J. Spillner, “Systematic and open exploration of FaaS
and serverless computing research,” in Proceedings of the European
Symposium on Serverless Computing and Applications (ESSCA), vol.
2330, 2018, pp. 30–35. [Online]. Available: http://ceur-ws.org/Vol-
2330/short2.pdf

[214] Z. Li, L. O’Brien, R. Cai, and H. Zhang, “Towards a taxonomy of
performance evaluation of commercial cloud services,” in Proceedings of
the 5th IEEE International Conference on Cloud Computing (CLOUD),
2012, pp. 344–51. doi:10.1109/CLOUD.2012.74

[215] N. Bjørndal, L. J. P. de Araújo, A. Bucchiarone, N. Dragoni, M. Mazzara,
and S. Dustdar, “Benchmarks and performance metrics for assessing the
migration to microservice-based architectures,” J. Object Technol. (JOT),
vol. 20, pp. 3:1–17, 2021. doi:10.5381/jot.2021.20.2.a3

[216] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: towards high-performance serverless
computing,” in Proceedings of the USENIX Annual Technical
Conference (ATC), 2018, pp. 923–935. [Online]. Available: https:
//www.usenix.org/conference/atc18/presentation/akkus

[217] L. F. Albuquerque Jr, F. S. Ferraz, R. F. Oliveira, and S. M.
Galdino, “Function-as-a-service x platform-as-a-service: Towards a
comparative study on FaaS and PaaS,” in 12th International Conference
on Software Engineering Advances (ICSEA), 2017, pp. 206–212. [Online].
Available: https://www.thinkmind.org/download.php?articleid=icsea_
2017_9_30_10096

[218] T. Back and V. Andrikopoulos, “Using a microbenchmark to compare
function as a service solutions,” in Proceedings of the 7th European Service-
Oriented and Cloud Computing (ESOCC), vol. 11116, 2018, pp. 146–160.
doi:10.1007/978-3-319-99819-0_11

https://doi.org/10.1145/3341105.3373948
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/3375555.3384381
https://doi.org/10.1007/s10664-019-09681-1
http://ceur-ws.org/Vol-2330/short2.pdf
http://ceur-ws.org/Vol-2330/short2.pdf
https://doi.org/10.1109/CLOUD.2012.74
https://doi.org/10.5381/jot.2021.20.2.a3
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.thinkmind.org/download.php?articleid=icsea_2017_9_30_10096
https://www.thinkmind.org/download.php?articleid=icsea_2017_9_30_10096
https://doi.org/10.1007/978-3-319-99819-0_11

BIBLIOGRAPHY 255

[219] D. Balla, M. Maliosz, C. Simon, and D. Gehberger, “Tuning runtimes in
open source FaaS,” in Proceedings of the Internet of Vehicles. Technologies
and Services Toward Smart Cities (IOV), vol. 11894, 2020, pp. 250–266.
doi:10.1007/978-3-030-38651-1_21

[220] D. Bardsley, L. Ryan, and J. Howard, “Serverless performance
and optimization strategies,” in Proceedings of the IEEE Interna-
tional Conference on Smart Cloud (SmartCloud), 2018, pp. 19–6.
doi:10.1109/SmartCloud.2018.00012

[221] D. Bortolini and R. R. Obelheiro, “Investigating performance and cost
in function-as-a-service platforms,” in Proceedings of the 14th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), vol. 96, 2019, pp. 174–185. doi:10.1007/978-3-030-33509-0_16

[222] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“A case for serverless machine learning,” in Workshop on Sys-
tems for ML and Open Source Software at NeurIPS, 2018.
[Online]. Available: http://learningsys.org/nips18/assets/papers/
101CameraReadySubmissioncirrus_nips_final2.pdf

[223] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark suite
for microservices and their hardware-software implications for cloud &
edge systems,” in Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2019, pp. 3–18. doi:10.1145/3297858.3304013

[224] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework and a
performance assessment for serverless mapreduce on AWS Lambda,”
Future Generation Computer Systems, vol. 97, pp. 259–274, 2019.
doi:10.1016/j.future.2019.02.057

[225] V. Gupta, S. Wang, T. A. Courtade, and K. Ramchandran, “Oversketch:
Approximate matrix multiplication for the cloud,” in Proceedings of
the IEEE International Conference on Big Data (Big Data), 2018, pp.
298–304. doi:10.1109/BigData.2018.8622139

[226] A. Hall and U. Ramachandran, “An execution model for serverless func-
tions at the edge,” in Proceedings of the International Conference on
Internet of Things Design and Implementation (IoTDI), 2019, pp. 225–
236. doi:10.1145/3302505.3310084

[227] C. Ivan, R. Vasile, and V. Dadarlat, “Serverless computing: An investi-
gation of deployment environments for Web APIs,” Computers, vol. 8,
2019. doi:10.3390/computers8020050

[228] D. Jackson and G. Clynch, “An investigation of the impact of lan-
guage runtime on the performance and cost of serverless functions,”
in Companion of the 11th IEEE/ACM UCC: 4th International Workshop

https://doi.org/10.1007/978-3-030-38651-1_21
https://doi.org/10.1109/SmartCloud.2018.00012
https://doi.org/10.1007/978-3-030-33509-0_16
http://learningsys.org/nips18/assets/papers/101CameraReadySubmissioncirrus_nips_final2.pdf
http://learningsys.org/nips18/assets/papers/101CameraReadySubmissioncirrus_nips_final2.pdf
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1016/j.future.2019.02.057
https://doi.org/10.1109/BigData.2018.8622139
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.3390/computers8020050

256 BIBLIOGRAPHY

on Serverless Computing (WoSC), 2018, pp. 154–60. doi:10.1109/UCC-
Companion.2018.00050

[229] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scien-
tific workflows,” in Proceedings of the 15th International Conference on
Service-Oriented Computing (ICSOC), vol. 10601, 2017, pp. 706–721.
doi:10.1007/978-3-319-69035-3_51

[230] J. Kim, J. Park, and K. Lee, “Network resource isolation in serverless
cloud function service,” in Proceedings of the 7th International Workshop
on Autonomic Management of High-Performance Grid and Cloud Com-
puting (AMGCC) at ICAC/SASO, 2019, pp. 182–187. doi:10.1109/FAS-
W.2019.00051

[231] J. Kuhlenkamp, S. Werner, M. C. Borges, K. El Tal, and S. Tai, “An evalu-
ation of FaaS platforms as a foundation for serverless big data processing,”
in Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2019, pp. 1–9. doi:10.1145/3344341.3368796

[232] H. Lee, K. Satyam, and G. C. Fox, “Evaluation of production serverless
computing environments,” in Proceedings of the 11th IEEE CLOUD:
3rd International Workshop on Serverless Computing (WoSC), 2018, pp.
442–50. doi:10.1109/CLOUD.2018.00062

[233] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understanding
open source serverless platforms: Design considerations and performance,”
in Proceedings of the 5th International Workshop on Serverless Computing
(WoSC) at Middleware, 2019, pp. 37–42. doi:10.1145/3366623.3368139

[234] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice per-
formance,” in Proceedings of the IEEE International Conference on Cloud
Engineering (IC2E), 2018, pp. 159–169. doi:10.1109/IC2E.2018.00039

[235] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving ap-
plication migration to serverless computing platforms: Latency mitigation
with keep-alive workloads,” in Companion of the 11th IEEE/ACM UCC:
4th International Workshop on Serverless Computing (WoSC), 2018, pp.
195–00. doi:10.1109/UCC-Companion.2018.00056

[236] P. G. López, M. Sánchez-Artigas, G. París, D. B. Pons, Á. R. Ollobar-
ren, and D. A. Pinto, “Comparison of FaaS orchestration systems,” in
Companion of the 11th IEEE/ACM UCC: 4th International Workshop
on Serverless Computing (WoSC), 2018, pp. 148–53. doi:10.1109/UCC-
Companion.2018.00049

[237] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, 2017. doi:10.1016/j.future.2017.10.029

[238] S. Malla and K. Christensen, “HPC in the cloud: Performance comparison
of function as a service (FaaS) vs infrastructure as a service (IaaS),”
Internet Technology Letters, 2019. doi:10.1002/itl2.137

https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1007/978-3-319-69035-3_51
https://doi.org/10.1109/FAS-W.2019.00051
https://doi.org/10.1109/FAS-W.2019.00051
https://doi.org/10.1145/3344341.3368796
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/UCC-Companion.2018.00056
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1002/itl2.137

BIBLIOGRAPHY 257

[239] G. McGrath and P. R. Brenner, “Serverless computing: Design, implemen-
tation, and performance,” in Proceedings of the 37th IEEE International
Conference on Distributed Computing Systems Workshops (ICDCSW),
2017, pp. 405–10. doi:10.1109/ICDCSW.2017.36

[240] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and
V. Sukhomlinov, “Agile cold starts for scalable serverless,” in
Proceedings of the 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), 2019. [Online]. Available: https:
//www.usenix.org/conference/hotcloud19/presentation/mohan

[241] S. K. Mohanty, G. Premsankar, and M. D. Francesco, “An evaluation of
open source serverless computing frameworks,” in Proceedings of the IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), 2018, pp. 115–120. doi:10.1109/CloudCom2018.2018.00033

[242] X. Niu, D. Kumanov, L. Hung, W. Lloyd, and K. Y. Yeung, “Leveraging
serverless computing to improve performance for sequence comparison,” in
Proceedings of the 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics (BCB), 2019, pp. 683–687.
doi:10.1145/3307339.3343465

[243] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with
serverless-optimized containers,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2018, pp. 57–70. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/oakes

[244] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “A programming
model and middleware for high throughput serverless computing applica-
tions,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing (SAC), 2019, pp. 106–113. doi:10.1145/3297280.3297292

[245] H. Puripunpinyo and M. H. Samadzadeh, “Effect of optimizing Java
deployment artifacts on AWS Lambda,” in Proceedings of the IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2017, pp. 438–43. doi:10.1109/INFCOMW.2017.8116416

[246] A. Saha and S. Jindal, “EMARS: efficient management and allocation
of resources in serverless,” in Proceedings of the 11th IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2018, pp. 827–830.
doi:10.1109/CLOUD.2018.00113

[247] S. Shillaker, “A provider-friendly serverless framework for latency-
critical applications,” in 12th Eurosys Doctoral Workshop, 2018.
[Online]. Available: http://conferences.inf.ed.ac.uk/EuroDW2018/
papers/eurodw18-Shillaker.pdf

[248] A. Singhvi, S. Banerjee, Y. Harchol, A. Akella, M. Peek, and P. Rydin,
“Granular computing and network intensive applications: Friends or foes?”
in Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
2017, pp. 157–163. doi:10.1145/3152434.3152450

https://doi.org/10.1109/ICDCSW.2017.36
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1145/3307339.3343465
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/3297280.3297292
https://doi.org/10.1109/INFCOMW.2017.8116416
https://doi.org/10.1109/CLOUD.2018.00113
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf
https://doi.org/10.1145/3152434.3152450

258 BIBLIOGRAPHY

[249] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: The
prospect of serverless scientific computing and HPC,” in Proceedings of
the 4th Latin American Conference on High Performance Computing
(CARLA), vol. 796, 2017, pp. 154–168. doi:10.1007/978-3-319-73353-1_11

[250] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and S. Tai, “Serverless big
data processing using matrix multiplication as example,” in Proceedings
of the IEEE International Conference on Big Data (Big Data), 2018, pp.
358–65. doi:10.1109/BigData.2018.8622362

[251] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video processing with serverless
computing: A measurement study,” in Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), 2019, pp. 61–66. doi:10.1145/3304112.3325608

[252] IDC, “FutureScape: Worldwide it industry 2019 predictions,” 2018.
[Online]. Available: https://web.archive.org/web/20211029191036/https:
//www.idc.com/getdoc.jsp?containerId=US44403818

[253] Research and Markets, “$7.72 billion function-as-a-
service market 2017,” Businesswire, 2017. [Online]. Avail-
able: https://www.businesswire.com/news/home/20170227006262/en/
7.72-Billion-Function-as-a-Service-Market-2017---Global

[254] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is more: From PaaS to present cloud computing,” IEEE Inter-
net Computing, vol. 22, pp. 8–17, 2018. doi:10.1109/MIC.2018.053681358

[255] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. J. Yadwadkar,
J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson,
“Cloud programming simplified: A berkeley view on serverless
computing,” CoRR, vol. abs/1902.03383, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03383

[256] E. V. Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG cloud group’s vision on the performance challenges of faas
cloud architectures,” in Companion of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE), 2018, pp. 21–24.
doi:10.1145/3185768.3186308

[257] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One
step forward, two steps back,” in Proceedings of the 9th Conference on
Innovative Data Systems Research (CIDR), 2019. [Online]. Available:
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[258] E. Levinson, “Serverless community survey 2020,” Nuweba, 2020.
[Online]. Available: https://web.archive.org/web/20200627124546/https:
//nuweba.com/blog/serverless-community-survey-2020-results

[259] A. Eivy, “Be wary of the economics of "serverless" cloud computing,”
IEEE Cloud Computing, vol. 4, pp. 6–2, 2017. doi:10.1109/MCC.2017.32

https://doi.org/10.1007/978-3-319-73353-1_11
https://doi.org/10.1109/BigData.2018.8622362
https://doi.org/10.1145/3304112.3325608
https://web.archive.org/web/20211029191036/https://www.idc.com/getdoc.jsp?containerId=US44403818
https://web.archive.org/web/20211029191036/https://www.idc.com/getdoc.jsp?containerId=US44403818
https://www.businesswire.com/news/home/20170227006262/en/7.72-Billion-Function-as-a-Service-Market-2017---Global
https://www.businesswire.com/news/home/20170227006262/en/7.72-Billion-Function-as-a-Service-Market-2017---Global
https://doi.org/10.1109/MIC.2018.053681358
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3185768.3186308
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://web.archive.org/web/20200627124546/https://nuweba.com/blog/serverless-community-survey-2020-results
https://web.archive.org/web/20200627124546/https://nuweba.com/blog/serverless-community-survey-2020-results
https://doi.org/10.1109/MCC.2017.32

BIBLIOGRAPHY 259

[260] P. A. Witte, M. Louboutin, C. Jones, and F. J. Herrmann, “Serverless
seismic imaging in the cloud,” CoRR, vol. abs/1911.12447, 2019. [Online].
Available: http://arxiv.org/abs/1911.12447

[261] R. Crespo-Cepeda, G. Agapito, J. L. Vazquez-Poletti, and M. Cannataro,
“Challenges and opportunities of amazon serverless lambda services in
bioinformatics,” in Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics (BCB),
2019, pp. 663–668. doi:10.1145/3307339.3343462

[262] M. Chan, “Containers vs. serverless: Which should you use, and when?”
2018. [Online]. Available: https://web.archive.org/web/20210116093357/
https://www.thorntech.com/2018/08/containers-vs-serverless/

[263] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container technolo-
gies: A state-of-the-art review,” IEEE Transactions on Cloud Computing,
vol. 7, pp. 677–92, 2019. doi:10.1109/TCC.2017.2702586

[264] P. Maenhaut, B. Volckaert, V. Ongenae, and F. D. Turck, “Resource
management in a containerized cloud: Status and challenges,” J. Netw.
Syst. Manag., vol. 28, pp. 197–246, 2020. doi:10.1007/s10922-019-09504-0

[265] A. Orfin, “How droplr scales to millions with the serverless framework,”
Serverless.com, 2018. [Online]. Available: https://www.serverless.com/
blog/how-droplr-scales-to-millions-serverless-framework

[266] E. van Eyk, A. Iosup, J. Grohmann, S. Eismann, A. Bauer, L. Versluis,
L. Toader, N. Schmitt, N. Herbst, and C. L. Abad, “The SPEC-RG
reference architecture for FaaS: From microservices and containers to
serverless platforms,” IEEE Internet Computing, vol. 23, pp. 7–18, 2019.
doi:10.1109/MIC.2019.2952061

[267] I. Pavlov, S. Ali, and T. Mahmud, “Serverless development trends in
open source: a mixed-research study,” Bachelor’s Thesis, 2019. [Online].
Available: https://gupea.ub.gu.se/handle/2077/62544

[268] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “Serverless applications:
Why, when, and how?” IEEE Software, vol. 38, pp. 32–39, 2021.
doi:10.1109/MS.2020.3023302

[269] J. Walter, “Systematic data transformation to enable web coverage
services (WCS) and ArcGIS image services within ESDIS cumulus cloud,”
2019. [Online]. Available: https://earthdata.nasa.gov/esds/competitive-
programs/access/arcgis-cloud

[270] J. Blomer, G. Ganis, S. Mosciatti, and R. Popescu, “Towards a
serverless CernVM-FS,” EPJ Web Conf., vol. 214, p. 09007, 2019.
doi:10.1051/epjconf/201921409007

[271] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “BARISTA: efficient and scalable serverless serving system for
deep learning prediction services,” in IEEE International Conference on
Cloud Engineering (IC2E), 2019, pp. 23–33. doi:10.1109/IC2E.2019.00-10

http://arxiv.org/abs/1911.12447
https://doi.org/10.1145/3307339.3343462
https://web.archive.org/web/20210116093357/https://www.thorntech.com/2018/08/containers-vs-serverless/
https://web.archive.org/web/20210116093357/https://www.thorntech.com/2018/08/containers-vs-serverless/
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1007/s10922-019-09504-0
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://www.serverless.com/blog/how-droplr-scales-to-millions-serverless-framework
https://doi.org/10.1109/MIC.2019.2952061
https://gupea.ub.gu.se/handle/2077/62544
https://doi.org/10.1109/MS.2020.3023302
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://doi.org/10.1051/epjconf/201921409007
https://doi.org/10.1109/IC2E.2019.00-10

260 BIBLIOGRAPHY

[272] Z. Tu, M. Li, and J. Lin, “Pay-per-request deployment of neural network
models using serverless architectures,” in Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Demonstrations, 2018, pp. 6–10. doi:10.18653/v1/N18-5002

[273] A. Coffey and P. Atkinson, Making sense of qualitative data: Comple-
mentary research strategies. Sage Publications, Inc, 1996.

[274] G. Guest, K. M. MacQueen, and E. E. Namey, Applied thematic analysis.
SAGE publications, 2011.

[275] K. L. Gwet, Handbook of inter-rater reliability: The definitive guide to
measuring the extent of agreement among raters. Advanced Analytics,
LLC, 2014.

[276] J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation:
A multivocal literature review,” Journal of Systems and Software (JSS),
vol. 170, 2020. doi:10.1016/j.jss.2020.110708

[277] N. Malishev, “AWS Lambda cold start language com-
parisons, 2019 edition,” LevelUp, 2019. [Online]. Avail-
able: https://levelup.gitconnected.com/aws-lambda-cold-start-language-
comparisons-2019-edition-%EF%B8%8F-1946d32a0244

[278] S. Moellering and S. Grunwald, “Field notes: Optimize your Java
application for AWS Lambda with Quarkus,” 2020. [Online]. Avail-
able: https://aws.amazon.com/blogs/architecture/field-notes-optimize-
your-java-application-for-aws-lambda-with-quarkus/

[279] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rab-
bah, P. Suter, and O. Tardieu, “The serverless trilemma: Function
composition for serverless computing,” in Proceedings of the ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), 2017, pp. 89–103.
doi:10.1145/3133850.3133855

[280] M. Laul, “Serverless case study - Netflix,” dashbird, 2018. [Online].
Available: https://dashbird.io/blog/serverless-case-study-netflix/

[281] A. Williams, “Autodesk goes serverless in the AWS cloud, reduces account-
creation time by 99%,” Amazon Web Services, 2017. [Online]. Available:
https://aws.amazon.com/solutions/case-studies/autodesk-serverless/

[282] S. E. Brockwell and I. R. Gordon, “A comparison of statistical methods
for meta-analysis,” Statistics in medicine, vol. 20, pp. 825–840, 2001.

[283] S. Makridakis, “Accuracy measures: theoretical and practical con-
cerns,” International Journal of Forecasting, vol. 9, pp. 527–529, 1993.
doi:https://doi.org/10.1016/0169-2070(93)90079-3

[284] J. L. Myers, A. Well, and R. F. Lorch, Research design and statistical
analysis. Routledge, 2010. doi:10.4324/9780203726631

https://doi.org/10.18653/v1/N18-5002
https://doi.org/10.1016/j.jss.2020.110708
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://aws.amazon.com/blogs/architecture/field-notes-optimize-your-java-application-for-aws-lambda-with-quarkus/
https://aws.amazon.com/blogs/architecture/field-notes-optimize-your-java-application-for-aws-lambda-with-quarkus/
https://doi.org/10.1145/3133850.3133855
https://dashbird.io/blog/serverless-case-study-netflix/
https://aws.amazon.com/solutions/case-studies/autodesk-serverless/
https://doi.org/https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.4324/9780203726631

BIBLIOGRAPHY 261

[285] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex sys-
tems,” EPL (Europhysics Letters), vol. 81, p. 48002, 2008.

[286] A. Ali-Eldin, O. Seleznjev, S. S. Luna, J. Tordsson, and E. Elmroth, “Mea-
suring cloud workload burstiness,” in Proceedings of the 7th IEEE/ACM
International Conference on Utility and Cloud Computing (UCC), 2014,
pp. 566–572. doi:10.1109/UCC.2014.87

[287] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yad-
wadkar, R. A. Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson,
“What serverless computing is and should become: The next phase of
cloud computing,” Communication of the ACM, vol. 64, pp. 76–84, 2021.
doi:10.1145/3406011

[288] D. Ustiugov, T. Amariucai, and B. Grot, “Analyzing tail latency in
serverless clouds with stellar,” in IEEE International Symposium on
Workload Characterization (IISWC), 2021, pp. 51–62. [Online]. Available:
http://www.iiswc.org/iiswc2021/index.html

[289] Wilkinson et al., “The FAIR guiding principles for scientific data
management and stewardship,” Nature SciData, vol. 3, 2016.
doi:10.1038/sdata.2016.18

[290] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht,
Y. Cheng, N. Zhao, D. Skourtis, A. Warke, H. Ludwig, D. Hildebrand,
and A. R. Butt, “Improving docker registry design based on
production workload analysis,” in 16th USENIX Conference on File and
Storage Technologies (FAST), 2018, pp. 265–278. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/anwar

[291] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “The state of server-
less applications: Collection, characterization, and community con-
sensus,” IEEE Transactions on Software Engineering (TSE), 2021.
doi:10.1109/TSE.2021.3113940

[292] Open Telemetry, “Open Telemetry: Sync and async children
(follows_from),” Github. [Online]. Available: https://github.com/open-
telemetry/opentelemetry-specification/issues/65

[293] A. Williams, “Guide to serverless technologies,” The New Stack, 2018.
[Online]. Available: https://thenewstack.io/ebooks/serverless/guide-to-
serverless-technologies/

[294] I. Cesar, “Amazon API Gateway to AWS Lambda,” Amazon, 2022.
[Online]. Available: https://serverlessland.com/patterns/apigw-lambda-
cdk

[295] Amazon, “Serverless image processing,” 2021. [Online]. Available:
https://image-processing.serverlessworkshops.io

[296] A. Karandikar, “Realworld example app,” Github, 2022. [Online].
Available: https://github.com/anishkny/realworld-dynamodb-lambda

https://doi.org/10.1109/UCC.2014.87
https://doi.org/10.1145/3406011
http://www.iiswc.org/iiswc2021/index.html
https://doi.org/10.1038/sdata.2016.18
https://www.usenix.org/conference/fast18/presentation/anwar
https://doi.org/10.1109/TSE.2021.3113940
https://github.com/open-telemetry/opentelemetry-specification/issues/65
https://github.com/open-telemetry/opentelemetry-specification/issues/65
https://thenewstack.io/ebooks/serverless/guide-to-serverless-technologies/
https://thenewstack.io/ebooks/serverless/guide-to-serverless-technologies/
https://serverlessland.com/patterns/apigw-lambda-cdk
https://serverlessland.com/patterns/apigw-lambda-cdk
https://image-processing.serverlessworkshops.io
https://github.com/anishkny/realworld-dynamodb-lambda

262 BIBLIOGRAPHY

[297] J. McKim, “Serverless event sourcing at nordstrom,” Nordstrom, 2017.
[Online]. Available: https://web.archive.org/web/20210119044741/https:
//acloudguru.com/blog/engineering/serverless-event-sourcing-at-
nordstrom-ea69bd8fb7cc

[298] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic:
evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5, pp.
835–846, 1997. doi:10.1109/90.650143

[299] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity of
traffic traces and implications,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 4, pp. 20:1–20:29, 2020. doi:10.1145/3379486

[300] Amazon Web Services, “Using AWS Lambda with AWS X-Ray.” [Online].
Available: https://docs.aws.amazon.com/lambda/latest/dg/services-
xray.html

[301] Microsoft Azure, “How to configure monitor-
ing for Azure Functions,” 2022. [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/azure-functions/configure-
monitoring?tabs=v2#configure-scale-controller-logs

[302] R. Cordingly, H. Yu, V. Hoang, D. Perez, D. Foster, Z. Sadeghi, R. Hatch-
ett, and W. J. Lloyd, “Implications of programming language selection for
serverless data processing pipelines,” in IEEE International Conference on
Cloud and Big Data (CBDCom), 2020, pp. 704–711. doi:10.1109/DASC-
PICom-CBDCom-CyberSciTech49142.2020.00120

[303] D. Barcelona-Pons and P. García-López, “Benchmarking parallelism in
FaaS platforms,” Future Generation Computer Systems (FGCS), vol. 124,
pp. 268–284, 2021. doi:https://doi.org/10.1016/j.future.2021.06.005

[304] J. Wen, Y. Liu, Z. Chen, J. Chen, and Y. Ma, “Characterizing commodity
serverless computing platforms,” Journal of Software: Evolution and
Process, 2021. doi:https://doi.org/10.1002/smr.2394

[305] Amazon Web Services, “Configuring function memory (con-
sole),” AWS Lambda documentation, 2022. [Online]. Avail-
able: https://docs.aws.amazon.com/lambda/latest/dg/configuration-
function-common.html#configuration-memory-console

[306] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a server-
less architecture,” in IEEE Conference on Computer Communications
(INFOCOM), 2019, pp. 1288–1296. doi:10.1109/INFOCOM.2019.8737391

[307] S. Salvador and P. Chan, “Toward accurate dynamic time warping in
linear time and space,” Intelligent Data Analysis, vol. 11, pp. 561–580,
2007. [Online]. Available: http://content.iospress.com/articles/intelligent-
data-analysis/ida00303

[308] M. Brooker, A. C. Catangiu, M. Danilov, A. Graf, C. MacCárthaigh,
and A. Sandu, “Restoring uniqueness in microvm snapshots,”
CoRR, vol. abs/2102.12892, 2021. [Online]. Available: https:
//arxiv.org/abs/2102.12892

https://web.archive.org/web/20210119044741/https://acloudguru.com/blog/engineering/serverless-event-sourcing-at-nordstrom-ea69bd8fb7cc
https://web.archive.org/web/20210119044741/https://acloudguru.com/blog/engineering/serverless-event-sourcing-at-nordstrom-ea69bd8fb7cc
https://web.archive.org/web/20210119044741/https://acloudguru.com/blog/engineering/serverless-event-sourcing-at-nordstrom-ea69bd8fb7cc
https://doi.org/10.1109/90.650143
https://doi.org/10.1145/3379486
https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html
https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html
https://docs.microsoft.com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#configure-scale-controller-logs
https://docs.microsoft.com/en-us/azure/azure-functions/configure-monitoring?tabs=v2#configure-scale-controller-logs
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00120
https://doi.org/https://doi.org/10.1016/j.future.2021.06.005
https://doi.org/https://doi.org/10.1002/smr.2394
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-memory-console
https://doi.org/10.1109/INFOCOM.2019.8737391
http://content.iospress.com/articles/intelligent-data-analysis/ida00303
http://content.iospress.com/articles/intelligent-data-analysis/ida00303
https://arxiv.org/abs/2102.12892
https://arxiv.org/abs/2102.12892

BIBLIOGRAPHY 263

[309] P. Maissen, P. Felber, P. G. Kropf, and V. Schiavoni, “Faasdom: a
benchmark suite for serverless computing,” in Proceedings of the 14th
ACM International Conference on Distributed and Event-based Systems
(DEBS), 2020, pp. 73–84. doi:10.1145/3401025.3401738

[310] B. Minic, “Improving cold start times of Java AWS Lambda
functions using GraalVM and native images,” 2021. [Online].
Available: https://shinesolutions.com/2021/08/30/improving-cold-start-
times-of-java-aws-lambda-functions-using-graalvm-and-native-images/

[311] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, pp. 74–80, 2013. [Online]. Available: http:
//cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

[312] T. Zhang, D. Xie, F. Li, and R. Stutsman, “Narrowing the gap be-
tween serverless and its state with storage functions,” in Proceedings
of the ACM Symposium on Cloud Computing (SoCC), 2019, pp. 1–12.
doi:10.1145/3357223.3362723

[313] P. G. López, A. Arjona, J. Sampé, A. Slominski, and L. Villard, “Trig-
gerflow: trigger-based orchestration of serverless workflows,” in The 14th
ACM International Conference on Distributed and Event-based Systems
(DEBS), 2020, pp. 3–14. doi:10.1145/3401025.3401731

[314] C. Lin and H. Khazaei, “Modeling and optimization of perfor-
mance and cost of serverless applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, pp. 615–632, 2020.
doi:10.1109/TPDS.2020.3028841

[315] A. Filichkin, “GraalVM + AWS Lambda or solving Java cold start
problem,” 2021. [Online]. Available: https://filia-aleks.medium.com/
graalvm-aws-lambda-or-solving-java-cold-start-problem-2655eeee98c6

[316] B. Schaatsbergen, “Pre-jitting in AWS Lambda functions,” 2021.
[Online]. Available: https://web.archive.org/web/20210807184839/https:
//www.bschaatsbergen.com/pre-jitting-in-lambda

[317] S. Kuenzer, V. Badoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, S. Teodorescu, C. Raducanu, C. Banu, L. Mathy,
R. Deaconescu, C. Raiciu, and F. Huici, “Unikraft: fast, specialized
unikernels the easy way,” in 16th European Conference on Computer
Systems (EuroSys), 2021, pp. 376–394. doi:10.1145/3447786.3456248

[318] C. Soto-Valero, T. Durieux, N. Harrand, and B. Baudry, “Coverage-
based debloating for java bytecode,” ACM Transactions on Software
Engineering and Methodology, 2022. doi:10.1145/3546948

[319] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, and S. Lanka, “Sequoia:
Enabling quality-of-service in serverless computing,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC), 2020, pp. 311–327.
doi:10.1145/3419111.3421306

https://doi.org/10.1145/3401025.3401738
https://shinesolutions.com/2021/08/30/improving-cold-start-times-of-java-aws-lambda-functions-using-graalvm-and-native-images/
https://shinesolutions.com/2021/08/30/improving-cold-start-times-of-java-aws-lambda-functions-using-graalvm-and-native-images/
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://doi.org/10.1145/3357223.3362723
https://doi.org/10.1145/3401025.3401731
https://doi.org/10.1109/TPDS.2020.3028841
https://filia-aleks.medium.com/graalvm-aws-lambda-or-solving-java-cold-start-problem-2655eeee98c6
https://filia-aleks.medium.com/graalvm-aws-lambda-or-solving-java-cold-start-problem-2655eeee98c6
https://web.archive.org/web/20210807184839/https://www.bschaatsbergen.com/pre-jitting-in-lambda
https://web.archive.org/web/20210807184839/https://www.bschaatsbergen.com/pre-jitting-in-lambda
https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3546948
https://doi.org/10.1145/3419111.3421306

264 BIBLIOGRAPHY

[320] D. C.-C. Walter Erquinigo and A. Tang, “Reverse debugging at scale,”
Meta, 2021. [Online]. Available: https://engineering.fb.com/2021/04/27/
developer-tools/reverse-debugging/

[321] D. Balla, M. Maliosz, and C. Simon, “Performance evaluation of asyn-
chronous FaaS,” in 14th IEEE International Conference on Cloud Comput-
ing (CLOUD), 2021, pp. 147–156. doi:10.1109/CLOUD53861.2021.00028

[322] J. Czentye, I. Pelle, A. Kern, B. P. Gero, L. Toka, and B. Sonkoly,
“Optimizing latency sensitive applications for Amazon’s public cloud
platform,” in IEEE Global Communications Conference (GLOBECOM),
2019, pp. 1–7. doi:10.1109/GLOBECOM38437.2019.9013988

[323] J. Brutlag, “Speed matters for google web search,” Google, Tech. Rep.,
2009. [Online]. Available: https://ai.googleblog.com/2009/06/speed-
matters.html

[324] R. Kohavi and R. Longbotham, “Online experiments: Lessons learned,”
Computer, vol. 40, pp. 103–05, 2007. doi:10.1109/MC.2007.328

[325] J. Wen, Z. Chen, Y. Liu, Y. Lou, Y. Ma, G. Huang, X. Jin, and X. Liu,
“An empirical study on challenges of application development in server-
less computing,” in 29th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021, pp. 416–428. doi:10.1145/3468264.3468558

[326] E. van Eyk, “Function composition in a serverless world,” 2018. [Online].
Available: https://fission.io/blog/function-composition-in-a-serverless-
world-video/

[327] L. Zhu, G. Giotis, V. Tountopoulos, and G. Casale, “RDOF: deploy-
ment optimization for function as a service,” in 14th IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2021, pp. 508–514.
doi:10.1109/CLOUD53861.2021.00066

[328] A. Mahéo, P. Sutra, and T. Tarrant, “The serverless shell,” in Proceedings
of the 22nd International Middleware Conference: Industrial Track, 2021,
pp. 9–15. doi:10.1145/3491084.3491426

[329] D. A. Patterson, “Latency lags bandwith,” Communication of the ACM,
vol. 47, pp. 71–75, 2004. doi:10.1145/1022594.1022596

[330] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: Twelve ways to tell the masses when reporting performance
results,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), 2015.
doi:10.1145/2807591.2807644

[331] J. Scheuner, S. Eismann, S. Talluri, E. V. Eyk, C. L. Abad, P. Leitner,
and A. Iosup, “Let’s trace it: Fine-grained serverless benchmarking using
synchronous and asynchronous orchestrated applications,” CoRR, vol.
abs/2205.07696, 2022. doi:10.48550/arXiv.2205.07696

https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/
https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/
https://doi.org/10.1109/CLOUD53861.2021.00028
https://doi.org/10.1109/GLOBECOM38437.2019.9013988
https://ai.googleblog.com/2009/06/speed-matters.html
https://ai.googleblog.com/2009/06/speed-matters.html
https://doi.org/10.1109/MC.2007.328
https://doi.org/10.1145/3468264.3468558
https://fission.io/blog/function-composition-in-a-serverless-world-video/
https://fission.io/blog/function-composition-in-a-serverless-world-video/
https://doi.org/10.1109/CLOUD53861.2021.00066
https://doi.org/10.1145/3491084.3491426
https://doi.org/10.1145/1022594.1022596
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.48550/arXiv.2205.07696

BIBLIOGRAPHY 265

[332] T. Killalea, “A second conversation with werner vogels: The amazon cto
sits with tom killalea to discuss designing for evolution at scale.” Queue,
vol. 18, pp. 67–92, 2020. doi:10.1145/3434571.3434573

[333] S. Sivasubramanian, “Amazon DynamoDB: a seamlessly scalable non-
relational database service,” in Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, 2012, pp. 729–730.
doi:10.1145/2213836.2213945

[334] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. ul Haq,
M. I. ul Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett,
S. Sankaran, K. Manivannan, and L. Rigas, “Windows Azure Storage:
a highly available cloud storage service with strong consistency,” in
Proceedings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), 2011, pp. 143–157. doi:10.1145/2043556.2043571

[335] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding long
tails in the cloud,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), vol. 13, 2013,
pp. 329–341. [Online]. Available: https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/xu_yunjing

[336] A. Chu, “.NET on Azure Functions roadmap,” Microsoft, 2021.
[Online]. Available: https://techcommunity.microsoft.com/t5/apps-on-
azure-blog/net-on-azure-functions-roadmap/ba-p/2197916

[337] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading
cold starts in serverless function chain deployments,” in Proceedings
of the 21st International Middleware Conference, 2020, pp. 356–370.
doi:10.1145/3423211.3425690

[338] Microsoft Azure, “Choose between Azure messaging services –
Event Grid, Event Hubs, and Service Bus,” 2022. [Online].
Available: https://docs.microsoft.com/en-us/azure/event-grid/compare-
messaging-services

[339] M. Hüttermann, Infrastructure as Code. Apress, 2012. doi:10.1007/978-
1-4302-4570-4_9

[340] S. Bhatia and J. Ridoux, “Manage Amazon EC2 instance clock accuracy
using Amazon Time Sync Service and Amazon CloudWatch,” AWS,
2021. [Online]. Available: https://aws.amazon.com/blogs/mt/manage-
amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-
and-amazon-cloudwatch-part-1/

[341] Microsoft Azure, “Time sync for Windows VMs in Azure,” 2022.
[Online]. Available: https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/time-sync

https://doi.org/10.1145/3434571.3434573
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2043556.2043571
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/xu_yunjing
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/net-on-azure-functions-roadmap/ba-p/2197916
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/net-on-azure-functions-roadmap/ba-p/2197916
https://doi.org/10.1145/3423211.3425690
https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services
https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services
https://doi.org/10.1007/978-1-4302-4570-4_9
https://doi.org/10.1007/978-1-4302-4570-4_9
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://aws.amazon.com/blogs/mt/manage-amazon-ec2-instance-clock-accuracy-using-amazon-time-sync-service-and-amazon-cloudwatch-part-1/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/time-sync
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/time-sync

266 BIBLIOGRAPHY

[342] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmark-
ing,” in Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2016, pp. 122–132.
doi:10.1109/ISPASS.2016.7482080

[343] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis for resource
provisioning of service-oriented applications,” in Proceedings of the 7th
ICSOC / 2nd ServiceWave Workshops, vol. 6275, 2009, pp. 197–207.
doi:10.1007/978-3-642-16132-2_19

[344] A. H. Borhani, P. Leitner, B. Lee, X. Li, and T. Hung, “WPress:
An application-driven performance benchmark for cloud-based virtual
machines,” in Proceedings of the 18th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), 2014, pp. 101–109.
doi:10.1109/EDOC.2014.23

[345] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud WorkBench: Bench-
marking IaaS providers based on infrastructure-as-code,” in Companion
of the 24th International Conference on World Wide Web (WWW Demo),
2015, pp. 239–242. doi:10.1145/2740908.2742833

[346] Cloud Spectator, “2017 top 10 european cloud providers,” 2017. [Online].
Available: https://cloudspectator.com/top-10-european-cloud-service-
providers/

[347] SPEC, “SPEC Cloud™ IaaS 2016 Benchmark,” 2016. [Online]. Available:
http://spec.org/cloud_iaas2016/

[348] M. Cunha, N. Mendonça, and A. Sampaio, “A declarative environment
for automatic performance evaluation in IaaS clouds,” in Proceedings of
the 6th IEEE International Conference on Cloud Computing (CLOUD),
2013, pp. 285–92. doi:10.1109/CLOUD.2013.12

[349] J. Scheuner, “Cloud benchmarking – estimating cloud application
performance based on micro benchmark profiling,” Master Thesis,
University of Zurich, 2017. [Online]. Available: https://www.merlin.uzh.
ch/publication/show/15364

[350] J. Scheuner and P. Leitner, “A cloud benchmark suite combining micro
and applications benchmarks,” in Companion of the 9th ACM/SPEC
ICPE: 4th Workshop on Quality-Aware DevOps (QUDOS), 2018, pp.
161–166. doi:10.1145/3185768.3186286

[351] J. O’Loughlin and L. Gillam, “Towards performance prediction for public
infrastructure clouds: An EC2 case study,” in Proceedings of the 5th IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), vol. 1, 2013, pp. 475–80. doi:10.1109/CloudCom.2013.69

[352] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Compar-
ing public cloud providers,” in Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement (IMC), 2010, pp. 1–14.
doi:10.1145/1879141.1879143

https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1007/978-3-642-16132-2_19
https://doi.org/10.1109/EDOC.2014.23
https://doi.org/10.1145/2740908.2742833
https://cloudspectator.com/top-10-european-cloud-service-providers/
https://cloudspectator.com/top-10-european-cloud-service-providers/
http://spec.org/cloud_iaas2016/
https://doi.org/10.1109/CLOUD.2013.12
https://www.merlin.uzh.ch/publication/show/15364
https://www.merlin.uzh.ch/publication/show/15364
https://doi.org/10.1145/3185768.3186286
https://doi.org/10.1109/CloudCom.2013.69
https://doi.org/10.1145/1879141.1879143

BIBLIOGRAPHY 267

[353] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi, “Flexible CPU
provisioning in clouds: A new source of performance unpredictability,” in
Proceedings of the 9th International Conference on Quantitative Evalua-
tion of Systems (QEST), 2012, pp. 230–37. doi:10.1109/QEST.2012.23

[354] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the 1st ACM
SIGMM Conference on Multimedia Systems (MMSys), 2010, pp. 35–46.
doi:10.1145/1730836.1730842

[355] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon EC2 data center,” in Proceedings of the 29th IEEE
International Conference on Computer Communications (INFOCOM),
2010, pp. 1163–1171. doi:10.1109/INFCOM.2010.5461931

[356] M. Canuto, R. Bosch, M. Macias, and J. Guitart, “A methodology for full-
system power modeling in heterogeneous data centers,” in Proceedings of
the 9th International Conference on Utility and Cloud Computing (UCC),
2016, pp. 20–29. doi:10.1145/2996890.2996899

[357] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2006, pp. 114–122.
doi:10.1145/1152154.1152174

[358] C. Stewart and K. Shen, “Performance modeling and system
management for multi-component online services,” in Proceedings of
the 2nd Conference on Symposium on Networked Systems Design
& Implementation (NSDI), 2005, pp. 71–84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251209

[359] B. G. Tabachnick, L. S. Fidell, and J. B. Ullman, Using Multivariate
Statistics. Pearson, 2012.

[360] C. Lowery, R. Bala, L. Leong, and D. Smith, “Magic quadrant for
cloud infrastructure as a service, worldwide,” Gartner, 2017. [Online].
Available: https://www.gartner.com/en/documents/3738058/magic-
quadrant-for-cloud-infrastructure-as-a-service-wor

[361] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud appli-
cations: An empirical study on software development for the cloud,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering (ESEC/FSE), 2015, pp. 393–403. doi:10.1145/2786805.2786826

[362] C. Laaber and P. Leitner, “An evaluation of open-source software mi-
crobenchmark suites for continuous performance assessment,” in Proceed-
ings of the 15th International Conference on Mining Software Repositories
(MSR), 2018, pp. 119–130. doi:10.1145/3196398.3196407

[363] L. Bulej, V. Horký, and P. Tuma, “Do we teach useful statistics for per-
formance evaluation?” in Companion Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering (ICPE), 2017,
pp. 185–189. doi:10.1145/3053600.3053638

https://doi.org/10.1109/QEST.2012.23
https://doi.org/10.1145/1730836.1730842
https://doi.org/10.1109/INFCOM.2010.5461931
https://doi.org/10.1145/2996890.2996899
https://doi.org/10.1145/1152154.1152174
http://dl.acm.org/citation.cfm?id=1251203.1251209
https://www.gartner.com/en/documents/3738058/magic-quadrant-for-cloud-infrastructure-as-a-service-wor
https://www.gartner.com/en/documents/3738058/magic-quadrant-for-cloud-infrastructure-as-a-service-wor
https://doi.org/10.1145/2786805.2786826
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1145/3053600.3053638

268 BIBLIOGRAPHY

[364] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” SIGPLAN Not.,
vol. 44, pp. 265–276, 2009. doi:10.1145/1508284.1508275

[365] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java per-
formance evaluation,” in Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
(OOPSLA), 2007, pp. 57–76. doi:10.1145/1297027.1297033

[366] N. Cliff, Ordinal Methods for Behavioral Data Analysis. Psychology
Press, 1996. doi:10.4324/9781315806730

[367] J. Romano, J. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys?”
in Annual Meeting of the Florida Association of Institutional Research,
2006, pp. 1–3.

[368] R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling. Wiley,
1991.

[369] L. K. John and L. Eeckhout, Performance Evaluation and Benchmarking.
CRC Press, 2005.

[370] A. C. Davison and D. Hinkley, Bootstrap Methods and Their
Application. Cambridge University Press, 1997, vol. 94.
doi:10.1017/CBO9780511802843

[371] S. Ren, H. Lai, W. Tong, M. Aminzadeh, X. Hou, and S. Lai, “Nonpara-
metric bootstrapping for hierarchical data,” Journal of Applied Statistics,
vol. 37, pp. 1487–1498, 2010. doi:10.1080/02664760903046102

[372] T. C. Hesterberg, “What teachers should know about the bootstrap:
Resampling in the undergraduate statistics curriculum,” The American
Statistician, vol. 69, pp. 371–86, 2015. doi:10.1080/00031305.2015.1089789

[373] C. M. Woodside, G. Franks, and D. C. Petriu, “The future of software
performance engineering,” in Workshop on the Future of Software En-
gineering (FOSE) at International Conference on Software Engineering
(ISCE), 2007, pp. 171–187. doi:10.1109/FOSE.2007.32

[374] M. M. Arif, W. Shang, and E. Shihab, “Empirical study on the dis-
crepancy between performance testing results from virtual and physical
environments,” Empirical Software Engineering, vol. 23, pp. 1490–1518,
2018. doi:10.1007/s10664-017-9553-x

[375] D. A. Menascé, “Load testing of web sites,” IEEE Internet Comput.,
vol. 6, pp. 70–74, 2002. doi:10.1109/MIC.2002.1020328

[376] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-scale
software systems,” IEEE Trans. Software Eng., vol. 41, pp. 1091–1118,
2015. doi:10.1109/TSE.2015.2445340

https://doi.org/10.1145/1508284.1508275
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.4324/9781315806730
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1080/02664760903046102
https://doi.org/10.1080/00031305.2015.1089789
https://doi.org/10.1109/FOSE.2007.32
https://doi.org/10.1007/s10664-017-9553-x
https://doi.org/10.1109/MIC.2002.1020328
https://doi.org/10.1109/TSE.2015.2445340

BIBLIOGRAPHY 269

[377] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing
of software systems: Issues, an approach, and case study,” IEEE Trans.
Software Eng., vol. 26, pp. 1147–1156, 2000. doi:10.1109/32.888628

[378] C. Barna, M. Litoiu, and H. Ghanbari, “Autonomic load-testing frame-
work,” in Proceedings of the 8th International Conference on Autonomic
Computing (ICAC), 2011, pp. 91–100. doi:10.1145/1998582.1998598

[379] T. H. D. Nguyen, M. Nagappan, A. E. Hassan, M. N. Nasser, and
P. Flora, “An industrial case study of automatically identifying perfor-
mance regression-causes,” in 11th Working Conference on Mining Software
Repositories (MSR), 2014, pp. 232–241. doi:10.1145/2597073.2597092

[380] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, and P. Flora,
“An industrial case study on the automated detection of performance
regressions in heterogeneous environments,” in 37th IEEE/ACM Interna-
tional Conference on Software Engineering (ICSE), 2015, pp. 159–168.
doi:10.1109/ICSE.2015.144

[381] M. Grechanik, C. Fu, and Q. Xie, “Automatically finding performance
problems with feedback-directed learning software testing,” in 34th Inter-
national Conference on Software Engineering (ICSE), 2012, pp. 156–166.
doi:10.1109/ICSE.2012.6227197

[382] L. Gillam, B. Li, J. O’Loughlin, and A. Tomar, “Fair benchmarking
for cloud computing systems,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 2, 2013. doi:10.1186/2192-113X-2-6

https://doi.org/10.1109/32.888628
https://doi.org/10.1145/1998582.1998598
https://doi.org/10.1145/2597073.2597092
https://doi.org/10.1109/ICSE.2015.144
https://doi.org/10.1109/ICSE.2012.6227197
https://doi.org/10.1186/2192-113X-2-6

270 BIBLIOGRAPHY

	Abstract
	Acknowledgements
	List of Publications
	Personal Contribution
	Synopsis
	Background
	Cloud Computing
	Serverless Computing and Function-as-a-Service
	Performance Evaluation
	Micro- and Application-Benchmarks
	Distributed Tracing
	Reproducibility

	Related Work
	Serverless Performance Evaluation
	Serverless Application Characteristics
	Serverless Application Benchmarks
	Distributed Trace Analysis
	Infrastructure-as-a-Service Performance Evaluation
	Cloud Benchmarking Execution Methodology
	Cloud Application Performance Prediction
	Performance Testing in Cloud Environments

	Challenges
	Research Questions
	Research Methodology
	Literature Review
	Sample Study
	Engineering Research
	Field Experiment

	Contributions
	Function-as-a-Service Performance Evaluation
	Serverless Application Characteristics
	Serverless Application Benchmark
	Cross-provider Application Benchmarking
	Serverless Function Trigger Benchmark
	Integrated Cloud Benchmark Suite
	Cloud Application Performance Estimation
	Software Microbenchmarking in the Cloud

	Results
	Current State of Serverless (rq:1)
	Serverless Application Performance (rq:2)
	Limitations of Cloud Benchmarking (rq:3)

	Discussion
	Serverless Observability
	Interactive Applications with Serverless
	Reproducibility Challenges in Cloud Performance
	Cross-Provider Portability
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Future Work
	Relevant Gaps in Serverless Performance Evaluation
	Serverless Trace Analysis
	Automated Performance Optimizations

	Conclusions

	Function-as-a-Service Performance Evaluation
	Introduction
	Background
	Micro-Benchmarks
	Application-Benchmarks

	Research Questions
	Study Design
	MLR Process Overview
	Search Strategies
	Manual Search for Academic Literature
	Database Search for Academic Literature
	Web Search for Grey Literature
	Complementary Search
	Snowballing

	Selection Strategy
	Data Extraction and Synthesis
	Threats to Validity

	Study Results and Discussion
	Publication Trends (RQ1)
	Benchmarked Platforms (RQ2)
	Evaluated Performance Characteristics (RQ3)
	Evaluated Benchmark Types (RQ3.1)
	Evaluated Micro-Benchmarks (RQ3.2)
	Evaluated General Characteristics (RQ3.3)

	Used Platform Configurations (RQ4)
	Used Language Runtimes (RQ4.1)
	Used Function Triggers (RQ4.2)
	Used External Services (RQ4.3)

	Reproducibility (RQ5)

	Implications and Gaps in Literature
	Publication Trends (RQ1)
	Benchmarked Platforms (RQ2)
	Evaluated Performance Characteristics (RQ3)
	Evaluated Benchmark Types (RQ3.1)
	Evaluated Micro-Benchmarks (RQ3.2)
	Evaluated General Characteristics (RQ3.3)

	Used Platform Configurations (RQ4)
	Used Language Runtimes (RQ4.1)
	Used Function Triggers (RQ4.2)
	Used External Services (RQ4.3)

	Reproducibility (RQ5)

	Related Work
	Literature Reviews on FaaS
	Literature Reviews on Cloud Performance
	Reproducibility Principles

	Conclusion

	Serverless Application Characteristics
	Introduction
	Serverless Application Collection
	Methodology
	Resulting collection

	Serverless Application Characteristics
	Methodology
	Resulting Characteristics
	How are serverless applications implemented?
	How does a typical serverless architecture look?
	What are common traffic patterns for serverless applications?
	What are serverless applications used for?
	Why are practitioners choosing serverless?
	How complex are serverless applications?

	Finding community consensus
	Methodology
	Identification of Related Study
	Mapping the Results to our Framework
	Quantifying the Degree of Agreement

	Results of Consensus Analysis
	Platform and Programming Language
	Number of Functions
	Trigger Types
	Burstiness
	Application Type
	Function runtime
	Motivation

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion

	Serverless Application Benchmark
	Introduction
	System Model for Serverless Applications
	Principled Design for Fine-Grained Serverless Benchmarking
	Design Principles
	High-Level Design

	Distributed Trace Analysis for Serverless Architectures
	Challenges and Background
	Latency Breakdown Extraction

	ServiTrace Benchmarking Suite
	Serverless Applications
	Serverless Workloads
	Application Scenarios
	Invocation Scenarios

	ServiTrace Reference Implementation
	Extending ServiTrace to Other Cloud Providers

	Experimental Results
	Experiment Design
	Latency Breakdown
	Warm Invocations
	Cold Starts
	Tail Latency

	Invocation Patterns
	Discussion
	Limitations

	Related Work
	Conclusion
	Replication Package
	Serverless Application Description

	Cross-provider Application Benchmarking
	Introduction
	Background
	Serverless Computing
	Distributed Tracing

	Benchmark Design
	Application Design
	Fairness Design
	Instrumentation Design
	Workload Design
	Implementation

	Case Study
	Experiment Setup
	Latency Breakdown
	Workload Types

	Discussion
	Importance of Detailed Tracing
	Scalability Implications of Serverless
	Fairly Comparing Cloud Providers
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Serverless Benchmarking
	Serverless Application Benchmarking

	Conclusion

	Serverless Function Trigger Benchmark
	Introduction
	TriggerBench
	Measurement Methodology
	Trigger Types
	Workload Profile
	Trace Analysis
	Implementation

	Experimental Results
	Setup
	Results

	Discussion
	Trigger types for interactive applications
	Latency-sensitive function coordination
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related Work
	Conclusion

	Integrated Cloud Benchmark Suite
	Introduction
	Related Work
	Benchmarking Methodology
	Architecture
	Cloud WorkBench Extensions
	Benchmarks
	Micro-Benchmarks
	Application-Benchmarks

	Case Study
	Setup
	Results
	Discussion

	Conclusion

	Cloud Application Performance Estimation
	Introduction
	Related Work
	Methodology
	Benchmarking Dataset
	Variability for the same Instance Types
	Results
	Discussion
	Implications

	Results and Discussion
	RQ1 � Estimation Accuracy
	Results
	Discussion
	Implications

	RQ2 � Micro-Benchmark Selection
	Results
	Discussion
	Implications

	Conclusion

	Software Microbenchmarking in the Cloud
	Introduction
	Background
	Software Microbenchmarking
	Infrastructure-as-a-Service Clouds

	Approach
	Project and Benchmark Selection
	Cloud Provider Selection
	Execution

	Benchmark Variability in the Cloud
	Differences between Benchmarks and Instance Types
	Sources of Variability

	Reliably Detecting Slowdowns
	Statistical Tests
	Wilcoxon Rank-Sum
	Confidence Intervals

	Sampling Strategies
	Instance-Based Sampling
	Trial-Based Sampling

	A/A Testing
	Example
	Impact of Sampling Strategy
	Minimal Number of Required Samples

	Minimal Detectable Slowdown Sizes
	Approach
	Instance-Based Sampling
	Trial-Based Sampling

	Discussion
	Implications and Main Lessons Learned
	Cloud Provider and Instance Type
	Measurement Strategy
	Required Number of Measurements
	Minimal Detectable Slowdown Size
	Testing Using Wilcoxon vs. Overlapping Confidence Intervals

	Threats to Validity
	Threats to Internal and Construct Validity
	Threats to External Validity

	Future Directions

	Related Work
	Comparison to Our Previous Work

	Conclusions

	Bibliography

