
Fakultät Informatik Institut für Systemarchitectur

Systems Support for Trusted
Execution Environments

Bohdan Trach

Born on: 3rd October 1991 in Ivano-Frankivsk, Ukraine

Dissertation

to achieve the academic degree

Doctor of Philosophy (Ph.D.)

First referee

Prof. Dr. (Ph.D.) Christof Fetzer

Second referee

Prof. Dr. (Dr.-Ing.) Thorsten Strufe

Submitted on: 24th April 2021
Defended on: 3rd February 2022

Fakultät Informatik Institut für Systemarchitectur

Abstract

Cloud computing has become a default choice for data processing by both large corpora-
tions and individuals due to its economy of scale and ease of systemmanagement. However,
the question of trust and trustoworthy computing inside the Cloud environments has been
long neglected in practice and further exacerbated by the proliferation of AI and its use for
processing of sensitive user data. Attempts to implement the mechanisms for trustworthy
computing in the cloud have previously remained theoretical due to lack of hardware prim-
itives in the commodity CPUs, while a combination of Secure Boot, TPMs, and virtualization
has seen only limited adoption.
The situation has changed in 2016, when Intel introduced the Software Guard Extensions

(SGX) and its enclaves to the x86 ISA CPUs: for the first time, it became possible to build
trustworthy applications relying on a commonly available technology. However, Intel SGX
posed challenges to the practitioners who discovered the limitations of this technology, from
the limited support of legacy applications and integration of SGX enclaves into the existing
system, to the performance bottlenecks on communication, startup, andmemory utilization.
In this thesis, our goal is enable trustworthy computing in the cloud by relying on the imper-

fect SGX promitives. To this end, we develop and evaluate solutions to issues stemming from
limited systems support of Intel SGX: we investigate the mechanisms for runtime support of
POSIX applications with SCONE, an efficient SGX runtime library developed with performance
limitations of SGX in mind. We further develop this topic with FFQ, which is a concurrent
queue for SCONE’s asynchronous system call interface. ShieldBox is our study of interplay
of kernel bypass and trusted execution technologies for NFV, which also tackles the problem
of low-latency clocks inside enclave. The two last systems, Clemmys and T-Lease are built
on a more recent SGXv2 ISA extension. In Clemmys, SGXv2 allows us to significantly reduce
the startup time of SGX-enabled functions inside a Function-as-a-Service platform. Finally,
in T-Lease we solve the problem of trusted time by introducing a trusted lease primitive for
distributed systems.
We perform evaluation of all of these systems and prove that they can be practically utilized

in existing systems with minimal overhead, and can be combined with both legacy systems
and other SGX-based solutions. In the course of the thesis, we enable trusted computing
for individual applications, high-performance network functions, and distributed computing
framework, making a vision of trusted cloud computing a reality.

Acknowledgements

First and foremost, I thank my supervisor Prof. Christof Fetzer for the support and the envi-
ronmentwithoutwhich this thesis would have been impossible. Second, I thank Prof. Thorsten
Strufe for providing important comments during the status talk, and for his support as the
Fachreferent of my thesis. Last but not the least, I would like to thank Prof. Pramod Bhatotia
for teaching me a lot of skills indispensable in research.
I extend my gratitude to Dr. Thomas Knauth, who brought me to the Systems Engineer-

ing chair, showed me the wonderful world of systems research from the inside, and who
provided invaluable feedback on this thesis. I am also grateful to Dr. André Martin for his
feedback on the early drafts of this thesis, which has greatly improved its quality.
They say that the only true brotherhood is of those who have faced the same doom. I

would like to thank my brothers and sisters among the past and present members of the
System Engineering Chair for all the help, support, and encouragements in hard moments:
Oleksii Oleksenko, Robert Krahn, Sergei Arnautov, Dmitrii Kuvaiskii, Do Le Quoc, Saidgani
Musaev, Franz Gregor, Wojciech Ozga, Gabriel Pereira Fernandez, Anna Galanou, Ardhi Putra
Pratama Hartono, Rasha Faqeh, Samuel Knobloch, MuhammadUsama Sardar, Thordis Kom-
brink, Martin Nowack, Frank Busse, Frezewd Lemma Tenna, Vesna Nowack. I have learned a
lot from you. Your help will not be soon forgotten.
I express my thanks to collaborators and friends from other chairs of TU Dresden, Imperial

College London, TU Braunschweig, Université de Neuchâtel, who have brought me outside
of my field of study into the wonderful fields of storage and microarchitectural attacks. It has
been my pleasure.
I am most thankful to Dr. Irina Karadschow for her invaluable help with the administrative

hurdles.
Finally, I would like to thank my parents for providing the support and encouragement

when I most needed them, as well as teaching me that education and hard work are the
keys to a better future.
The work in this thesis has been supported by the European Union’s Horizon 2020 re-

search and innovation program under grant agreements 645011 (SERECA), 690111 (Secure-
Cloud), and 690588 (SELIS), as well as by the Federal Government of Saxony.

ii

Publications

This thesis is based on the following publications:

• SCONE: Secure Linux Containerswith Intel SGX. Sergei Arnautov, Bohdan Trach, Franz
Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya Muthuku-
maran, DanO’Keeffe, andMark L Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch and Christof Fetzer. In proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

• FFQ: Fast FIFO Queue. Sergei Arnautov, Pascal Felber, Christof Fetzer and Bohdan
Trach. In proceedings of 31st IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS), 2017.

• ShieldBox: SecureMiddleboxes using Shielded Execution. Bohdan Trach, Alfred Krohmer,
Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof Fetzer. In proceedings
of the Symposium on SDN Research (SOSR), 2018.

• Clemmys: Towards Secure Remote Execution in FaaS. Bohdan Trach, Oleksii Olek-
senko, Franz Gregor, Pramod Bhatotia, and Christof Fetzer. In proceedings of the 12th
ACM International Conference on Systems and Storage (SYSTOR), 2019.

• T-Lease: A Trusted Lease Primitive for Distributed Systems. Bohdan Trach, Rasha
Faqeh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia, and Christof Fetzer. In
proceedings of the Symposium on Cloud Computing (SoCC), 2020.

iii

Contents

Abstract i

Acknowledgements ii

Publications iii

1 Introduction 1
1.1 Need for Trust in Cloud Computing . 1
1.2 A Running Example . 3
1.3 Challenges and Contributions . 4
1.4 Thesis Scope and Goals . 5
1.5 Contributions . 5

2 Background 8
2.1 Concepts . 8
2.2 Brief History of Trusted Execution (in the Cloud) 10
2.3 Intel SGX Runtimes . 16

2.3.1 Library OS based approaches . 17
2.3.2 Minimal TCB Systems . 18
2.3.3 Partitioning Approaches . 20

2.4 Related Work . 21
2.5 SGX Challenges . 23

2.5.1 SGX Challenges for Network Middleboxes 23
2.5.2 Time Sources for Intel SGX Enclaves . 25
2.5.3 SGX Challenges for Distributed and Serverless Computing 26

3 Efficient Support for POSIX Applications inside Intel SGX Enclaves 28
3.1 Motivation . 30

3.1.1 Threat model . 31
3.2 Design . 32

3.2.1 Architecture . 32
3.2.2 Trusted runtime . 33
3.2.3 External Interface . 33
3.2.4 Threading model . 36

iv

3.2.5 Asynchronous system calls . 37
3.3 Implementation . 39

3.3.1 Trusted runtime foundation . 39
3.3.2 System calls . 40
3.3.3 Thread management . 41
3.3.4 Memory management . 42
3.3.5 Signal handling . 43
3.3.6 Limitations and Future Work . 44

3.4 Evaluation . 46
3.4.1 Methodology . 46
3.4.2 Application Benchmarks . 46
3.4.3 Asynchronous System Calls . 50

3.5 Discussion . 51
3.6 Related Work . 53
3.7 Conclusions . 54

4 FFQ: Fast FIFO Queue 56
4.1 Introduction . 56
4.2 Related Work . 59
4.3 The Algorithm . 60

4.3.1 Single Producer . 61
4.3.2 Multiple Producers . 65

4.4 Implementation and Optimizations . 66
4.4.1 Memory Mapping . 67
4.4.2 Thread Affinity . 67
4.4.3 Queue Length . 68
4.4.4 Implementation Notes . 68

4.5 Evaluation . 69
4.5.1 Methodology . 69
4.5.2 False Sharing . 69
4.5.3 Queue Size . 70
4.5.4 Cache Locality and Thread Affinity . 71
4.5.5 Maximizing Throughput . 73
4.5.6 Application Benchmark . 73
4.5.7 Comparative Study . 75

4.6 Conclusion . 76

5 Securing Middleboxes using Shielded Execution 77
5.1 Introduction . 77
5.2 Background and Related Work . 79
5.3 Middlebox Challenges for Intel SGX . 84
5.4 Overview . 85
5.5 Design Details . 88

5.5.1 Configuration and Remote Attestation . 88
5.5.2 Secure Elements . 90
5.5.3 NFVs Chaining . 91
5.5.4 Middlebox State Persistence . 92
5.5.5 NIC Time Source . 93

v

5.5.6 Memory Safety for DPDK-Specific Iago Attacks 94
5.6 Implementation . 95

5.6.1 Interaction with SCONE and Hardware . 95
5.6.2 Toolchain . 96
5.6.3 Optimizations . 97

5.7 Evaluation . 97
5.7.1 Experimental Setup . 97
5.7.2 Throughput . 99
5.7.3 Latency . 99
5.7.4 Scalability . 100
5.7.5 ToEnclave Overheads . 101
5.7.6 Configuration and Attestation . 101
5.7.7 NFVs Chaining . 102
5.7.8 Packet Sealing Performance . 103
5.7.9 Case Studies . 103

5.8 Discussion . 105
5.9 Conclusion . 106

6 Using Intel SGX Enclaves For Secure Remote Execution in FaaS 107
6.1 Introduction . 108
6.2 Background . 109
6.3 Threat Model . 112
6.4 Design . 113

6.4.1 Preventing Memory Inspection . 114
6.4.2 Preventing Traffic Analysis and Modification 115
6.4.3 Verifying Function Execution Order . 115

6.5 Implementation . 117
6.5.1 Function Startup Optimization . 118

6.6 Evaluation . 119
6.6.1 Security Evaluation . 119
6.6.2 Response time . 120
6.6.3 Function startup optimizations . 122
6.6.4 Impact of API Gateway . 123

6.7 Discussion . 124
6.8 Related Work . 126
6.9 Conclusion . 130

7 A Trusted Lease Primitive for Distributed Systems 131
7.1 Introduction . 132
7.2 Overview . 133

7.2.1 A Case for Trusted Leases . 134
7.2.2 T-Lease: A Trusted Lease Primitive . 135

7.3 Design . 137
7.3.1 Strawman Designs and Associated Challenges 137
7.3.2 T-Lease Detailed Design . 138

7.4 Implementation . 140
7.4.1 Implementation of the T-Lease Library . 140
7.4.2 Implementation of the T-Lease Case Studies 141

vi

7.5 Evaluation . 142
7.5.1 Experimental Setup . 143
7.5.2 Single-node Setup . 143
7.5.3 Distributed Setup . 145
7.5.4 Case Studies . 148

7.6 Related Work . 150
7.7 Discussion . 152
7.8 Conclusion . 153

8 Conclusions 154
8.1 Summary of contributions . 154
8.2 Challenges and future work . 155

vii

List of Figures

1.1 An example of a Function-as-a-Service system with Intel SGX. 3

2.1 Influence of the working set size and memory access pattern on the perfor-
mance of an SGX enclave. 13

2.2 Influence of the enclave heap size on the SGX enclave startup time. 13
2.3 Influence of the I/O buffer size and concurrency factor on the throughput of a

native application and SGX enclave. 19
2.4 Throughput of a middlebox application for different packet access methods. . 24

3.1 SCONE architecture. 32
3.2 SCONE external interface and runtime components. 34
3.3 SCONE implementation of M:N threading model. 36
3.4 An example of execution of an asynchronous system call in SCONE. 38
3.5 Throughput and latency of native and SGX-protected Nginx usingmultiple pro-

cesses. 47
3.6 Throughput and latency of native and SGX-protected Nginx using one process. 48
3.7 CPU utilization of native and SGX-protected Nginx using one process. 49
3.8 Throughput and latency of native and SGX-protected Redis. 50
3.9 CPU utilization of native and SGX-protected Redis. 51
3.10 Throughput and latency of native and SGX-protected Memcached. 52
3.11 CPU utilization of native and SGX-protected Memcached. 53
3.12 I/O-intensive microbenchmark throughput with native and asynchronous sys-

tem calls. 54

4.1 System call throughput of a native application and SCONE enclave with MPMC
queue. 58

4.2 Data structures of the FFQ algorithm. 61
4.3 Influence of alignment and randomization of FFQm performance. 70
4.4 Influence of the queue size on FFQ throughput. 71
4.5 Influence of the FFQ queue size on the CPU performance counters: L2 cache,

IPC. 71
4.6 Influence of the FFQ queue size on the CPU performance counters: L3 cache,

memory bandwidth. 72
4.7 FFQ throughput for different the queue sizes and affinity settings. 73

viii

4.8 Throughput of SCONE system call microbenchmark with different number of
cores. 74

4.9 Latency of the getppid system call with different queues on the Skylake server. 74
4.10 Microbenchmark throughput for state-of-art concurrent queues on different

servers. 75

5.1 An example of Click router configuration. 82
5.2 ShieldBox basic design. 85
5.3 ShieldBox system workflow. 86
5.4 Detailed design of ShieldBox. 88
5.5 ShieldBox’s remote configuration and attestation service. 89
5.6 NFVs chaining in ShieldBox. 91
5.7 Access latency of different time source inside Intel SGX enclaves. 93
5.8 DPDK-specific Iago attack prevention in ShieldBox. 94
5.9 Throughput of a Wire function as a function of packet size. 98
5.10 Throughput of an EtherMirror function as a function of packet size. 98
5.11 Throughput of a Firewall function as a function of packet size. 99
5.12 Latency of an EtherMirror function as a function of packet size. 99
5.13 Scalability: throughput of a Firewall function with increasing cores. 100
5.14 Throughput of an EtherMirror function with ToEnclave as a function of packet

size. 101
5.15 NFV chaining application throughput as a function of packet size. 102
5.16 Throughput of a Seal function with varying packet sizes. 103
5.17 Throughput of an IPRouter application with varying packet sizes. 103
5.18 Latency of an IPRouter application with varying packet sizes. 104
5.19 Throughput of an IDS application with varying packet sizes. 104

6.1 Common FaaS platform architectures. 110
6.2 System architecture of Clemmys. 113
6.3 Impact of a protected API Gateway on the latency with native functions. 120
6.4 Worst-case overhead of Clemmys-protected functions. 121
6.5 Parsec benchmarks results for our SGXv2-based optimizations. 123
6.6 Phoenix benchmarks results for our SGXv2-based optimizations. 124
6.7 System latency with SGX and native API Gateway with and without functions. . 125

7.1 Basic workflow of the T-Lease protocol. 136
7.2 Enclave-interval timer operation. 139
7.3 Access latency of trustworthy clocks and timers. 142
7.4 Latency of TSC timer check using 6 rdrand instructions. 143
7.5 Probability of detecting the TSC rate manipulation. 144
7.6 Underaccounted cycles with varying interrupt rates and lease check intervals. . 145
7.7 Client lease expiration check rate as a function of lease duration. 146
7.8 Frequency of network requests from holder to granter as a function of lease

duration. 146
7.9 Request rate as a function of system interrupt rate. 147
7.10 Frequency of retries due to interrupt delivery during lease renewal. 147
7.11 Number of lost leases per second for the local and remote T-Lease setups. . . 148

ix

7.12 Number of lost leases for the FaRM failover protocol as a function of lease
duration. 148

7.13 Timer interval duration with active lease for the PQL case study. 149
7.14 Message rate for the strongly consistent caching case study as a function of

write ratio. 150

x

List of Tables

3.1 Thread configuration used for the SCONE application benchmarks. 47

5.1 New specialized elements of ShieldBox. 90
5.2 ShieldBox APIs for state persistence. 92
5.3 Overheads of ShieldBox remote configuration and attestation. 102

6.1 Enclave startup as a function of a heap size for SGXv1 and SGXv2. 122

7.1 Time sources on the x86 architecture. 133
7.2 T-Lease library APIs. 135

xi

1 Introduction

1.1 Need for Trust in Cloud Computing

Internet services have gained significant popularity over the years: for example, a report by
Gartner [15] shows that by 2020, up to 60% of businesses will have migrated their services
to the cloud, up from 30% in 2018. This change is motivated by several appealing aspects of
the cloud environment: outsourcing hardware ownership to the cloud reduces the total cost
of ownership, while the economy of scale and reliance on the infrastructure management
by cloud operators allows further reduction of operational expenses. To simplify the migra-
tion, companies developed several easy-to-use services, like Amazon AWS and S3, Microsoft
Azure, and others [2, 1, 31, 19]. Furthermore, large companies like Oracle and SAP started
to offer their software on a subscription basis [38, 41].
To better organize development of cloud applications at scale, a so-called microservice

architecture was proposed. To this end, the application is partitioned into a number of small
services [122], each performing one task (following UNIX philosophy) and communicating
with the others using REST interfaces [124]. Today, cloud-native has become a new main-
stream style of development.
In the cloud, microservices are run on a shared infrastructure managed by the cloud oper-

ator. The operator’s business model depends on the oversubscription of computational re-
sources, achieved by collocation of services of mutually untrusting and uncooperative users.
To make this sharing of hardware possible, efficient and easy-to-use solutions for security
and performance isolation of guests were developed. Initial solutions to this problem have
relied on virtualization technologies. Virtual machines provide a high level of guest-guest
and guest-host isolation, however they are increasingly falling out of popularity due to their
lower usability and higher overheads [249]. Instead, more lightweight isolation and distri-
bution container technologies are gaining traction, exemplified by Docker and Kubernetes.
Containers do not rely on the hardware virtualization features, but run the user software
on top of the host kernel, relying on the operating system namespacing features to achieve
isolation and resource virtualization.
Virtualization and containerization technologies aim to thwart attacks by guests only. Yet,

there are significant concerns about trust between cloud users and cloud operators. By
giving up the control over the infrastructure to cloud providers, cloud users expose their
software to a much larger attack surface than was the case with on-premises computing.

1

Indeed, NIST has identified several aspects of the cloud computing, where the trust gets
conferred to the cloud operator [166], the most prominent being insider access. When the
control over software and hardware is transferred to the cloud operator, the circle of the
insiders having privileged access to the system expands to the cloud provider’s staff and
potentially to other customers of the operator. The new threat model allows potentially dev-
astating attacks on the infrastructure, as the customer systems still consider infrastructure
the trusted component. These issues are exacerbated by the ongoing migration of financial
and medical companies to the cloud, as these companies hold highly sensitive and valuable
user data that may increase the incentives for dishonest insiders to access the data.
Additional issues stem from the huge computing stack that forms a foundation of the

cloud infrastructure. Recent analysis has identified six layers of deployment stack of typical
cloud service: hardware, virtualization, cloud environment, communication, service/application,
orchestration [98]. The developer targeting cloud totally relinquishes control over the former
three levels and has only limited control over the latter levels. Additionally, the size of the
codebases that are used at each level is extremely large. For example, the Linux kernel,
which is typically used for container and VM support, has 27 million lines of code in its 5.5
release [28], with an estimate of 1 to 3 million lines of code used in typical deployments.
To provide a cloud environment, solutions like Kubernetes (1.9M LoC) are applied. Studies
show that the software defect density is typically 10 defects per 1K LoC [215]; at this scale,
the software is bound to have exploitable errors (vulnerabilities), which can be used to gain
access to the customer data.
All these issues call for efficient solutions to protect cloud users from hardware opera-

tors, the most promising of which rely on hardware isolation technologies. Initial attempts
to solve these problems relied on TPM, Secure Boot, and virtualization technologies [136].
However, these techniques remained mostly unused due to restrictions of TPM [216, 109]
and exploitable bugs in the underlying BIOS code [256]. In addition, these solutions did little
to reduce the TCB size, still relying on large codebases and exposing significant attack sur-
faces. Thus, they failed to get traction in the industry, and have extremely limited software
support. Despite this, Intel still maintains TXT firmware components, such as SMI Transfer
Monitor technology.
Trusted Execution Environments directly target the outlined threatmodel: TEEs aim to pro-

vide an environment that is verifiably protected from software and hardware attack vectors
available to privileged attackers. To this end, they rely on a combination of CPU-embedded
primitives: hardware-implemented security monitor prevents privileged software from ac-
cessing the created environment, shrinking the TCB to the user code and TEE implementa-
tion. Remote Attestation provides the user a method of provably establishing whether the
hardware protection mechanisms are active and the identity of code executing under TEE
protection. Finally, optional but common cryptographic extensions provide a way to protect
against advanced hardware attacks like memory bus snooping. Thus, the general availability
of TEEs in commercial off-the-shelf CPUs promises to bring the security of cloud software to
a new level.
However, applying TEEs in the cloud environment is challenging, as the existing TEE tech-

nologies are typically not well adapted to cloud use-cases, embodied in microservices or-
chestrated inside containers. The reason for these limitations is that most TEEs have their
origins in the CPUs for end-user, embedded hardware. Therefore, to achieve performance,
flexibility, and generality, the software and the runtime environment for trusted applications
have to carefully consider the available hardware primitives and the requirements of the
microservice-based applications. For example, cloud applications typically allocate signifi-

2

cant amounts of memory, and require efficient communication over the network to provide
service to remote users. Additionally, they require support for rich functionality offered by
the operating systems, which is generally not available inside the TEEs, and provide native
support for execution inside containers, which are the industry standard for software de-
ployment.
Thus, themain question that we want to answer in this thesis is “How can we utilize Trusted

Execution Environments in the cloud with low overhead without sacrificing security?” In this
thesis, we focus on the Intel SGX-based TEEs as the most widely available at the time of
writing. To further understand the features, limitations, and requirements of the Trusted
Execution Environments, we consider an example cloud Function as a Service (FaaS) deploy-
ment.

1.2 A Running Example

Gateway Controller

Scale

Detect featuresDetect featuresDetect features

Log & Report

MySQL

Lease Server

Figure 1.1: An example of a Function-as-a-Service system with Intel SGX.

We explain the challenges that an application based on trusted execution environments
faces in real-world cloud deployments using an example. We use a Function-as-a-Service
(FaaS/serverless) system as an example because it has recently gained traction as a novel
way to deploy cloud software. It should be noted that the same challenges arise in non-
serverless cloud deployments and that the results of our thesis can be applied to these
use-cases as well.
The high-level overview is presented in Figure 1.1. The user requests for image feature

recognition are sent to the serverless provider where user functions run. The requests with
images are passed to the chain of user functions that scale down the image, pass the scaled-
down image through the neural network that performs feature recognition, and log and re-
port the results. The feature recognition function could perform optical character recogni-
tion, or detect street outlines for satellite images, etc. To achieve trustworthy operation, Intel
SGX is used throughout the system.
The data processing pipeline has several steps. In the first step, the user requests enter the

system via a gateway and get forwarded to the FaaS controller. The gateway implementation
can include a high-performance network middlebox that monitors the traffic to the system
for network attacks. The FaaS controller schedules the execution of the function on one of
the worker nodes. To perform the scheduling, it inspects the message content to spawn the
right function on the worker node selected for processing.
Then, the user request gets forwarded to the first processing function (downscale), which

reduces the size of the images. To support a large number of input formats, this functionmay

3

be implemented as an invocation of the ImageMagick convert command inside a Docker
container.
The next function in the chain passes the downscaled image through a neural network

trained for feature detection. While this function is stateless, the user may want to limit
the maximum number of functions of this kind running simultaneously, to avoid a situation
where the cloud operator spawns additional instances to reverse-engineer the model by
processing her own, specially crafted images.
The last function in the chain is the logging and reporting function, which may store the

data in a MySQL database. The response is returned through the controller and the gateway
back to the client.

1.3 Challenges and Contributions

To make the system outlined above secure and practical, several issues have to be taken
care of. First, most of the currently available Intel SGX support frameworks require the de-
velopment of the in-enclave software from scratch, which makes their utilization extremely
complicated: demanding an SGX-aware rewrite of already available software is not a practical
requirement. Thus, given that Linux is the dominant platform in the cloud, it is necessary to
ensure that the SGX runtime has native support for POSIX applications. Also, software com-
municating over the network typically has to sustain extremely large I/O rates, while Intel SGX
associates a significant cost with enclave entry and exit which are utilized for communication
with the untrusted environment by default.
Another restriction of Intel SGX is important both from the performance and security point

of view: the amount of physical memory that can be simultaneously utilized by the enclave is
limited to 94–198 MiB in the currently available generations of Intel CPUs. Thus, to increase
the amount of memory available to the user application, the runtime should have a mini-
mally practical size. This also improves the security of the system, by reducing the Trusted
Computing Base of the in-enclave application.
The second point that requires additional optimizations in themiddlebox at the gateway of

the system. As the gateway needs to handle traffic frommultiple clients, the communication
rates that are achievable via system calls may be insufficient, especially when handling small
packets at line rate. To overcome this limitation, enclave applications should consider kernel
bypass in their design.
The third aspect that needs to be taken into consideration is the architecture of FaaS sys-

tem. A well-known inefficiency of the FaaS systems is the slow startup of functions [62, 230].
This problem is even more pronounced with Intel SGX and with complex programming lan-
guage runtimes, as in this case, large amounts of memory have to be added before the
enclave can start to support garbage collection. In addition, the attacker in the system has
several opportunities to leak the encrypted user data. For example, if the “Log & Report”
function is sending data to the unencrypted storage, the attacker has an opportunity to vio-
late the message confidentiality by directing the incoming user message to the last function
in a chain, potentially creating an information disclosure. Another FaaS architecture-related
trade-off is that the controller is a component that is typically too large to run fully inside an
enclave, yet it needs to decrypt the user request to route it to the right function.
Finally, the lease mechanism required to limit the number of concurrently running in-

stances of the “Feature Detection” function must be secured from the attacker that manip-
ulates the system time to break the guarantees provided by the leases. Bringing trust to

4

leases is challenging because of the significant capabilities of the attacker who can interrupt
the execution of a program at arbitrary points of time, change the value and frequency of
timers, and control the power management functionality of the system.
In this dissertation, we address the issues enumerated above, thus achieving secure and

efficient execution of software in the cloud.

1.4 Thesis Scope and Goals

In this thesis, we propose and evaluate system components of the trusted execution en-
vironments in the context of the cloud. The scope of the thesis is limited to the runtime
support aspects, ensuring that all the functionality required by the software is supported in
full scale without limiting generality and performance.
Our target is to support standard POSIX applications running on top of Linux, because

these applications are the most common in the cloud environments, and present generality
challenges to the current TEE runtimes [44]. In contrast, small-scale frameworks for develop-
ing minimal, single-purpose applications from scratch are generally available: Intel SGX SDK,
TrustZone is supported by multiple TEE frameworks, a minimal runtime (Eyrie) is available for
RISC-V Keystone enclaves. However, these frameworks require significant extensions to run
the applications requiring rich functionality from the host OS.
We aim to achieve three main goals with the systems created in the course of this thesis:

• Generality. Most of the software running in the cloud assumes a POSIX environment
with Linux additions. Our goal is to support all applications running on top of this in-
terface without making application-specific changes. To achieve this, we implement a
generic runtime based on the standard C library, extending it with library OS-like func-
tionality. All optimizations implemented on top of this runtime are thus available for all
enclave applications.

• Performance. Practically-oriented cloud users are wary of using mitigations and se-
curity hardening features that exhibit significant overheads. Therefore, it is necessary
to maintain near-native performance during the application runtime. To this end, we
carefully investigate the requirements that each use-case may present to the enclave
runtime together with the available hardware primitives and implement the required
functionality in a way that exhibits minimal overhead.

• Security. Unlike normal applications, enclaved applications consider the interface to
the OS to be untrusted. Thus, this interface must be protected from, for example, Iago
attackswithout applying any changes to the application. This functionality is typically im-
plemented in the protection modules (shields). Our enclave runtime system presents
the opportunity to implement shielding solutions on top of it. Also, applications imple-
mented on top of our runtimemust not suffer from decreased security stemming from
design decisions necessary to achieve the first two goals.

1.5 Contributions

To fulfill the goals, we design and evaluate four cloud systems that utilize Intel SGX for achiev-
ing trustworthy computations in the untrusted environment: SCONE, ShieldBox, Clemmys,

5

T-Lease. Each of these systems applies trusted execution technology (Intel SGX) to a new level
of cloud architecture: starting with the support of individual POSIX applications in SCONE,
we move to the problem of trustworthiness of network middleboxes (ShieldBox), and then
finally use Intel SGX to secure a Function-as-a-Service architecture (Clemmys) and leases in
the distributed systems (T-Lease).

SCONE. We start this thesis by building the Intel SGX runtime for unmodified POSIX appli-
cations inside enclaves. The aim is to allow the wide variety of the commodity off the shelf,
well-tested software to utilize Intel SGX protection without requiring any modifications. To
achieve a pragmatic trade-off between the TCB size and the supported functionality inside
the enclave, we use neither the minimal TCB approach nor the library OS approaches to the
SGX runtime. Instead, we implement SCONE as aminimal extension to the standard C library,
using system calls as the communication interface between the enclave and the untrusted
system. This architecture, coupled with the asynchronous communication and in-enclave
execution of only the essential system calls allows SCONE to achieve both high performance
and generality. We demonstrate this by evaluating the software commonly deployed in the
cloud: Apache HTTP server, Nginx, and Redis, and show that they operate with acceptable
overhead.

ShieldBox. After building SCONE, we turn our attention to the problem of building trustwor-
thy network middleboxes. To process network traffic at the line rate, middleboxes require
a significantly more efficient communication interface than is achievable with the SCONE
system call interface even after the optimizations. To overcome this restriction, we rely on
the kernel bypass and directly control the NIC from the enclave, which allows ShieldBox to
achieve near-native throughput. To implement ShieldBox, we combine the Click modular
router with the DPDK (Data Plane Development Kit) userlevel networking framework, run-
ning both components on top of SCONE. Additionally, we implement Intel SGX-specific opti-
mizations that further reduce the SGX-induced latency stemming from the lack of a fast and
trustworthy time source inside SGX enclaves. Our evaluation shows that after the optimiza-
tion, ShieldBox can operate at wire speeds and with near-native latency.

Clemmys. To bring trust to a higher-level cloud infrastructure, we turn our attention to the
Function-as-a-Service (serverless) platforms, which are a rising trend in cloud computing.
As it is impractical to run all of the FaaS platform components inside SGX enclaves, there
is a necessity to develop a message format and a key management scheme that will allow
running only the gateway and the user functions inside enclaves. Additional problems stem
from the FaaS requirement of having minimal application startup time, which conflicts with
the reality of running functions implemented in scripting, GC-enabled languages that require
a large heap for operation. To overcome this challenge, we rely on Intel SGXv2 extensions,
that allow adding virtual memory to the enclave after it has been initialized. We implement
Clemmys using the OpenWhisk FaaS platform and measure its performance, showing that it
has minimal performance overhead compared to the native variant as long as the hardware
limits are not reached.

T-Lease. After designing Clemmys, we note that the missing component of trustworthy dis-
tributed systems is trusted leases. Indeed, as all timers exposed by the hardware to the en-
clave are untrusted, a naive implementation of leases on an untrusted platform is bound
to be vulnerable. We overcome this issue by building on Intel SGXv2, which extends the
timestamp counter support inside the enclave with Intel TSX and a novel CPU frequency
verification routine. To demonstrate the practicality of the resulting system, we extend sev-
eral state-of-the-art distributed protocols with trusted leases and show that T-Lease adds

6

minimal overhead to such systems.

7

2 Background

This chapter introduces the conceptual foundation of our research and the design space of
the proposed solutions. We start by explaining the concepts related to trusted execution and
trust in computing systems. Then, we briefly explain the available hardware-assisted trusted
execution technologies. To finish this section, we give an overview of the main contributions
of the state-of-the-art TEE systems.

2.1 Concepts

To introduce the concept of trusted computing, it is necessary to first clarify what is trust in
the context of computing systems. Generally, trust is defined as [52]:

Firm belief in the reliability, truth, or ability of someone or something; confi-
dence or faith in a person or thing, or in an attribute of a person or thing.

In the context of computer science, a system or a component is said to be trusted if its failure
can lead to the security failure of the system. A component that is proven to never fail in the
way that compromises the system security is called trustworthy. Based on these concepts, we
can also define a Trusted Computing Base (TCB) of a system as a set of all trusted components
in the system: correct operation of these components is sufficient to ensure that the system
does not experience a security failure. The NIST definition states that TCB of a system is the
“Totality of protection mechanisms within a computer system, including hardware, firmware, and
software, the combination responsible for enforcing a security policy.”
For security-critical computing systems, the standard way of ensuring trust has historically

been Common Criteria certification, which assigned an Evaluation Assurance Level (EAL) to
the evaluated piece of software. There are seven Common Criteria levels, with assurances
ranging from minimal examination of the software with its specification and documentation
to comprehensive formal verification. However, this certification is practical only in situa-
tions where the certified software does not change, which is not the case with the common
user software, as subsequent changes to the certified software typically invalidate the certi-
fication, and more importantly, is small enough to be amenable to verification. In practice,
cloud applications rely on millions of lines of code of the Linux kernel, hypervisors, cloud
management software, and so on.

8

In the cloud, a more practical approach is relying on the novel hardware isolation features
of the CPU embodied in the Trusted Execution Technologies, which provide hardware prim-
itives for managing Trusted Execution Environments. The main goal of a Trusted Execution
Environment is to create an isolated environment on the untrusted host computer; the user
can be assured that the security guarantees of the computations would hold inside the TEE.
These guarantees include confidentiality and integrity of code and data executing inside the
enclave, but may also be extended to the freshness of on-disk data, confidentiality and in-
tegrity of communication, and so on. The brief definitions of these terms are given below:

• Confidentiality – The property that sensitive information is not disclosed to unautho-
rized entities [80].

• Integrity – A property possessed by data items that have not been altered in an unau-
thorized manner since they were created, transmitted, or stored [79].

• Freshness – A property that states that replays of old messages/data items are pre-
vented or impossible.

To ensure that these properties hold in practice, a remote attestation procedure is typically
provided. It is used to produce a remotely verifiable, cryptographically signed statement
about the isolation and security properties of the TEE.
Historically, Trusted Execution Environments lacked a specific definition [129, 133, 237,

289, 257]. The most complete and comprehensive definition is provided in [257]:

Trusted Execution Environment (TEE) is a tamper-resistant processing environ-
ment that runs on a separation kernel. It guarantees the authenticity of the ex-
ecuted code, the integrity of the runtime states (e.g. CPU registers, memory and
sensitive I/O), and the confidentiality of its code, data and runtime states stored
on a persistent memory. In addition, it shall be able to provide remote attestation
that proves its trustworthiness for third-parties. The content of TEE is not static;
it can be securely updated. The TEE resists against all software attacks as well
as the physical attacks performed on the main memory of the system. Attacks
performed by exploiting backdoor security flaws are not possible.

It should be noted that this definition has an extremely strong threat model, which requires
defense against all software attacks and extends the defense to the persistent memory. In
practice, the TEE primitives provided by the CPU aim to prevent direct reads and writes to
the TEE memory and the register state, and implementing on-disk sealing of data, while using
these primitives to secure the application and its persistent data to withstand attacks is the
responsibility of the TEE application developer. For example, supply chain attacks are an
attack vector that only rarely gets solved in the context of TEE technologies [222].
An important attack vector, commonly ignored for the standard applications, but which

must be considered in the case of TEEs, is Iago attacks. The idea behind Iago attacks is that
the operating system is actively trying to break the behavior of user applications by providing
incorrect return values for the application system calls. More specifically, these return values
break invariants onwhich the application relies: for example, that return value of mmap system
call points to the previously non-allocated memory. If the application accepts a pointer to
the memory that was previously allocated, it could overwrite some of its data currently in
use, leading to data loss, denial of service, or remote code execution vulnerabilities.

9

Recent breakthroughs inmicroarchitectural attacks, exemplified by side-channel attacks [263]
or transient execution attacks [180, 204, 93, 94] have also been used to successfully attack
TEEs. These attacks rely on the fact that TEE execution leaves traces in sharedCPU structures,
for example caches, and deduct the in-TEE data by timing the accesses to these structures.
Mitigating side-channel attacks requires a combined hardware-software approach: for exam-
ple, TEE hardware vendors can allow attesting hyperthreading state to remove concurrent
access to certain CPU structures and fix microcode deficiencies to improve fault processing.
The TEE developer should rely on constant-time programming [8], attack detection tech-
niques [233, 139], fuzzing [235], and formal methods and language- and compiler-based
techniques [81, 116] to improve the resilience of TEEs to these attacks. In general, these
attacks are out-of-scope for this thesis.

2.2 Brief History of Trusted Execution (in the Cloud)

The trust requirements to the software and the corresponding secure remote execution
problem did not appear with cloud computing but dates back to the past. The survey of
key academic and industrial solutions to the secure remote execution problem is given by
Costan et al [104].

Early systems. Arguably, one of the first examples of relying on trusted hardware for the
computations was the IBM 4758 cryptographic module [276], which allowed secure process-
ing of banking data without trusting the software stack running on the computer. However,
it was not implemented as part of the host CPU, and relied on custom hardware for this
purpose.
Several examples of relying on trusted hardware to simplify the design of the distributed

systems come from the field of academic research. For example, TrInc relies on a small
trusted counter module to simplify the design of Byzantine fault tolerance protocols [200].
Flicker describes a way to significantly reduce the TCB of the software by relying on the late
launch and attestation technologies, TPM as a hardware root of trust, and virtualization as
an isolation technique. Multiple TPM-based systems were proposed [240, 239].

Intel TXT and Trusted Computing Initiative. One of the first examples of trusted execution
technology built into the COTS CPUswas Intel TXT (Trusted Execution Technology), developed
by Intel as a part of the Trusted Computing Initiative. The idea of Intel TXT was to boot a
verified, trusted operating system alongside the host OS. The communication between the
trusted and the untrusted OS would be subject to control by the minimal, formally-verified
hypervisor. However, as we havementioned before, Intel TXT had deficiencies that prevented
the use of this approach in practice: TPMs cannot be migrated in the cloud without special
extensions, the boot protocol for trusted OS is complex and relies on the bug-free BIOS
implementation, which is not a valid assumption in practice [256].

ARM TrustZone. ARM TrustZone is a set of ISA extensions introduced in 2004 to ARM-A and
ARM-M CPU architectures. Its main features are the separation of computing resources into
two partitions: a normal, non-secure one, and the secure partition, both called worlds. The
context switch between the partitions happens on interrupt delivery or the explicit request.
The operations executed during the context switch are controlled by the security monitor
software. The secure world has the same software structure as the normal world, with a
separation into kernel mode and user mode, with an ability to run the hypervisor inside.

10

While the security monitor is responsible for the partitioning of CPU resources (times-
licing), additional optional components allow system developers to partition the RAM and
system devices, by assigning them to either of the worlds. RAM and SRAM are partitioned
by TrustZone Address Space Controller (TZASC) and TrustZoneMemory Adapter (TZMA) cor-
respondingly, by marking it as secure or normal. Software running in the secure world can
access either of the memory types, while the normal world can access only the normal mem-
ory. TrustZone Protection Controller (TZPC) allows assigning devices to secure or insecure
worlds. TZASC, TZMA, and TZPC are optional components, and their configuration and inter-
face is implementation-defined.
ARM TrustZone can be used for implementing TEEs: this is achieved by implementing a

required functionality in the application running on top of the operating system in the secure
world. There are several standards and commercial implementations of TrustZone-based
TEEs: Komodo, OpTee, SierraTEE, Samsung KNOX, and others [121, 35, 42, 40]. These TEEs
are commonly found on end-user devices like mobile phones or set-top-boxes (for example,
for implementing TPM-like or DRM functionality), and see little use in the cloud.

Intel SGX. Intel SGX is a Trusted Execution Technology introduced in 2015 in the Skylake
generation of Intel CPUs. It is implemented as an ISA extension that introduces the concept
of enclave and a corresponding execution mode. Enclave is a hardware-protected range
of memory that contains application data and code, running in a special execution mode.
Enclave memory is protected against accesses from non-enclave software, thus achieving
confidentiality and integrity, and must be allocated from the secure physical page set, called
Enclave Page Cache (EPC). Enclaves run as a part of a userspace process, simplifying the OS
support for the enclaved software.
While cache-resident, enclave code and data are guarded by CPU access controls. When

moved to DRAM, data in EPC pages is protected at the granularity of cache lines. These
secure pages are called Enclave Page Cache (EPC) and has a limited size. SGX prevents cold
boot attacks and snooping on thememory bus using the on-CPUMemory Encryption Engine
(MEE), which encrypts all DRAM traffic between enclaves and RAM while ensuring freshness
and integrity of the encrypted in-DRAMdata by computing aMerkle tree over cache lines. The
depth of the Merkle tree limits the maximum amount of physical memory that the enclave
can use without secure memory paging. To prevent chosen cyphertext attacks on the in-
MEE encryption keys, MEE locks up the memory controller if an integrity check fails. This
way, enclave memory has confidentiality, integrity, and freshness guarantees – all memory
modification and rollbacks are detected.
Enclaves are subject to several restrictions: several instructions are prohibited inside the

enclaves, most notable syscall. These instructions cause an illegal instruction exception
inside the enclave and have to be handled outside of the enclave.
The memory reads and writes for in-enclave software are still subject to virtual memory

permission checks controlled by the OS, however the reads from untrusted mode to the en-
clave physical memory are short-circuited to return zeros. Memory reads and writes from
enclave mode to the untrusted memory are allowed, to pass function call arguments and re-
sults. The only exception is the instruction fetches from untrusted partition, as these fetches
are forbidden inside the enclave mode. This prevents ROP attacks where the instruction
pointer in the enclave mode would be pointed to the untrusted memory. It is the responsi-
bility of the enclave code, however, to verify the integrity of all untrusted data.
Additionally, the amount of physical memory that can be simultaneously mapped into the

enclave is limited, to 94 MiB on CPUs starting with Skylake (2015), while starting with Coffee

11

Lake generation (2019) the EPC has been increased to 198 MiB [25].
The enclave lifecycle relies heavily on the ISA extensions. During system boot, BIOS dedi-

cates a range of physical memory for the enclave memory and SGX bookkeeping data struc-
tures. Enclaves are created by untrusted code using the ECREATE instruction, which initial-
izes an SGX enclave control structure (SECS) in the EPC, using an OS-provided range of virtual
addresses that will be dedicated to the enclave. The EADD instruction adds pages to the
enclave. SGX records the enclave to which the page was added, its virtual address, and its
permissions, and it subsequently enforces security restrictions, such as ensuring the en-
clave maps the page at the accessed virtual address. When all enclave pages are loaded,
the EINIT instruction creates a cryptographic measurement, which can be used by remote
parties for attestation. For this, a EINIT token must be created. EINIT token certifies that the
given enclave can be launched with the requested security properties. As these properties
involve capabilities like disabling debugging and performance counters during enclave exe-
cution and access to sensitive platform keys necessary to implement attestation, an enclave
is verified by the launch enclave in the process of EINIT token creation. The launch enclave
implements the policy which controls the properties available to the newly created enclave.
When an enclave is no longer needed, the OS can deallocate it by issuing a sequence of the

EREMOVE instructions, which will remove all of the enclave’s data pages and internal control
structures.
After enclave initialization, an unprivileged application can execute enclave code through

the EENTER instruction, which switches the CPU to enclave mode and jumps to a predefined
enclave offset. Conversely, the EEXIT instruction causes a thread to leave the enclave. SGX
supports multi-threaded execution inside enclaves, with each thread’s enclave execution
state stored in a Thread Control Structure (TCS) along with a dedicated State Save Area (SSA).
When an interrupt gets delivered to the in-enclave application, or when it generates an

exception, the so-called Asynchronous Enclave Exit (AEX) procedure takes place. It saves the
enclave state to the State Save Area, replaces the register values with the synthetic values
to avoid information leaks. At this point, the thread leaves enclave mode, and the control is
transferred to the kernel according to the x86 architecture. In case the kernel generates the
signal to the userspace, the control is transferred to the userspace signal handler, whichmay
optionally reenter the enclave to trigger in-enclave signal handling. Otherwise, the kernel
transfers control to the AEX handler passed to the EENTER instruction. The AEX handler,
which typically consists of a single ERESUME instruction, reenters the enclave and restores
the state from SSA, and continues the execution.
In case the application attempts to access the memory that is currently not mapped into

the enclave, SGX firmware will perform the paging of the memory with the assistance of the
operating system. As Figure 2.1 shows, this process causes significant performance degra-
dation [71].
To allow the remote user to verify the identity of the SGX software, several versions of the

attestation protocol were developed. The initial version was oriented towards checking the
identity of the software running on the end-user computer [168], while the latest version
is oriented towards attestation of cloud software where maintaining anonymity throughout
the attestation process is less of a concern [261].
SGXv2 (documented in 2015, first made available in 2019 in Gemini Lake mobile CPUs)

alleviates several of the original restrictions of SGX:

• rdtsc and rdtscp instructions are no longer forbidden.

• Page permissions can be changed dynamically during the application runtime.

12

●
●
●● ●

●
●● ●

●
●● ●

●
●● ●

●

●
● ●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●●

●
●

●●

●
●

●●

●
●

●●

●
●

●
●

L
3

 C
a

c
h

e
 S

iz
e

E
P

C
 S

iz
e

1

10

100

1000

3 10 30 100

Memory in working set, Mb

S
lo

w
d

o
w

n
,
ti
m

e
s

● ● ● ●Random Read Random Write Seq. Read Seq. Write

Figure 2.1: Influence of the working set size andmemory access pattern on the performance
of an SGX enclave.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4

Enclave initialized memory, Gb

S
ta

rt
u
p
 t

im
e
,

s

Figure 2.2: Influence of the enclave heap size on the SGX enclave startup time.

• Physical memory that was not allocated to a virtual address during enclave startup can
now be added to the enclave through the cooperation of the enclave and the OS.

The dynamic physical memory allocation feature allows delegating the initialization of en-
clave memory to the runtime. This is critical for deployment of enclaves in scenarios which
require the processing of large amounts of data with low latency, because otherwise, enclave
initialization time is directly proportional to the enclave heap size (Figure 2.2).
SGX Oversubscription Extensions for easier support of SGX enclaves in virtualized envi-

ronments were announced in 2017, but are not available in the CPUs yet. The reason for
their introduction was significant overhead associated with tracking SGX-related state inside
virtual machine monitors, and concurrency issues when both the VM and the VMM perform
service operations on the enclave memory. To eliminate these overheads, Intel has added
the extensions that allow VMM to query the metadata of an EPC page, and pinning, unpin-
ning, and tracking of Secure Enclave Control Structure (SECS) page. This mechanism allows
implementing SGX support in VMMs at a much lower overhead.

13

Another SGXv2 extension is Flexible Launch Control (FLC). Without FLC, only the enclaves
authorized by Intel may be launched in the non-debug mode. Flexible Launch Control allows
creating custom architectural Launch Enclaves, which then can allow starting other enclaves
with arbitrary properties (access to architectural keys or production, non-debuggablemode).

AMD SEV. AMD Secure Encrypted Virtualization (SEV) is an extension to AMD virtualization
technology introduced in 2016. It relied on the off-core Platform Security Processor (PSP,
implemented as an embedded ARM core) to encrypt the memory of the virtual machines
running on the platform, thus preventing attackers (malicious insiders or outside hackers)
from accessing the content of the VM memory. A separate extension SEV-ES (Encrypted
State) additionally protects the register state of the VM guests during the interrupts [172].
In this context, the Trusted Execution Environment is formed around the executing virtual
machine.
PSP is used in SEV to implement all the key features:

• A remote attestation protocol that allows the remote user to verify that the user-provided
image has been correctly launched under SEV protection.

• A secure channel establishment protocol that allows users to launch the VM images or
the cloud operator to perform VM migrations.

• All key management features and control of memory encryption modules is imple-
mented as part of PSP software.

AMD SEV has been a target of several attacks: in 2018, a limitation of encryption without
integrity protection used in SEV was exploited to completely bypass SEV protection [224, 73].
Additionally, several vulnerabilities in the PSPOSwere discovered that allowed arbitrary code
execution on the PSP, thus allowing the deactivation of PSP without affecting the attestation
state [92].
To address the vulnerabilities stemming from the missing integrity protection, AMD in-

troduced SEV-SNP extensions (Secure Nested Paging) [53]. It allows establishing virtual-
physical page mappings that are verifiable by the SEV guest. Additionally, these extensions
allowed dividing the VM address space into four hardware isolated abstraction levels, pro-
vided functionality for protection from malicious interrupts, and improved the attestation
and key derivation procedures.
It should be noted that in addition to SGX, Intel has developed a technology similar to SEV

memory encryption primitive, called Multi-Key Total Memory Encryption (MKTME) [162]. It
offers weaker guarantees than SEV as it does not enforce integrity and does not support
attestation. It is expected that starting from the Ice Lake generation of Intel CPUs, the TME
implementation will substitute the current implementation of Memory Encryption Engine,
thus allowing developers to create enclaves of unlimited memory size while dropping the
freshness protection [258].
It is expected that TME technology will be used to implement another Intel ISA extension,

called Intel Trust Domain Extensions (TDX) [163, 24]. It aims to protect the Virtual Machines
from the privileged and unprivileged attackers using primitives similar to those implemented
in SEV. Intel TDX introduces a special execution mode, called Secure Arbitration Mode, in
which a trusted module with management routines (called Intel TDX module) for interaction
between the VM and the VMMwill be located. Intel TDXmodule is located in a reserved range
of memory, inaccessible to both privileged and unprivileged software as well as DMAs from
the devices. To install the Intel TDX module, an Intel TXT-based loader is used. The VMM can

14

use a special instruction, SEAMCALL, to invoke the functionality in the TDX module, such as
create, launch, and resume VMs. Intel TDX relies on the Intel TME to encrypt the VMmemory,
but will also provide integrity in addition to confidentiality to the memory pages. The VMM
must maintain two Extended Page Tables (EPT), the Secure EPT and the Shared EPT, to allow
the communication between the VM and the VMM, which are both further translated by the
Guest Page Table inside the VM. To control page mapping and TLB states, a data structure
similar to that employed by SEV is used. For remote attestation, Intel intends to use the Intel
DCAP library along with a special Intel TDX Quoting enclave. Unlike Intel SGX, which hides the
security-critical functionality inside the microcode, TDX presents a more open design, by al-
lowing open and third-party-verifiable implementations of the security monitor, as proposed
by Komodo [121].

RISC-V Keystone Enclave. Keystone Enclave is a proposed implementation of Trusted Ex-
ecution technology for RISC-V CPU architecture. To this end, it fully relies on the RISC-V
execution mode for firmware (Machine, or M-mode), and on the standard (albeit optional)
security primitives available in RISC-V architecture: (I/O) Physical Memory Protection (PMP
and IOPMP) [197].
To implement Keystone, M-mode software runs a security monitor software, that config-

ures the hardware protection primitives and facilitates context switches between the un-
trusted world and enclaves. Security monitor uses Physical Memory Protection feature to
restrict the range of physical addresses that the higher-level software, including the OS and
the hypervisor, can access. IOPMP, on the other hand, restricts DMA to physical memory
ranges, preventing malicious devices from accessing the enclave memory. This implies that
M-mode software is a trusted component.
Inside the Keystone enclave, the system structure mirrors the normal system structure -

that is, there is an operating system component (enclave runtime), on top of which the actual
enclave software is executing. This architecture is similar to the one of the Trustzone and
AMD SEV.

Nitro Enclaves. Nitro enclaves are AWS implementation of the TEE technology [6]. From
the point of view of developers, Nitro enclaves are significantly restricted virtual machines
running on dedicated hardware (without co-tenants), without access to persistent storage.
The Nitro enclave communicates with an untrusted runtime in its parent VM via a virtual PCI
device. The enclave runs with its own kernel andminimal userspace, initialized at the enclave
creation time from an EIF (Enclave Image Format) file. The content of this file is measured by
the hypervisor and the security chip implementing the root of trust, and can be used as an
attestation record by other AWS services, most importantly by AWS KMS [29].
AWS Nitro enclaves present a slight deviation from the standard TEE trust model. The TEEs

provided by Intel and AMD deployed in the cloudmake it possible to assumemalicious cloud
providers, as it is unlikely that the cloud provider can easily compromise the TEE primitives
implemented in the CPU by an independent vendor. Nitro enclaves, on the other hand, still
require the trust in the cloud provider, as the chip implementing the root of trust is also
developed by Amazon.

Conclusions. We can see the trend of having Trusted Execution technologies available in the
commodity CPUs, due to the necessity to perform trusted computing in untrusted environ-
ments.
However, there are several problems associated with Trusted Execution technologies:

• All of these technologies provide only hardware primitives and an extremely limited
runtime, that is insufficient for serving the rich functionality expected by cloud soft-

15

ware from the host operating system. Today, most cloud software expects to be built
and run as a POSIX application, while default runtimes of the TEEs provide only mini-
mal interfaces or even do not provide any runtime at all, making migration of existing
software into the TEE challenging. The only exception is AMD SEV that transparently
supports launching the existing VMs under SEV protection.

• While container technologies have becomeadominantway of deploying software in the
cloud, trusted execution technologies have to adapt to this to be usable. However, out
of the presented TEEs, only Intel SGX supports transparently running inside containers
out-of-the-box; other technologies require significantmodifications to their runtimes to
bridge the gap between available hardware primitives and the semantics of container
interfaces, such as extending Kata containers for AMD SEV support [250].

• Each of these technologies has its own performance-security trade-offs. The most sig-
nificant example is Intel SGX, which provides significant security guarantees at the high
performance and flexibility cost: enclave entries and exits, interrupts, and securemem-
ory paging all cause significant performance overheads.

• It may be impossible to secure the functionality necessary for some use-cases, or it
may be generally not available inside the TEE.

In our thesis, we tackle the problems that affect Intel SGX enclaves, while outlining the
potential solutions for other trusted execution technologies as future work. This choice is
motivated by the general availability of SGX-enabled CPUs in the field of cloud computing
during the thesis work period (2016-2020).

2.3 Intel SGX Runtimes

In this section, we explore the design space and the associated trade-offs for building TEE
systems for Intel SGX. SGX runtime library supports the operation of an application, by pro-
viding functionality in three core categories: memory management, thread management,
and communication. The choice of SGX runtime for the application depends on the require-
ments of the application in these categories, but also on the standard API that the application
targets, such as POSIX or Windows.
Memory management, threading, and I/O are typically handled by the operating system in

the cooperation with the userspace. Hovewer, due to the changed threat model, this func-
tionality must be implemented fully in userspace inside the enclave. Memory management
must be provided inside SGX runtime because the corresponding OS functionality is unavail-
able inside the enclaves, to protect the enclave against the memory-based attacks. Thread
managementmust be implemented inside the enclave and inside the untrusted runtime like-
wise, to protect against the attacks which involve malicious thread scheduling, and to over-
come SGX limitations. And the mechanisms for communication with the untrusted world
are necessary to submit requests to the untrusted environment and return the computa-
tion results: the untrusted world has no access to the trusted enclave memory. Different
SGX runtimes implement these core systems aspects inside enclave to a different extent,
but minimal level of functionality must be provided by all runtimes.
Another important distinction between the SGX support frameworks can be drawn based

on their tradeoff between TCB size and the communication overhead. From this point of

16

view, all Intel SGX support frameworks broadly fall into one of the three categories: ap-
proaches base on a library OS and the approaches with minimal TCB take extreme choices
with regard to the enclave code and data, while partitioning-based approaches try to achieve
a more balanced solution.
Library OS approaches rely on a custom-built or existing library OS, and aim to support

rich functionality applications by emulating an existing OS (for example Linux, NetBSD, or
Windows) to the extent, to which this is possible. The application communicates with the
library OS with the assistance of a C library modified to use standard function call calling
convention instead of trapping instruction like syscall.
Minimal TCB frameworks aim to increase system security by minimizing the code size in-

side the enclave at the expense of the functionality of the applications. For example, such
frameworks may contain only the simplest memory and thread management infrastructure,
coupled with a custom or predefined communication infrastructure.
Partitioning-based approaches employ a (semi-)automatic partitioning toolset for splitting

the application into the trusted and untrusted parts. The fundamental assumption is that this
way, both the TCB and the communication interface can be minimized, without incurring a
significant performance overhead on the unprotected part, and without a requirement to
perform application reengineering. To guide the partitioning tools, typically the programmer
has to provide only a few annotations on the variables that must be protected.
Thus, these three approaches made different trade-offs between the following two funda-

mental aspects:

• TCB size: the larger the TCB size, the more functionality can be supported inside the
enclave, but this potentially decreases the trust in the system. By minimizing the TCB
size, the application becomes easier to audit and verify, allowing increased trust in the
application, but limits the functionality inside the enclave and potentially increases the
communication interface size.

• Communication interface: larger TCB allows minimizing the interface to the untrusted
system, and thus reducing the attack surface by implementingmore functionality inside
the enclave. On the other hand, delegating the handling of rich functionality to the
outside of the enclave reduces the TCB without causing incompatibilities, but makes
the interface a lot larger. Additionally, custom-developed interfaces do not suffer from
both incompatibility and TCB size drawbacks, but they are not general and must be
developed anew for each application.

2.3.1 Library OS based approaches

Haven. Haven was the first system aiming to provide support for rich applications inside
Intel SGX enclaves [83]. To this end, it relies on the Drawbridge library OS that emulated
a full Windows 8 API, while requiring the developer to implement only 22 hypercalls from
the enclave to the host OS. These hypercalls broadly fall into the following categories: mem-
ory management, thread management, signal handling, stream I/O, and system time access.
Thus, Haven strived for minimal host OS interface and maximal functionality inside enclaves.
An important contribution of Haven is the concept of shielding: a reverse sandbox that in-

stead of protecting a trusted environment from an untrusted piece of code, aims to protect a
trusted piece of code from the untrusted environment. To this end, Haven introduced shield-
ing modules: as enclaves hypercall interface is untrusted, Iago attacks must be detected and

17

prevented. Shielding modules implement comprehensive validation of return values from
the OS [100].
A characteristic feature of Haven is its huge TCB size: the paper quotes 209 Mb of code,

which is much more than the amount of EPC memory even on the latest of SGX-enabled
CPUs. Thus, this system cannot be practically utilized. While the authors quote numbers
plausible for production use in their evaluation, it is important to remember that it has been
performed in an emulator, which does not model the performance degradation from the
EPC paging accurately.

Graphene-SGX. Graphene-SGX conceptually follows the design of Haven, but was built to
support POSIX instead ofWindows applications [287]. It builds onGraphene libraryOS, which
is used to implement a wide range of Linux-compatible functionality [286]. The interface to
the host OS is similarly small — Graphene-SGX requires only 41 hypercalls to provide Linux
application support on an untrusted Linux1 host [34].
The emulation of the Linux system call interface inside Graphene-SGX comes at a high

cost — the Linux system call interface is extremely hard to faithfully replicate, and the minor
incompatibilities that thus arise make application support and debugging extremely hard.
To enable many common applications, Graphene-SGX has to be constantly modified and ex-
tended to provide feature-by-feature support of Linux system calls (including obscure parts
of the Linux kernel, e.g. signal dispositions and flags like MSG_PEEK). This proved to be a
tedious affair.
From the performance point of view, evaluations show that Graphene-SGX has approxi-

mately 40% overhead compared to the native versions of real-world applications with a sig-
nificant rate of system calls. As with other frameworks, these overheads are lower for mostly
CPU-intensive tasks that fit into the EPC.

SGX-LKL. An alternative approach to the supporting Linux programs inside enclave was taken
in SGX-LKL [247]. Instead of emulating Linux functionality, SGX-LKL uses a version of the
Linux kernel built as a library OS for a NOMMU architecture (LKL, Linux Kernel Library). This
approach allows SGX-LKL to support POSIX binaries without compatibility issues.
SGX-LKL takes further measures to minimize its API to the untrusted system. The external

interface is limited to only 7 calls, which comes at the expense of the ability to directly com-
municate with the untrusted OS via system calls: SGX-LKL supports working only with the
file system images on disk and with emulated network devices. This interface is extensively
confidentiality- and integrity-protected, and takes significant measures to prevent leaking
information about the behavior of the application via its external interfaces.
The evaluation shows that the overhead of SGX-LKL in communication-heavy cases is be-

tween 170% and 190%. This significant overheadmay not be acceptable when running in the
cloud environment, and the lack of integration with the files located on the host OS makes
container support challenging.

2.3.2 Minimal TCB Systems

Intel SGX SDK. Intel SGX SDK is the official framework released by Intel for the development
of Intel SGX enclaves [157]. It is based on the modified OpenBSD libc, extended with a set of
cryptographic libraries and libraries for access to Intel SGX functionality, for example, remote
attestation and sealing.

1Unlike Graphene-SGX, Graphene can run Linux applications on top of other operating systems.

18

● ●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

100

300

1000

3000

2 4 6 8

Number of cores

T
h

ro
u

g
h

p
u

t,
 1

0
3
 o

p
s
/s

● ● ● ●Native, 32b SGX, 32b Native, 64Kb SGX, 64Kb

Figure 2.3: Influence of the I/O buffer size and concurrency factor on the I/O throughput of
a native POSIX application and Intel SGX enclave.

For communication with the untrusted OS, Intel SGX SDK provides an IDL-based interface
generator, that reads user-provided interface description, and uses it to generate the code
for entering and exiting enclave, transferring and validating arguments, and their wrappers
in the trusted and the untrusted worlds—so-called enclave calls (ECALLs) and outside calls
(OCALLs). The drawback of this interface is its performance overhead, which can reach 8x
for the system call heavy applications (Figure 2.3). Additionally, context switches between
trusted and untrusted worlds can last up to 5000 cycles, further decreasing performance
with a TLB flush.
To reduce the context switching overhead, Intel has developed switchless call infrastruc-

ture, that relies on an asynchronous queue to pass OCALL arguments to the untrusted world
and receive the response inside the enclave, and a thread pool outside of the enclave to read
the arguments and execute the request. However, this approach still lacks the generality
necessary for supporting general POSIX applications.
Additionally, Intel used to provide (until version 2.8, February 2020) a Platform Services

Enclave as a part of Intel SGX SDK, which provided access to the hardware functionality of Intel
Management Engine (ME), such as monotonic counters and trusted time source. However,
this functionality has been deleted in the further version of SGX SDK, without providing any
alternative implementation of these APIs. In practice, developers can use TPMs to implement
these features.

Panoply. Panoply is a minimal TCB system for running unmodified POSIX applications [272].
It is based on the two main concepts: delegation of system calls to the host OS kernel and
partitioning of application intomultiple enclaves (calledmicrons) for fault isolation. To ensure
that the communication between multiple enclaves of one application is secure, Panoply
proposes a protocol that preserves the integrity of messages and the control flow inside the
enclave based on the received messages. Additionally, Panoply strives to hide the limitations
of SGX from the software, for example, it has provisions for supporting an unlimited number
of threads.
For the delegation of system calls and standard C library functions, Panoply uses wrapper

functions generated using Intel SGX SDK. Panoply uses a sophisticated shielding module to
protect against Iago attacks. Panoply also supports fork and exec system calls inside the

19

enclave, thus allowing it to run a wider range of POSIX applications than other platforms.
While typically these system calls require a complex implementation to faithfully recreate
the OS-provided semantics with respect to state that gets inherited by the child or replacing
process, Panoply significantly simplifies their implementation by delegating as much state as
possible to the OS.
While the TCB of Panoply is only 20 kLoC, its untrusted API has comparably large size—it

includes 254 API endpoints, that is system calls and standard C library functions. Panoply
does not provide a toolchain for automatic partitioning the application between different
enclaves and delegates this responsibility to the developer. However, the partitioning cost is
low as the developer has to only annotate the application source code with pragmas.

Asylo. Asylo is a framework for writing TEE-independent applications: the applications built
with Asylo are independent of the security backend used by the platform, whether software
or hardware one [4]. The software backends may be implemented as virtual machines, while
hardware backends would use Intel SGX or AMD SEV. This promises to simplify the deploy-
ment for the user and reduce the development effort for the application provider.
For communication, Asylo offers an extensive interface to the untrusted operating system

based on delegation similar to the one used in Panoply. For network communication, Asylo
offers a framework for implementing gRPC endpoints. To secure the data in transit, it pro-
vides a cryptographic protocol where channel establishment includes mutual attestation. In
addition, APIs for sealed data access and for access control are provided.

RATEL. Another system that aims to support unmodified POSIX applications is RATEL [271].
Unlike other systems, which require relinking or recompiling the application to run it inside
of the enclave with minimum modifications, RATEL develops this research direction further
and allows running precompiled unmodified applications inside the enclave. To this end, it
relies on the dynamic binary translation system (DynamoRIO), which identifies binary code
sections which are incompatible with the restrictions of Intel SGX, and rewrites them with
calls to the host operating system, to the in-enclave runtime, or to the untrusted runtime.
While this approach adds the dynamic binary translation engine to the enclave TCB, it relies

on the extremely lean runtime after translation—a minimally-extended Intel SGX SDK, thus
allowing us to classify it as a minimum TCB system.

2.3.3 Partitioning Approaches

Glamdring. Glamdring is a toolchain for automatic partitioning of user applications for Intel
SGX enclaves [203]. Glamdring combines static program analysis techniques with user anno-
tations to automatically partition the security and performance-sensitive components of the
application into the enclave and unprotected parts correspondingly. This approach reduces
the TCB by pushing the code that violates the principle of least privilege to the untrusted
world while taking the performance implications into account.
The user has to specify sources and sinks of sensitive data, that is variables or function

arguments, through which the communication with the untrusted world is happening. The
static code analysis employed by Glamdring identifies all statements in the program that
depend on the annotated lines, and ensures confidentiality by performing static dataflow
analysis and integrity using backward slicing approach. Additional functions are moved to
the enclave if this improves performance using gcov tool.
To protect the communication interface, Glamdring analyses the static invariants of the

untrusted code and transforms them into the runtime checks inside enclaves, and verifies

20

pointer destinations between the trusted and the untrusted code. To protect against the
Iago attacks, the arguments and the return values are checked for invariant violations. Replay
attacks are prevented by tracking the freshness of requests using nonces.
The results show that Glamding places 22-40% of application source code into the enclave,

with 40 to 150 communication endpoints between the trusted and untrusted world. The per-
formance achieved after partitioning is 30-60% of the native application, which is stemming
from frequent transitions between the application partitions. The resulting interface size is
also bigger than the interfaces achievable with library OS frameworks, and on the same order
of magnitude as with minimal TCB approaches.

2.4 Related Work

Memory safety. While Intel SGX provides hardware protection from direct memory reads
by privileged and unprivileged software, the in-enclave applications must still be correctly
implemented to remain secure: any software defect that causes the application to disclose
its secrets renders the protection from Intel SGX useless.
The biggest category of software defects found in the common user software are spatial

and temporal memory vulnerabilities, stemming mostly from the insecure use of C and C++
programming languages which lack memory safety [32, 99]. There still exists a large number
of applications written in these programming languages, which could be run inside the en-
clave, and thus need security hardening to prevent the exploitation of these vulnerabilities.
One of the promising approaches to these problems is based on the program instrumenta-
tion, where the program is enhanced at compile time with additional instructions and data
structures necessary to ensure the instrumentation goal—memory safety of the code.
SGXBounds is an instrumentation engine that adds spatial memory safety to the existing

C and C++ code inside Intel SGX enclaves [190]. SGXBounds implementation is SGX-aware:
because significant utilization of physical memory usage inside SGX enclaves causes large
performance overheads, SGXBounds limits the maximum size of enclave virtual memory to
4Gb, and uses the freed bits inside the virtual address to store the upper bound of the object.
The lower bound of the object is stored in memory after the end of the object.
While this approach does not provide protection comparable to hardware approaches [231],

its significant benefit is a much lower overhead compared to other solutions, including hard-
ware (Intel MPX) and software (Address Sanitizer): only 17% performance overhead on av-
erage, compared with 51% for Address Sanitizer, and up to 600% for Intel MPX, which is
explained by SGXBounds’ high memory locality and low memory consumption.

Storage solutions. We do not consider the work of building specifically a scalable and reliable
storage solution to fall within the scope of our project, however it is an important component
of every cloud software stack. Thus, it is important to consider the solutions built for support
of persistent storage inside Intel SGX enclaves.
The fundamental functionality exposed for achieving storage confidentiality and integrity in

Intel SGX SDK is called sealing: in a nutshell, it employs encryption of data using a hardware-
derived key tied to the enclave identity. Thus, it is not accessible to the software outside of
the enclave or to other enclaves. Sealing as implemented in Intel SGX and SGX SDK allows
upgrading both Intel SGX firmware and the software versions inside the SGX enclave.
Storage primitives exposed by Intel SGX SDK contribute only low-level cryptographic func-

tionality, while cloud architecture usually relies on dedicated key-value storage solutions, for

21

exampleMemcached, Redis, RocksDB, and so on. An example of a system that adapts amod-
ern key-value store for Intel SGX is Speicher [76]. Speicher is a high-performance networked
LSM store that relies on kernel bypass for fast access to the NVMe devices using the SPDK
(Storage Performance Development Kit) framework. It implements a novel on-disk LSM data
structure that maintains confidentiality, integrity, and freshness of the stored data. While
Speicher’s direct I/O library can achieve near-native throughputs and latencies, its freshness
protection mechanism causes a large throughput overhead, which is approximately 15–30×
lower than the throughput without freshness protection.
Speicher’s significant overhead is stemming from its use of platform monotonic counters

as a primitive for freshness protection. An alternative approach to achieving freshness in
storage systems is implemented in ROTE [212]. ROTE protects against a distributed adver-
sary by relying on multiple nodes to hold the freshness information, which requires an at-
tacker to subvert more than a third of all nodes to violate the system properties. By relying
on network nodes instead of the platform counters, the latency of freshness state reads and
writes can be reduced by a factor of 20, which allows a corresponding increase in the system
throughput.
SGX sealing key is the fundamental primitive necessary for the protection of local on-disk

data. However, at the cloud scale, distributed storage systems are prevalent and thus the
SGX-protected solutions that use network storage can be also constructed. PESOS is a stor-
age framework that provides a policy-enabled REST interface to network-enabled Seagate
Kinetic disks [185]. By attaching policies to the key ranges, Pesos can flexibly implement sev-
eral common use-cases, such as mandatory access logging, time-based storage access, and
so on. A single Pesos node scales the amount of available storage by adding more Kinetic
disks. However, it suffers from the overheads stemming from comparably slow Kinetic disks:
the achieved throughput is approximately 1000 IOp/s when the request size is small.
An important factor for the security of applications that rely on the file systems of the

untrusted OS for data persistence is its correct use and resilience to Iago attacks [100]. In
this context, BesFS proposes a library for accessing the untrusted file system, which is for-
mally specified and verified using Coq theorem prover. This allows BesFS to provide high-
assurance interface that resists various attacks on the system call interface while allowing
users to chain the provided functions in arbitrary ways.

Remote attestation. Remote attestation is a critical requirement for achieving trust in the
in-enclave software. Without attestation, it is impossible to distinguish an execution that
happens inside the Intel SGX enclave from the execution inside the emulator of Intel SGX.
Attestation is performed during the application startup and setup phase; the verifier sends
the secrets necessary for further operation only to the successfully verified applications.
Intel’s remote attestation protocol provides a cryptographically signed, remotely-verifiable

statement about the enclave software TCB: the enclave software identity, platform configu-
ration, enclave author identity, and additional data. The enclave identity is represented in
the attestation message as the enclave measurement: a SHA256 hash of all operations that
were executed to construct an enclave, taking into account the memory contents of the en-
clave, locations of the measured memory, and the protection flags of in-enclave pages. The
platform configuration includes information on the microcode version, hyperthreading con-
figuration, and so on. This information is needed because each of these components may
have vulnerabilities (bugs in the implementation or opportunities for side-channel attacks),
thus, the attestation verifier may choose not to trust the platform with these hardware bugs.
The enclave author’s identity is conveyed as the hash of the RSA public key of the enclave

22

signer. Additionally, the enclave may choose to transmit arbitrary data along with the signa-
ture to facilitate the establishment of a secure channel to the enclave. If any of the system
TCB components is discovered to be untrustworthy, there is a TCB Upgrade procedure that
allows handover of service from the old instance of software to the new, patched one.
Attestation of enclaves is implemented in Intel SGX in two variants: local attestation and

remote attestation. Local attestation is performed in a hardware-assisted way between two
enclaves running on the same CPU. It allows two enclaves tomutually attest each other by ex-
changing attestation reports, which include the identity of the enclave communication part-
ner, and additional information to establish a secure channel between the enclaves.
Remote attestation is more complicated and allows the remote party to verify the identity

of the enclave and configuration of its platform. It is performed via a local attestation with
a special, Intel-provided, architectural Quoting Enclave, which signs the report using the at-
testation key, following the Enhanced Privacy ID (EPID) cryptographic protocol. EPID is an
extension of the Direct Anonymous Attestation used in TPM 1.2 specification. The EPID pro-
tocol has the important properties of anonymity (it should be impossible to attribute two
signatures to the same or different entities in the group) while providing a possibility for
signature-based revocation (it is possible to revoke the signature key based on the signature
alone). EPID as implemented in Intel SGX divides the nodes into groups based on the CPU
family (i3, i5, i7). To generate the attestation key and verify the signed attestation report, Intel
provides an Intel Attestation Service (IAS) infrastructure.
In some cases, implementations of custom, third-party attestation protocols are required.

For example, it may be impossible or undesirable to connect to IAS for the attestation quote
verification, or if there is a necessity to implement a remote attestation protocol with differ-
ent privacy requirements. To allow the implementation of these more flexible requirements
to attestation, Intel has provided a set of libraries and tools called Data Center Attestation
Primitives (DCAP). Combined with Flexible Launch Control (FLC) extension, an independent
implementation of a Quoting Enclave can be built. As an example, Intel provides an ECDSA-
based Quoting Enclave. It is expected that large cloud providers will use DCAP to implement
custom attestation infrastructure.

2.5 SGX Challenges

The limitations of Intel SGX present challenges for a wide range of use-cases, which appli-
cation developers must tackle to ensure that their software runs inside enclaves securely
and efficiently. This is especially true for the some classes of applications developed for the
existing operating systems, which use rich OS functionality and rely of low performance over-
heads of the used interfaces.

2.5.1 SGX Challenges for Network Middleboxes

After investigating the applicability of Intel SGX to common cloud software, we turn our at-
tention to analyzing and solving challenges related to the use of Intel SGX for networking ser-
vices. As there is a new trend for programmability in the network, exemplified by Software-
Defined Networking (SDN), and Network Function Virtualization (NFV) appliances replacing
fixed-function middlebox devices, we believe that this is a promising direction. In particular,
we consider network middleboxes, which have gained traction in the Internet for a variety of
use-cases, for example for caching, traffic optimization, deep packet inspection, and so on.

23

●

●

●

●
● ●

●
●

●
●

●

●

0

10

20

30

40

100 300 1000

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

● ●DPDK Linux

Figure 2.4: Throughput of noop middlebox application for native Linux and kernel bypass
packet access methods.

The main challenge of using SGX enclaves for middleboxes stems from an inefficient com-
munication interface between the enclave and the NIC. The fact that modern NICs achieve
wire speeds of 40–100 Gb/s puts stringent lower bounds on the system performance. In
many cases, even native software that communicates via system calls with the NIC cannot
operate at such rates (Figure 2.4). Native applications rely on the combination of the follow-
ing strategies to solve this problem:

• Implement part of the application in a SmartNIC, either via programmable packet pro-
cessors (e.g. using P4 [91]), or on-NIC FPGAs.

• Move part of the application into the kernel, which recovers the performance by tightly
integrating into the relevant kernel subsystems.

• Implement kernel bypass access to NIC, running the driver in userspace as a part of
the application.

The drawback of the first approach in the context of trusted execution is that the on-NIC
software in this case does not have the TEE (Intel SGX) protection. In-kernel implementation
is challenging because of the high complexity of developing kernel code, missing isolation
features, and particularly for Intel SGX because enclaves can run only in userspace (Ring 3).
Therefore, only the last option remains available for use by Intel SGX enclaves.
When userspace access to theNIC is used, the partitioning trade-offs for Intel SGX enclaves

gain a new dimension: putting the userspace device driver inside the enclave increases the
system TCB. On the other hand, leaving the driver run as a part of untrusted runtime requires
implementation of an additional memory queue for passing the received packets into the
enclave.
One fundamental limitation of Intel SGX in the context of userspace in-enclave device

drivers is that the communication channel between the enclave and the device is not pro-
tected, and the untrusted operating system may expose the emulated version of the NIC
instead of the real one to the enclave. One solution to this problem requires establishing
a secure DMA (Direct Memory Access) channel between the NIC and the enclave [131], but

24

this approach requires that a high-end FPGA is attached to the PCI Express bus on the NIC,
which is not a standard design.
Another limitation that reduces the performance of middleboxes with Intel SGX is that

middleboxes require a fast clock to periodically schedule the execution of some network
functions, for example for a load generator function. However, Intel SGX does not provide a
sufficiently low-latency clock, causing latency degradation. Time sources inside the Intel SGX
enclave, however, warrant a more detailed discussion.

2.5.2 Time Sources for Intel SGX Enclaves

System time access is an important system service that current SGX frameworks provide
via delegation to the OS, as SGX does not have a secure source of time. In this section, we
provide a short overview of the timers provided on the 64-bit x86 Intel CPUs.
While most of the timers are implemented in hardware, there is a possibility to construct a

software timer. In its simplest form, it is just a tight loop that increments a register and writes
it to the in-enclave memory [263]. This timer can be quickly read in the enclave by reading
the corresponding memory location. This method has multiple drawbacks: first, it requires a
dedicated core for the timer thread that must be continuously running to update the timer.
Second, if the timer thread gets preempted, the timer value becomes stale, which the clients
of the timer must detect.
Hardware methods use primitives exposed by the CPU or by a peripheral device. Intel

CPUs expose two hardware time sources: the Timestamp Counter (TSC) and High-Precision
Event Timer (HPET). Timestamp Counter is the timer embedded into the CPU that is incre-
mented at a fixed, power management-independent rate. The internal counter value is ex-
posed to the software via rdtsc instruction, subject to the value adjustment: first, the internal
value is adjusted using a fixed divider; second, an OS-configured offset is added to the value
to produce the final value. Thus, the OS can adjust the timer value by writing the offset or by
directly writing the value of the clock into one of the corresponding model-specific registers
(MSRs). Additionally, the clock increment rate can be controlled inside virtualized environ-
ments using the TSC multiplier and TSC offset Virtual Machine Control Structure field. Reading
the TSC is extremely fast — approximately 20 cycles.
High-Precision Event Timer (HPET) is a timer designed to synchronizemultiple event streams

with high accuracy. It can be read without the direct involvement of the operating system
through MMIO memory. However, it has much higher latency than TSC: around 0.6 μs.
Operating systems typically use either TSC or HPET as a time source, preferring the use of

TSC unless it is proven to be unstable. As reading time is a common operation in userspace
applications, it is common to implement the time-related system calls in vDSO — a small
shared object mapped into the application address space by the kernel. vDSO contains cor-
rection variables necessary to transform hardware-tracked time into its real-world value, and
code to perform these calculations.
Some peripheral devices contain their own clocks and can expose them to the OS. One

common example of such peripheral-provided clocks is the TPM clock, which maintains the
uptime of the platform. While it does not track the real-world time, having access to a mono-
tonic time source is sufficient to implement many time-based protocols. Also, devices like
NICs often provide a hardware clock for packet timestamping or PTP synchronization. En-
claves could use these on-device timers as the time sources provided by the OS are unreli-
able or unavailable.

25

2.5.3 SGX Challenges for Distributed and Serverless Computing

While the mutual attestation is considered out-of-scope for this thesis, it is a required com-
ponent in the production systems. Therefore, when implementing systems where multiple
enclaves communicate together, the communication protocols should include provisions for
mutual attestation. Mutual attestation is also of great importance during the distributed sys-
tembootstrapping, when the initial distribution of shared secrets and configuration happens.
Mutual attestation on a single computer can be trivially implemented using the SGX-provided

local attestation. However, in the context of the distributed system, remote attestation has
to be employed to establish trust between the system nodes. In this case, mutual attestation
can be implemented in peer-to-peer or transitive variants. In the former case, two enclaves
attest each other via direct communication. In the latter case, enclaves establish trust by
performing mutual attestation with the special attestation and configuration service.
The benefit of the peer-to-peer approach is that there is no single point of failure in the

system. This approach, however, has a chicken-and-egg problem: the enclaves have to know
the expected measurements of their communication partners, which either has to be em-
bedded into the binary, thus causing tight coupling between the enclaves, or distributed
during startup, which requires a secure channel to a trusted node. This problem is avoided
in the case where all enclaves perform attestation with a central attestation service, which
transmits the configuration and the secrets to the successfully attested enclaves. To avoid a
single point of failure of this design, standard replication techniques can be used.
In our work, we rely on a system called Palaemon [138], which transparently handles the

attestation and secret distribution to the enclaves during the application startup. Palaemon
represents the system configuration in a declarative policy-based language similar to Docker
Compose, and transparently handles key generation and injection into the configuration files.
To secure Palaemon itself, it implements board-based policy control (multiple stakeholders
have to reach consensus to change the policy stored in a Palaemon instance), and runs in
the SGX enclave itself to protect the secrets. Palaemon client is embedded into the SCONE
framework and is configured with only a few environment variables.
Independent of the configuration and attestation system used, the enclaves have to es-

tablish a secure channel for communication after they perform the mutual attestation. The
industry standard for secure communication is TLS, for which SGX-aware extensions ex-
ist [179], however in some cases more flexibility is required. As the communication security
is out of scope for Intel SGX, in these cases custom communication and key management
protocols have to be developed.
For trustworthy cloud computing, two additional challenges are stemming from the us-

age of Intel SGX and the threat model of an untrusted cloud provider. First, trustworthy
accounting has to be provided: users have to be able to independently verify the resource
consumption (CPU time, memory, network, and disk I/O) of their functions. One solution to
this problem is provided in the S-FaaS serverless system [65]. It features an implementation
of a custom timer that measures the execution time inside the enclave and computes the
memory-time integral during the program execution. Network and Disk I/O amounts can be
measured directly by the enclave runtime.
Second, in the context of serverless platforms, function startup and teardown time should

to be minimized, as it has proven to be a bottleneck. There are multiple solutions to these
problems, including reusing the enclave instances, relying on language-based isolation be-
tween functions, and directly minimizing the function startup time. While our research in-
vestigates minimizing the function startup time, TFaaS relies on isolate features in Ducktape

26

and V8 Javascript engines to minimize the function spawning overhead [90].

27

3 Efficient Support for POSIX
Applications inside Intel SGX
Enclaves

As explained in ±1.4, POSIX applications are prevalent in cloud, as most common OS used
inside VMs and containers are various Linux distributions [44]. In this chapter, we focus
on designing and implementing an efficient runtime support framework for running Linux/-
POSIX server applications inside Intel SGX enclaves. More specifically, these applications are
typically long-running, multithreaded programs with very high I/O rate requirements: they
receive a request from the client, and use it to compute the response, which may involve
reading in-memory or on-disk data structures. Request handling typically happens in multi-
ple threads to efficiently utilize modern multicore CPUs, especially when CPU heavy crypto-
graphic operations for TLS termination are necessary. Unix-like operating systems provide a
set of interfaces, such as standard library functions, system calls and signals, specified in the
POSIX standard, which the applications use to implement the required functionality.
Intel SGX enclaves, on the other hand, provide and environment that is largely isolated

from the operating system and system libraries by its security-oriented design, making it the
responsibility of the developer to implement the functionality specified by POSIX. SGX sup-
port frameworks attempt to simplify the developer’s work by implementing most common
POSIX functionality shared by a large number of applications [285]. More specifically, the
following functionality must be provided:

• thread management functions (pthreads interface);

• memory management functions (malloc, mmap, etc.);

• communication interface to the OS (delegation of calls to the libc, or system calls and
signals).

At the same time, the enclave TCB should be kept at a minimum: first, to minimize the mem-
ory consumption of the enclave framework, as the amount of memory inside the enclave is
extremely limited; second, to reduce the attack surface inside the enclave.
SGX frameworks implement these requirements with a different set of trade-offs, which

fall into two major approaches of SGX runtime construction: minimal TCB-based, and library

28

OS-based. However, both approached make unsatisfactory trade-offs between the TCB size,
system performance, and the developer effort necessary to use the runtime. In particular,
library OS approaches provide comprehensive subset of POSIX functionality by running a
large code base inside the enclave, thus increasing the system memory consumption, as
well as effort necessary to verify the system. The emulation of POSIX functionality inside
library OSes is also error-prone, because POSIX functions have a large number of corner
cases that must be correctly taken care of. For example, correct setting of error codes is
critical for correct operation of software. On the other hand, minimal TCB approaches can be
hard to use due to the necessity to develop a custom interface for each application. Existing
approaches rely on SGX-provided primitives for entering and exiting the enclave, which are
a source of high performance overhead.
Thus, the questions that we want to address in this chapter, are:

• How can we achieve a better trade-off between the TCB size and the functionality avail-
able inside the enclave then both library OS and minimalistic approaches?

• How can we provide an efficient, comprehensive interface to the OS without complex
emulation of the OS functionality?

To provide an answer to these questions, we introduce a system called SCONE (Secure
Containers), which provides a lightweight, generic libc-based runtime with minimal TCB that
can be applied to a wide range of POSIX applications. By building on libc instead of on an
existing library OS or minimalistic SGX runtime, SCONE exhibits a minimal TCB without com-
promising on the functionality available to the in-enclave applications. This is achieved by
a two-fold approach: the functionality that must be executed fully inside the enclave, like
thread and memory management, is implemented as close to the libc interfaces as possible.
On the other hand, the invocations of OS functionality like network of file I/O is fully dele-
gated to the outside of the enclave. To reduce the probability of coding errors and simplify
the support of system calls, we have automatically generated the code for forwarding sys-
tem calls to the outside using an annotated C header and a custom generator. As SCONE’s
communication interface is fully generic, porting new applications into enclaves can be as
easy as recompiling with a SCONE-provided cross-compiler.
To improve the system performance, we rely on an asynchronous system call interface,

which allows SCONE to avoid SGX-induced performance degradation from frequent con-
text switches, and switch the runtime to M:N threading model to fully reap the performance
benefits. It provides two-fold benefits: first, it allows SCONE to support an arbitrary number
of in-enclave threads without high performance overheads in spite of SGX limitation (fixed
number of TCS pages), second, it allows application threads to submit their I/O requests
without exiting and entering the enclave, and without blocking the in-enclave thread.
The implementation of asynchronous system call interface relies on a lock-free concurrent

queue pair, which has better scalability than traditional lock-based queues. The threads
inside and outside of the enclave are also pinned to sibling hyperthreads to facilitate the
communication through the shared cache.
We measure the performance of SCONE using a set of micro- and macro-benchmarks,

using common network servers as the focus of the study. Our evaluation shows that SCONE
runs with 8-25% overhead in throughput for a wide variety of common network server ap-
plications, albeit at the cost of higher CPU utilization.
The structure of this chapter is as follows: in ±3.1 we provide a motivation for our system,

by using a popular web cache server as an example. In ±3.2 we will discuss the design deci-

29

sions of SCONE. ±3.3 will introduce the implementation of SCONE, and we will conclude with
the discussion and the conclusions in ±3.5 and ±3.7 correspondingly.

3.1 Motivation

To understand, what kind of interfaces must be supported by SCONE, consider a Mem-
cached server, commonly used to implement caching and in-memory storage system. Run-
ning Memcached inside Intel SGX enclave allows protecting the cached information from
unauthorized accesses by the cloud operator insiders, and makes the exploitation harder
for other kinds attackers, hence it is an important use-case to consider.
Memcached is a multithreaded application. It has a thread that listens and accepts new

connections on the network, and a number of threads that process the requests received
from the accepted connections. The threads synchronize using pthread-provided APIs.
The handling of the request involves TLS decryption, examining the request, which may in-

volve reads and writes to memory and to the local file system, preparation of the reply which
gets TLS encrypted, and sending it over network. As Memcached is designed to be a user-
facing component that provides replies to the majority of user requests, its I/O performance
must be as fast as possible: the requirement is to handle a large number of client sessions
with maximum throughput and minimal latency.
POSIX-compatible operating systems provide two features to support these use-cases:

non-blocking I/O over file descriptors, and a functionality to poll the readiness status of a set
of file descriptors. Non-blocking I/O can be enabled by setting the O_NONBLOCK flag on the
file descriptor at the file descriptor creation time, or by using fcntl system call. Polling is
provided by system calls like poll, select, epoll, kqueue.
Memcached performs asynchronous I/O using the libevent wrapper library over the OS

asynchronous I/O functionality to handle multiple connections in one thread, and uses a
range of functions to invoke the operation system functionality.
Additionally, Memcached sets up a few signal handlers to exit cleanly when the user or

the system stops the application. The low-level memory management functionality of the
operating system like brk and mmap are not available as well, making it impossible for the libc
to request memory from the operating system.
The Memcached instance would typically be deployed inside a virtual machine instance

or a container for performance and security isolation from other peers. However, the fun-
damental deficiency of container technology is that it aims to protect only the environment
from accesses by untrusted containers. Tenants, however, want to protect the confidential-
ity and integrity of their application data from accesses by unauthorized parties—not only
from other containers but also from higher-privileged system software, such as the OS ker-
nel and the hypervisor. Attackers typically target vulnerabilities in existing virtualized system
software [106, 107, 108], or they compromise the credentials of privileged system adminis-
trators [303]. Hence, hardware-assisted technologies like Intel SGX started to gain traction
in the cloud.
To enhance the protection of Memcached instance using Intel SGX, we develop a runtime

system called SCONE, which supports all of the aforementioned functionality required by the
common cloud software. However, this task is complicated by restrictions of Intel SGX:
For threadmanagement, the thread synchronization has to be implemented inside the en-

clave, as otherwise an untrusted operating system could subvert the synchronization, and
cause data races to take over the control over the enclave. Additionally, Memcached allows

30

specifying the maximum number of threads at runtime, while Intel SGX requires to preallo-
cate the Thread Control Structures at compile-time.
For the signal support and memory management, the corresponding functionality has to

be implemented inside the enclave as well, as the OS can only deliver signals and manage
memory in the untrusted part of the application.
The biggest runtime support challenge lies in the implementation of the communication

interface between the enclave and its untrusted environment. First, it is necessary to decide,
what the interface could look like: while a custom per-application interface violates the gen-
erality property, there is still a choice between the minimal interface of the library OS, and
forwarding of system calls of libc function to the outside. Second, it is necessary to ensure
that the communication interface is protected against Iago attacks. It should also be possible
to shield the interface.
The most important requirement for the communication interface is achieving high per-

formance. As Memcached can scale up to one million requests per second on COTS server,
there is a necessity to minimize the performance loss due to additional communication level
between the enclave and non-enclave parts of the application.
To conclude, cloudworkloads exhibit significant challenges to serving them inside Intel SGX

enclaves, all of which affect performance of the resulting enclaved software. Our runtime
framework, SCONE, implements all these properties with minimal TCB, thus leaving more
memory for user data and having less attack surface. We explain the design of SCONE in the
next Section.

3.1.1 Threat model

When designing for the Intel SGX enclaves, we assume a powerful and active adversary who
has superuser access to the system and also access to the physical hardware. They can con-
trol the entire software stack, including privileged code, such as the container engine, the OS
kernel, and other system software. This empowers the adversary to replay, record, modify,
and drop any network packets or file system accesses.
We assume that container services were not designed with the above privileged attacker

model in mind. They may compromise data confidentiality or integrity by trusting OS func-
tionality. Any programming bugs or inadvertent design flaws in the application beyond trust-
ing the OS are outside of our threat model, as mitigation would require orthogonal solutions
for software reliability.
In our threat model, we also do not target denial-of-service attacks. With Intel SGX, the

host OS remains in control of physical resources, thus it can deny the enclave CPU time
or delivery of packets, thus preventing the enclave from doing useful work. However, such
attacks would lead to visible deviations from SLAs, which allows the cloud tenant to dispute
the processing fees. We consider trustworthy resource accounting an orthogonal problem.
In this work, we also consider side-channel and microarchitectural attacks out-of-scope.

While recent publications have shown the extreme vulnerability of SGX enclaves without mit-
igations to such attacks, we expect that most of the vulnerabilities will be fixed in the new
revisions of Intel CPUs orwithmicrocode updates, and that the enclave application developer
will rely on available countermeasures in form of any of the available compiler-based tech-
niques and constant-time constant-cache-footprint coding techniques for the cryptographic
code [139, 233, 234].

31

Host operating system (Linux)

Enclavetrusted

Application Code

Application-specific libraries

Network and File System Shields

M:N Threading

SGX-aware C library

Asynchronous system call Interface

call6

call5

call4

resp1

resp2

resp3

Intel SGX Driver

S
y
s
te

m
 c

a
ll

re
q
u
e
s
ts

S
y
s
te

m
 c

a
ll

re
s
p
o
n
s
e
s

Lock-free

queues

SCONE

component

tr
u
s
te

d
u
n
tr

u
s
te

d

E
x
te

rn
a
l
c
o
m

m
u
n
ic

a
ti

o
n
 i
n
te

rf
a
c
e

Figure 3.1: SCONE architecture. The highlighted components were implemented as part of
SCONE.

3.2 Design

Our objective is to offer trustworthy cloud software on top of an untrusted OS: a secure
container must protect containerized services from the threats defined in ±3.1.1. We also
want to achieve maximal performance with minimal TCB without compromising the system
security.

3.2.1 Architecture

Figure 3.1 gives an overview of the SCONE architecture:
(1) SCONE exposes an external interface based on system calls to the host OS, which is

shielded from attacks. Similar to what is done by the OS kernel to protect itself from user
space attacks, SCONE performs sanity checks and copies all memory-based return values to
the inside of the enclave before passing the arguments to the application (see ±3.2.5). To
protect the integrity and confidentiality of data processed via file descriptors, SCONE allows
transparent encryption and authentication of data through shields.
(2) SCONE implementsM:N threading to avoid the cost of unnecessary enclave transitions:

M enclave-bound application threads are multiplexed across N OS threads. When an appli-
cation thread issues a system call, SCONE checks if there is another application thread that
it can wake and execute until the result of the system call is available (see ±3.2.4).
(3) SCONE offers container processes an asynchronous system call interface to the host

OS. Its implementation uses shared memory to pass the system call arguments and return
values, and to signal that a system call should be executed. System calls are executed by
separate threads running in userspace. Hence, the threads inside the enclave do not have
to exit when performing system calls (see ±3.2.5).

32

3.2.2 Trusted runtime

Given the task of supporting POSIX applications, we need to choose and implement a runtime
system. Most of applications running in the cloud are either implemented in C or C++, or in
a language the runtime of which is implemented in C/C++, Therefore, C and C++ are the
languages we aim to directly support with SCONE.
The foundation of the C runtime is the standard C library (libc), along with a few support

libraries (libgcc in case GNU Compiler Collection is used, or compiler-rt in case of Clang/L-
LVM). Standard C library implements the interfaces to theOS kernel, and exposes a standard,
POSIX-specified interface to the applications. We aim to provide a standard C library interface
to the applications as well, bymodifying and extending an the existing standard C library. The
main reason why these modifications are necessary is that some functionality, like commu-
nication with the OS and, for example, threadmanagement, must be implemented as part of
the libc modifications, and cannot be implemented efficiently in the lower level of abstraction
with Intel SGX. For example, to implement system call delegation, we cannot let an existing
libc invoke SYSCALL instruction, which will require several transitions between the trusted
and untrusted worlds for emulation. These changes must be made inside the libc.
While the functionality exposed by the libc to the user applications will stay unmodified, the

interface between the libc and the OS kernel is more complicated, as some of the functional-
ity provided by the kernel to the non-SGX applications has to be emulated inside the enclave
due to SGX restrictions. These low-level system calls are related to the thread management,
memory management, and the low-level primitives for communication with the OS. Other
interfaces between the kernel and the libc are used for the proper communication with the
OS, and are described in detail in the ±3.2.3.
There are several approaches for implementing the aforementioned low-level runtime

components. For example, library OS systems provide this functionality as a subset of other
OS-related components that they comprise. On the other hand, minimal TCB systems like
Intel SGX SDK ship with the modified and stripped-down version of the standard C library,
extended with a custom memory and thread management code.
In SCONE, support of the libc inside enclaves conceptually follows the minimal TCB ap-

proach: we strive for minimal amount of emulation of the kernel functionality inside the en-
clave. We analyze the libc code to find the interfaces necessary for running without kernel
support, and implement strictly those interfaces. Unlike minimal TCB approaches, we do
not strip rest of the libc interfaces, and delegate them to the OS instead. Unlike library OS
approaches, we do not implement any other OS-related functionality inside of the enclave.

3.2.3 External Interface

A choice of an external interface is extremely important from the point of view of achieving
the generality goal: SCONE must support running a POSIX/Linux applications as a generic
function of an interface, without implementation of any mechanism specifically for any ap-
plication. This requirement excludes the design choice of custom interface for SCONE: by
definition, it must be adapted to the functionality that the application needs from the OS
and from its library dependencies. Furthermore, partitioning the application to account for
this is also application specific.
To better see what design choices are valid for SCONE, we consider how a POSIX appli-

cation can request service from the operating system. On the lowest level, the application
requests service from the OS using so-called system calls. The semantics of system calls

33

Operating System

SCONE Memory

Management

SCONE Thread

Management

SCONE Syscall

Delegation

Standard C Library

Application and Libraries

fread

fwrite

mtx_lock

yield
malloc

free

read

write

read

write

futex

sched_yield

mmap

munmap

Application calls

libc wrapper functions

Libc issues syscalls

to fulfill the calls

SCONE handles only

some syscalls internally,

delegates the rest to the OS

Figure 3.2: SCONE external interface and runtime components.

varies: management of threads and processes, memory management, communication over
unidirectional or bidirectional streams, persistent storage of data, and so on. These opera-
tions require permission control and multiplexing by the operating system, which validates
the correctness and the security permissions of the request. System calls on POSIX oper-
ating systems are typically implemented in a synchronous and trap-based way: the thread
executing with the user privilege level invokes a trapping instruction which performs a con-
trolled transfer to the interrupt or system call handler in the kernel. To this end, it saves
the user processor state, switches the CPU privilege level to kernel, and restores the kernel
context. Then, the kernel system call handler validates and executes the request, before
reverting the control back to user mode. This state transition is costly even for normal user-
level code, especially when the page table switch has to be performed as well (as required
by the mitigations to the Meltdown vulnerability).
Applications can invoke system calls directly, but for convenience they are wrapped into

functions inside the standard C library or as a part of a programming language runtime. The
convenience stems from the fact that the system call calling convention is different from
the function calling convention, thus wrappers inside the libc eliminate a significant amount
of boilerplate code that would be otherwise required. Additional, arguably more important
functionality stems from fact that on Linux, certain kernel versions may implement some of
the functionality in non-standard-conforming way due to bugs, which may require additional
code to handle such cases, or to make use of more efficient or extended but otherwise
semantically compatible system calls thatmay become available in the future kernel versions.
Another design choice for the enclave external interface is whether to delegate system

calls or function wrappers to the untrusted operating system. The alternative to delegation
is emulation of the functionality inside, doing as much work of the operating system as possi-
ble and then forward only the primitive operation to the operating system, such as block-level
disk I/O or L2 network I/O, however this design choice is error-prone and not robust: stan-
dard C library and applications relies on POSIX/Linux system call semantics which have a lot
of corner cases, such as error codes and return values, behavior on some edge cases (e.g.
passing NULL pointer arguments). Therefore, delegating this functionality is a more robust
solution than emulation. For maximum flexibility, the decision about delegation or emula-

34

tion can be taken per each system call, as some system calls may not admit delegation, while
others may be too complex or error-prone to emulate.
In the context of delegation, it is preferable to choose system calls over function wrappers

for the external interface of the enclave. The reasons for this are: first, system calls are
already an external interface between the application and the operating system; second,
forwarding function wrapper calls to the outside requires application developer to partition
the standard C library functionality into parts that must execute inside enclave and parts that
can be safely delegated. This task is much easier to accomplish with the system calls then
with the function wrappers, as the POSIX/Linux libc interface is larger than the system call
interface.
Some of the system call arguments are pointers to the actual memory that kernel will read

or write during handling of the system call. As enclave memory (EPC) cannot be read by
the privileged software, that is by the operating system kernel, the enclave must copy these
memory objects outside of the enclave and update the pointer arguments correspondingly,
and copy them back into the enclave after the system call has been processed by the kernel.
This copying should also be implemented in a secure way, to protect against Iago attacks,
where some of the system call return values could be modified in a way that violates implicit
invariants in the code (e.g., returned amount of data read from the network larger than the
buffer passed to the system call).
An important system call performance optimization available on Linux is the virtual dy-

namic shared object (vDSO). It is a shared library mapped into the address space of the
application by the kernel, containing implementations of several system calls which can be
invoked without entering the kernel. On some architectures it may also contain code for per-
forming system calls in the optimal way. SGX enclaves do not support vDSO as-is, because
vDSO invocation would require calling into out-of-enclave code from the context of enclave.
System calls are a communication channel initiated by the application. However, the oper-

ating system can initiate the communication itself, via so-called signals. On POSIX platform,
signals are asynchronous notifications sent by the kernel or a process to another process
or thread. It is a limited form of IPC, as it allows to only invoke some functionality identified
by a numerical code. Some signals sent to a process are handled by the kernel, stopping or
killing the application, and optionally producing a core dump. Other signals can be handled
by the application, or ignored altogether. System calls like sigaction or signal can be used
to setup the in-process signal handler.
POSIX specifies synchronous and asynchronous signals. Synchronous signal is generated

whenever an application performs specific action, and is delivered to the thread that ex-
ecuted the corresponding action. On the other hand, asynchronous signals are caused by
external effects (for example, alarm expiration), and can be delivered to any thread that does
not have this signal blocked.
When the operating system delivers a signal to the process, it interrupts its execution, sav-

ing its execution context on the stack, and sets up the stack frame for the signal handler
according to the signature of the signal handler (for sigaction or signal), and passes con-
trol to the handler in the context of the signal stack frame. The return value in this synthetic
stack frame leads to execution of the sigreturn system call, which destroys the signal stack
frame and restores the previous execution context.
The main challenge for handling of signals inside Intel SGX is that the signal handling stack

switching and destruction has to be reimplemented inside enclave, and integrated with the
threading model of the trusted enclave runtime. For full support of the signal handling func-
tionality, handling of nested signals has to be implemented too.

35

Scheduler

TCS TCS TCS TCS

M application

threads (variable)

Userspace thread

scheduler (M:N)

Thread Control

Structures (fixed)

N kernel threads

(fixed, =#TCS)

System call threads

(fixed, ~#app. threads)

Operating System

EENTER EENTER EENTER

Syscall Syscall Syscall

Figure 3.3: Implementation of M:N threading model inside SCONE for use with Intel SGX.

3.2.4 Threading model

Modern operating systems provide abstractions of threads and processes. From the point
of view of the operation system, a thread is an atomically scheduled entity that executes as
part of the process. The specifics of a threading system implementation classify the threading
models into three categories:

• 1:1 threading — each user-level thread has a corresponding kernel-managed thread.

• N:1 threading — there are multiple user-level threads, and a single kernel-managed
thread.

• M:N threading—Muser-level threads are scheduled acrossN kernel-managed threads.

In case N:1 or M:N threading models are implemented, a user-level scheduler, which runs
as a part of the application, is necessary to multiplex the execution of the user-level threads
onto the available kernel threads.
SCONE supports anM:N threadingmodel inwhichMapplication threads inside the enclave

are mapped to N OS threads. SCONE thus has fewer enclave transitions, and, even though
themaximum thread countmust be specified at enclave creation time in SGX version 1 [156],
SCONE supports a variable number of application threads. Another reason for implementing
M:N threading in SCONE is that it allows reaping the full benefits of asynchronous system
calls, allowing a quick switch (without leaving the enclave) to a different userspace thread
after a system call has been submitted.
As shown in Figure 3.3, multiple OS threads, called enclave threads in SCONE, can enter an

enclave. Each thread executes a scheduler, which checks if: (i) an application thread needs
to be woken up due to an expired timeout, signal delivery, or the arrival of a system call
response; or (ii) an application thread is waiting to be scheduled. In both cases, the scheduler
executes the associated thread. If no threads can be executed, the scheduler backs off: an
OS thread may choose to sleep outside of the enclave when the back-off time is longer than
the time that it takes to leave and reenter the enclave.
The userspace threads implement cooperative multitasking: the preemption points for

the userspace threads are thread creation and joining, synchronization primitives, and sys-
tem calls: upon submission of the system calls, the thread blocks, giving opportunity for

36

a different thread to run on the same in-enclave kernel thread. Creation and destruction
of userspace threads is oblivious to the OS kernel, and thus must be fully implemented by
the SCONE runtime inside the enclave, as part of pthread_create and pthread_join im-
plementations. Additionally, to avoid data race attacks by the untrusted operating system,
SCONE should also implement the synchronization primitives (futexes) inside of the enclave
instead of delegating them to the untrusted world (±3.3.3).
The number of OS threads inside the enclave is typically bound by the number of CPU

cores. In this way, SCONE utilizes all cores without the need for a large number of OS threads
inside the enclave. The userlevel scheduler does not support preemption. This is not a
limitation in practice because almost all application threads perform either system calls or
synchronization primitives at which point the scheduler can reschedule threads. We would
like to note that there is no technical barrier to the implementation of preemption.
In addition to spawning N OS threads inside the enclave, SCONE also dedicates a number

of OS threads to execution of system call requests passed from the outside. These threads
are called system call threads. System call threads dequeue requests from the system call re-
quest queue, perform system calls, and enqueue results into the response queue (see Fig-
ure 3.1). The number of system call threads must be at least the number of application
threads to avoid stalling when system call threads block. When there are no pending system
calls, the threads back-off exponentially to reduce CPU load. The performance of this ap-
proach can be further improved by considering the memory locality: on the hyperthreading-
enabled CPUs, the system call threads and the enclave thread can be located on sibling
hyperthreads, enabling them efficient communication through L3 cache (± 4.7).

3.2.5 Asynchronous system calls

Since SGX does not allow system calls to be issued from within an enclave, they must be
implemented through calls to functions outside of the enclave: the executing thread must
copy memory-based arguments to the non-enclave memory, exit the enclave and execute
the function outside to issue the system call. When the system call returns, the thread must
re-enter the enclave, and copy memory-based results back to the enclave. As we showed in
±2.5.1, such synchronous system calls have acceptable performance only for applications with
a low system call rate.
Instead, to achieve the performance goal, SCONE provides an asynchronous system call

interface [277] (see Figure 3.4). Conceptually, this interface consists of a pair of lock-free,
multi-producer, multi-consumer queues: a request queue and a response queue. System calls
are issued by placing a request into the request queue. A thread inside the SCONE untrusted
runtime receives and processes these requests. When the system call returns, the OS thread
places the result into the response queue.
As shown in Figure 3.4, an application thread first copies memory-based arguments into

the memory arena outside of the enclave 1 and adds a description of the system call to
a syscall_slot data structure 2 , containing the system call number and arguments. The
syscall_slot and the memory arena are allocated statically for each userspace thread.
Next the application thread yields to the scheduler 3 , which will execute other application

threads until the reply to the system call is received in the response queue. The system call is
issued by placing a reference to the syscall slot into the request queue 4 . When the result
is available in the response queue 5 , buffers are copied to the inside of the enclave, and all
pointers are updated to point to enclave memory buffers. As part of the copy operation,

37

call6

call5

call4

resp1

resp2

resp3

System call

requests

System call

responses

Concurrent

FIFO

queues

In-memory

argument 1

arg1

arg2

arg3

arg4

arg5

arg6

Userspace

Scheduler

System call

arena allocator

In-memory

argument 2

In-memory

argument 1

In-memory

argument 2

Active

thread

System call

slot

Per-thread static allocation

1

2

4

3

5

6

Enclave

Figure 3.4: An example of execution of an asynchronous system call in SCONE.

there are checks of the buffer sizes, ensuring that no malicious pointers referring to the
outside of an enclave can reach the application, and that excessive amount of data is not
copied into the enclave. Finally, the associated application thread is scheduled again 6 .
Due to the pointer destination check and the buffer size checks, SCONE is protected

against memory-based Iago attacks [100]. These checks are performed in each code that
directly consumes data outside of the enclave.
One or more system call threads running outside the enclave consume entries from the

request queue. When a system call returns, a new entry is pushed into the shared response
queue. Enclave threads consume entries from the response queue, to receive results for
previously issued system calls.
The execution of the system call is performed fully in userspace. To achieve lower latency

and higher throughput, the system call threads can be configured to run with realtime pri-
ority. Further performance improvements come from the core-local allocation of the quests
and pinning of the enclave and system call threads to the sibling hyperthreads.
The request and response queues are lock-free and are implemented using atomic in-

structions, with a custom-tailored concurrent queue algorithm, called Fast FIFOQueue (FFQ).
It exists in the single-producer multi-consumer (SPMC) and multi-producer multi-consumer
(MPMC) variants used by a system call and return queues respectively. FFQ replaces the
generic MPMC queue used in the original publication [291, 71]. More details about FFQ are
available in the ±4.

38

3.3 Implementation

3.3.1 Trusted runtime foundation

SCONE is built around a standard C library to provide a transparent shielding support to
POSIX applications. Thus, we must choose a standard C library that will serve as a basis for
our implementation.
There is a large number of different libc implementations (glibc, musl libc, bionic libc and

others, [120, 45, 9, 11, 47, 30]), but amajority of them are targeted at embedded applications
or specialized systems, supporting general purpose POSIX software only after patching, and
often missing the required functionality. While the comprehensive overview of libc features
is provided by Eta Labs [117], two implementations stand out as sufficiently complete to be
used as the foundation of SCONE: glibc and musl libc.

Glibc. Glibc is the de facto standard C library on desktop and server Linux distributions. It
extensively supports available POSIX and standard C functionality, is portable across various
operating system kernels and architectures, and contains a high-performance implementa-
tion of common functionality. This large set of features also makes it large, complex, and
hard to modify.

musl-libc. musl-libc is a C/POSIX library implementation focusing on providing a correct, reli-
able and simple implementation of a standard C library for Linux. It offers high-performance
implementations of most basic functions, and supports a big subset of Glibc functionality.
While it is portable across several hardware architectures, musl-libc is mostly implemented
in C and is easily modifiable. It is well-tested as the default standard C library in several Linux
distributions and is conformant with the most popular server applications.
Due to cleaner and smaller amount of code, and the focus on correctness, we have chosen

to use musl-libc as a foundation of SCONE. However, our fundamental design decisions are
generic and could be applied to glibc as well. The core of the SCONE runtime is modular and
allows easy updates of the used musl-libc version.
To produce the ready-to-use enclave, we need to build the application with our modified

musl-libc. While C-based application can be built with a system C compiler, as long as it is
configured to use musl-libc headers and to link with the provided libc.a, to support C++,
we need to rebuild parts of the C++ runtime with our modified libc. To this end, we produce
a cross-compiler by building on the musl-cross-make project [33], which automates the GCC
compilation process for musl-libc. The resulting cross-compiler can be used for building C
and C++ applications and their library dependencies into in-enclave application image— ELF
shared library.
However, an untrusted runtime is required to actually instantiate these images inside an

enclave. We build such untrusted runtime as a shared library, and provide a compiler wrap-
per that automates the linking between the untrusted runtime and the in-enclave application
image. To automate the linking, we have developed a wrapper around the cross-compiler
gcc binary, which detects the cases when the final linking is performed, and embeds the in-
enclave application image into the starter application as another section. It also automates
the creation of SGX-mandated launch data structures.

39

3.3.2 System calls

To generate the code for serializing system calls, we create a C header file with declarations
of all system calls supported for forwarding (229 out of 332 in total that SCONE recognizes).
We annotate the system calls declarations and their arguments with additional information.
System calls definitions can be annotated to be ignored, if in-enclave emulation is required,
or can be turned into a stub definition, that exits setting an errno. For the arguments, there
are more annotations:

• Size: provides an argument name that holds the size of the pointed-to object argument
in bytes.

• Array: modifies the semantics of Size annotation to count the object size in the number
of elements.

• Read/Write: if the pointer is used for reading and/or writing of data to the kernel.

• Deep copy: the annotated pointer argument contains pointers and must use a custom
function for copying.

• String: the size of the object must be obtained using strlen function.

• Check: the size of the object is provided through a pointer, which may be NULL. Its
validity must be checked before dereferencing the size.

This annotated header file is passed to the generator script, that parses the declarations
and generates a C source file with the necessary serialization and deserialization code. The
generator emits code that is secure against memory-based Iago attacks.
The pointer arguments of a system call must be copied to untrusted memory from the

enclave. To allocate the untrusted memory, we create a memory arena allocator per-thread
using a mmap call outside of the enclave. This allocator has the benefits of simple allocation
routine (pointer bump), high data locality, and very sparing memory usage outside of the
enclave.
Some system calls have different semantics depending on the first argument (command),

for example fcntl, ioctl, semctl. For these system calls, we write the system call serializa-
tion wrapper manually. ioctl system call is particularly challenging as there are no tables
describing all possible commands and the corresponding argument structures.
The system calls arguments also need to be provided to the kernel. Given that our im-

plementation of system calls is asynchronous, we pass them to the kernel without leaving
the enclave, via shared memory. System call number and arguments are written in a struc-
ture with the corresponding fields, which is statically allocated per userspace thread out of
a global array. The index into this array is inserted into the concurrent queue, as explained
in ±3.2.5.
The implementation of concurrent queues has originally used a single MPMC queue [291]

shared between all enclave and system call threads. However, to improve the performance
and scalability, we have since replaced it with our own optimized queue, FFQ, which works
in SPMC mode for the submit queue, and MPSC mode for the return queue. Due to this,
SCONE requires allocation of a concurrent queue pair per enclave thread.
To achieve communication between enclave and system call threads through L3 caches

on CPUs with hyperthreading, we pin threads that share a single queue pair to sibling hyper-
threads. This behavior needs to be configured, along with other SCONE runtime parameters,
through a configuration file (/etc/sgx-musl.conf).

40

To reduce the CPU utilization in case the enclave application is idle, we have implemented
a backoff procedure in both system call threads and enclave threads. If there are no new
system call submission for a configurable number for dequeuing attempts, the system call
thread will start sleeping with the exponential backoff. The same is true for the enclave
threads in case all userspace threads are blocked on system calls or locks.

3.3.3 Thread management

To reap the benefits of asynchronous system calls, SCONE relies on userspace M:N thread-
ing. In contrast to the traditional kernel threading, userspace threading multiplexes multiple
in-enclave threads onto a fixed number of kernel-level threads that are spawned by the un-
trusted runtime during the application startup. To implement userspace threading, we follow
theminimal emulation approach inside the enclave and implement only the functionality that
Linux kernel cannot otherwise provide to the libc and the enclave.
We implement a simple userspace thread scheduler, that is executing in the context of an

enclave thread. This scheduler checks the scheduler data structures in loop to see if there are
any runnable userspace threads, and runs these threads. There are several data structures
that are relevant for the scheduler:

• System call return queue is used to wake up a thread which has an outstanding system
call completed.

• Runnable queue is used to schedule a thread that yielded its execution or has been
just created. There is a single runnable queue for all schedulers.

• Futex hash table is periodically scanned to wake up threads which have expired time-
outs.

Additionally, userspace thread scheduler exits the enclave in case of prolonged idleness to
reduce the CPU utilization. The implementation is based on the lthreads library [64], but
over time was extensively modified in all aspects.
Implementations of POSIX threads have to follow the System V ABI specification for its

thread data structures, called Thread Control Block (TCB). For example, on Linux, TCB contains
assorted information, such as

• self-pointer for supporting thread-local storage;

• locks that must be released by the kernel after the threads finishes to execute;

• signal masks to allow delivering signal only to specific threads;

• current locale;

• pointer to the thread stack and its size;

• errno value.

In our implementation, this information is located in the userspace thread control block,
which is managed by our M:N threading library. In addition this control block contains:

• a register state storage for performing thread switch in userspace;

• userspace thread system call slot index and the pointer system call arena;

41

• additional pointers necessary for correct communication between the scheduler and
the userspace thread.

On the other hand, the scheduler TCB contains only register storage for switching to
userspace threads, stack base pointer, scheduler system call slot index, the pointer to sys-
tem call memory arena, and the pointer to the system call queue pair. It also contains the
pointers to the currently executing userspace thread and its system call slot and memory
arena pointer.
SCONE threading library does not perform any special actions during the execution of user

code. The yield points for each userspace thread are at system calls, and thread creation and
synchronization functions. It is also possible to switch threads on timer interrupts (which can
be emulated using timers), or using compiler instrumentation, however this functionality is
currently not implemented. Thus our implementation of threading is non-preemptive, but we
did not encounter any application for which this implementation detail would cause incorrect
execution or starvation.
To reduce the latency and improve the throughput of concurrent queues, it is possible

to pin enclave threads and the related userspace threads to sibling CPU hypercores. How-
ever, this functionality must be configured by the user through a simple configuration file. In
this file, the user can specify the number of concurrent queues to allocate, and mapping of
enclave threads and system call threads to the logical CPU cores.
A crucial component of threadmanagement is synchronization, which on Linux is provided

by the futex primitive. SCONE provides an implementation of themost commonly used futex
operations inside enclave:

• FUTEX_WAIT and FUTEX_WAIT_BITSET;

• FUTEX_WAKE and FUTEX_WAKE_BITSET;

• FUTEX_REQUEUE and FUTEX_CMP_REQUEUE.

The implementation of futexes relies on spinlocks to synchronize the access to the in-enclave
futex hash table. Note that the spinlock to access the futex hash table needs to be taken
only in the case of contention, while in the uncontended case the standard lock-free futex
operation sequence is followed.
Our implementation of threading in SCONE supports Thread-Local Storage (TLS). This is

possible by always compiling the application and library source code in General Dynamic
TLS Model (in contrast to Initial Exec model, which can be used by the non-library programs),
where accesses to TLS aremediated through the runtime-provided function __tls_get_addr [205].
This leaves us the flexibility to modify it to access the Thread Control Block of the userspace
thread, not of the enclave thread. With this change in place, TLS implementation requires
only management of thread local storage memory on thread creation and destruction.

3.3.4 Memory management

POSIX specifies different ways for application to allocate memory from the operating sys-
tem. The highest-level interfaces are functions like malloc, free, posix_memalign, and their
wrappers, implement a significant part of their functionality in userspace, with thread-level
caching, caches per size class, and other performance optimizations. These functions are
typically either provided by libc, or superposed by linking the application with an external
library that implements the allocator code.

42

These high-level function, in turn, rely on low-level memory allocation functions, that allo-
catememory in pages from the operating system. The system calls that allowpage-granularity
memory allocation aremmap, brk, and sbrk. In addition, POSIX provides a family of functions
for reallocating virtual memory (mremap), changing its MMU access permissions (mprotect),
or returning it to the operating system (munmap).
Following the minimal emulation approach, SCONE implements the lowest-level system

interface for allocating memory on POSIX systems: the mmap system call. We do not support
functions that manipulate the program breakpoint (brk and sbrk), because these system
calls are rarely used in practice, complicate the design of allocator data structures, and are
optional in musl-libc.
One of the restrictions of Intel SGX is that virtual memory mappings of an enclave must

be preallocated during the enclave creation, preventing SCONE from following the normal
POSIX workflow of managing them at allocation and deallocation time. To overcome this
issue, our allocator uses a single preallocated virtual memory range, managed by a first-fit
bitmap allocator. It has a low memory overhead, as it does not maintain information on
virtual memory ranges or page permissions. We have also implemented the functions of
the mremap, which reallocates the storage inside of the enclave, if possible. SCONE creates
enclaves of maximum possible virtual memory size (64Gb).
The protection flags requested through mmap flags or mprotect are honored as far as the

page tables are concerned, but are not reflected in the EPC permissions, as SGXv1 lacks the
primitives for modifying the EPMD. This restriction is lifted only in ±6, where we implement
support for EDMM features of SGXv2. As our memory allocator does not track page permis-
sions, we conservatively reset page permissions to read-write before zeroing the pages.
SCONE memory management subsystem also allows forwarding mmap calls to the un-

trusted runtime. In this case, the allocated memory is not SGX-protected. We use this func-
tionality to, for example, create memory arenas for system call buffers. As this functionality
is security-critical, we expose it only to the SCONE runtime.
POSIX standard specifies that mmap system call can be used not only to allocate anonymous

memory from the OS kernel, but also to map file contents into the address space of the
application. SCONE supports this functionality by forwarding the corresponding call to the
operating system, mapping the file outside of the enclave. We argue that this is the right
choice, as mmap is typically used with large files that won’t fit into the EPC, causing paging, and
also these files must be cryptographically processed inside of the enclave, so allocation of
file contents outside of the enclave does not eliminate memory copies.

3.3.5 Signal handling

To allow SCONE applications communicate with the operating system using signals, we have
implemented support for signal-related system calls inside of the enclave (e.g. signal and
sigaction), and the mechanism to forward signals from the untrusted world to the enclave.
During the application startup, SCONE untrusted runtime installs a generic runtime for all

signals that are not internally used by a standard C library implementation. When a signal
handler is installed inside the enclave, it is associated with the signal in the global signal table.
When a signal is delivered to the enclave, an AEX procedure is triggered, which ultimately

passes control to the generic signal handler in the untrusted runtime. Signal handling is
different for synchronous and asynchronous signals.
For synchronous signals, the runtime enters the enclave and schedules the in-enclave

43

signal handler: it copies the register state of the currently interrupted userspace thread
from the SSA into a dedicated storage area, and the register state necessary to enter the
in-enclave signal handler is set up. After that, the thread yields the execution. On the other
hand, the SSA register state is modified to enter the userspace thread scheduler. In case the
current thread cannot handle the signal due to, for example, sigprocmask system call (which
is also handled inside of the enclave), or missing signal handler, then the trusted runtime will
terminate the application.
SCONEby default handles the Illegal Instruction signal (SIGILL) for several instructions that

are common in the user software, such as CPUID, RDTSC, and RDTSCP. These instructions are
executed outside of the enclave without SGX protection.
For asynchronous signals, SCONE implements a concurrent MPMC queue, which operates

similarly to the system call queue pair. The untrusted signal handler enqueues the signal
information into the queue, which is polled by the scheduler. Upon receiving a signal notifi-
cation, it schedules the execution of the signal on the passing userspace thread, or adds the
signal back to the pending list if no passing userspace thread is found.
To return from the signal handler, the enclave must enter the code running in the context

of the scheduler (in contrast to the userspace thread context), as modifying a runtime state
of the current thread is not safe. To this aim the enclave sets up the initial stack frame of the
signal handler to return to the function that contains a special predefined invalid instruction
sequence. When the exception is raised, the AEX transfers control to the OS and to the
untrusted runtime, which enters the enclave to determine the exit reason. Upon detecting
that the aforementioned instruction sequence was executed, enclave restores the original
thread stack frame that was stored during the signal delivery, and returns control to the
untrusted runtime, which in turn reenters the enclave, continuing the execution.

3.3.6 Limitations and Future Work

In this section, we will outline a few of the limitations of SCONE.

System call support. While current SCONE version implements both fork and exec, their
correct implementation puts burden on the enclave runtime, as the state of the enclave
memory and its resources, including shielded ones, has to be transferred to the child pro-
cess. Thus, the author of this thesis has chosen to not implement these system calls, and
they were subsequently implemented by other team members. Ongoing discussion about
usefulness of these system calls is provided by Baumann et al. [82]. Furthermore, a general-
ized form of clone is not supported either and is challenging to implement inside of enclave.

Memory safety. It should be noted that while SCONE is a security-critical component of an
enclave application, it may contain bugs that can lead to information disclosures [95]. As
SCONE runtime is written in C, it may contain integer and buffer overflows, and thus would
benefit from a memory-safety hardening, for example SGXBOUNDS [234]. On the other
hand, formal verification could be applied to a part of SCONE runtime or even user enclave
code to find and eliminate latent bugs and increase the resilience to Iago attacks [275, 273].

Improvements to the scheduler. SCONE userspace thread scheduler is extremely simplis-
tic and could be improved for achieving higher performance. Currently, userspace threads
that do mostly I/O are bound to a single enclave thread, and cannot be rescheduling to an
idling enclave thread. As newly created userspace thread are added to global queue, there
is no guarantee of fairness in work distribution, and thus our scheduler is not work conserv-
ing: some enclave threads could be idling while others have userspace threads ready for

44

scheduling. Scheduler modifications that improve fairness without excessive reduction of la-
tency could further improve SCONE’s performance in applications that spawn a large number
of threads, for example Memcached.

Preemptive scheduling. While we have discovered no application that would not run cor-
rectly on the non-preemptive scheduler, there is no technical impediment to implementing
it. The possible implementation strategies include inserting Varys-like compiler instrumenta-
tion [233], modifying untrusted AEX handler to periodically reschedule userspace threads, as
it is implemented in SGXKernel [281], or by relying on POSIX signals to interrupt the execution
of enclave threads.
Varys relies on compiler instrumentation to detect AEX event, giving the application an op-

portunity to execute a hook function after a specified number of exits. To implement preemp-
tive scheduling, the hook function could execute sched_yield function, returning control to
the scheduler. In contrast, SGXKernel modifies the userspace handler for AEX, provided to
the enclave during the entry into the enclave: this handler periodically checks the running
time of the current thread, and in case the thread has exhausted its budget, reenters the
enclave to schedule a different userspace thread to run. These two approaches make differ-
ent performance-compatibility trade-offs: Varys makes the preemption implementation pro-
tected, but distributes the cost of checking for AEX over all application code, slowing down its
execution, which is not the case with SGXKernel. However, our experience has shown that
modifying AEX handler has adverse effects on the debug tooling for SGX enclaves, requir-
ing intrusive changes into the gdb plugin that must be tightly synchronized with the changes
to the AEX handler. Finally, sending periodic signals to the enclave from the kernel is con-
ceptually similar to the solution of SGXKernel, but much simpler to implement. However, it
suffers from compatibility issues, as it requires reserving one of the signals typically available
to userspace.
Additional experiments are necessary to ensure that the preemptive scheduling does not

cause significant performance overheads.

Instruction emulation. While SCONE simulates several instructions by forwarding them to
the untrusted world already (CPUID, RDTSC, RDTSCP), it could also be extended to simulate
SYSCALL instruction, by invoking the system call wrapper function inside the enclave instead.
This change would simplify porting applications that invoke system calls directly via inline
assembly, instead of using system call wrappers.

Shared EPC memory. One of the SGX restrictions is that multiple enclaves cannot share
EPC memory. Thus, if two enclaves want to setup a confidential, integrity-protected shared
memory region for communication, software solutionsmust be used. Currently, SCONE does
not provide any mechanisms for achieving this.

CPU utilization. The untrusted runtime spawns a number of system call threads to serve the
requests from enclave threads, which back off only when no system calls are submitted for
a large amount of time. In practice, system call threads could cause 100% CPU utilization on
the cores they were pinned to.

vDSO support. While code inside Intel SGX enclaves cannot jump to the vDSO code di-
rectly, it is still possible to use vDSO code by relocating it into the enclave. It is only neces-
sary to update the offset to the vDSO data page, and verify that vDSO code page does not
contain malicious code. This change would improve performance of programs that invoke
clock_gettime system call at a very high rate.

45

3.4 Evaluation

We evaluate SCONE on Intel SGX platforms split in two parts: first, we discuss the evaluation
methodology and setup. Then, we evaluate performance of Nginx, Redis, and Memcached,
comparing them to native versions. Finally, we discuss results of a system call overhead
microbenchmarks.

3.4.1 Methodology

We perform all experiments on an Intel SGX-enabled machine with Intel Xeon E-2186G CPU
with 6 cores at 3.80GHz and 12 hyperthreads (2 per core), and 12MB L3 cache. Thismachine
has 32 Gb RAM and runs Ubuntu 18.04.5 LTS with Linux kernel version 4.15. The workload
generators run on a machine with two 14-core Intel Xeon E5-2683 v3 CPUs at 2 GHz with
112 GB of RAM and Ubuntu 18.04.5 LTS with Linux kernel version 4.15.
We disable dynamic frequency scaling to reduce the interference with the measurements.

The reported data points are based on ten runs, averaged using the arithmetic mean for
throughput and latency and with geometric mean for CPU utilization.

3.4.2 Application Benchmarks

To showcase the performance of typical cloud software with Intel SGX,We evaluate the Nginx
web server [253], Memcached [125], and Redis [252]. This are popular I/O-intensive servers,
which are commonly used to store and serve data, and even to build application servers
(Nginx with OpenResty). The goal of these measurements is to establish whether the design
choices of SCONE, especially its system call interface, which is a major departure from the
classical 1:1 threading model, are adequate for real-world software. An additional goal of the
measurement is to establish the impact of the additional overheads that Intel SGX introduces
into the real-world applications.
We compare the performance of two variants of each application: one build with into

the native code with the system compiler and the GNU C library (glibc), and one built with
SCONE cross-compiler. We compare to Glibc-build native software because it is a standard C
library in most Linux distributions, and constitutes a more conservative baseline then musl-
libc. In our experiments, applications compiled with Glibc perform with same or better per-
formance than the musl-based variants.
To establish the impact of the system call interface, we modify SCONE to include a syn-

chronous system call execution mode: after submitting a system call, the enclave thread leaves
the enclave, executes the system call, and reenters the enclave. Importantly, after enter-
ing the enclave, the thread enters the userspace scheduler, thus retaining the M:N threading
model. Thus, to reduce the performance effects of M:N threading, we always configure the
number of enclave threads to be equal to the number of application threads. As this oper-
ation mode adds userspace scheduler overhead to each system call invocation, it exhibits
worse performace than the 1:1 thread model.
In each application experiment, we configure the number of threads to give the best per-

formance for each application and variant. We determine the best configuration empirically.
We summarize the thread configuration in Table 3.1. Because experiments done with native
Glibc, Graphene-SGX and synchronous SCONE runtimes either use 1:1 threading or do not

46

Application Enclave Threads Sthread Cores Sthreads per Core Application Threads
NGINX - - - 1

NGINX (SCONE) 1 1 5 1
Redis - - - 1

Redis (SCONE) 1 3 5 1
Memcached - - - 12

Memcached (SCONE) 4 8 4 24

Table 3.1: Thread configuration used for the SCONE application benchmarks.

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

0

10

20

30

0 20 40 60 80

Throughput, 10
3
 ops/s

L
a

te
n

c
y,

 s

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.5: Throughput-latency plot of Nginx using multiple processes and cores to serve a
1Kb-sized file over HTTPS.

oversubscribe cores, Application Threads metric is the only meaningful one. In each experi-
ment, we allow the benchmark to use all 12 cores of the machine, subject to explicit thread
pinning in SCONE asynchronous system call interface.

Nginx. Nginx is a popular HTTP web server. We benchmark it using the wrk2 benchmark-
ing tool for measuring throughput and latency of the server while changing the rate of re-
quests and the number of concurrently running client sessions, where each session consists
of downloading a single 1Kb-sized file. We configure the benchmarked Nginx to serve the
files via HTTPS, using self-signed certificates (certificate checking is ignored in the client).
Nginx uses a multi-process model with a single main process and a set of worker pro-

cesses. As SCONE supports both fork and exec system call, we have initially ran the experi-
ment in multi-process configuration. However, we have discovered that in this mode, Nginx
easily saturates the 1G network link (Figure 3.5) in all configurations.
Thus, to present a more meaningful evaluation of SCONE’s performance, we have ran the

same experiment with a single worker thread, disabling the master process. The measure-
ment results are available on Figure 3.6 and 3.7.
We can see that one core of the native Nginx reaches the line rate with 80k requests per

second, and 76k req./sec before a significant increase in latency. SCONE in simulation mode
exhibits slight overhead, reaching the maximum throughput of 68k req./sec (40k before la-
tency increase). This slowdown is attributed to additional memory copies, which the CPU
has to perform when serving the file. With SGX protection, these numbers futher fall to 60k

47

● ● ● ● ● ●
●

●

●

●

●

● ● ● ●

●

●

●

●

●
●
●

●
● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●
●

0

10

20

30

0 20 40 60 80

Throughput, 10
3
 ops/s

L
a

te
n

c
y,

 s

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.6: Throughput-latency plot of Nginx using a single worker thread to serve a 1Kb-
sized file over HTTPS.

and 38k req./sec correspondingly. In this case, performance drop is likely caused by the in-
creased cost of enclave entry and exit, which are triggered, for example, on timer interrupts,
both on the enclave thread core and the system call thread cores.
Comparing these SCONE results, obtained with asynchronous system call interface, with

the synchronous SCONE results, we can see that the performance results drop by 50-60%
to 23k and 19k req./sec correspondingly. These results show that asynchronous system call
interface is beneficial even to single-threaded applications. Please note that the same order
of magnitude of performance increase could be achieved by using the core dedicated to the
system call threads to another Nginx process instead.
Graphene-SGX exhibits performance similar to that of synchronous SCONE, but slightly

lower. However, this is likely caused by the extra overheads of Graphene’s PAL, which are
mostly absent in SCONE. In the Nginx benchmark, this overhead amounts to 15% throughput
drop, but only in overloaded mode; otherwise, the performance is mostly the same.
On the other hand, we can see that higher performance of SCONE is achieved through its

increased CPU utilization, which is doubled compared to the native version. System devel-
opers must be aware of this trade-off when deploying SCONE services to the cloud.

Redis. Redis is an in-memory data structure store, used as a database, cache, and message
broker [252]. It is a single-threaded application1, that relies on event notification interfaces
like epoll in its operation.
We benchmark Redis using the memtier_benchmark tool developed together with the Re-

dis server. We run measurement in two steps: first, we run the benchmarking tool executing
only SET operations, which initializes the database key-value pairs. This step is not included
in the measurement. After that, we execute the second step, which executes GET operations
on the same keys. The value size is set to 1Kb.
The results of measurement are presented on Figures 3.8 and 3.9. The results are similar

to that of Nginx. The native version achieves 120k req./sec before saturating the CPU. On the
other hand, SCONE both with and without SGX protection show 8% less performance, with

1Redis spawns a service thread to support its persistence features. This functionality was disabled for the
experiments.

48

●
●

● ●

●

●

● ●●●●

●

●

●
●

●●●●●●●

● ● ● ● ●
●

● ●● ●●

● ● ● ●
●

●

● ●●●●

●

●

●
●

●
●●●●●●

0

100

200

300

0 20 40 60 80

Throughput, 10
3
 ops/s

C
P

U
 u

ti
liz

a
ti
o

n
,
%

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.7: CPU utilization of Nginx using a single worker thread to serve a 1Kb-sized file over
HTTPS.

a very minor reduction in performance for the protected variant. We expect the difference
between these two variants to increase with further increase in the input request rate.
Also similarly to Nginx, Redis running with the synchronous SCONE runtime has nearly

50% less throughput then the asynchronous SCONE variant. This again shows that even
single-threaded applications can benefit from SCONE: unlike Nginx, there is no easy way to
run multiple Redis processes on the same machine, so spending more cores for system call
threads on the machine is more sensible than in case of Nginx. Graphene shows even lower
performance, reaching 30-40k req./sec without saturation, and 54k req./sec with saturation.
We expect that this slowdown happens because Redis often invokes some costlier PAL func-
tionality than in the case of Nginx.

Memcached. Memcached is an in-memory key-value commonly used as a caching sys-
tem [125, 229]. Unlike previous benchmarks, it is a multithreaded application, that spawns
a number of worker threads, along with some service threads, to process the user requests.
We evaluate Memcached using memaslap benchmark, with 128 byte key, 1024 byte val-

ues, 1:9 ratio of SET:GET operations, and 70% rate of overwrites. We have carefully tuned
the benchmark parameters to avoid the EPC paging. The results of the experiments are
presented on Figures 3.10 and 3.11.
As in the case of Nginx, native version reaches the line rate (120k req./sec). The same

throughput is achieved by the SCONE version running without the SGX protection. On the
other hand, SCONE version running inside an enclave runs with 8% performance drop com-
paring to the native and simulation versions, showing that SCONE’s runtime is highly efficient
for workloads like that of Memcached. On the other hand, the synchronous runtimes, like
Graphene-SGX and SCONE in synchronous system call mode, run with approximately 20%
overhead, reaching their maximum throughput of 93k and 98k req./sec. On the other hand,
it is necessary to take into account the CPU utilization of SCONE, which allows it to reach
near-native performance levels: while native version has low CPU utilization of CPU cores,
reaching a CPU utilization of 1.02 when running on 12 cores, SCONE version running with
Intel SGX has much higher utilization of 9.12, which may be a limiting factor when attempting
to colocate the enclaved memcached with other microservices on the same machine. It is

49

● ● ● ●● ●
●●●

●
●

●

● ● ●

●
●
●

●
●

●

●

●

●

●●●
● ● ●

● ● ●
●

●

●

●●●
● ● ● ● ● ●

●
●

●

● ● ●
● ●●

●
●

●

●

●

●

0.0

2.5

5.0

7.5

0 20 40 60 80 100 120

Throughput, 10
3
 ops/s

L
a

te
n

c
y,

 s

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.8: Throughput-latency plot of Redis running as native applications and with different
SGX runtimes.

interesting to observe that the synchronous runtimes also have high CPU utilization in spite
of not requiring system call threads to run, and thus these variants are likely to have the
same issues with co-location.

3.4.3 Asynchronous System Calls

We separately measure the performance improvement from using asynchronous system
calls instead of synchronous system calls using the application benchmark. To this end, we
implement a small microbenchmark applications that executes a pwrite system call to a
files on tmpfs in a loop, measuring the throughput of system calls similar to Figure 2.3. This
benchmark runs with multiple threads, one per dedicated writer core, and each core is writ-
ing to a different file to prevent contention in VFS when accessing the same file. SCONE
version runs one userspace thread per writer core, but with a sibling hyperthread (not in-
cluded into the writer core count) dedicated to system call threads, thus not getting any
benefit from M:N threading. We run 5 system call threads on each of those dedicated cores.
The results are presented on Figure 3.12. We can see that with small buffer sizes, SCONE

runs with a performance close to native, 24% faster than native in the best configuration
and 35% slower than native in the worst. The performance degrades when the number
of writer cores reaches 8 for SCONE because in this case there is a contention between
system call thread and enclave threads, as the benchmarkingmachine has only 12 cores. The
same benchrmark runningwith SCONE in synchronousmode consistently shows throughput
that is 4x-7x lower than that of the native version. These results prove that for system calls
which do not involve significant amount of data copying, asynchronous system call is a critical
optimization.
On the other hand, with large pwrite buffers, the overall performance difference be-

tween the native version and SCONE running both in synchronous and asynchronous mode.
SCONE runs within 35–84% of the native throughput, while in synchronous modes the per-
formance is comparable (39–80%). Most of the overhead of SCONE in this case comes from
buffer copying, negating the benefits from the asynchronous system call interface, which

50

● ● ●

●●
● ●●● ●● ●●

●

●
●●● ●● ● ● ●●

●●● ● ●

●
● ●

●

● ●

●

●●● ● ●

●
● ●

●

●●

●

●
●

●

●●● ●●●●●●

0

100

200

300

400

0 20 40 60 80 100 120

Throughput, 10
3
 ops/s

C
P

U
 u

ti
liz

a
ti
o

n
,
%

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.9: CPU utilization of Redis running as native applications and with different SGX run-
times.

requires extra cores to run. Furthermore, when there is contention in asynchronous sys-
tem call interface, as can be seen with 8 threads, the synchronous interface with 8 threads
actually outperforms the asynchronous version.
The results of these and similar measurements can be used to guide the design of a hybrid

system call interface. However, we leave the design and implementation of such an interface
to future work.

3.5 Discussion

SCONE as library OS? In SCONE, we have implemented only a small number of system
calls inside the enclave to gain the required runtime support. These include system calls for
threadmanagement and scheduling, memorymanagement, and signal support. As this func-
tionality is commonly implemented inside the operating system kernels, it could be argued
that the line between the approaches to enclave construction based on library operating
systems and based on the libc is extremely blurry. It is thus possible to classify SCONE as a
very small library OS.
On the other hand, it would be a very minimal library OS, as its minimal emulation ap-

proach does not allow some use-cases, that are possible with SGX-LKL and Graphene-SGX,
the main of which is portability. SCONE can be used to run POSIX applications on Linux only,
while the aforementioned runtimes, by the virtue of their design, allow executing the same
enclaves on other operating systems, like FreeBSD. It should be noted, however, that given
the wide reliance on Linux containers for deployment of software makes this use-case not
widely pursued.

Other SCONE features. We have not described all features available in SCONE, only focusing
on those, that were developed with an active participation of the author of this thesis. Some
of the other features of SCONE include:

• Network shield that transparently wraps network connections with TLS encryption.

51

● ● ● ● ● ●
●

●
●

●

●

● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ●

●
●

●

●

● ● ● ● ● ● ●

●
●

●

●

● ● ● ● ● ●
●

●
●

●

●

0

2

4

6

8

0 20 40 60 80 100 120

Throughput, 10
3
 ops/s

L
a

te
n

c
y,

 s

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.10: Throughput-latency measurement of Memcached running as a native applica-
tion and with different SGX runtimes.

• File system shield implements emulation of VFS interface inside SCONE [178]. This
allows creating virtual file system hierarchies visible only to the enclave, which in turn
can be backed by enclave memory or encrypted and integrity-protected on-disk file.

• SCONE contains enclave loading and signing infrastructure implemented independently
from Intel SGX SDK.

• Secure bootstrapping of Intel SGX enclaves requires provisioning secrets to them after
successful attestation. To simplify this task for SCONE-based enclaves, Palaemon, a
Configuration and Attestation framework has been developed [138]. It integrates with
the file system shield, and allows performing in-memory updates to configuration files
present on disk or inside shielded file system images.

• fork and exec system call support was implemented.

• System call threads can be spawned and terminated dynamically to achieve lower CPU
utilization in the periods of idleness and to remove the need to configure the number
of pre-spawned system call threads.

SCONE Kernel Module. Originally, we have implemented a kernel module that executed
system calls inside the kernel continuously, without entering the userspace for a prolonged
periods of time. However, we have gradually deprecated this kernel module because of
several issues we have discovered in practice:

• SCONE kernel module was unlikely to be accepted into the mainline Linux kernel, and
shipping it to user machines was incompatible with container deployments.

• Performance speedup from switching to FFQ algorithm and a system call queue pair
per core had much bigger effect on performance than the system call kernel module.

• SCONE kernel module implementation did not support multiple enclaves running si-
multaneously on the same machine.

52

● ●
●

●
●

●
●●●●●●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●
●●

●●

● ●

●

●

●

●

●●●●●

●
●

●

●
●

●
●

●
●

●

●

0

250

500

750

1000

0 20 40 60 80 100 120

Throughput, 10
3
 ops/s

C
P

U
 u

ti
liz

a
ti
o

n
,
%

●

●

●

●

●Native

Graphene

SCONE

SCONE (sim)

SCONE (sync)

Figure 3.11: CPU utilization of Memcached running as a native application and with different
SGX runtimes.

• SCONE kernel module made debugging more complicated, as it was incompatible with
the system call tracing utilities like strace.

As a result, we have gradually deprecated the kernel module, so that the system call threads
invoke the forwarded system calls in userspace, and switch to the kernel using the standard
libc code.

Performance optimizations. One of the sources of overhead that is unavoidable with Intel
SGX is the extramemory copy between the enclave and untrusted environment that happens
on system calls. It has been shown that this cost can be eliminated for RISC-V-based Keystone
enclave by extending its implementation in the M-mode [302]. However, as Intel SGX does
not use physical memory regions to build a security boundary between the enclave and
untrusted world, and relies on TLBs for this purpose instead, mechanisms developed for
opimizing performance of microkernels may be a better fit for SGX [112].

3.6 Related Work

We have already presented the fundamental background on Intel SGX in the ±2.4. In this
section, we will provide a short background on the asynchronous system call interfaces.
The paper that directly served as an inspiration for SCONEwas FlexSC [277]. It is based on a

modified Linux kernel extended with communication mechanisms (mailboxes) and in-kernel
system call threads. The runtime of applications is extended to operate both synchronously
and asynchronously, switching between these two modes depending on the workload, and
reducing the system CPU load from the kernel system call threads. Futhermore, FlexSC al-
lows system call batching, and wakes the system call threads only when several outstanding
calls accumulate. However, some of the design choices of FlexSC are unsuitable for SCONE:
SCONE strives to be practically usable in Linux containers, which precludes modification of
Linux kernel. Additionally, SCONE is not explicitly optimized in the area of CPU utilization:
while system call threads can back-off in the idle state, we have not explored further opti-
mizations for CPU utilization like the adaptive mode, which would be beneficial as enclave

53

● ●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100

300

1000

3000

2 4 6 8

Number of writer cores

T
h

ro
u

g
h

p
u

t,
 1

0
3
 o

p
s
/s

●

●

●

●

●

●

Native, 32b

SCONE, 32b

SCONE (sync), 32b

Native, 64Kb

SCONE, 64Kb

SCONE (sync), 64Kb

Figure 3.12: Throughput of a pwrite(2) microbenchmark with different number of writer
cores and write buffer sizes.

applications are likely to constitute only a small share of all applications running on the cloud
node.
A system similar to FlexSC is MegaPipe [146], which provides an API for writing efficient

and scalable networking applications which handle short messages and sessions. Similarly
to FlexSC, MegaPipe relies on batching of system calls to eliminate per system call overhead.
On the other hand, it requires application changes to use a new API, and cannot be used by
legacy applications transparently. Compared to FlexCS, MegaPipe does not support batching
of arbitrary system calls, and does not rely on asynchronous communication, retaining the
synchronous system call nature. It forms an interesting point of comparison with SCONE, as
these two approaches give most benefits for two opposite classes of applications: SCONE is
most suited for applications that spawn a thread per connection, or at least a large number
of threads, while MegaPipe is designed for applications that spawn a thread per core or run
single-threaded—otherwise, it loses the benefits of system call batching.
These two approaches are reconciled in the modern system call API available in the recent

Linux kernel versions, namely io_uring [74]. Like MegaPipe, it requires an explicit use of
the new API, forcing modifications to the legacy applications. However, it allows spawning
an in-kernel thread for system call processing, avoiding userpace-kernelspace round-trip.
Unfortunately, the number of operations that are currently supported by this API is still lim-
ited, focusing on network and file system operations; however, the list of supported APIs
is increasing from version to version. In future, SCONE may forward some system calls to
io_uring; however, this would introduce extra complexity to the system call interface, and
lock SCONE to the most recent Linux kernel versions.

3.7 Conclusions

In this chapter, we introduce SCONE, an Intel SGX enclave runtime for unmodified POSIX ap-
plications. We present the design decisions that allow it to avoid limitations of Intel SGX: asyn-
chronous system call interface allows avoiding enclave entry and exit overhead, while M:N

54

threading eliminates the need to preallocate TCS for in-enclave threads. Minimal emulation
inside the enclave allows to keep the TCB of SCONE slim while maintaining the correctness of
executed applications. SCONE achieves 8-25% overhead comparing to native applications,
and compares favourably in performance with another framework we have chosen for com-
parison (Graphene-SGX). SCONE is the foundation on which all further work in this thesis is
built.
We have seen that asynchronous system call interface is one of the key features thatmakes

SCONE a viable foundation for the high-performance cloud software. However, the initial de-
sign [71] was initially using an off-the-shelf MPMC queue that was posing as a performance
bottleneck. In the next chapter, we present the design of the concurrent queue that is pow-
ering the current SCONE version.

55

4 FFQ: Fast FIFO Queue

In the previous chapter, we have shown how SCONE uses an asynchronous system call in-
terface to improve its latency and throughput. As we have mentioned, initially, SCONE used
an off-the-shelf multiple producer multiple consumer (MPMC) queue for its system call in-
terface. In this chapter, we explain the motivation, design, and implementation of the con-
current single producer multiple consumer (SPMC) queue that replaced the original MPMC
design, aiming to address the problem of how to maximize the throughput of a concurrent,
lock-free FIFO queue.

4.1 Introduction

SCONE relies on the concurrent communication between enclave threads and system call
threads to sidestep the performance impact of entering and exiting the enclave. As software
serving the cloud user is often I/O-bound, the performance of this communication mecha-
nism should be maximized: the throughput should be as big as possible, and the latency as
low as possible.
As strawman solution to this solution could involve an array of per-userspace-thread struc-

tures with system call arguments and return values, protected by a POSIX thread mutex.
However, this method has a number of drawbacks:

• To use a pthread mutex, enclave still has to submit a system call, such as futex on
Linux, causing chicken-and-egg problem.

• System call threads concurrently scanning an array and enclave threads writing to it
would experience low cache locality and cause superfluous cache coherency traffic
between cores.

• Finally, the scalability of mutexes is limited and is likely to become a bottleneck on the
modern multi-core CPU architectures.

A combination of these factors also disqualifies a large number of other, better designed
data structures, such as mutex or spinlock protected ring buffers, list-based queues, and so
on.
In this context, concurrent lock-free queues are one of the most important mechanisms

to consider, as their easy-to-use interface makes them a default choice for a large number

56

of high-performance applications. Due to their lock-free nature, their performance scales
better with the number of cores than lock-based queues, and they do not require issuing of
system calls for their operation.
A typical application that utilizes concurrent queues contains threads that put new infor-

mation into the queues (producers), and threads that read information from the queues (con-
sumers), and either process it or put it into the further queues. A typical requirement is that
the items in the queue are enqueued and dequeued in order: such queue is said to be First-
In First-Out (FIFO) queue. In SCONE, both system call threads and enclave threads work as
consumers and producers, because each thread that enqueues items into the system call
submit queue, dequeues the processing results from the return queue, and vice versa.
Additionally, the implementations of concurrent queues are classified by whether they al-

lowmultiple producers and consumers to perform operations on the queue simultaneously.
Thus, it is possible to implementmultiple- or single-producer queues (MP or SP-queues), and
likewise for consumers, it is possible to havemultiple- or single-consumer queues (MC or SC-
queues).
There are several aspects that affect the performance of the concurrent queue. First and

foremost, it is the contention over shared cached lines for the multiple consumer and pro-
ducer variants. Modern multi-core CPUs implement a cache coherency protocol between
cores, which synchronizes the information stored in each of the CPUs with the contents of
the main memory. Each write to a cache line that is shared or is in exclusive ownership of an-
other core causes a dispatch of an invalidation message to other cores. These invalidations
slow down the execution of both writer and victim cores.
A more complex example of performance loss stemming from cache coherency protocol

is so-called false sharing. In the case of false sharing, even though the writes and reads a
targeting not the same, but merely adjacent addresses, the conflicting accesses still target
the same cache line, causing the same performance degradation. More importantly, false
sharing can appear not only due to direct accesses to the same cache lines, but also due to
the operation of prefetcher on each of the cores.
Additionally, more complex MPMC queues typically involve execution of more instructions,

which may also include some rare, complex and unoptimized instructions, such as double
compare and swap, which atomically and conditionally swaps the contents of two memory
locations of double register width. Another important factor is cache misses, which can slow
down a single producer or consumer when dequeueing the items.
It is important to take all the abovementioned aspects into account when designing a new

queue algorithm. However, it is also important to consider application-specific aspects, that
may allow us to relax some of the restrictions of the concurrent queue interface.
In SCONE, we have originally used an off-the-shelf generic MPMC queue. However, we

observe that in MPMC concurrent queues, items that are submitted by different producers
are ordered, which reduces the scalability by forcing different threads to synchronize on en-
queueing. In SCONE, however, the items enqueued by different producers do not necessarily
need to be FIFO ordered.
To illustrate the scalability issues of theMPMCqueue, we have created a simplemicrobench-

mark (Figure 4.1). Several enclave threads, each pinned to a different core, submit getppid
(get parent process id) system call in a loop. We measure the number of system call submis-
sions per second over all cores, while changing the number of the cores dedicated to the
enclave threads (the higher rate the better). This experiment shows that even for a small
number of OS threads executing getppid system calls running inside of an SGX enclave, the
throughput is already lower than the native system call performance of glibc. Even worse,

57

●

●

●

●

●

●

●

●

1

10

100

2 4 6 8

Number of cores

S
y
s
te

m
 c

a
ll

ra
te

,
1

0
6
 o

p
s
/s

● ●Native SGX, MPMC Queue

Figure 4.1: System call throughput of a native application and SCONE enclave with MPMC
queue. Using anMPMC FIFO queue to submit system calls does not scale with the
number of threads, while the native system calls (executed outside of enclaves)
scale well.

when adding more OS threads, the throughput does not increase. While there are inherent
costs associated with running inside SGX enclaves, our objective is to reduce the overhead
introduced by the FIFO queue as much as possible, and in particular, ensure scalability with
the number of threads. Furthermore, both state of the art wait-free queues like the ones
evaluated in [298], as well as queues using hardware transactional memory (HTM), showed
limited scalability in our application context. For example, wait-free queues tend to require
complicated memory reclamation schemes, as they are designed for general use-cases and
fail to take into the specific workload characteristics of SCONE.
Since existing solutions did not help to solve our performance problem, we propose and

evaluate a new FIFOqueue, FFQ.Our design decisionswere guided by our application context
and our main objective was to maximize throughput. Nevertheless, we strongly believe that
our solution and the insights that we gained are sufficiently general that FFQ can be applied
in other contexts.
Our optimizations are based on the following observations about SCONE:

1. Single producer, multiple consumers. The system calls do not need to be ordered be-
tweendifferent application threads. Hence, we can use a single-producer/multi-consumer
(SPMC) FIFO queue instead of a more generic multi-producer/multi-consumer (MPMC)
queue to issue system calls. We need, however, to support multiple consumers since
some of them can be blocked while executing a system call.

2. Implicit flow control. Each application thread can have at most one outstanding system
call. Hence, we can dimension the length of a FIFO queue such that, for each enqueue,
we are guaranteed to find an empty slot in the queue. By default, SCONE system call
queue has 1024 entries.

3. Wait-free enqueue, lock-free dequeue. It is important that all system calls are executed
with minimum delay. Hence, we would like a producer to enqueue elements in a wait-
free manner. However, it does not matter which of the consumer threads actually

58

executes the system call. We therefore only require the dequeue function to be lock-
free.

4. Progress with intrinsic read-modify-write operation. Some intrinsic operations, such as
in particular “get-and-increment”, are wait-free and can hence be used to guarantee
forward progress, despite their relatively limited synchronization power.1

As a consequence, we propose and evaluate a new single-producer/multi-consumer FIFO
queue algorithm (FFQ). While the motivation and the design of our algorithm are based on
our application context, we argue that our algorithm is applicable also in other contexts in
which a high throughput queue is needed. Moreover, we contribute to the state of the art
in the following ways: (a) we study and exhibit the bottlenecks of existing algorithms, and
we use these observations to optimize the performance of our design; (b) we perform a
comprehensive evaluation of our algorithm and compare it with existing approaches; and
c) we provide key insights in what matters most, and what is less critical, for achieving good
performance.
Our presentation of FFQ is structured as follows: we review related work in ±4.2 and we

introduce our algorithm in ±4.3. We then describe low-level performance optimizations in
±4.4. We evaluate the algorithm and compare it with other state-of-art concurrent queues
in ±4.5 and finally conclude in ±4.6.

4.2 Related Work

There has been a number of concurrent queues presented starting with Lamport’s basic
ring buffer [192]. We present an overview of the most influential designs that are used in
practice.
The FastForward [132] single-producer/single-consumer (SPSC) queue was designed to

improve the performance of pipeline-parallel applications. It uses temporal slipping to avoid
cache thrashing and hardware cache prefetching, and supports systems with a range of
memory consistency models. In practical terms, however, slipping requires system-specific
tuning and causes thrashing by touching queue head and tail pointers. Unlike FastForward,
FFQ is an SPMC queue and has no system-specific parameters.
MCRingBuffer [198] is an extension of Lamport’s basic ring buffer with the goal of improv-

ing cache locality of control variables. This is achieved by batching updates to control vari-
ables. MCRingBuffer is data-generic and has no special data values that are used for control
purposes.
BatchQueue [246] was designed to improve performance of OpenMP pipeline parallelism

extensions [245] by replacing native MPMC queues with a specialized SPSC variant. It sim-
plifies the design of MCRingBuffer by using fewer control variables. BatchQueue avoids false
sharing by isolating the producer and the consumer in different parts of the queue.
B-Queue [292] improves the design of FastForward and MCRingBuffer by adding a back-

tracking algorithm for deadlock detection due to producer and consumer batching. It avoids
using parameters that require system-specific tuning, simplifying its usage in real-world ap-
plications. In contrast to FFQ, it is a batching SPSC queue, while FFQ is designed to be used
in practice in the SPMC configuration without batching.

1For instance, get-and-increment has a consensus number of only 2, i.e., it can solve the wait-free consensus
problem for no more than two concurrent processes [148, 149].

59

Lynx [221] is an SPSC queue that focuses on removing check overheads from the enqueue
and dequeue fast path. To that end, it inserts pages with special page fault semantics within
section boundaries and at the end of the queue. This specialized design would have high
costs for our target application scenarios when deployed inside an SGX enclave: signal de-
livery would cause an enclave exit—which takes up to 50,000 cycles.
Michael and Scott [220] provide a non-blocking list-based unbounded MPMC queue algo-

rithm. It has a simple design that relies on compare-and-swap operations in the non-blocking
variant. This queue does not scale well in practice due to contention on the tail and head
pointers.
David [110] proposes a single-enqueuer wait-free queue implementation that shares sim-

ilar design goals with FFQ but is mostly of theoretical interest. In particular, it has unbounded
memory requirements as it relies on a two-dimensional infinite array of swap objects and a
one-dimensional infinite array of fetch-and-increment objects. Even though the author gives
some hints on how to reduce the memory footprint, the design is not practical and, to the
best of our knowledge, has not been used for actual queue implementations.
CC-Queue [119] is an extension of Michael-Scott’s queue that uses combining synchro-

nization [118] instead of locks in the two-lock variant of the algorithm. This technique allows
better scalability than compare-and-swap operations and traditional locks. However, it is a
bad fit for SCONE where the dequeuing thread may block on the system call, breaking the
combining construction.
LCRQ [225] is an unbounded MPMC queue that improves performance and scalability

over Michael-Scott’s queue and CC-Queue by using fetch-and-add atomic operations. This
ensures that each operation on the queue makes progress.
WFQueue [298] provides a wait-free, unbounded MPMC queue that also relies on fetch-

and-add operations, hence avoiding CAS retries. WFQueue has a lower performance over-
head than other wait-free queues in most cases. It uses a fast-path/slow-path approach and
can be tuned based on several control parameters.
Maffione et al. have presented improved variants of the Lamport queue and the Fast-

Forward queue [206]. The fundamental idea of the improved variants is that the queue
performance depends on the cache misses at producers and consumers, and minimizing
their number can significantly increase the queue throughput. The techniques for minimiz-
ing cache misses include batching, embedding control information into the queue slots, per-
forming operations lazily.
FFQ has been designed primarily for SPMC scenarios with the assumption that the maxi-

mum number of elements in the queue is known beforehand, which is the case for SCONE.
This allows us to improve performance owing to a simpler algorithm and specialized opti-
mizations, while still achieving high throughput in MPMC settings.

4.3 The Algorithm

In this section, we describe our fast FIFO queue (FFQ) algorithm. We first introduce the key
idea underlying the single-producer variant (FFQs), before discussing in depth its operating
principles, implementation details, and various optimizations. We subsequently extend the
algorithm to also support multiple producers (FFQm).

60

Producer

(single)

Consumers

(multiple)

rank gap data

[0]
cell

[1]
cell

[2]
cell

[N-1]
cell

SRSW

MRSW

Cell

tail

cells[N]

head

Figure 4.2: Data structures of the FFQ algorithm. The tail of the queue is Single-Reader Single-
Writer, while the head is Multiple-Reader Single-Writer.

4.3.1 Single Producer

FFQ implements a concurrent FIFO queue. The basic version has been designed for a single
producer and multiple consumers. The rationale behind the single-producer assumption is
to maximize speed and limit—as much as possible—the synchronization overheads. Fur-
thermore, the queue has been developed for use in a context where the processing time
of consumers that dequeue data largely dominates the time necessary for producing a new
item, hence the single producer never represents a bottleneck. It is, however, important that
the queue never blocks the producer, i.e., the enqueue operation should ideally be wait-free,
or at least lock-free.
To support the FFQ algorithm, we rely on a set of data structures as illustrated in Figure 4.2.

Shared data is stored in a bounded array whose sizeN is large enough so that there will always
be some empty slot for the producer to enqueue a new item. The motivation for this assumption
is our observation that in SCONE, we have implicit flow control that ensures that consumers
dequeue items sufficiently fast such that the array will never fill up completely.2 The array is
managed as a circular buffer, i.e., indexes are computedmoduloN such that the last element
logically precedes the first one. Furthermore, the provisioned queue is typically much larger
than the number of threads, and the threads that have submitted a system call are blocked
until they receive the reply. Thus, if the number of cells is larger than the number of in-enclave
threads, there will always be a free slot in the queue.
Two integer variables are used to keep track of the head and tail of the queue. They behave

as monotonically increasing integer counters that hold the rank, i.e., the insertion number,
of the first and last data items currently in the queue. No two items can have the same rank
but, in some situations (discussed later), some ranks may be skipped hence leaving gaps,
i.e., unused values, in the numbering. Ranks are mapped to array elements using modulo
arithmetic: the item with rank k is located in the element at position (k mod N). To denote
ranks, we only use numbers such that ♣rank♣ ≥ N, so that we can reserve lower values to
indicate special cell states. We currently only use value 0 for a special purpose, hence the
size N of the array must be at least 1.
As there is a single producer thread and items are inserted at the tail of the queue, the tail

variable is not shared (single-reader/single-writer register). In contrast, several consumers

2If this assumption would be violated, the producer would spin until a slot becomes available, i.e., the enqueue
operation would not be wait-free anymore.

61

Algorithm 1— FFQs: single-producer FIFO queue

1: Type cell is: ◁ Cell for holding data
2: data← NULL ◁ Actual data (initially empty)
3: rank ← 0 ◁ Rank of item (or -1 if cell unused)
4: gap← 0 ◁ Gap in numbering (skipped item)

5: Variables:
6: cells[N]← array of cell ◁ Bounded array of cells (N ≥ 1)
7: tail← N ◁ Tail counter (monotonically increasing)
8: head ← N ◁ Head counter (monotonically increasing)

9: function ffq_enq(data) ◁ Enqueue (single-producer)
10: success← FALSE
11: while ¬success do ◁ Find empty cell...
12: c← cells[tail(mod N)] ◁ Try next cell
13: if c.rank ≥ N then ◁ Cell used?
14: c.gap← tail ◁ Yes: skip it (gap in rank)
15: else
16: c.data← data ◁ No: grab it
17: c.rank ← tail ◁ Remember rank
18: success← TRUE
19: tail← tail + 1 ◁ Move to next cell

20: function ffq_deq ◁ Dequeue (multi-consumers)
21: rank ← fetch-and-inc(head) ◁ Get rank of next item
22: c← cells[rank(mod N)] ◁ Check associated cell
23: success← FALSE
24: while ¬success do ◁ Find next used cell...
25: if c.rank = rank then ◁ Cell used for rank?
26: data← c.data ◁ Yes: get item
27: c.rank ← 0 ◁ Recycle cell
28: success← TRUE
29: else if c.gap ≥ rank ∧ ♣c.rank ̸= rank♣ then
30: rank ← fetch-and-inc(head) ◁ Cell skipped: ...
31: c← cells[rank(mod N)] ◁ ...move to next cell
32: else wait() ◁ Back off (producer still writing cell)

33: return data ◁ Return item

may concurrently access the head of the queue and, hence, head is a shared atomic variable
(multi-reader/multi-writer register).
Each cell consists of three fields: data holds a reference to the actual data enqueued by

the producer; rank corresponds to the rank of the item stored in the cell, if any, zero if the
cell is unused, or a negative value if the item is being inserted; gap may hold the rank of an
item that has been skipped, i.e., a gap.
A gap can occur in the following situations: Producers enqueue elements sequentially at

the tail and consumers dequeue them from the head. FFQ uses a bounded buffer imple-
mented as a circular array and, despite our assumption that there will always be some empty
slot for enqueuing an element, the next slot where a producer will try to store its element at
rank r1 might not be free because a consumer started but did not complete dequeuing an
older element at rank r2 < r1 with (r2 mod N) = (r1 mod N). In such a case, the producer will
simply skip r1 and move to the next rank (r1 + 1), hence creating a gap that is announced in
the cell. At that point, both the rank and gap fields of a cell can be set to valid rank values. As
a matter of fact, the same cell might be skipped multiple times due to a very slow consumer,
in which case gap is set to the last rank that was skipped.
The pseudo-code of FFQ is shown in Algorithm 1. ffq enq() is designed to be simple and

62

fast, with as little synchronization as possible. Since there is a single producer and the array is
assumed to always have some empty slot, the algorithm is relatively straightforward. In con-
trast, ffq deq() may be called concurrently by multiple consumers and, hence, necessitates
additional synchronization operations to order and manage conflicts between threads.

Enqueuing Items

To enqueue a new item, the producer first tries to insert its new data at the tail of the queue.
To that end, it checks if the tail cell is free by reading the rank field of the cell. There are two
cases to consider: (i) either rank has a zero value indicating that the cell is free and any data
it previously held has been consumed, (ii) or it contains a valid rank value indicating that the
cell holds data that was not yet consumed.
In the first case, the producer stores a reference to the enqueued data and then sets the

rank field to the current value of tail to indicate that the cell has been used (Lines 16–18).
Note that the order of the two operations is important as the latter announces the availability
of data to consumers and represents a synchronization (and linearization) point.3

The second case is subtler. Because of our assumption on the array to always have some
empty slot and the FIFO nature of the queue, it means that a slow consumer has started
dequeuing this item but did not complete its operation.4 Therefore, we cannot use the cell
for storing a new element at rank tail. We simply skip the cell, hence, creating a gap in the
numbering. The key insight in our algorithm is that, for performance reasons, we do not
want to change the efficient “modulo” mapping of ranks to array cells. Instead, the producer
announces that the current rank is unused by setting the gap field of the cell to the current
value of tail (Line 14). This will let consumers know, upon dequeue, that they have to move
to the next rank to find the following element in the FIFO sequence.
Finally, as the tail variable is not shared, the producer can safely increment it without syn-

chronization. The ffq enq() operation returns successfully if it hasmanaged to insert the data,
otherwise, it continues looking for an empty cell by traversing sequentially the array.

Dequeuing Items

The ffq deq() function can be called concurrently by multiple threads, hence, special care has
to be taken for synchronizing consumers. First, the head variable is atomically incremented
to provide each distinct consumer a unique rank number where to look for the next item to
dequeue (Line 21). The consumer locates the cell associated with its assigned rank number
(Line 22) and checks if it contains data for that rank (Line 25). Note that multiple consumers
might be accessing the same cell because of the asynchrony of the systems and the bounded
array size, but at most one consumer will have a rank equal to the value stored in the cell’s
rank field, and only in that case the consumer may dequeue and modify the cell.
If the cell contains the expected element, i.e., cell.rank = rank, the consumer reads the

associated data and resets the cell’s rank to the special value 0 to allow the producer to
reuse it (Lines 26–28). Note again that the order of operations is important as resetting the
cell’s rank represents a synchronization (and linearization) point.
If the cell’s rank differs from the expected rank, this may indicate that the cell has been

skipped by the producer as its content was still being dequeued by a slow consumer at the

3Ordering is enforced in the actual implementation using memory barriers.
4Note that, at that point, the following relation holds: cell.rank < tail ∧ (cell.rank mod N) = (tail mod N).

63

time of insertion. In that case, the cell’s gap field must be equal to the expected rank, or
possibly to a higher rank (if the original gap announcement has been superseded by other
announcements N positions apart after rolling over the end of the buffer). The consumer
hence checks for this condition and, if true, moves to the next available cell by acquiring
again a unique rank from the atomic head variable (Lines 29–31). Note that, at Line 29, we
need to verify again that ♣cell.rank♣ ̸= rank because the producer might have inserted the
expected element after a slow consumer has performed the check of Line 25 and, while the
consumerwas idle, quickly insertedmany new elements to eventually skip the same cell upon
subsequent array traversal (hence announcing a gap for a higher rank). It is necessary to
compute absolute value of cell.rank because we use negative rank values to allow producers
to indicate that they are in the process of inserting an item.
Finally, if the cell does not indicate that it contains the expected element nor that the

considered rank is a gap, this means that the next element to be dequeued has not yet been
(completely) enqueued. Hence the client backs off and waits for the element to be available
or the cell to be skipped for the considered rank.

Proposition 1. Assuming the queue is not full, the ffq enq() operation is wait-free.

Proof (sketch). Consider that there is a single producer iterating through the array and the
only situation when it cannot immediately store its data is when the next available cell is still
busy, i.e., the item has not yet been dequeued. Under the assumption that there is always
some empty spot in the array, i.e., consumers are sufficiently fast at dequeuing items, this
case can only arise if a consumer has started dequeuing the item but not yet finished. Hence,
from our assumption there must be at least one other cell in the array whose item has been
fully dequeued and that is empty. Since we have a single producer, it will eventually reach
this cell and enqueue its item, independently of the actions of the other threads (which are
all consumers).

Proposition 2. Assuming there are elements to dequeue, the ffq deq() operation is lock-free.

Proof (sketch). Observe first that the code only uses atomic fetch-and-increment operations,
which are non-blocking. It does not use locks and the only condition when it can block is if
it repeatedly executes the loop at Lines 24–32 (the wait operation at Line 32 is not blocking,
it may simply delay the thread for a few nanoseconds). The loop is repeated either if a pro-
ducer is still writing to the cell (Line 32) or if the cell was skipped (Line 29). In the first case,
the consumer backs off and wait. Since we have a single producer, this can only happen if
all previous elements have been (or being) consumed and the queue is empty, hence con-
tradicting our assumption that there are elements to dequeue. Therefore a producer that
stops making steps after line 16 (or elsewhere, or even crashes) cannot block a consumer
that dequeues an element with a lower rank. In the second case, the cell was skipped and
the consumer moves to the next cell in the array. Because of our assumption that there
is always some empty spot in the array, and hence the producer can always enqueue new
items, it is not possible for all consumers to encounter only skipped cells. Hence some of
the consumers will manage to dequeue an element and the ffq deq() operation is therefore
lock-free.

Proposition 3. The FFQ object is linearizable.

Proof (sketch). To show that the FFQ object is linearizable [150], we identify the point(s) in
ffq enq() and ffq deq() where the operation atomically takes effect. In ffq enq(), this point is

64

Algorithm 2— FFQm: multi-producer FIFO queue

1: function ffq_enq(data) ◁ Enqueue (multi-producer)
2: success← FALSE
3: while ¬success do ◁ Find empty cell...
4: rank ← fetch-and-inc(tail) ◁ Get next rank...
5: c← cells[rank(mod N)] ◁ ...and associated cell
6: while (g ← c.gap) < rank do ◁ Unless overtaken...
7: if (r ← c.rank) ̸= 0 then ◁ Cell used?
8: double-compare-and-set ◁ Yes: skip it

(⟨c.rank, c.gap⟩, ⟨r, g⟩, ⟨r, rank⟩) ◁⇒ Set gap
9: else if double-compare-and-set ◁ No: use it

(⟨c.rank, c.gap⟩, ⟨0, g⟩, ⟨–rank, g⟩) then ◁⇒ Set rank
10: c.data← data ◁ Store data
11: c.rank ← rank ◁ Remember rank
12: success← TRUE

the time where the new element becomes visible to consumers. This happens at Line 17
when the producer updates the rank field after having previously stored the data. Indeed,
consumers use the rank field as synchronization point to detect availability of an element
(Line 25) or a gap (Line 29).
In ffq deq(), the linearization point is not attached to a single line of the code. The last

fetch-and-increment operations (Line 21 and Line 30) of a ffq deq() call logically order the
consumers. If the element that ffq deq() returns is already enqueued at the time when the
fetch-and-increment operation takes effect (i.e., linearization point of ffq enq() has already
happened), the fetch-and-increment operation is the linearization point. If the linearization
point of the matching ffq enq() operation has not yet taken effect, we define the linearization
point of ffq deq() to happen immediately after the linearization point of the matching ffq -
enq(). Since the ffq deq() will spin until that consumer provides an element, the linearization
point is indeed before ffq deq() returns.

4.3.2 Multiple Producers

We now present the modifications to the basic algorithm for supporting multiple producers.
Obviously, the resulting algorithm, FFQm, will incur extra synchronization overheads, which
will translate into lower performance.
The new version of the ffq enq() function, shown in Algorithm 2, essentially differs from

the single-producer variant in that it now uses an atomic increment to acquire a unique rank
where to store a newly produced item (Line 4). Yet, the atomic increment is not sufficient by
itself as one can run into subtle race conditions that affect correctness. Consider the case
of two producers, p1 and p2. Assume p1 acquires a unique rank r1, verifies that the cell is
unused, and goes to sleep (e.g., due to its thread being preempted). After some activity on
the queue with elements produced and consumed, p2 acquires a unique rank r2 > r1 that
maps to the same cell, i.e., (r2 mod N) = (r1 mod N), and stores its data in that cell. Finally,
p1 wakes up and proceeds with updating the cell, essentially overwriting p2 ’s data without
noticing the conflict.
Another problem is that producers might actually enqueue elements “in the past”. Con-

sider a similar scenario of two producers, p1 and p2, which respectively obtain ranks r1 and
r2 > r1 that againmap to the same cell. Assume that p2 executes first, observes that the cell is
used (c.rank = r with 0 < r < r1), and thus skips it by setting c.gap to r2. Then consumer c1 with

65

rank r1 comes, observes the gap, and hence skips it since c.gap (≡ r2) > r1 ∧ c.rank (≡ r) ̸= r1
(Line 29 of Algorithm 1). Subsequently, the “slow” consumer c with rank r completes its de-
queue operation and clears the rank (Line 27 of Algorithm 1), allowing p1 to enqueue its
element with rank r1 that was skipped by c1. This ultimately results in the production of an
element that will never be dequeued. To solve this problem, one should disallow producers
from enqueuing items in the past, i.e., with rank ≤ c.gap.
We need therefore additional synchronization to handle such conflicts between produc-

ers. To that end, we use an atomic “compare-and-set” operation to update the rank field of
the cell, by attempting to atomically change it from the expected value of 0, which means
that it is free, to another value indicating that it is used. The problem is that, if we directly
set the new value to the rank, we might run into another race condition—but this time with
consumers. Indeed, synchronization between producers and consumers relies on the for-
mer to first update the data field, and only then the rank field so as to let the latter know that
the element can be read. Hence we use another special value (–rank in the pseudo-code)
as the new value for rank in the double-compare-and-set to synchronize the producers, be-
fore subsequently setting the rank field to its final value. Note that we cannot use a special
constant here (–1, –2, etc.), because this could lead to a subtle race condition where one fast
producer would catch up with a slow producer and both will deadlock trying to insert data
in the same cell. Since no two producers can get the same rank, this guarantees that these
negative values will be distinct for two different producers.
Still, this is not sufficient to solve the second problem as another producer might concur-

rently change the gap field of the cell to a value higher than the acquired rank, which is exactly
the scenario we need to avoid. We therefore use a double-word version of the compare-and-
set operation to ensure that no gap is created while we update the rank (Line 9). Note that
double-compare-and-set can be supported by simply using a 128-bit version of the compare-
and-set operation (available onmostmodern processors) and placing the rank and gap fields
consecutively in the same cache line. If the compare-and-set succeeds, the algorithm pro-
ceeds with updating the cell, otherwise it means that another producer has taken over the
cell or inserted a gap in the meantime and we need to retry acquiring the cell.
If the cell is used, i.e., its rank field is non-negative, we skip it and create a gap in the

numbering. To update the gap field of the cell, we also need to use a double-compare-and-
set operation to avoid setting its value “back in time” in case it has since been updated to a
larger value by another producer, while at the same timemaking sure that no other producer
has concurrently enqueued an element (Line 8). Note that if the double-compare-and-set
operation succeeds, i.e., the gap is created, the condition at Line 6 becomes false and the
thread proceeds with acquiring a new rank, essentially restarting the whole procedure.
One should finally point out that, in theMPMC variant, the ffq deq() function is not lock-free

anymore. Indeed, since we do not have the assumption of a single producer anymore, a pro-
ducer that stops taking steps might prevent a consumer from progressing even if the queue
is not empty. Furthermore, ffq enq() is not wait-free as multiple producers can repeatedly
hamper the progress of one another, but it is lock-free under the assumption that there is
always some empty spot in the array.

4.4 Implementation and Optimizations

As our focus is on “raw” performance, we take special care of optimizations and fine-tuning.
We discuss in this section the implementation details and the various optimizations that we

66

add to FFQ. Our evaluation shows that the throughput of a badly tuned vs. a well-tuned
algorithm can differ by an order of magnitude.

4.4.1 Memory Mapping

To achieve the best performance, it is important to carefully place data structures inmemory.
Basic optimizations such as alignment of structures to word-sized addresses are typically
performed transparently by the compiler. Coarser-grainedmappingmust, however, be done
explicitly by the programmer.
In particular, one should avoid false sharing5 between shared variables that are mapped

to the same cache line. There are several ways to prevent this problem from happening.
We support the four combinations of two memory mapping approaches in our implemen-

tation. (1) With dedicated cache lines, queue cells are explicitly placed in different cache lines,
hence avoiding consumers and producers to experience false sharing when they concur-
rently access the queue. (2) With address randomization, data is placed in the queue in such
a way that neighboring cells in the shared array aremapped to distinct cache lines. The ratio-
nale is that false sharing is most problematic when consecutive elements of the queue share
the same cache line, because consumers and producers access these elements sequentially.
Dedicated cache lines are efficient and easy to implement, but as a downside, theymay sig-

nificantly increase the size of shared data structures and hence reduce the effective capacity
of the caches. In contrast, address randomization is slightly more complex to implement and
requires several CPU instructions to compute, but it limits the impact of false sharing without
memory overhead as each cache line can still hold several cells.
In our implementation, we can enforce the placement of cells in dedicated cache lines

using compiler annotations. Note that this can also be achieved by inserting “padding” in
data structures to increase their size to match cache line boundaries.
Address randomization can be implemented using various techniques ranging from simple

bitwise manipulation of the addresses to more sophisticated transformations like minimal
perfect hashing. In our implementation, we rotate the bits of the index by 4, effectively placing
two consecutive cells 16 positions apart in memory, which will place them in distinct cache
lines.

4.4.2 Thread Affinity

Besides optimizing the placement of data in memory, a complementary approach to maxi-
mizing performance consists of optimizing the thread placement on cores. This is typically
achieved by defining the “affinity” of threads with specific cores. On modern CPUs, two hard-
ware threads (HT)—or hyperthreads in Intel terminology—share a core. Hardware threads
enable better utilization of a core and can increase core throughput in this way by up to 30
percent.6 Operating systems like Linux permit us to set the affinity of a thread T by specifying
a set of hardware threads on which T can run 7.

5Two threads accessing distinct variables sharing the same cache line will contend and invalidate each other’s
cache lines, hence generating unnecessary cache coherence traffic.

6https://software.intel.com/en-us/articles/intel-performance-counter-monitor
7In the untrusted operated system setting, the operating system can ignore the affinity or evenmaliciously force
a thread migration during the queue operation. However, in a correct queue implementation this can lead
to the availability violation at worst, which is out of scope for TEE systems like SCONE.

67

https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Setting the affinity of threads to cores is a double-edged sword. On the one hand, we can
ensure that producers and consumers can communicate via the same cache, without the
need tomigrate cache lines between cores or between CPU chips sitting in different sockets.8

On the other hand, if producers and consumers need more CPU cycles than available on a
given core or socket, we should not slow down the computation by overloading a single core
or a whole CPU.
When maximizing the throughput of a system, we need to ensure that we optimize the

usage of the cores and the caches. In our implementation, We support four different strate-
gies for thread placement. We first force the producer and its consumers to all execute on
a single hardware thread, i.e., they all compete for the same processing resources. Second,
we place the producer on one hardware thread and its consumers on the second hardware
thread on the same core, i.e., they can execute concurrently and share the same core cache.
Third, we schedule a producer on one core and its consumers on a different core. Finally,
we let the operating system schedule threads without any affinity being specified. We evalu-
ate these different strategies in ±4.5 to gain insights into the impact of thread placement on
performance.

4.4.3 Queue Length

Another important tuning parameter is the queue length. By increasing the queue length,
one can decouple the producer and its consumers. This will ensure that a temporary speed
reduction of a producer will not slow down its consumers and vice versa. Moreover, by
having a longer queue, we might see less false sharing of cache lines since the consumers
and producers might naturally access different cache lines.
However, if the queue becomes too long, the cache hit rate might degrade since we reach

the capacity of the cache. Cache lines will need to be written to memory and later be read
again. This will not only increase the memory traffic but also limit the maximum throughput
one can achieve. We provide the measurements that can help the user to pick the queue
size in ±4.5.3.

4.4.4 Implementation Notes

Our implementation is written in C with some assembly code for atomic operations and
memory barriers. Memory alignment is implemented using compiler directives. Threadman-
agement is supported using the pthread library. The code is written for a native 64-bit word
size, although it could be trivially adapted to 32-bit.
Our code currently supports Intel’s x86 and IBM’s POWER8 architectures. The main rea-

son for benchmarking on these two architectures is that they both also support hardware
transactional memory (HTM) extensions [154, 196], and we can therefore readily compare
against state-of-the-art HTM-based concurrent queues in our evaluation.

8For simplicity, we indifferently use the terms “CPU”, “CPU chip”, and “socket” to denote the whole multi-core
processor sitting in a socket.

68

4.5 Evaluation

Weevaluate the performance of FFQusing a set of generic and SCONE-basedmicro-benchmarks.
We also compare the performance of FFQ to alternative queue designs. To explain the im-
pact of different optimizations applied in FFQ, we start with a sequence of generic micro-
benchmarks.

4.5.1 Methodology

We evaluate our algorithms on 3 different servers:

• Skylake. An Intel Xeon E3-1270 v5 (4 cores at 3.6GHz, 8 hardware threads, 8MB cache)
with 64GB RAM, Ubuntu 14.04.4 LTS, gcc 6.1.0.

• Haswell. An Intel Xeon E5-2683 v3 (two 14-core CPUs at 2GHz, 56 hardware threads,
35MB cache, NUMA) with 112GB RAM, Ubuntu 15.10, gcc 5.2.1.

• P8. An IBM POWER8 8284-22A (10 cores at 3.42GHz, 80 hardware threads, 512KB L2
and 8MB L3 cache per core) with 32GB RAM, Fedora 21, gcc 4.9.2.

We use a micro-benchmark that simulates the SPMC asynchronous system call interface.
The benchmark spawns a predefined number of producer and consumer threads. The con-
sumers are statically assigned to producers and there is always at least one consumer per
producer.
Producer threads have a state that consists of an SPMC submission queue and an array

with SPSC response queues for each of the consumers assigned to the producer. Producer
threads insert a number of 64-bit integers into the submission queue and loop through the
response queues for dequeuing values. Consumers repeatedly retrieve a value from the
submission queue and enqueue a 64-bit integer into the associated response queue, using
respectively the SPMC and SPSC FFQ algorithms.
Note that, by default, we run the micro-benchmarks on the Skylake server, whereas com-

parative tests are executed on all servers. All three architectures support hardware transac-
tional memory (HTM) extensions. The benchmarks are written in C and compiled using gcc
[126] with optimizations enabled (-O3). The reported results represent the average of 10
runs.

4.5.2 False Sharing

Weevaluate the impact of false sharing on the throughput of FFQusing ourmicro-benchmark.
In particular, we evaluate the effectiveness of dedicated cache lines vs. address randomiza-
tion. To do so, we measure four different configurations the throughput of FFQ:

• Not aligned. The cell data structures are not cache aligned. Each cell requires 24 bytes
in the cache.

• Aligned. The cell data structures are cache aligned and each requires 64 bytes in the
cache.

• Randomized. The cell data structures are not cache aligned and each requires 24 bytes
in the cache. The ordering of the cells is pseudo-randomized (as explained in ±4.4).

69

0.0

0.5

1.0

1.5

Not aligned Aligned Randomized Both

N
o

rm
a

liz
e

d
 t
h

ro
u

g
h

p
u

t

1 prod. x 1 cons. 1 prod. x 8 cons. 8 prod. x 8 cons.

Figure 4.3: Impact of alignment and randomization on throughput with the MPMC variant of
FFQ for a single producer and consumer, one producer with 8 consumers, and
8 producers with 8 consumers per producer. Throughput is normalized to the
non-aligned variant.

• Both. The cell data structures are cache aligned and randomized. Each cell requires
64 bytes in the cache.

All experiments were conducted with the MPMC variant of FFQ. In the case of 8 producers,
we use 8 distinct queues with 8 consumers each (i.e., 64 consumers).
Our first measurement shows that, for a single producer and a single consumer, neither

alignment nor randomization improves throughput (see Figure 4.3). This can be attributed to
several factors: we need less space in the cache for the cells without alignment and, hence,
have a better cache hit ratio; alignment would only help if the consumer is always faster than
the producer and, in this way, competing for the same cache line; and randomization adds
some overhead for address computation upon every access to a cell.
When we increase the number of consumers per producer, a producer and a consumer

will more likely compete for the same cache lines. Moreover, the consumers will also com-
pete for the same cache lines. Our measurement shows that, when we have multiple con-
sumers per producer or multiple producers, alignment of the cell data structure improves
throughput. Randomization helps in the case of a single producer with 8 consumers, but
when increasing the number of producers it becomes counter-productive (likely related to
eviction patterns in the 4-way associative L2 cache). One can observe that the combination
of alignment and randomization provides the best throughput in the case of one producer
with 8 consumers.

4.5.3 Queue Size

Wehave seen that a reduction of the data structure size can—in the case of a single-producer
single-consumer setup—improve the throughput. Hence, we next investigate the impact
of the queue size on the throughput of the queue. By increasing the queue size, we can
decouple the producers and the consumers since producers can continue to produce items
while the consumers might be temporarily delayed. However, if the queue size becomes too
large to fit in cache, the throughput of the queue may also decrease.

70

●

●

●

●

●

● ● ●
●

● ● ●

Request is:

P.enq(r)

C.deq(r)

C.enq(s)

P.deq(s)

20

40

60

80

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

T
h

ro
u

g
h

p
u

t,
 1

0
6
 o

p
s
/s

Figure 4.4: Influence of the queue size on FFQ throughput (Skylake). In a single-
producer/single-consumer configuration, when reaching 64k entries, the
throughput starts to decrease.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●
●

●

●●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

60

70

80

90

100

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

L
2
 h

it
 r

a
ti
o
,
%

●

●

●

●

No affinity

Same HT

Other core

Sibling HT
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

L
2
 c

a
c
h
e
 m

is
s
e
s
,

1
0

6
 t
o
ta

l ●

●

●

●

No affinity

Same HT

Other core

Sibling HT

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0.9

1.2

1.5

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

IP
C

,
in

s
tr

./
c
y
c
le

●

●

●

●

No affinity

Same HT

Other core

Sibling HT

Figure 4.5: L2 cache hit ratio, L2 misses, and IPC (instructions per cycle) for a single-
producer/single-consumer configuration (Skylake).

We measure the impact of the queue size for a single producer and a single consumer,
each running on a separate core (see Figure 4.4). One can see that, in this measurement, we
reach the maximum throughput for a queue with 64k entries.
In a later measurement (see Figure 4.7), we see that if the producer and consumer share

the same core, a much smaller queue size can actually yield better throughput. The optimal
queue size depends on the mapping of the threads to individual cores, i.e., if we use a L1/L2
cache attached to the core or a more remote (L3) cache. Hence, we investigate the impact
of using a local L2 cache vs. a remote L3 cache next.

4.5.4 Cache Locality and Thread Affinity

Modern CPUs have a L1 and L2 cache that is attached to the core and a L3 cache shared
amongst the cores. The L3 cache is partitioned such that some parts are closer to some
cores than others. By pinning a producer thread and the consumer threads to the same or
different cores, we can enforce producers and consumers to communicate either through a
local L1/L2 cache or a remote L3 cache. However, caching is not the only factor that impacts

71

●
●●
●

●
●●●

●
●●
●

●●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

60

70

80

90

100

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

L
3
 h

it
 r

a
ti
o
,
%

●

●

●

●

No affinity

Same HT

Other core

Sibling HT

●

●

●

●

●

●

●

●

●●●
● ●●●● ●●●● ●●●● ●●●● ●●●●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

0.0

0.3

0.6

0.9

1.2

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

L
3
 c

a
c
h
e
 m

is
s
e
s
,

1
0

6
 t
o
ta

l ●

●

●

●

No affinity

Same HT

Other core

Sibling HT

●
●
●
● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●

●
●
●
●

●

●

●

●

●
●
●

●

●
●
●

●

0

3

6

9

12

2
8

2
10

2
12

2
14

2
16

2
18

Number of cells

M
e
m

o
ry

 r
e
a
d
,
G

B

●

●

●

●

No affinity

Same HT

Other core

Sibling HT

Figure 4.6: L3 cache hit ratio, L3 cache misses, and memory access bandwidth for a single-
producer/single-consumer configuration (Skylake).

performance. There are other mechanisms at work like the likelihood that a single core goes
into turbo mode, or the degree of the instruction level parallelism.
To understand the factors that affect performance, we performa simplemicro-benchmark:

to simplify the understanding of the results, we measure a configuration with a single pro-
ducer and consumer thread. During the benchmark execution, we record different perfor-
mance counters that keep track of performance metrics like cache hit ratio, memory access
bandwidth, and core frequency. All cells were cache aligned.
In the context of this micro-benchmark, we evaluate different queue lengths and four dif-

ferent affinity policies.

• Sibling HT. We place the producer and the consumer on the same core but different
hardware threads.

• Same HT. We enforce the producer and the consumer to share the same hardware
thread.

• Other core. We place the producer and the consumer on two different cores on the
same socket.

• No affinity. We run the benchmark without setting the affinity, i.e., we let the Linux
scheduler determine on which hardware thread to place a thread.

The measurements (see Figures 4.5 and 4.6) show that other core and no affinity have
almost the same behaviour, which tends to indicate that Linux schedules the producers and
the consumer on different cores. Hence, we focus only on the no affinity measurements.
One can see that with increasing queue size, the hit ratios of both L2 and L3 are increasing.
However, if the queue size does not fit in the L3 cache anymore, the L3 hit ratio drops and
cache misses increase. Furthermore, the memory access bandwidth becomes higher, which
reduces the IPC (instructions per cycle).
Executing the producer and consumer on the same core but different hardware threads

(sibling HT) has better L2 and L3 cache hit ratios than the other alternatives, except for very
large queue sizes. It also exhibits good IPC even for small queue sizes. However, for large
queue sizes, it has a larger number of L3 cache misses and requires a larger number of
memory accesses, apparently caused by the larger L3 cache requirements due to cache
contention between the producer and the consumer.

72

128 cells 1024 cells 4096 cells 16384 cells 65536 cells

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
0

100

200

300

Number of producers

T
h

ro
u

g
h

p
u

t,
 1

0
6
 o

p
s
/s

No affinity
Sibling HT
Same HT

Figure 4.7: Throughput for different the queue sizes and affinity settings (Skylake). When ex-
ecuting on two hardware threads on the same core, the performance decreases
with increasing queue size. When running on different cores, the queue benefits
from large queue sizes (that decouple producer and consumer) and the addi-
tional cycles of the cores.

For reasonably small queue lengths, same HT has the highest L3 cache hit ratio and, hence,
also the highest IPC. Thismight indicate that it performs best under resource constraints. We
investigate this next.

4.5.5 Maximizing Throughput

In SCONE, the FIFO queue is a bottleneck that limits the throughput of the application. Hence,
we want to ensure that we canmaximize the throughput of the FIFO queue. Tomaximize the
throughput, we need to ensure that we are as resource-efficient as possible. To that end, we
can use IPC as it represents a good indicator of resource efficiency.
The measurements of the last subsection have shown that, for very small queue sizes,

sibling HT exhibits the best IPC. For larger queue sizes, same HT shows the best IPC. How-
ever, since there is some back-off involved, the best IPC does not always mean also the best
throughput.
We measure the throughput for various configurations in which we increase the number

of producers. For each producer, we start one consumer. As our Skylake CPU has four cores
and a total of 8 hardware threads, for sibling HT we limit the number of producers to 4. For
the other two policies, we also oversubscribe the cores, i.e., schedule up to two threads per
hardware thread.
The micro-benchmark results (see Figure 4.7) show that sibling HT performs best both for

small and large queue sizes. However, for medium queue sizes that maximize L2 and L3
cache hit ratio, same HT actually performs better (with respect to the number of cores used).
Sibling HT benefits from the consumer and producer accessing similar memory regions and,
hence, from a better L2 cache hit ratio. Same HT benefits from a better IPC and, hence, pro-
vides the best throughput as long as queue sizes are sufficiently large to keep both producer
and consumer busy without waiting.

4.5.6 Application Benchmark

We have integrated FFQ into SCONE andmeasure its performance using a benchmark appli-
cation. The benchmark spawns threads that execute getppid(2) in a loop. This system call
was chosen because it executes fast and involves no costly system call argument copying,

73

●

●

●

●

●

●

●

●

●

●

●

●

1

10

100

2 4 6 8

Number of cores

S
y
s
te

m
 c

a
ll

ra
te

,
1

0
6
 o

p
s
/s

● ● ●Native SGX, MPMC Queue SGX, FFQ

Figure 4.8: Throughput of the SCONE system call benchmark application with different num-
ber of available cores on the Skylake server.

0

250

500

750

1000

Native SGX, MPMC Queue SGX, FFQ

S
y
s
te

m
 c

a
ll

la
te

n
c
y,

 c
y
c
le

s

Figure 4.9: Latency of the getppid system call with different queues on the Skylake server.

making system call queues a bottleneck. The application records throughput (system calls
per second) and average latency (CPU cycles). The benchmark application is built in three
variants: native version, SGX enclave with the originally used MPMC queue9, and SGX en-
clave with FFQ (SPMC or MPMC variants depending on the number of producers and cores).
Running inside the SGX enclave causes additional overheads when the enclave memory is
removed from the CPU cache due to memory encryption operations.
Figure 4.8 shows the scalability and performance gains from FFQ. The amount of applica-

tion threads spawned is proportional to the amount of available cores10 and is fine-tuned for
each variant of the binary to provide the best throughput. In contrast to the MPMC variant,
the binary with FFQ achieves a 5 times higher throughput and scales linearly.
Figure 4.9 shows the end-to-end system call latency in the benchmark application. The

9http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
10We limit the number of application threads that produce system calls, but these threads share the cores with

other runtime and system threads.

74

http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue

●

●
●

●

ffq (spsc)=718.6

ffq (spmc)=361.1

0

50

100

150

200

250

1 2 4 8

Number of threads

T
h
ro

u
g
h
p
u
t,
 1

0
6
 o

p
s
/s ● wfqueue

ccqueue

msqueue

lcrq

htm

ffq (mpmc)

Intel Skylake

●

●
●

●

●

●

●
●

●

ffq (spsc)=355.2

ffq (spmc)=211.3

0

40

80

120

160

1 2 4 6 8 16 2836 56

Number of threads

T
h
ro

u
g
h
p
u
t,
 1

0
6
 o

p
s
/s ● wfqueue

ccqueue

msqueue

lcrq

htm

ffq (mpmc)

Intel Haswell

●
●

●
●

●

●
●

● ●

ffq (spsc)=167.1

ffq (spmc)=146.6

0

40

80

120

160

1 2 4 8 16 32 48 80

Number of threads

T
h
ro

u
g
h
p
u
t,
 1

0
6
 o

p
s
/s ● wfqueue

ccqueue

msqueue

htm

ffq (mpmc)

IBM POWER8

Figure 4.10: Throughput of the benchmark from [298] with our three servers: Skylake (left),
Haswell (center), POWER8 (right). The throughput values indicated for SPSC and
SPMC are for single-threaded runs.

measurement was done with a single application thread to prevent thread multiplexing in
the SGX variants. The latency of a native system call provides a baseline for comparison. The
system call latency of FFQ is almost twice as low compared to the MPMC variant. The latency
is higher than the baseline because it involves a ping/pong of request and answer between
two threads.

4.5.7 Comparative Study

In our last set of experiments, we compare FFQ against other state-of-the-art concurrent
queues. To this end, we add our algorithm to the benchmark framework developed and
kindly provided by the authors of [298]. We compare FFQ to Yang and Mellor-Crummey’s
wfqueue (fast WF-10 version) [298], Morrison and Afek’s lcrq [225], Fatourou and Kallimanis’s
ccqueue [119], Michael and Scott’smsqueue [220], and a simple concurrent queue algorithm
that uses hardware transactional memory (HTM) extensions of Intel and IBM CPUs. This
last algorithm is based on a bounded circular buffer and simply executes the enqueue and
dequeue operations inside hardware transactions. In the benchmark, all threads repeat-
edly execute pairs of enqueue and dequeue operations on a single queue, for a total of
107 pairs partitioned evenly among all threads. We hence use the MPMC variant of FFQ to
support concurrent accesses of both producers and consumers. Between two operations,
the benchmark adds an arbitrary delay (between 50 and 150ns) to avoid scenarios where a
cache line is held by one thread for a long time.
The results are shown in Figure 4.10 (to be compared with Figure 2 of [298]). Note that

the P8 results do not include lcrq as it is not supported by the benchmark framework for the
POWER architecture. We also indicate in the graphs the performance of the SPSC and SPMC
variants of FFQwhen runningwith a single thread. The SPSC variant of FFQ removes the need
for an atomic increment operation. In particular, given that our main focus is to maximize
the performance of the SPMC implementation, this allows us to estimate the overhead of
supporting multiple consumers.
We can first observe that, on each system, FFQ is consistently among the most efficient

implementations for each thread count even though we are using the MPMC variant. In se-
quential runs, ccqueue usually performs best (except on P8) because it reuses the same node
for every enqueue/dequeue pair and does not experience cache misses without contending
thread, but performance drops quickly with more threads. The wfqueue algorithm performs

75

well with an increasing number of threads, mainly on Intel processors, thanks notably to its ef-
ficient fast path that does not use compare-and-set operations. In most cases, lcrq is slightly
slower than wfqueue, which can be explained by the higher number of memory fences. Note
that lcrq and FFQm use a double-word compare-and-set, which is only available on a few high-
end CPUs. Themsqueue algorithm performs worst because it manipulates the queue’s head
and tail pointers with a compare-and-set operation inside a loop that can repeat many times
under heavy contention. Finally, one can observe that the HTM-based implementation does
not compete with the fastest queues, especially when increasing the number of threads,
because transactional operations and retries are costly. This is particularly clear on the P8
architecture, where performance becomes extremely low as we increase concurrency. It is
noteworthy, however, that HTM performs best with a single thread on P8—on par with the
SPMC variant of FFQ—which tends to indicate that the overhead of transactions is low on
that architecture when there are no conflicts.
In terms of processor architectures, FFQ performs comparatively better on P8 than on

Skylake and Haswell, even though the raw throughput values are slightly lower. Further-
more, performance does not drop too sharply on P8 after 8 threads, i.e., when exceeding
the number of cores, whereas it degrades dramatically for ccqueue.
Finally, one can appreciate the benefits of the SPMC variant over MPMC, with a gain of

more than 50% on all architectures. This is particularly important as FFQ was designed and
optimized for applications with a single producer and multiple consumers. The SPSC variant
of FFQ, which is less interesting from a practical perspective, runs two to three times faster
than MPMC.

4.6 Conclusion

In this chapter, we provide the extended design, implementation, and evaluation of the con-
current queue that was developed to implement the performance-critical component of
SCONE—its asynchronous system call interface. Unlike the original bounded MPMC queue,
FFQ in its SPMC variant is optimized for the case of independent producers. With FFQ, SCONE
enclave threads can submit system calls without synchronization, and needs less atomic in-
structions.
The comparisonwith other state-of-the-art queues shows that our SPMC variant has a 50%

higher throughput than other state-of-the-art FIFO queues for a single producer configura-
tion. For multiple independent producers, our evaluation also shows that FFQ has excellent
scalability—reaching more than 1.2 billion FIFO operations per second on a 4 core Skylake
CPU. Our MPMC variant of FFQ is competitive with the best state-of-the-art FIFO queues.
The higher performance of SPMC over MPMC can be attributed to the SPMC variant needing
fewer atomic operations. However, we also observe that the correct tuning is an essential
factor for performance. We show in the context of the SPMC variant that a good data struc-
ture alignment, queue length, and thread affinity can result in an order of magnitude higher
throughput. The combination of FFQ and these optimizations allows SCONE to run POSIX
applications with low overheads.

76

5 Securing Middleboxes using
Shielded Execution

In the previous chapter, we have shown how we improved the performance of SCONE asyn-
chronous system call interface using an improved concurrent queue implementation. How-
ever, for some applications, even the native performance of system calls is insufficient, often
due to the suboptimal interface presented by the operating system. In this case, utilizing
the full capabilities of hardware becomes impossible, and alternatives have to be devel-
oped [254].
An example of software that faces these challenges are applications are software that pro-

cesses network packets at line speed, for example IDS systems, network traffic optimizers,
firewalls, programmable switches, and so on — so-called middleboxes. Typically they op-
erate on-premises; however, recent research has shown users can significantly reduce the
maintenance cost of middleboxes by outsourcing them to the cloud. In this context, it be-
comes important to extend the protection offered by Intel SGX to these middleboxes, and
provide middlebox developers a toolset for the construction of secure middleboxes, as they
may be processing confidential user data, and thus may become targets for attacks by the
hackers or privileged insiders.
Therefore, in this chapter, we solve the problem of securing a network middlebox inside

Intel SGX enclaves, while avoiding the overheads of both native system calls and the SCONE
asynchronous system calls. We achieve our goal by building on the kernel bypass network
I/O library (DPDK), a state-of-the-art modular router (Click), and the SCONE framework intro-
duced in the previous chapters.

5.1 Introduction

Modern enterprises ubiquitously deploy network appliances or “middleboxes" to manage
the networking infrastructure. These middleboxes are extensively used to maintain a wide
range of workflows for improving efficiency (e.g., WANoptimizers), performance (e.g., caching,
proxies), reliability (e.g., load balancers, monitoring), and security (e.g., firewalls, IDS). Due to
their widespread usage, they incur significant deployment, maintenance, and management
costs [267].
To overcome these limitations, many enterprises are contemplating outsourcing middle-

77

boxes to the cloud [267, 238]. Cloud computing offers economies of scale for computational
resources with the ease of management, elasticity, and fault tolerance. Realizing the vision
of middleboxes as a service in the cloud is strengthened by the advancements in network
function virtualization (NFV) [211]. NFV offers a flexible and modular architecture that can
be easily deployed on commodity hardware. Thus, NFV is a perfect candidate to reap the
outsourcing benefits of the cloud infrastructure.
However, middleboxes that process confidential data cannot be securely deployed in un-

trusted cloud environments. In cloud environments, an accidental or, in some cases, inten-
tional action from a cloud administrator could compromise the confidentiality and integrity of
the middlebox execution. These threats of potential violations to the integrity and confiden-
tiality of customer data are often cited as a key barrier to the adoption of cloud services [259].
Furthermore, cloud providers are increasingly offering edge computing resources in collab-
oration with third-party ISPs and CDN operators to meet stringent low-latency performance
requirements (SLAs) of modern online applications [128]. Since the underlying infrastructure
is operated bymultiple third-party providers, such a hybrid cloud-edge computing infrastruc-
ture further exacerbates the secure deployment of middleboxes.
To securely outsource middleboxes in the cloud, state-of-the-art systems advocate net-

work processing over encrypted traffic [268, 194]. However, these systems support only
restrictive types of functionality and incur prohibitively severe performance overheads since
they require complex computations over encrypted network traffic.
These limitations motivated our work—we strive to answer the following question: How to

securely outsource middleboxes on the untrusted third-party platform without sacrificing perfor-
mance while supporting a wide range of enterprise NFs?
To answer this question, we present ShieldBox—a secure middlebox framework for de-

ploying high-performance network functions (NFs) on untrusted commodity servers. The
architecture of ShieldBox is based on four design principles: (1) Security — we aim to pro-
vide strong confidentiality and integrity guarantees against a powerful adversary, (2) Perfor-
mance — we strive to achieve near-native throughput and latency, (3) Generality — we aim
to support a wide range of network functions (same as plain-text processing) with the ease
of programmability, and (4) Transparency— we aim to provide a transparent, portable, and
verifiable environment for deploying middleboxes, without major changes to the systems
source code and deployment procedure.
To achieve these design goals, ShieldBox leverages the components presented earlier in

this thesis, that is hardware-assisted secure enclaves based on Intel SGX [103] for providing
strong security properties, and SCONE (±3)—a shielded execution framework to securely
process network packets on commodity untrusted infrastructure. However, the architec-
tural limitations of Intel SGX present a significant challenge for middleboxes requiring high-
performance network I/O.
To achieve high performance despite the inherent limitations of the SGX architecture, we

have designed a high-performance I/O library for shielded execution using Intel DPDK [22]
to efficiently process packets in the userspace secure enclave memory.
For the developers, ShieldBox provides a flexible and modular framework to build a rich

set of NFs by adapting the Click [182] architecture. In this way, ShieldBox supports a wide
range of NFs with the ease of programmability using Click’s out-of-the-box elements and
C++ extensions. Finally, ShieldBox builds on the Docker container technology with a remote
attestation and configuration service (an early version of Palaemon [138]), which provides
network operators a portable and cryptographically verifiable deployment mechanism.
Furthermore, we have designed several important end-to-end features required for secure

78

middleboxes:

• New Click elements for secure packet processing.

• Efficient sharedmemory packet transfermechanism in themultiple SGX enclaves setup
for NFVs chaining [173].

• Secure state persistence layer for fault-tolerance and stateful migration of middle-
boxes [266].

• On-NIC PTP clock as a time source for the SGX enclaves.

• Memory safety mechanism to defend against DPDK-specific Iago attacks [100].

We implement the aforementioned security features as well as several SGX-specific per-
formance optimizations in ShieldBox. Lastly, we evaluate the system using a series of micro-
benchmarks, and two case-studies: a multiport IP Router, and IDS. Our evaluation shows
that ShieldBox achieves near-native throughput and latency.

5.2 Background and Related Work

Network Function Virtualization (NFV) is an approach to the networking infrastructure that
involves a consolidation of independent network appliances on the standard COTS servers by
relying on the virtualization technologies [140, 144]. As explained in the original NFV whitepa-
per [140], the reasons for the adoptions of the NFV approach are:

• Difficulties with deploying a high number of custom hardware components to the data
centers, related to the power and space consumption.

• High capital investments necessary to obtain and to integrate the hardware into an
existing network.

• Rapid obsolescence of the hardware appliances, their low scalability and elasticity.

By relying on the standard virtualization and isolation technologies available in the modern
operating systems, such as software fault isolation technologies, containers, and virtual ma-
chines, it is possible to improve multiple aspects of the network [144]:

• Reduce equipment cost and power consumption, exploit the economy of scale in the
IT industry.

• Improve development speed of network functionality.

• Enable multi-versioning and multi-tenancy in the network.

• Improve elasticity of network appliances.

The use-cases for NFV include routers, mobile network components, tunnels and VPNs, Deep
Packet Inspection (DPI) appliances, monitoring systems, billing components, traffic optimiz-
ers, security gateways, and much more [140]. As a result, each of these components, pre-
viously implemented as a hardware middlebox, is transformed into a piece of software that
can be deployed in the network using standard orchestration technology, such asOpenStack,
Docker Swarm, or Kubernetes.

79

Software-Defined Networking (SDN) is related but distinct concept to NFV. The idea be-
hind SDN is a separation of forwarding plane, responsible for high-throughput low-latency
packet forwarding, and control plane, responsible for making decisions about the forwarding
destination of each packet, in separate entities, either software or hardware [186].
The motivation for this change is a significant difficulty of configuring and reconfiguring

the network in response to overloads, component failures, or changing requirements. With-
out SDN approach, this reconfiguration would require individual, low-level reconfiguration of
each networking device (router or switch), which is an error-prone process, while the lack of
standardized APIs was preventing the application of automation to this problem.
The SDN approach was developed to solve these problems. It logically centralizes the

control plane (a configuration of the network) in several SDN controllers, while switches and
routers essentially become programmable forwarding elements. This separation allows easy
implementation and programmability and automation in the network.
To promote interoperability in the SDN-based networks, a common protocol is necessary

for the communication between the SDN controllers and the forwarding elements. The in-
dustry standard for this is the OpenFlow protocol [218]. It allows a single control plane to
manage multiple forwarding components.
In our work, we consider the problem of networkmanagement out-of-scope, thus focusing

on the NFV technologies.
Kernel Bypass Technologies. There are several requirements to the networking middle-

boxes, the main of which are high performance and flexibility. These requirements are chal-
lenging to achieve even without Intel SGX, which exacerbates the implementation challenges
even further.
Achieving high performance has become challenging because of the ever increasing capa-

bilities of the NICs. While common POSIX-compatible operating systems and the networking
software running on them can process data at the line rate of the 1G and 10G Ethernet NICs,
recent upgrades to 25G, 50G, and recently to 100G Ethernet has shown that the available OS
interfaces are inadequate for high-throughput low-latency operation at such speeds [241].
This change has forced the developers to consider alternative ways to implement middle-
boxes, while still retaining all features and compatibility with the dominant operating sys-
tems.
This improvement in hardware together with the design of the common general-purpose

operating systems force a dilemma upon middlebox developers: they can either implement
their application as a userspace program, or as a part of the OS kernel. Userspace imple-
mentation allows easy access to COTS libraries, simple update process, and guarantees of
kernel API stability. On the other hand, the raw packet methods that, for example, Linux
provided to userspace applications were insufficient for most low-level (L2/L3) middleboxes.
Furthermore, even standard in-kernel functionality sometimes proved to be insufficiently
performant due to its low scalability and general purpose design [209].
On the other hand, direct in-kernel implementation of the middlebox functionality allows

high-speed packet access, but restricts the programming model, prevents the use of com-
mon libraries, and complicates the middlebox support, which has to be adapted to the APIs
changes in the new kernel versions. Additionally, the functionality already available in the
common OS kernels is not flexible enough to implement complex middleboxes, for exam-
ple, BPF [214] can only be used to implement filters for packet capture. There are attempts
to make in-kernel network programming more flexible and efficient using technologies like
eBPF and AF_XDP [290, 84]. Unfortunately, while AF_XDP can be efficiently used to implement
increasingly flexible middlebox functionality, it does not admit SGX-protected implementa-

80

tion, as Intel SGX can only be used with userspace code.
The standard Linux interfaces for raw packet acquisition is AF_PACKET, which can be com-

bined with PACKET_MMAP to gain a zero-copy access to multiple packets at once. However,
in this case the packets still pass through several kernel subsystems (for example, queueing
disciplines), which slow down the packet processing.
As an alternative to this packet acquisitionmethod, kernel bypass technologies were devel-

oped. They either implement the device driver for theNIC in the userspace, directly accessing
the PCI MMIO ranges using the OS interfaces typically utilized by the VMMs, or use custom
kernel modules to expose a uniform, ring buffer-based interface to different NICs.
The DPDK (Data Plane Development Kit) framework is an example of the former approach:

it provides userspace drivers for popular high-performance NICs, and a set of well-optimized
libraries for their efficient utilization [22]. To provide a certain level of generality to the DPDK-
based software, it provides so-called Environment Adaptation Layer (EAL), a library that man-
ages the acquisition of NICs from the operating system, creation of worker threads and their
pinning to cores, either automatically or based on the command-line arguments. DPDK
achieves high performance by avoiding synchronization between cores as much as possi-
ble, using lock-free and cache-efficient data structures, as well as several software-based
approaches: preallocation of memory for the packet buffers, polling for new packets, and
pipelined processing. A combination of these features allows DPDK to achieve line rate pro-
cessing with modern high-speed NICs.
Netmap [254, 255, 207], implemented in FreeBSD and available as a third-party patch on

Linux, implements a latter approach, requiring Netmap-specific changes in each of the device
drivers to be available through the Netmap interface without emulation overheads. Netmap
exposes a ring buffer structure per NIC queue that the userspace applications can use for
zero-copy, batched packet access. Control of the packet transmission (interface configura-
tion, polling, etc.) is still performed through the common POSIX system calls. This offers the
developers and administrators easy-to-understand control mechanisms: configuration with
ifconfig, synchronization via poll, at the cost of slightly lower performance due to system
call overhead (e.g., DPDK uses busy polling). In addition to this, Netmap allows performing
zero-copy forwarding between different Netmap ports.
It should be noted that modern non-POSIX operating systems commonly implement sim-

ilar kernel bypass interfaces, for example Arrakis [241] and IX [85], to achieve high perfor-
mance and low latency.
Most kernel bypass libraries implement only packet acquisition and L2/L3 processing func-

tionality. In case processing on higher levels of the network stack is required, for example
interaction with TCP streams, themiddlebox developer can add the required functionality via
third-party libraries. For example, rump kernel is a special build mode of NetBSD kernel that
allows the reuse of unmodified kernel components as part of userspace application [171].
In particular, it allows the reuse of the kernel TCP/IP stack. An alternative to NetBSD rump
components are library network stacks developed for embedded or high-performance use,
such as LwIP [115, 248] or TLDK [46].
Click Modular Router. Click modular router [182] is a framework for flexible construction

of internet routers and firewalls. The developers customize the behavior of the router by
configuring Click: it provides a declarative and safe domain specific language for describing
a packet processing graph. The graph consists of so-called elements, which are small, atomic,
self-contained units of functionality (following the Unix design philosophy). In case an ele-
ment that provides the necessary functionality is missing, the developer can extend Click by
implementing the element in C++, for which a high-level interface is implemented.

81

1 PollDevice(eth1, true)

2 -> SetTimestamp

3 -> Queue(8)

4 -> DelayShaper(10)

5 -> BandwidthShaper(131072B/s) // 1Mb

6 -> ToDevice(eth2);

7

8 PollDevice(eth2, true)

9 -> SetTimestamp

10 -> Queue(8)

11 -> DelayShaper(10)

12 -> BandwidthShaper(131072B/s) // 1Mb

13 -> ToDevice(eth1);

Figure 5.1: An example of Click router configuration. Each of named entities (PollDevice,
SetTimestamp) are an instance of a corresponding Click element, while the ar-
rows connect them into a packet processing graph. This Click configuration builds
a simple forwarder between two interfaces with a delay and bandwidth shap-
ing [181].

Click-based middleboxes. Click’s extendable architecture and easy-to-understand graph
language hasmade it a to-go tool for implementing production and researchmiddleboxes [211,
70, 89, 201, 170, 170]. Our work also builds on the Click architecture, but unlike the previous
work, ShieldBox focuses on securing the Click architecture on the untrusted hardware.
As Click lacks the elements for supporting TCP and higher-level protocols, most Click-based

network appliances operate at the L2-L3 layer, with the notable exception of CliMB [195].
CliMB implements TCP support as a set of more than 40 different elements. The corre-
sponding TCP streams are available to user applications via POSIX-like API; it can be used to
communicate with user applications in a blocking and non-blocking manner.
To support flow-based abstractions, many state-of-the-art middleboxes [165, 264, 67, 208,

66] support comprehensive applications and use-cases. Since both Click and DPDK are
geared toward L2-L3 network processing, our current architecture does not support L4-L7
NFs. As part of the future work, we plan to integrate a high-performance user-level network-
ing stack [167] in the SCONE framework to support the development of secure higher layer
network appliances.
While initially Click has provided a custom kernel module for accelerating packet acquisi-

tion and processing, it has also gained support for Netmap and DPDK frameworks for fully
userspace operation, contributed by the authors of FastClick [78]. However, virtualization
provides another interface that can be used for high-performance networking: ClickOS [211]
is “a high-performance, virtualized software middlebox platform”, that utilizes a modified Xen
hypervisor to deploy multiple Click-based VMs on commodity hardware. To improve the
performance of Xen networking to the line packet rates, it has several optimizations imple-
mented: polling for packets, use of a high-performance software switch [255], and direct
mapping of per-port ring buffers into the VM address space (which implements kernel by-
pass and zero-copy packet transfers). Just like ClickOS, ShieldBox achieves high performance
by directly exposing NIC buffers to the userspace application.

Secure middleboxes. APLOMB [267] is one the first systems to showcase that it is a viable
alternative, performance- and cost-wise, to outsource middleboxes from the enterprise en-

82

vironment to the cloud. However, APLOMB did not consider the security implications of out-
sourcing in the cloud. To overcome the limitation of APLOMB, the follow-up systems, namely
Embark [194] and BlindBox [268], advocate network data processing over the encrypted traf-
fic. In particular, BlindBox [268] proposes an encryption scheme based on garbled circuits
to support string matching operations over encrypted traffic. However, Blindbox supports
only a restricted type of functionalities, supporting only the basic network functions for DPI.
To overcome this limitation, Embark [194] extends BlindBox to support a wider range of net-
work function. However, Embark suffers from the prohibitively low performance as it involves
complex cryptographic computations over the encrypted network traffic. In contrast, Shield-
Box supports a wide range of NFs (same as plain-text) and achieves a near-native throughput
and latency.
The several workshop papers [105, 176, 145] have elaborated the challenges and potential

usages of SGX in the network applications. In the domain of network-intensive applications,
SGX-Tor [175] is one of the first systems to use SGX to enhance the security and privacy of Tor.
In a similar vein, CBR [242] leverages SGX to support privacy-preserving routing. Both these
systems rely on Intel SGX SDK and kernel-provided sockets for their operation. Similarly,
the ShieldBox project builds the first comprehensive system using Intel SGX to secure the
middleboxes, but it is built using Click abstractions and with a kernel bypass technology.
It is possible to improve the middlebox throughput not by relying on the kernel bypass,

but by outsourcing the network packet processing functionality to the clients. This approach
is taken by Endbox [135], a framework that aims to reduce the physical centralization of the
network processing, and eliminate a single point of failure in the network. To ensure that the
client cannot violate the network processing policy, the packet processing happens under
the protection of Intel SGX, and the packets are passed through a VPN which is accessible
only via the Endbox enclave. Endbox is built using Click and OpenVPN. The measurements
performed by the authors show that it is possible to improve the throughput 2.6-3.8x by
using EndBox instead of a centralized middlebox. Unlike EndBox, ShieldBox is designed to
operate as a centralized service in the network.
The two other concurrent research projects also investigated secure deployment of NFs:

First, SafeBricks [244] is a system for outsourcing NFs to the untrusted cloud. It has high
isolation and safety properties with minimal overhead stemming from the Rust type system,
and implements least privilege principle for NFs. Similar safety properties are provided to
Click by its DSL. Secondly, mbTLS [227] presents a modification to TLS v1.2 protocol that al-
lows seamless and secure integration of middleboxes into connections between two peers.
It leverages Intel SGX to authenticate the middlebox and has a high level of backward com-
patibility with legacy peers.

Timers for SGX-basedmiddleboxes. As we will see in this chapter, timer access is a crucially
important piece of the operating system functionality, which is used for scheduling execu-
tion of network function elements, timestamping packets and log entries, and by default is
available only via a system call, like clock_gettime or gettimeofday; these system calls are
well-optimized on Linux, up to the point of not requiring a context switch [55]. However,
for Intel SGX enclaves, they are available only with significant performance loss due to cache
flushing (in case of enclave exit) or with high latency in the case of SCONE asynchronous
system calls. We present our own solution to this problem in ±5.5.5, and the alternative
solutions used by state-of-the-art systems—below.
SEC-IDS [188] is one of the first systems that has paid attention to this problem in the

context of porting Snort, a popular enterprise intrusion detection system (IDS), into an Intel

83

SGX enclave. As Snort timestamps each packet for the purpose of logging, getting the time
from the OS using clock_gettime system call at least twice per packet. Thus, for the ini-
tial implementation of this function using Graphene-SGX OCALL (outside call), the authors
report 10× overhead over the native version. To eliminate this overhead, they rely on an
efficient, high-resolution software timer presented by Schwarz et al. [263]. This optimization
has reduced the timer access latency to native levels, at the cost of dedicating a core to the
timer thread.
An alternative solution to the problemof low-latency in-enclave timer is provided in SafeBricks

and Lightbox [244, 114]. Both of these systems fundamentally rely on the NIC timestamping
feature: as NIC puts a timestamp into the metadata of each packet, the enclave uses it to up-
date the internal clock. In this case, the resolution of the timer is directly proportional to the
rate of the incoming packets. We note that the solution in Lightbox is more robust, as it relies
on the periodic heartbeat message exchange with a trusted host to synchronize the time,
which also provides a lower bound on the timer resolution, which is missing in Safebricks.

5.3 Middlebox Challenges for Intel SGX

Intel SGX restrictions and SCONE architecture present several challenges for the construc-
tion of shielded middlebox instances.
First, as we have mentioned in ±5.2, with Intel SGX, the middlebox code cannot be put

into the kernel mode, and thus only userspace solutions can be used. This proves to be
particularly challenging on Linux, which lacks an equivalent of the FreeBSDNetmap interface,
thus making an application of kernel bypass a favorable option. While Netmap is available
on Linux as a third-party patch, using it would restrict our ability to deploy ShieldBox in the
cloud, where third-party Linux patches are typically not available.
Additionally, even with the kernel bypass solution in place, SCONE asynchronous system

calls should not become a source of overhead, as system callsmay still get invoked for service
operations. In particular, access to the time source has proven to be a common operation in
the middleboxes, as it is necessary to perform operations like rate limiting and periodically
sending packets. This problem calls for a low-overhead time source.
The interaction of the userspace threading in SCONE with the DPDK expectation of having

fully dedicated cores also presents a challenge for ShieldBox. For example, each system
call in SCONE is a userspace thread preemption point, which in the case of DPDK adversely
affects cache locality due to the necessity to enter the userspace scheduler, whichmay cause
further overhead by scheduling a different thread on the same core.
Finally, for the kernel bypass, memory management provides a challenge: kernel bypass

framework typically delivers packets via DMA to the unprotected physical memory. However,
in case of Intel SGX, direct memory access to the enclavememory is impossible. Thus, Shield-
Box has to ensure that the memory used for packet delivery is outside of the enclave. While
handling this issue, it is necessary to make sure that the packet delivery mechanism cannot
be used to perform Iago attacks.
In the next section, we will present the design decisions in ShieldBox that allowed it to

overcome these challenges and achieve near-native throughput and latency.

84

Inside Intel SGX enclave

Userspace

Kernel and SGX driver

Click Modular Router

SCONE Runtime

DPDK

Network

Interface

Card (NIC)

RX Queue TX Queue

Figure 5.2: ShieldBox basic design.

5.4 Overview

Basic design. At a high-level, the core of our system consists of a simple integration of a
DPDK-enabled Click [182] that is running inside the SGX enclave using SCONE (±3). Figure 5.2
shows the high-level architecture of ShieldBox.
While designing ShieldBox, we need to take into account the architectural limitations of In-

tel SGX. As described in ±2.2, an enclave context switch (or exiting the enclave synchronously
for issuing system calls) is quite expensive in the SGX architecture. The SCONE framework
overcomes this limitation using an asynchronous system call mechanism [277]. While the
asynchronous syscall mechanism is good enough for common Web services like HTTP
servers or key-value stores, it is not sufficient to sustain the line rate as required by mod-
ern middleboxes. Especially, numerous modern middleboxes require a fast path bypassing
kernel network stack to achieve the line rate [84]. Therefore, we design a high-performance
I/O library for shielded execution based on the userspace DPDK library [22] as a better fit for
the SGX enclaves. As we have noticed before, using Netmap on Linux requires patching the
host kernel, which limits the possibility to easily install Netmap in the cloud.
Furthermore, we need to ensure that the memory footprint of ShieldBox code and data

is minimal, due to several reasons: As described in ±2.2, enclaves that use more than 94MB
(198MBon the newer generation of Intel CPUs) of physical memory suffer grave performance
penalties due to EPC paging (2× to 2000×). In fact, to process data packets at the line rate,
an even stricter resource limit must be obeyed—the working set of the application must fit
into the L3 cache. Therefore, our design diligently ensures that we incur minimum cache
misses, and avoids EPC paging.
Besides performance reasons, minimizing the code size inside the enclave allows reducing

the attack surface as it leads to a smaller Trusted Computing Base (TCB). The core of Click is
already quite small (6MB for a statically linked binary section that is loaded in the memory).
We decrease its size by removing the unnecessary Click elements at the build time. Impor-
tantly, we design ShieldBox with the packet-related DPDK data structures running outside
of the enclave. More specifically, the TCB in our case comprises of the following compo-
nents: the CPU and the microcode that implements the SGX functionality; code and data of
SCONE’s C library as well as its remote attestation mechanism, DPDK (except for the actual
packet buffers), and Click. All other components are untrusted, and their compromise can

85

Configuration and

Attestation Service

(CAS)

Network

Operator ShieldBox Runtime & LAS

Middlebox

image repository

(e.g. Docker Hub)

Middlebox

Developer

Step #1

Steps #2, #5

Steps #3, #6

Step #4
Step #6

Workflow steps:

#1: Build and host middlebox images using the SCONE toolchain

#2: Launch the CAS service on a trusted host

#3: Install LAS service on a ShieldBox host

#4: Install ShieldBox from the repository

#5: Provide ShieldBox configuration and secrets to CAS

#6: Launch ShieldBox, perform remote attestation, configuration

Figure 5.3: ShieldBox system workflow.

not lead to security failure.

Threat model. We target a scenario where the middleboxes that process confidential data
are deployed in the untrusted cloud environment (or at the edge computing nodes) [267]. In
this context [194, 268], attackers might try to learn the contents of encrypted data packets
and system configuration such as cryptographic keys, filtering and classification rules, etc.
Furthermore, attackersmight try to compromise the integrity of themiddlebox by subverting
its execution.
To circumvent such attacks, we protect against a very powerful adversary even in the pres-

ence of complex layers of software in the virtualized cloud computing infrastructure. More
specifically, we assume that the adversary can control the entire system software stack, in-
cluding the OS or the hypervisor, and is able to launch physical attacks, such as performing
memory probes.
We rely on Intel SGX to protect against direct memory-reading attacks by the privileged

software. This guarantees confidentiality, integrity, and freshness of the SGX-protectedmem-
ory pages. We also assume the attacker can launch memory safety attacks by forging point-
ers into trusted memory and pass them to ShieldBox [190, 231, 100]. For protection against
this attack, see ±5.5.6. Also, as noted in ±5.5.5, all time sources available to ShieldBox are
untrusted and can be potentially used as an attack vector.
However, we note that ShieldBox is not designed to protect against side-channel attacks [297],

such as exploiting timing and page fault information, or microarchitectural attacks, such as
Spectre and Foreshadow [180, 93]. Furthermore, since the underlying infrastructure is con-
trolled by the cloud operator we cannot defend against denial-of-service attacks. We also
assume that an attacker can arbitrarily reorder or drop packets—we take no particular ac-
tions against such attacks. Middlebox developers should protect against these attacks using
appropriate cryptographic primitives, if necessary.

System workflow. Figure 5.3 shows the system workflow of ShieldBox. As a preparation
for the deployment, developers build middlebox container images and upload them to an
image repository (such as Docker Hub [219, 12]) using the SCONE toolchain. A network
operator who wants to deploy a middlebox to the cloud should bootstrap a Configuration
and Attestation Service (CAS) on a trusted host, and a Local Attestation Service (LAS) on

86

the host that will be running the middlebox (detailed in ±5.5.1). After this, ShieldBox can be
installed on the target machine in the cloud using the container technology—eithermanually
or deployed as a container image from the image repository. Alternatively, it can be installed
by transferring a single binary to the target machine.
The ShieldBox framework is bootstrapped using the Palaemon Configuration and Remote

Attestation Service (CAS) (±5.5.1) [138]. The CAS service is launched either inside an SGX en-
clave of an (already bootstrapped) untrusted machine in the cloud or on a trusted machine
under the control of the network operator outside the cloud. Middlebox developers imple-
ment the necessary NFs as Click configurations and send them to the CAS service together
with all necessary secrets (cryptographic keys, proprietary IDS rules, etc.).
Once the operator launches ShieldBox, it connects to the CAS and carries out the remote

attestation (±5.5.1). If the attestation is successful, the ShieldBox instance receives the config-
uration and necessary secrets. Thereafter, ShieldBox executes user-defined Click elements,
which are responsible for reading packets in the userspace memory directly from NIC, per-
forming network traffic processing, and sending them back to the network. All elements run
inside an SGX enclave. Packets that must be processed under SGX protection are copied into
the enclave explicitly. We efficiently execute the expensive network I/O operations (to and
from the enclave memory) by using our high-performance I/O library for shielded execution
based on DPDK. To summarize, ShieldBox provides the following benefits:

• Security: ShieldBox provides strong confidentiality and integrity for the middlebox ex-
ecution by leveraging SGX enclaves.

• Performance: ShieldBox achieves near-native throughput and latency by building a
high-performance network-I/O architecture for shielded execution by optimizing the
combination of SCONE and DPDK.

• Generality: ShieldBox supports a wide range of NFs, as supported in the plain-text
network processing, without restricting any functionalities by leveraging Click’s simple
and generic programming model.

• Transparency: ShieldBox provides network operators a portable, configurable, and
verifiable architecture for seamless deployment of middleboxes. It builds on the con-
tainer technology, and therefore, the changes to the software source code and deploy-
ment methods are kept at the minimum.

Limitation. We note that neither DPDK nor Click have built-in functionality for flow-based
stateful traffic. More precisely, it has no functionality to reconstruct flows and process pack-
ets in flow context using Click or DPDK— this functionality must be added to the C/C++ core
of these applications. This implies that ShieldBox currently supports NFs that work on L2 and
L3; as only restricted processing of L4-L6 traffic is supported, which does not require flow
reconstruction, for example checksum verification, but not direct reads and writes of data
from a flow.
While this limitation is at odds with the stated goal of Generality, we argue that applications

that are operating at L4-L6 typically use different programming models, which fit badly into
the packet-oriented programming model of Click, designed for ease of L2-L3 processing.
Additionally, the operating system interfaces for working with flow-based traffic are generally
well-optimized andmay not warrant the use of kernel bypass technologies. Also, maintaining
a state per each flow inside enclave requires efficient state storage, otherwise EPC paging

87

Click

DPDK

Untrusted runtime

System call threads

Huge pages

Kernel

SGX Enclave: ShieldBox Userspace NIC

Code and data

Configuration and secrets

Packet descriptors

Protected packets

Code and data

NIC drivers

Platform abstraction

Control data structures

SCONE

Code and data

Trusted runtime

(All Click state

is protected)

SGX Module

UIO Module

Transmit queues

Receive queues

PTP Clock

Enclave creation &

system calls

NIC Timer Access

Packet Rx/Tx

Protected packet copy

Ring packet IO

NFV Chaining

Ring

Iago Attack Protection

State Persistence

Remote Attestation &
Configuration Service

New Elements

Figure 5.4: Detailed design of ShieldBox.

would cause an excessive slowdown [114]. We believe that to efficiently implement flow-
based NFs, a foundation different from Click should be used.

5.5 Design Details

We next present the design details of ShieldBox. Figure 5.4 shows the detailed architecture
of ShieldBox.

5.5.1 Configuration and Remote Attestation

To bootstrap a trusted middlebox in the cloud, one has to establish trust in the system com-
ponents. While Intel SGX provides a remote attestation feature, a holistic system must be
built for remote attestation and secure configuration of network appliances [260]. To achieve
this goal, ShieldBox relies on an early version of Palaemon, a generic remote attestation and
configuration framework. We present its protocol flow in Figure 5.5, as well as provide its
telegraphical summary below.
To attest an enclave using Intel Remote Attestation, a verifier (operator of a ShieldBox

instance) connects to the application and requests a quote. The enclave requests a report
from SGX hardware and transmits it to the Intel Quoting Enclave (QE), which verifies, signs,
and sends back the report. The enclave then forwards it to the verifier. This quote can be
verified using the Intel verification service [23].
The Palaemon remote attestation system extends Intel’s RA mechanism and is integrated

with a configuration system, which provisions ShieldBox with its configuration in a secure
way using a trusted channel established during attestation. This system consists of an en-
clave startup routine embedded in the SCONE library, Local Attestation Service (LAS), and
Configuration and Attestation Service (CAS).

• The enclave startup routine takes control before ShieldBox’s main function is called and
interacts with LAS and CAS to carry out remote attestation, and allows securely setting

88

CAS ShieldBox LASOperator
Populate

configuration

Intel QE

ShieldBox Machine

TLS Connection

establishment

SCONE quote

SCONE quote

Configuration

and secrets

Once per

host

Configuration

request

Intel

quote request
Intel

quote request
Quote requestIntel

quote replyIntel

quote reply

IAS

Verify quote

Verification report

SCONE quote

request

Figure 5.5: ShieldBox’s remote configuration and attestation service.

environment variables, command-line arguments, and encryption keys for the SCONE
shielding layer.

• Local Attestation Service is running on the same machine as ShieldBox middlebox. It,
eventually, acts as the root of trust for remote attestation once CAS trusts LAS. On each
host, LAS only has to attest itself one time using the Intel RA mechanism to CAS. This
decouples our system from the Intel Attestation System after this initial attestation.

• Configuration Attestation Service is running on a logically single (possibly replicated)
node and stores configuration and secrets of the services built with SCONE. It builds
trust into unknown LASusing Intel Attestation Service (IAS),maintains information about
attested LAS instances, and provisions configuration to applications using the startup
routine.

To bootstrap the system, the operator launches CAS, either on the host under her con-
trol or the host in the cloud inside an SGX enclave. Then, the CAS service is populated with
configurations and secrets using the REST API or a command-line configuration tool. LAS in-
stances are launched on cloud hosts that will run ShieldBox instances either by the operator
or the cloud provider. During startup, SCONE’s startup routine in each ShieldBox instance
establishes a TLS connection to the CAS. Simultaneously, it connects to the LAS to request a
SCONE quote that is forwarded to CAS. In case the LAS instance is not yet trusted, CAS uses
Intel’s RA mechanism to attest it. After the trustworthiness of LAS is established, ShieldBox’s
SCONE quote is verified by CAS proving the binary’s integrity and establishing whether it is
running under SGX protection. After that, CAS ensures that the TLS connection is originating
from the ShieldBox instance it received the quote of preventing man-in-the-middle attacks.
Thereafter, ShieldBox obtains its configuration from the CAS service and transfers control to
main ShieldBox code.

89

ToEnclave

Transfers a packet to enclave, frees the original packet

Seal(Key, Security Association state)

Encrypts the packet with AES-GCM

Unseal(Key, Security Association state)

Decrypts the packet with AES-GCM

HyperScan(rule database)

High-performance regular expression matching engine

DPDKRing(Ring name)

Transfers a packet to the DPDK ring structures

StateFile(Key, path)

Provides settings to the persistent state engine

Table 5.1: New specialized elements of ShieldBox.

5.5.2 Secure Elements

As described in ±5.4, we design ShieldBox with the packet-related data structures of DPDK
stored outside the enclave. Therefore, we need an efficient way to support the communi-
cation between DPDK and the enclave memory region. In particular, we have to consider
the overheads of paging in the SGX-encrypted pages from the main memory and copying
of the data between the protected and unprotected memory regions. When possible, the
data packets with plain-text contents should not be needlessly copied into the enclave, as
this copying will degrade the performance. Therefore, we design specialized secure Click ele-
ments (shown in Table 5.1) for copying the data packets into/outside the enclave to facilitate
efficient communication.
By default, packets are read from NIC queues into the untrusted memory. This reduces

the overhead of using SGXwhen processing packets that are not encrypted and can be safely
treated with fewer security mechanisms involved. Such packets are immediately forwarded
or dropped upon header inspection. On the other hand, we must move packets into the
enclave memory with an explicit copy element. We have implemented such an element
(ToEnclave), and use it to construct secure packet processing chains.
We have also added support for the commonly used AES-GCM cipher into ShieldBox (Seal

and Unseal elements). This allows us to construct VPN systems that use modern crypto-
graphic mechanisms. These elements were implemented using the Intel ISA-L crypto library.
We use CAS to distribute the VPN traffic encryption keys.
To allow the creation of high-performance IDS systems based on ShieldBox, we have cre-

ated an element based on the HyperScan regular expression library. It allows fast matching
of multiple regular expressions for the incoming packets, simplifying the implementation of
systems like Snort [43].
We have also added elements that implementmore broadmechanisms: DPDKRing (±5.5.3)

for NFV chaining (±5.5.3), and StateFile (±5.5.4) persistent state storage for ShieldBox ele-
ments.

90

Enclave #1

Click Modular Router

SCONE Runtime

DPDK

Enclave #1

Click Modular Router

SCONE Runtime

DPDK

DPDKRing

data structure in

 shared memory

Figure 5.6: NFVs chaining in ShieldBox.

5.5.3 NFVs Chaining

Typically NFVs are chained together to build a dataflow processing graph with multiple Click
elements, spanning across multiple cores, sockets, and machines [238, 173]. The communi-
cation between different cores and sockets happens through the shared memory, and com-
munication across machines via NICs over RDMA/Infiniband. DPDK supports NUMA systems
and always explicitly tries to allocate memory from the local socket RAM nodes.
However, unlike normal POSIX applications, SGX enclaves cannot be shared across differ-

ent sockets1. As a result, in the current Intel SGX architecture, the users would need to run
one ShieldBox instance per each CPU socket. Another important reason for cross-instance
chaining is the collocation of middleboxes from different developers that do not necessarily
trust each other. In this case, developers would want to leverage SGX to protect the secrets.
Therefore, the ShieldBox framework must provide an efficient communication mechanism
between enclaves to support high-performance NFVs chaining.
We built an efficientmechanism for communication between different ShieldBox instances

by leveraging existing DPDK features. In particular, DPDK already provides a building block
for high-throughput communication between different threads or processes with its ring
API. This API contains highly-optimized implementations of concurrent, lockless FIFO queues
which use huge pagememory for storage. We have implemented the DPDKRing element (see
Table 5.1) for ShieldBox to utilize it for chaining. As huge page memory is shared between
multiple ShieldBox instances, the ring buffers are shared as well and can be used as an effi-
cient way of communication between multiple ShieldBox processes. We do not use SCONE
concurrent queue implementation for this task, as this would require additional changes to
the DPDK, which we would like to avoid.
This solution requires assigning ownership of all shared data structures to a single process.

For this, we rely on the DPDK distinction between primary and secondary processes. Primary
processes, the default type, request huge pagememory from the OS, allocate memory pools
and initialize the hardware. Secondary processes skip device initialization and map the huge
page memory already requested by the primary process into their own address space. To
support network function chaining using multiple processes, we added support for starting
ShieldBox instances as secondary DPDK processes.

1The future SGX-enabled servers might have support for the NUMA architecture

91

Seal(StateFile)

Seals elements’ state in the StateFile

Unseal(StateFile)

Unseals elements’ state from the StateFile

Persist(timer, StateFile)

Periodically persists the state to StateFile

Table 5.2: ShieldBox APIs for state persistence. The code of each ShieldBox componentmust
be extended to serialize the relevanta state.

Depending on the process type, the DPDKRing element either creates a new ring (primary
process) or looks up an existing ring (secondary process). In ShieldBox, packets pushed
towards a DPDKRing element are enqueued into the ring and can be dequeued from the
ring in another process for further processing. Bidirectional communication between two
processes can be established by using a pair of rings. Depending on the number of pro-
cesses/threads enqueuing into and dequeuing from the ring, it can be configured as SPSC
or MPMC ring.
One drawback of running multiple, cooperating DPDK applications is that the ASLR needs

to be disabled in most cases so that huge page memory mappings are established at the
same addresses in all participating processes, which might impose a security risk for the
applications. This is required because data is passed through rings by pointers and those
need to point to the same memory locations in all processes to reference the correct data.
We note that this is not a significant problem for SGX enclaves, as they require additional
in-enclave code for randomization [265].

5.5.4 Middlebox State Persistence

Middleboxes often maintain useful state (such as counter values, Ethernet switch mapping,
activity logs, routing table, etc.) for fault-tolerance [266], migration [236], diagnostics [296],
etc. To securely store this state in persistent memory, we extend ShieldBox with new APIs
(shown in Table 5.2) for the state persistence. The Seal primitive is used to collect the state
that must be persisted from the elements, and write it down in encrypted form to disk.
Unseal reads this state from disk, decrypts it, and populates the elements with this state.
In order to allow secure cryptographic key generation inside the enclave, we expose SCONE
functions for getting SGX Seal keys to the ShieldBox internal APIs.
To configure this functionality, we have added a new configuration element to ShieldBox,

called StateFile (see Table 5.1). Its parameters are the file to which state should be written,
and the key that should be used for encryption. Note that this information is transmitted to
ShieldBox instance in the configuration string via remote attestation, and is not accessible
outside the enclave. We do not use SCONE file system shield but encrypt and decrypt the
file as a single block instead. This ensures the confidentiality and integrity of stored data via
the use of the AES-GCM cipher. While the current implementation does not protect against
rollback attacks, we consider it to be an out-of-scope problem, which can be solved using a
state-of-the-art approach such as ROTE [212] or by writing the encrypted data to a storage
system like PESOS [185]
We do not attempt to extract the relevant state transparently. Instead, we rely on the

programmer to provide necessary serialization routines that save only necessary parts of

92

1

1 × 10
2

1 × 10
4

1 × 10
6

1 × 10
8

clock_gettime,
Idle syscall thread

clock_gettime,
Active syscall thread

NIC PTP Clock rdtsc

Time source

L
a

te
n

c
y,

 n
s
e

c

Figure 5.7: Access latency of different time source inside Intel SGX enclaves.

the element state. These routines are available in ShieldBox as the read and write handlers,
and are triggered in the ShieldBox startup procedure after the configuration is loaded and
parsed, and after the initialization of the basic components is finished, or manually via the
ControlSocket interface of the StateFile element. It is also possible to trigger them peri-
odically via a timer.

5.5.5 NIC Time Source

The timer is one of the commonly used functionalities in middleboxes [211, 238]. It is used
for a variety of purposes such as measuring performance, scheduling NFs, rate limiting, and
so on.
The time measurement can be fine-grained or coarse-grained based on the application

requirements. For the fine-grained cycle-level measurements, developers use rdtscp or
rdtsc instruction, which are extremely cheap and precise. Whereas for the coarse-grained
measurements, applications invoke system calls like gettimeofday or clock_gettime, which
on Linux is typically implemented as an extremely low overhead vDSO call.
However, in the context of SGX enclaves, both rdtsc and system calls have unacceptable

latency to use in middleboxes for the line rate processing. More specifically, instructions that
access x86 Timestamp Counter are forbidden inside the enclave, and therefore, it causes an
enclave exit event. On the other hand, asynchronous system calls in SCONE are submitted
through a system call queue that is optimized for the raw throughput, but not latency: as
system call threads back off when the concurrent queue has no enqueued elements for
prolonged periods of time, the latency of the system call increases dramatically.
We perform access latency measurements with these time sources and present the re-

sults in Figure 5.7. One can see that the latency of clock_gettime system call when the
SCONE system call thread is idle, that is it is in the back-off state due to lack of submitted
system calls, access to the timer can take up to 150 msec, which is unacceptable overhead
for a high-performance middlebox. On the other hand, when the system call thread is ac-
tively spinning, the system call can be processed in approximately 0.6 μsec. Thus, disabling
back-off in system call threads should provide a timer of acceptable latency to ShieldBox. Un-
fortunately, disabling back-off has several drawbacks: increased CPU resource consumption
due to collocation of system call threads and enclave threads on sibling hypercores, fewer

93

Enclave Hugepage Memory

Packet data from NIC

(0x7f..00—0x7f..ff)

mbufs

0x7f..A000

0x7f..B000

0x7f..C000

Secret data

(0x02..0000—0x02..FFFF)

0x02..C000

Packets

✔ 0x7f..A000
✔ 0x7f..B000
✔ 0x7f..C000
✖ 0x02..C000

Copy with

range check

Figure 5.8: DPDK-specific Iago attack prevention in ShieldBox.

possibilities for frequency downscaling, and starvation of system tasks. Therefore, we do not
configure SCONE to disable back-off. Also, as expected, rdtsc instruction, which has a nom-
inal latency of approximately 20 cycles, has a latency of 6.5 μsec inside the enclave due to
the asynchronous enclave exit that it causes. Therefore, a different time source is required.
To overcome these issues, we use the on-NIC PTP clock as the clock source for the enclave.

This clock can be read inside the enclave reasonably fast (0.9 μsec, which is on the same scale
as reading HPET). Moreover, it neither causes enclave exits nor requires submitting system
calls. Furthermore, the on-NIC clock is extremely precise since it is intended to use for the
PTP synchronization protocol.
We note that this time source is not secure, and can be used as a DoS attack vector by a

malicious OS. However, we note that in the case of ShieldBox, time source is not used for
security-critical tasks, and thus its manipulations can only lead to performance degradation
or denial of service. Thus, providing a trusted, efficient and precise time source is out-of-
scope of this chapter; we provide our solution in the context of leases in the Chapter ±7.
Lastly, we note that the HPET timer can also be used for our purpose. We argue against

its usage since it has to be enabled for the entire system in the kernel configuration to be-
come available. Thus, it would negatively affect the performance of native POSIX applications
running on the system, which typically use the TSC-based system time source.

5.5.6 Memory Safety for DPDK-Specific Iago Attacks

Iago attacks [100] are a serious class of security attacks that can be launched on shielded
execution to compromise the confidentiality and integrity properties. In particular, an Iago
attack originates through malicious inputs supplied by the untrusted code to the trusted
code. In the classical setting, a malicious OS can subvert the execution of an SGX-protected
application by exploiting the application’s dependency on correct values of system call return
values [83].
The decision (±5.4) to allocate huge pages for packet buffers and DPDK rings has secu-

rity implications. The fact that packets are passed through rings by reference, and DPDK
buffers contain pointers, opens a new attack surface. Attackers with access to this memory
region could modify pointers to point into the SGX-protected regions and make the enclave
inadvertently leak secrets over the network [190, 231].
The scenario for Iago attack on DPDK is depicted in the Figure 5.8: DPDKmaintains amem-

ory buffer associated with each received packet in the unprotected memory. The attacker

94

adds a maliciously crafted memory buffer descriptor (mbuf) with an offset or data address
pointing to the enclave into the rte_ring structure. If NF sends all packets that, for example
do not have an IP header to the output, this could leak memory content, and thus exfiltrate
secrets like encryption keys or plaintext of the encrypted traffic. We consider this attack
vector serious enough to require a defense.
To protect against DPDK-specific Iago attacks, we have implemented a pointer validation

function. More specifically, the scheme uses an enclave parameter structure that is lo-
cated inside the enclave memory and defines the enclave memory boundaries. Memory
buffer descriptors are validated by checking if they do not overlap with the enclave memory
range [base,base + enclave_size). The check happens after copying the descriptor into the
enclave, which is necessary to prevent a time of check vs. time of use vulnerability. We note
that ShieldBox is already protected against the classical syscall-specific Iago attacks through
SCONE’s shielding interfaces.
This ensures that no pointers possibly pointing to the secrets stored in EPC are accepted

through the unprotected huge page memory. Pointers can still be modified by a malicious
attacker, but they can only point to the unprotected memory. However, if they point to the
unmapped virtual memory, the operating system will terminate the application. Further-
more, security measures such as ASLR also makes it harder for the attackers to find a valid
attack vector [265].
As it is possible for an application to enqueue and dequeue arbitrary pointers into DPDK’s

rte_ring structures, it is not easily possible to integrate this pointer check directly intoDPDK.
Instead, we implement these pointer checks in the DPDKRing and FromDPDKDevice (±5.5.3)
elements. If ShieldBox detects a malicious pointer, it assumes an attack, notifies the applica-
tion operator, and drops the packet.

5.6 Implementation

5.6.1 Interaction with SCONE and Hardware

We build on SCONE to simplify porting of DPDK and Click. We needed to apply musl-libc
compatibility patches only to DPDK to make the system run as an Intel SGX enclave — that
is, we did not apply any SGX-specific patches. SCONE provides ShieldBox the memory man-
agement and remote attestation and configuration subsystems. Using Intel SGX SDK would
require numerous wrappers for system calls, and thus would force substantial changes to
Click and DPDK. We could have used Graphene-SGX [287] without significant drawbacks: its
only drawback at the time this work was performedwas the lack of built-in remote attestation
features (added in version 1.1) and secure configuration service of SCONE. We next describe
how we adapted SCONE for our system.

System startup. When ShieldBox starts, it performs remote attestation and obtains the con-
figuration. ShieldBox initializes the DPDK subsystem, allocates huge pagememory, and takes
control over NICs that are available. Then, it starts running the Click element scheduler, which
reads packets from the NIC and passes them through the processing graph until they leave
the system or are dropped.

System calls. As one of the goals of the ShieldBox is high throughput and low latency, we
minimize the rate of system calls in the fast path of the application, as this would make it
impossible for us to sustain the line rate. On the other hand, systems calls are necessary for

95

the application startup, as it is necessary to do remote attestation, gain access to NIC, and
so on. Thus, the asynchronous system call subsystem is mostly idle after the startup and
causes no runtime overhead. On the other hand, it cannot be disabled completely during
the operation of ShieldBox, as it is necessary, for example, to update the configuration or
read statistics via the ShieldBox control socket.

Memory management. When the SCONE runtime starts the application, it automatically
places the application code, statically allocated data, and heap (memory allocated via malloc,
mmap) in the SGX-protected EPC memory. This mechanism is in contrast to the way DPDK
operates—DPDK by default allocates memory using x86_64 huge pages, which reduces the
TLB miss rate and ensures continuous physical memory layout. Such pages are not sup-
ported inside the enclave; besides that, the NIC can only deliver packets to the unprotected
memory, and network traffic entering or leaving the machine can bemodified by an attacker.
Therefore, we keep the huge pages enabled in DPDK outside the enclave, and explicitly copy
packets that must be processed with SGX protection into the enclave. With this scheme, DPDK-
created packet data structures are allocated outside the SGX enclave. We support an effi-
cient data transfer between the DPDK and enclave and processing inside the enclave using
the new secure Click elements (detailed in ±5.5.2).
Accessing huge pages in DPDK does not require bypassing SCONE, because of the specific

way DPDK allocates huge pages. In particular, instead of passing MAP_HUGETLB flag to mmap

system call, it opens shared memory files in the hugetlbfs virtual filesystem and passes
those file descriptors to the mmap call. SCONE does not apply shielding in this case, so no
additional modifications are necessary (± 3.3.4).

Partitioning ShieldBox. Another design aspect that is always present in designing software
for Intel SGX is the question of partitioning. One of the components that we could have
moved outside of the enclave is DPDK: in the end, NIC cannot deliver data into the enclave,
as this would violate the SGX security mechanism, and thus a big part of DPDK data is located
outside of the enclave. Therefore, DPDK can be easily moved out of the enclave. This would
open two possibilities for interaction with enclave: via concurrent queue in shared memory
or synchronously via enclave enters/exits. We argue that both approaches are suboptimal
from the performance point of view.
If we use a synchronous interface, we would have to constantly execute enclave enters and

exits, which have extremely high runtime cost. If we attempted to increase packet batch size
to reduce this cost via batching, we would be processing batches higher than L3 size, and
this would further reduce the performance. On the other hand, if we use a concurrent queue
for communication, this leads to another problem: in such a partitioning scenario part of the
coreswould bewasted, because they only read packets from the network into the concurrent
queue, reducing the number of cores available for useful work. Therefore, we conclude that
having DPDK inside the enclave is the optimal solution for achieving high performance inside
SGX enclaves. We do acknowledge that this approach increases the system TCB.

5.6.2 Toolchain

We build ShieldBox’s toolchain using DPDK (version 16.11) and Click (master branch commit
0e860a93). We further integrate it with the SCONE runtime to produce ShieldBox. We use
gcc version 6.3.0 for the compilation process. We use Boost C++ library (version 1.63) to
build a static version of the Hyperscan high performance regular expression matching en-
gine (master branch commit 7aff6f61) and incorporate it into ShieldBox. We use WolfSSL li-

96

brary [51] to implement StateFile sealing and packet Seal/Unseal elements. The toolchain
contains automated scripts for building and deploying middlebox images, and setting up
ShieldBox and CAS services (as described in the system workflow in ±5.4).
To make the compilation of ShieldBox work with SCONE, some changes to DPDK were

necessary. In particular, we had to remove the helper functions for printing stack tracebacks
and provide some glibc-specific structures, macros, and kernel header files. Click required
no adaptions since it is implemented in C++mostly using high-level APIs.
The resulting ShieldBox binary is 8.2 MiB in size and requires approximately 16 MiB at

runtime, including minimal runtime stack and heap allocation. This implies that we could run
roughly up to six instances of ShieldBox in parallel on one processor without impacting the
performance by EPC paging (94 MiB).

5.6.3 Optimizations

To further improve the performance, especially for the case of DPDK running inside the en-
clave, we optimized the data path inside Click. We use the Linux performance profiling tool
perf [39] to find the bottlenecks. We further optimize the data path inside Click, especially
for the case of DPDK running inside the enclave, by identifying the performance bottlenecks
using the perf [39] tool.

Memory pre-allocation. The FromDPDK element allocatesmemory for packet descriptor stor-
age on the stack each time the run_task function is called. Wepre-allocate thismemory once
in a constructor instead.

Branching hints. We insert GCC-specific unlikely / likely attributes in several if-clauses.
These attributes instruct the compiler to construct the branch in such a way that the CPU
will assume it as not taken or taken correspondingly upon first execution.

Queue optimization. In the ToDPDKDevice Click element we replace the inefficient imple-
mentation of the queue, which used std::vector from the C++ standard library, by the
rte_ring structure provided in DPDK.

Timer event scheduler optimization. In the Click timer event scheduler, we optimize the
code to reduce the number of clock_gettime system calls. This optimization allows us to
reduce the latency in short element chains to the native level.

5.7 Evaluation

5.7.1 Experimental Setup

Testbed. We evaluate ShieldBox using twomachines: (1) load generator, and (2) SGX-enabled
machine. The load generator is a Broadwell Intel Xeon D-1540 (2.00GHz, 8 cores, 16 hyper-
threads) machine with 32GB RAM. The SGX machine under test is Intel Xeon E3-1270 v5
(3.60GHz, 4 cores, 8 hyper-threads) with 32GB RAM running Linux kernel 4.4. Each core
has private 32KB L1 and 256KB L2 caches, and all cores share an 8MB L3 cache. The load
generator is connected to the test machine using a 40 GbE Intel XL-710 network card. We
use pktgen-dpdk for throughput testing. The load generator saturates the link starting with
128-byte packets.

97

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.9: Throughput of a Wire function as a function of packet size.

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h
ro

u
g
h
p
u
t,

 G
b

/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.10: Throughput of an EtherMirror function as a function of packet size.

Applications. For the micro-benchmarks, we use three basic Click elements: (1) Wire, which
sends the packet immediately after receiving; (2) EtherMirror, which sends the packet af-
ter swapping the source and destination addresses; and (3) Firewall, which does packet
filtering based on PCAP-like rules.
For the case-studies, we evaluate ShieldBox using two applications: (1) amultiport IPRouter,

and (2) an IDS.

Methodology. For the performance measurements, we consider several cases of our sys-
tem:

• Native (Non-SGX) with and without generic optimizations.

• SGX-enabled ShieldBox with and without optimizations.

• SGX-enabled ShieldBox with the on-NIC timer.

We use native Click as the evaluation baseline since it is the worst-case scenario for us.
Lastly, unless stated otherwise, ToEnclave element is not used in the benchmarks.

98

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.11: Throughput of a Firewall function as a function of packet size.

0

20

40

60

64 128 256 512 1024 1500

Packet size, bytes

L
a
te

n
c
y,

 µ
s
e

c

Native
Shieldbox

Shieldbox+mod.sched.
Shieldbox+red.syscalls

Shieldbox+MS+RS
Shieldbox+NIC timer

Figure 5.12: Latency of an EtherMirror function as a function of packet size.

5.7.2 Throughput

We first report ShieldBox’s throughput with varying packet size running on four cores. Fig-
ure 5.9, Figure 5.10, and Figure 5.11 present the throughput for Wire, Ethermirror, and
Firewall, respectively.
The results show that the performance of ShieldBox matches the performance of Click.

In the case of Wire application with the packet sizes smaller than 256 bytes, ShieldBox is
better than the native version. This is explained by the fact that Click timer event scheduler
optimization is missing in the native Click, which removes some system call overhead from
the Wire application. The impact is smaller with other applications because they contain
elements that reduce the relative overhead of Click scheduler. We also see that ShieldBox
achieves the line rate at 512 byte packets.

5.7.3 Latency

We also measure the packet processing latency using the following scheme: the load gen-
erator continuously generates a UDP packet and waits for its return from the enclave. We
study packet round-trip time measured at the load generator. On the ShieldBox instance,

99

0

10

20

30

40

1 2 3 4 5 6 7

Number of cores

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.13: Throughput of a Firewall function with an increasing number of cores. System
scales up to four cores in all configurations.

we are running the EtherMirror application. For these measurements, we do not perform
any latency-specific tuning of the environment other than thread pinning, which is enabled
by default in DPDK. We expect that a production system with stringent requirements for low
latency will use SCHED_FIFO scheduler and have isolated cores.
Figure 5.12 presents the latency measurements for EtherMirror with varying packet size.

The poor performance of ShieldBoxwithout optimizations is explained by the fact that Shield-
Box executes clock_gettime system calls in the timer event scheduling code. SCONE sys-
tem calls are optimized for raw throughput with a large number of threads, but not for low
latency; this makes the latency measurement result 3× worse than the native execution. We
have considered the following latency optimizations:

• Reduced system call rate for immediately-scheduled timer events. It removes one sys-
tem call round-trip from the packet latency.

• Modified scheduler that prioritizes immediately-scheduled events and allows to re-
move a system call from scheduler if there are no periodic timer events.

One of the surprising results that we have is that each of these optimizations does not
have a statistically significant influence when applied individually, which can be explained by
the fact that once the system call thread has left the back-off mode, it will execute system
calls with low individual overhead. On the other hand, when applied simultaneously, they
return the latency to almost-native levels—the influence of SGX and SCONE on the latency
is extremely small.
We consider using a NIC timer as a separate optimization. One can see that reading a

NIC timer is a costly operation; it happens twice per packet in our measurements, adding
approximately 0.9 * 2 = 1.8μsec to the total latency. On the other hand, it is much faster
than executing clock-reading system calls, and can further improve system timeliness when
combined with other optimizations.

5.7.4 Scalability

We next evaluate ShieldBox’s scalability with an increasing number of cores. Figure 5.13
presents the throughput for Firewall with 128 byte packets. The scalability of both Shield-

100

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native + ToEnc

Shieldbox
Shieldbox + ToEnc

Figure 5.14: Throughput of an EtherMirror function with ToEnclave as a function of packet
size.

Box and Click is limited. We can see that the performance for both native and ShieldBox
peaks at four cores. This is due to the fact DPDK and ShieldBox work best with hyperthread-
ing disabled. This is also confirmed by the poor scalability of native Click.

5.7.5 ToEnclave Overheads

Throughput. We nextmeasure the throughput of the new secure ToEnclave element added
in ShieldBox, which is used to copy the packet data inside SGX enclave protected memory.
We evaluate the impact of this extra data copy by measuring the throughput scaling with
varying packet size. Figure 5.14 shows the results for EtherMirror.
We can see that the overhead of the extra memory copy peaks with small packet sizes.

This phenomenon is because for each received packet, operations with rather high overhead
must be executed to allocate the packet. One way to reduce this cost would be to batch the
memory allocation for all packets. Note that the overhead of ShieldBox compared to the
native execution is relatively small: ShieldBox with ToEnclave is running within 88% of the
native version with extra memory copy in the worst case of small packet sizes, and within
60% of the native Click without ToEnclave element.

Latency. The latency impact for the ToEnclave element is as follows: at 64 byte packets
(median, 95th percentile) latency changes from (14.25, 15.04) to (14.51, 15.24) μsec, at 1500
byte packets it changes from (16.39, 17.39) to (17.49, 18.24) μsec.

5.7.6 Configuration and Attestation

We next evaluate the overheads of the configuration and attestation service in ShieldBox.
The measurement results are presented in Table 5.3. The results show that remote attesta-
tion has a negligible effect on ShieldBox’s startup time. Furthermore, even though TLS ses-
sion establishment is a costly operation, it is performed once per instance start-up, allowing
an operator to use a single CAS node for thousands of ShieldBox instances.

101

Phase Average Duration, μsec
Attestation 19467

CAS communication 19301
LAS communication 1474

Configuration 825.6
Total time 26368

Table 5.3: Overheads of ShieldBox remote configuration and attestation.

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.15: NFV chaining application throughput as a function of packet size. ShieldBox has
lower scalability due to interference of system call and enclave threads.

5.7.7 NFVs Chaining

To measure the throughput of the NFV chaining scheme, we implement a chaining applica-
tion. The chaining application implements packet communication between two ShieldBox
instances running on the same machine through a DPDK packet ring. One instance con-
tains an application that receives packets from the network and sends them to the other
instance via the DPDKRing element. The second instance receives packets from the ring and
sends them back through a different DPDKRing element. These packets are received by the
first ShieldBox forming a circular ring. Thereafter, the packets are transmitted back to the
load generating node. Note that the packets cross the rings twice. The chaining application
showcases the worst-case scenario for us since the NF elements are not performing any
computation.
Figure 5.15 presents the throughput with varying packet size for the NFV chaining applica-

tion. The results show that using the ring communication causes a substantial performance
drop for ShieldBox independent of the optimizations. This ismostly related to theway SCONE
runs enclaves—it must allocate a constantly-running thread for the service threads created
by ShieldBox and DPDK. Due to this, there is interference between the service threads and
processing cores, which decreases the throughput and also increases the variance.
Importantly, note that our experiment for the NF chaining across multiple enclaves shows

the scenario where two middleboxes are operated by different network operators, who may
not necessarily trust each other. Whereas, the performance of NF chains within a single
enclave would still be comparable to the native execution.

102

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h

ro
u

g
h

p
u

t,
 G

b
/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.16: Throughput of a Seal function with varying packet sizes.

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h
ro

u
g
h
p
u
t,

 G
b

/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.17: Throughput of an IPRouter application with varying packet sizes.

5.7.8 Packet Sealing Performance

We next evaluate throughput of the Seal/Unseal secure elements. In particular, we use our
AES-GCM encryption code running inside the SGX enclave. Figure 5.16 presents the through-
put of the Seal element with varying packet size. The result shows that the code inside SGX
enclave runs within 88% of the native performance irrespective of the optimizations applied.
This is explained by the fact that most of the application CPU time is spent doing the en-
cryption. The difference between the native and SGX version can be explained by different
thread scheduling strategies used by SCONE and native POSIX. In POSIX, threads are pinned
to the real CPU cores, while in SCONE, the userspace threads inside enclave are pinned to
the in-enclave kernel threads. Thismakes thread pinning non-deterministic—sometimes two
threads that are to be pinned to different cores are pinned to sibling hyper-threads.

5.7.9 Case Studies

We next evaluate ShieldBox’s performance with the following two case-studies: (1) IPRouter,
and (2) IDS.

103

0

20

40

60

64 128 256 512 1024 1500

Packet size, bytes

L
a

te
n

c
y,

 µ
s
e

c

Native
Shieldbox

Shieldbox+mod.sched.
Shieldbox+red.syscalls

Shieldbox+MS+RS
Shieldbox+NIC timer

Figure 5.18: Latency of an IPRouter application with varying packet sizes.

0

10

20

30

40

64 128 256 512 1024 1500

Packet size, bytes

T
h
ro

u
g
h
p
u
t,

 G
b

/s

Native
Native w/o opt.

Shieldbox
Shieldbox w/o opt.

Shieldbox + NIC timer

Figure 5.19: Throughput of an IDS application with varying packet sizes.

IPRouter. IPRouter application is an adaptation of a multi-port router Click example ap-
plication to our evaluation hardware. This application first classifies all packets into three
categories: ARP requests, ARP replies, and all other packets. ARP requests are answered.
ARP replies are dropped. Other packets are passed to a routing table element that sends
them to the NIC output port. Figure 5.17 shows the throughput of the IPRouter application
with varying packet size. We can see that ShieldBox has the same performance as Click with
packet sizes bigger than 256 bytes, and performs within 90% of Click with smaller packets.
We also measure the latency of the IPRouter application as presented in Figure 5.18. We

can see that even if the number of elements in the application increases, the latency of the
application remains the same as the native execution.

Intrusion Detection System (IDS). IDS application implements a network function that is
commonly found in the enterprise network, where it is commonly implemented by software
like Snort or Suricata. IDS pushes the traffic through the firewall, and then performs traffic
scanning with the HyperScan element. Traffic that does not match any pattern is sent to the
output while matching traffic passes through a counter and then dropped.
ShieldBox performs as close to the native Click execution with a slight performance drop.

This drop comes from the general SGX overhead for memory accesses.

104

5.8 Discussion

Timestamp counter access and SGXv2. Whilewith SGXv1 reading the x86 TimestampCounter
causes the AEX, this operation is permitted inside of the enclave with SGXv2. Unfortunately,
SGXv2-based platforms were unavailable at the time this work was conducted, and even cur-
rently the available SGXv2 is available in low-power Atom CPUs, which lack SIMD features
(AVX), have low core count and low CPU frequency, which all help achieve line-rate packet
processing. Hence, the time access techniques presented in this chapter are still valid. How-
ever, if SGXv2 ISA extensions become commonly available, the alternative time access mech-
anisms will become superfluous.

Trusted peripherals. Whether DPDK is located outside of the enclave or inside, the trans-
mission channel between the NIC and enclave is managed by the operating system, which
controls the MMIO mappings and procfs entries necessary for acquiring the device from
the OS networking stack. Therefore, the OS is always capable of performing MITM attacks
against the enclave or even fully emulate the NIC. The question arises, whether it is possible
to get a trusted channel to the NIC, or to other peripheral devices, for example SSDs?
One solution to this problem is to employ cryptography to secure the communication

channel: PCI Express traffic and the DMA memory pages dedicated to the device. This solu-
tion requires the extension of hardware with high-performance and expensive FPGAs [131].
The CPU would either have to be extended with a generic cryptographic engine capable of
decrypting the pages at line rate, or perform all cryptographic operations in software, in-
creasing the system load.
An important and ever-present part of the trusted I/O problem is the attestation of remote

devices, and secret distribution. Currently, it is an open problem in the context of existing PCI
Express devices. In future devices, the authentication andmeasurement scheme inspired by
the USB-C specification [48, 49] may be used; it is currently drafted by Intel [161].
We also note that it should be possible to remove the MMIO pages from the attack surface

by changing the implementations of Intel’s Data Direct I/O (DDIO)2 [21] and Cache Allocation
Technology (CAT):

• During the enclave creation, a range of L3 cache is statically and exclusively allocated
to the enclave, and this range is included in the enclave measurement, using a modifi-
cation of Intel CAT.

• After the establishment of a secure channel between the enclave and the device, only
DDIO is used for the data transfer, without ever touching DMA pages.

Unikernels and kernel bypass. In this work, we have shown that it is possible to push the
performance of the SGX enclave beyond the limitations of the system call interface, by drop-
ping it altogether. This approach is typically utilized in high-performance storage systems
that use kernel bypass for storage and network access [76, 184, 279], while most of the
cloud software relies on the OS-provided POSIX interfaces. However, the importance of ker-
nel bypass techniquesmay increase, in case the popularity of VM-based unikernels increases.
As it is common to use virtio-based interfaces in hypervisors for efficiency reasons, uniker-
nel libraries embed virtio drivers for network, disk, and PCI device access [295]. All kernel
bypass techniques discussed in this chapter would be relevant if the developers decide to
use SGX to secure their unikernel applications.

2DDIO allows direct transmission of data from a compatible PCI Express device into the L3 cache of the CPU.

105

5.9 Conclusion

In this chapter, we have shown how to extend Intel SGX-based enclaves to support data-
intensive applications that require performance beyond what is available through the oper-
ating system call interface. We have shown that there are no significant obstacles to using
SGX for securing high-performance networking applications. Most importantly, We outline
and solve the problem of 2–3x latency increase in network functions caused by the slow time
source.
To achieve the aforementioned goals, we have presented the design, implementation, and

evaluation of ShieldBox—a secure middlebox framework for deploying high-performance
network functions (NFs) on untrusted commodity servers. ShieldBox exposes a generic in-
terface based on Click to design and implement a wide-range of NFs using its out-of-the-box
elements and C++ extensions. To securely process data at line rate, ShieldBox integrates a
high-performance I/O processing library (Intel DPDK) with a shielded execution framework
(SCONE) based on Intel SGX. We have also added several new useful features and optimiza-
tions for secure end-to-end network processing. To improve the performance of the time
source, ShieldBox relies on the PTP clock instead of the OS sources. Our evaluation using
a wide-range of NFs and case-studies show that ShieldBox achieves near-native throughput
and latency, which lets us conclude that kernel bypass technologies are a practical instru-
ment of an enclave developer.
Finally, the work presented in this chapter has shown, how Intel SGX can be used to secure

not only the standard POSIX software run by end-users in the cloud, but also the Network
Functions and Middleboxes that the user may deploy to the cloud, thus bringing high confi-
dentiality and integrity guarantees to one more element of the cloud stack.

106

6 Using Intel SGX Enclaves For
Secure Remote Execution in FaaS

In the previous chapters, we have shown how to efficiently build and deploy TEEs with in-
dividual POSIX applications, including network middleboxes. However, when taking a wider
look at the landscape of cloud infrastructure, it is clear that this kind of deployment is in-
sufficient: most cloud services consist of multiple services, which are working in concert to
provide service to the user, where the combinations of services can be static or dynamic.
Static combinations are common in practice, for example, a machine learning system, such
as Tensorflow [56], performing feature detection on the media files preprocessed by a sep-
arate service (using ImageMagick or FFMpeg). These services are typically deployed using
Kubernetes or Docker Swarm; from the point of view of TEEs, they can rely on static con-
figuration distributed by a TEE-aware configuration service, such as Palaemon [138]. On the
other hand, dynamic combinations of services, exemplified bymodern Function-as-a-Service
systems, are more challenging to secure using Intel SGX.
Thus, in this chapter, we show how to apply TEE technologies to an existing serverless

framework. We identify common use-cases and bottlenecks stemming from both serverless
architecture and Intel SGX restrictions. Based on our analysis, We design and build Clem-
mys, a security-first serverless platform that ensures confidentiality and integrity of users’
functions and data as they are processed on untrusted cloud premises while keeping the
cost of protection low. We provide a generic design for hardening FaaS platforms with Intel
SGX, and explain the communication protocol that our system uses to ensure confidential-
ity and integrity of data, and integrity of function chains. To overcome performance and
latency issues that are inherent in SGX applications, we apply several SGX-specific optimiza-
tions to the runtime system: we use SGXv2 to speed up the enclave startup and perform
batch EPC augmentation. To evaluate our approach, we implement our design over Apache
OpenWhisk, a popular serverless platform. Lastly, we show that Clemmys achieves the sim-
ilar throughput and latency to native Apache OpenWhisk in case hardware resource limits
are not reached, while allowing it to withstand several new attack vectors.

107

6.1 Introduction

Serverless Computing. Serverless computing, or Function-as-a-Service (FaaS), is a cloud
computing paradigm that has emerged to make the processing of bursty, irregular event-
driven workloads cheaper, and deployment and development—simpler [59, 169]. To reap
these benefits, application developers must decompose their software in terms of the core
abstraction of FaaS—a function: a stateless, short-lived, single-purpose service that is spawned
to process a single event. The stateful components, like databases and caches, need to be
separated into external systems.
The serverless paradigm implies processing data with stateless functions, using a fresh

runtime environment to serve each request or event. From the programmer’s point of view,
functions are written to an API and a set of libraries specified by the platform owner, and
without any assumptions about the persistence function-local data or the underlying hard-
ware. This concept is already implemented in multiple open frameworks [3, 36, 27, 14] and
commercial platforms [5, 17, 20]).
Serverless computing runs with the promise of automatic resource management: the cloud

operator is responsible for horizontal and vertical scaling of the client’s code. The client
is responsible only for uploading the code, while the cloud operators are responsible for
selecting the number of instances and choosing their placement, providing runtime envi-
ronment and the necessary CPU and memory resources for the computations. This shift
of responsibilities, called Backend as a Service [169], greatly simplifies the job of application
developers, who are freed from implementing virtual server management, load-balancing,
and autoscaling solutions for their services, further reducing development cost. In particu-
lar, better load-balancing and scaling of user functions become possible, as the insights into
resource availability, are solely available to the cloud operator.
Serverless computing is also distinguished from the classical cloud computing by its promise

of pay-per-use: instead of billing clients based on the allocated resources, only the resources
actually used for serving requests are billed. This type of billing allows performing CPU-
intensive tasks in the cloud without exorbitant costs for the client, and without putting sig-
nificant resource restrictions on the functions. This is a game-changer for tasks like machine
learning or video processing, which were challenging to run in the cloud efficiently due to
their bursty nature and high CPU and memory requirements.
Thus, the benefits that serverless computing presents to the users are twofold. First, the

user is freed from making decisions about platform management, security, and software
updates. These tasks are delegated to the cloud provider, who can handle them using the
available infrastructure knowledge. Second, with short-lived services billed per invocation, it
is possible to run in an economically efficient way even those services that are idle most of
the time.

Trust issues. Despite the significant economic benefits that comewith serverless computing,
the trust issues could become a dealbreaker when it comes to processing sensitive data
in the cloud. Specifically, two main aspects make cloud services extremely challenging to
secure.
First, cloud applications run with a large set of system components, which must function

correctly for the system to maintain its security properties, that is, with an excessive Trusted
Computing Base (TCB). In the cloud, TCB includes the host (operating system, hypervisor),
and the userspace stack running on the machine. Due to the large size and complexity of
these components, they are likely to have flaws, and the attackers can probably find ex-

108

ploitable vulnerabilities and subvert the platform security properties.
Second, as trust in the cloud provider is unavoidable, outsourcing to the cloud implies

giving the provider’s employees access to the users’ data. If the employees have malicious
intentions, it could have grave consequences, especially in the case of medical and financial
applications.
Although these issues are becoming a major obstacle to the adoption of serverless com-

puting, no serverless platform currently tries to solve them in a principled way.

Clemmys. These challenges have motivated us to develop a system that allows users to
benefit from serverless computing while preserving the security of their data.
Clemmys uses Intel SGX and SCONE to protect the integrity and confidentiality of the func-

tion code and data. To tackle this problem without incurring prohibitive overheads, only two
components of Clemmys are running inside a TEE—the platform gateway and the user func-
tions. Additionally, we develop a message format that preserves message confidentiality and
integrity while the data is sent between the other, unprotected platform components.
Our contributions include:

• We design and implement a reencrypting proxy that terminates TLS connections and
encodes function invocations into Clemmys message format.

• We develop amessage format that preserves message confidentiality and integrity and
can be used in a variety of other FaaS platforms.

• To prove the validity of our approach, we implement Clemmys as a modification of
Apache OpenWhisk, a popular FaaS platform.

• To reduce the cost of protection, we additionally implement several important SGX-
specific optimizations. These optimizations are orthogonal to the existing optimizations
of FaaS platforms, and can be safely combined with them.

6.2 Background

Runtime environments for serverless functions. Each instance of a serverless function runs
inside a platform owner-provided isolated environment, which comprises the set of platform
owner-vetted libraries and management components. The choice of runtime has a big influ-
ence on the usability of a serverless platform, as it influences the platform efficiency, ease of
auto-scaling, ease-of-use by the the function developer, and the achievable performance.
The main requirements to the serverless runtime are fast startup and high guarantees of

performance and security isolation, which would make sharing of computational resources
by mutually untrusting customers possible. These requirements are often in conflict, as the
technologies that allow the strongest isolation also incur the highest overheads in the startup
phase.
For example, virtualization-based runtimes rely on the mature and well-researched virtu-

alization technology to isolate the functions of cloud tenants from each other. While security
isolation of virtual machines is well-studied in the literature [174], the main problem of VMs
in the context of serverless cloud computing is the large function startup time, which reaches
up to one second. Virtual machines require the development of more lean hypervisors and
paravirtualization solutions to be efficiently deployed in the serverless systems [60, 210].

109

ControllerGateway

(a)

GatewayController

(b)

Function A

Worker 1 Worker 2

Function B Function C Function A

Worker 1 Worker 2

Function B Function C

Figure 6.1: FaaS platform architectures: (a) with controller node as load balancer; (b) with
gateway as load balancer.

The container-based approach provides an alternative to virtual machines, by building on
the recent kernel namespacing features, and technologies like Kubernetes that automate
scaling and configuration management. While containers exhibit the startup and runtime
overheads smaller than the virtual machines, they also require additional isolation technolo-
gies to achieve a high level of security and performance isolation [191, 228]. Both VM-based
and container-based approaches allow running arbitrary user binaries inside the functions,
increasing the system flexibility.
The third approach completely dispenses with the OS-provided isolation technologies and

instead relies upon the software fault isolation, sandboxing, or language-based isolation
technologies like WebAssembly [142] or Javascript Isolates [50]. It is implemented in a num-
ber of academic and production systems [304, 10, 13, 26]. In this case, the user softwaremay
require additional porting efforts—either recompilation to WebAssembly or porting to the
platform owner-provided libraries. In return, such functions achieve extremely high density
and low startup speeds [269, 127]. On the other hand, this approach limits the selection of
software that can be run as a serverless function, and the security of WebAssembly-based
solutions requires further research [199].
As Apache Openwhisk, which Clemmys uses as a foundation, relies on container-based

runtime images, Clemmys follows this approach. However, our contributions are generaliz-
able to VM-based approaches, and partly to sandboxing-based serverless systems as well.
Using TEEswith sandbox-based approaches are alreadywell-studied in the literature [65, 90].

Serverless Computing Platforms. To design a usable and generic defense strategy for com-
mon serverless platforms, we have analyzed similarities among them. For this, we have stud-
ied architectures of several open serverless platforms: OpenLambda, Iron.io, OpenWhisk,
Fission.io.
We can see that the architecture of these frameworks implements either of the two vari-

ants shown in Figure 6.1(a) and 6.1(b). The architectures contain a gateway node, a con-
troller node, and multiple worker nodes. The architecture also contains service nodes such
as a database system to store platform configuration, billing services, autoscaling services,
message queues, and so on. We have omitted them from the figures.
There are three main node types in serverless systems: workers nodes, controller nodes,

and gateway nodes.
The worker nodes execute functions with specified inputs and resource limits in response

to network events. In a production deployment, there will be numerous worker nodes, nec-
essary to provide the advertised level of scaling. They spawn the function in the runtime
environment in response to the incoming request, process it, and return the results.

110

The controller node is the central management component of the platform. It manages the
available functions images, resource limits, user accounts, billing, and permissions. Typically
there is a single controller instance connected to a database for metadata storage. The
controller node may be physically replicated even if it logically unique.
To secure the connection to the Internet, serverless platforms use a gateway service that

terminates the TLS connections from the client and acts as a load balancer to the workers.
It should be noted that some systems, like Apache OpenWhisk, use the controller as a load
balancer.
A connection between the gateway and a function can be either direct or indirect. For

example, a design may include a message bus for reliability, so that messages that were
admitted to the system are guaranteed to produce a result.
A common pattern in serverless computing is chaining—composition of functions into se-

quences where data is passed from function to function without the involvement of the user.
The functions in the chain can run either on different nodes or on a single node (for data lo-
cality). As chaining is one of the cornerstone features of FaaS, it is necessary to take it into
account during the system design.

Bottlenecks of Intel SGX and serverless platforms. Intel SGX has several performance lim-
itations that influence the design of the system. Some sources overheads, like enclave con-
text switches and EPC paging, are generic and were explained in ±2. Other limitations merit
a more detailed consideration in the context of general bottlenecks of serverless systems.
Previous research has identified numerous issues that reduced the attractiveness of server-

less computing to the users and operators: slow communication between the functions,
high latency, and I/O operation throttling for the platform-provided persistent storage, pro-
grammability restrictions, and unpredictable performance variations [169]. Some of these
issues depend only on the architecture of the serverless system and can be solved gener-
ically (e.g. support for function-to-function communication would speed up use-cases that
are currently forced to communicate through object stores). Other restrictions, like pro-
grammability, would arguably require rethinking the interfaces that the platform operator
exposes to the developers, as well as significantly modifying the corresponding libraries.
However, some restrictions, like limited I/O performance and the unpredictable perfor-

mance, especially related to the slow function startup time, must be taken into account when
designing an Intel SGX-based runtime for the functions. The reason for this is that Intel SGX
exacerbates them by its performance overheads. For example, the throughput of communi-
cation with the local store would be 8 times higher with Intel SGX (see ±2.5), thus rendering
common optimizations like colocation of code and data close to useless. Clemmys solves
this problem by building on SCONE, which was explicitly designed to provide efficient I/O for
enclaves.
Another issue that the developer must solve is that the SGX enclave heap size adversely

affects enclave startup time: multi-gigabyte heaps, such as required by the runtimes of dy-
namic programming languages, can take significant time to initialize: our measurements
show that initializing a 4Gb heap can take up to 35 seconds. One of the main challenges
of our work was to overcome these limitations to successfully apply SGX in the FaaS domain.
We make use of the recently released Intel CPUs that support the second generation of

SGX (SGXv2) to solve speed up the function startup time. More specifically, SGXv2 extends
SGX with the Enclave Dynamic Memory Management technology [217], which allows adding
(augmenting) EPC pages to the enclave, modifying the EPC page metadata (for example pro-
tection flags), and removing (trimming) EPC physical page mappings from the enclave after

111

it started running. By adding support of SGXv2 to SCONE, we allow SGX-enabled functions
implemented in, for example, Python, to start up with the latency which is on par with the
non-protected Python functions.

Palaemon. Palaemon [138] is a key management service (KMS) implemented as a part of
the SCONE remote attestation and configuration system, which uses an attestation scheme
similar to that of ShieldBox [284, 164]. It supports standard KMS features, such as a flexi-
ble policy language for specifying secrets and entities that may access them and automatic
generation of secrets. Most importantly, it supports provisioning secrets and shielding layer
keys to SCONE-based applications.
Palaemon is implemented to run inside an Intel SGX enclave alongside with the applica-

tions it attests; Palaemon itself is attested using the Intel Attestation Service (IAS) [164]. It
opens a possibility to operate Palaemon as a turn-key solution, that is using a single instance
per data center.
Palaemon consists of two components: the Local Attestation Service (LAS) and the Config-

uration and Attestation Service (CAS). The LAS is running on the same node as the attested
application, and issues SGX local attestation quotes to the CAS. The LAS itself is attested us-
ing IAS. The CAS is the service that securely issues the configuration to the correctly attested
applications.
The CAS supports a wide range of functionality:

• generation of secrets without disclosing them to operators;

• policy board-based configuration management;

• enclave-based access control: only enclaves with correct measurement are configured;

• provides the configuration to the SCONE shielded filesystem;

• sets the environment variables and CLI arguments for the application;

In our work, this configuration comprises function chain configuration, cryptographic keys,
and function-specific information.

6.3 Threat Model

Weconsider a typical scenario of a FaaS platformoperation. A user acquires a function source
from a function provider. The function is deployed on a cloud platform managed by an op-
erator, who has access to the host OS on all nodes. A malicious external attacker may try to
exploit a vulnerability anywhere in the function or in the cloud stack to gain access to the
function source or data. This scenario is the foundation of our threat model:

• The operator should not be able to compromise the confidentiality and integrity of the
function source and data.

• The function provider should not be able to compromise the confidentiality and in-
tegrity of the data processed by the function.

• Only the user should be able to define the functions which constitute a function chain.
Other parties should not be able to insert, remove, or shuffle functions inside a chain
specified by the user.

112

TLS

SCONE

API Gateway

(Nginx)
Controller Invoker

REST

REST

Kafka

Kafka

TLS

HTTP

HTTP

CouchDB

Palaemon
Keys,

chain configurations

Keys,

chain configurations

Function

C
h
a
in

in
g

SCONE

POST func1

Auth: XYZ

{"E":"mT8.."}

{"E":"mT8.."}

{"E":"Q7u.."}

200 OK

F: func1

{"E":"Q7u.."}

{"E":"mT8.."}

{"E":"Q7u.."}

200 OK

F: func1

{"P1": "V2"}

POST func1

Auth: XYZ

{"P1":"V1"}

Action body

Figure 6.2: System architecture of Clemmys and transformations of a user request as it
passes through the system.

Specifically, we target the following attack vectors:

AV1. The operator or the external attacker inspects the memory of the functions or the
system components. This way, they can extract session keys and decrypt the traffic, or
directly extract plaintext user data from the process memory.

AV2. The operator reads and modifies the traffic between the function and its users. This is
possible because messages between the gateway and the functions are unencrypted.
The external attacker could also intercept the traffic if she compromises a part of the
cloud stack.

AV3. The operator modifies the execution order of functions in a chain to create an infor-
mation disclosure. For example, the message content that is supposed to be sent to
the user can be redirected to a logger that writes or sends plaintext messages over the
network.

In our threatmodel, we do not considermicroarchitectural attacks ormemory safety [231]
attacks. We assume that approaches like Cloak [139], Varys [233], SGXBounds [190], or other
compiler-based approaches [270] can efficiently thwart them.
We also consider application vulnerabilities as orthogonal to our work. To prevent leaks of

information due to neglect or malicious actions of the function provider, the user must man-
ually inspect the function code. While theoretically, a form of static analysis or sandboxing
can prevent such leaks, we do not tackle this problem.
As Intel SGX leaves system resource allocation to the control of privileged software, Clem-

mys does not guarantee availability: the operator may choose not to run any of the system
components or stop them at arbitrary moments of time. However, denying service is against
the operator’s incentives, as it constitutes a violation of SLA.

6.4 Design

In this section, we discuss how we can secure common FaaS platforms from the attacks out-
lined in the threat model (±6.3). We defend against AV1 by running each function inside Intel

113

SGX enclaves. We prevent AV2 by encrypting traffic between the function and the gateway.
To tackle AV3, we introduce a protocol that cryptographically ensures the correct order of
functions execution in a function chain.
Combined, Clemmys comprises the following generic system architecture (see Figure 6.2).

First, the user initiates a mutually authenticated TLS connection to the gateway. Then, every
incoming HTTP request passes through the gateway which terminates the TLS connection,
reencrypts the message body into an internal message format, and passes it to the FaaS
controller. The controller inspects the request metadata (not modified by the gateway), and
passes it to the appropriate function on the target machine, possibly via a message queue.
On the target machine, the container is started to process the message. As an optimization,
the platform could reuse a container from a previous request. The function starts inside
a SCONE SGX enclave and performs remote attestation and configuration using Palaemon.
Then, the function verifies that it is executing at the right stage of the chain using the infor-
mation from Palaemon and from the message, decrypts, and processes it. When the result
is ready, the function encrypts it and passes it either to the controller or the next function,
depending on the current stage of the chain. When the final result is computed, the gateway
decrypts it and writes it down to the client TLS connection.
In the following chapters, we will describe each of the design decisions in detail.

6.4.1 Preventing Memory Inspection

To understand how Clemmys prevents AV1, it is necessary to consider the components of
OpenWhisk in more detail. As the user request is submitted over TLS to the API Gateway,
the gateway forwards the request to the Controller, while terminating the TLS connection.
The Controller inspects the request to determine which function or function chain must be
spawned, and sends the corresponding commands along with the original user request to
the worker node, where the Invoker is running. The Invoker uses the registry of Docker im-
ages with the runtimes and user functions, and spawns the containers as requested by the
Controller. The Invoker also handles function chaining, by spawning the next function in the
chain after the previous has stopped running. It also allows reusing the previous container
from the same function if this is possible (e.g., if the function has been recently running on
the same node).
Clemmys targets AV1 by employing SGX enclaves that hide the memory contents from the

adversaries and ensure its integrity and confidentiality. Of all the abovementioned system
components, only the API Gateway and the functions have to run in SGX containers, as these
components are the only ones that interact with raw user data: the rest of the system deals
with benign metadata. This metadata contains the name of the function to spawn, user au-
thentication to the system, and so on. Such metadata must be inspectable by the provider’s
software for scheduling the function execution, setting up resource limits for the runtime
environment, billing, and so on. Most importantly, this inspection does not violate the confi-
dentiality of the user request. To protect themessage content, the user-provided arguments
to the function chain are encrypted. We describe the encryption in more detail in the next
chapters (±6.4.3).

114

6.4.2 Preventing Traffic Analysis and Modification

We prevent AV2 by introducing encryption between the gateway and the functions. Observ-
ing that a message queue may be used inside the system for reliability, we conclude that TLS
should not be employed as the encryption mechanism.
Message queues are typically used in cloud settings to decouple services and to gain mes-

sage persistence, and thus should be taken into account when designing the system. The
strawman solution is to run all system components1 inside Intel SGX enclaves and extend
the components to use TLS for communication. However, this solution comes at a significant
cost in case a serverless platform has memory-intensive components, for example Kafka. To
secure these components, it would be necessary to use SGX enclaves, where this software
would experience a slowdown due to EPC paging (see ±2.5.
Another alternative is to encrypt the messages at the first client-facing node into a format

that can be passed through the system transparently, while keeping the sensitive user data
confidentiality- and integrity-protected. We explain this approach in ±6.4.3, where we tackle
AV2 and AV3 together.

6.4.3 Verifying Function Execution Order

We target AV3 by designing a protocol that cryptographically ensures that the functions are
invoked in the order specified by the developer. Our key observation is that the user data in
the messages are not read by the intermediate nodes in any way; instead, the nodes rely on
metadata transmitted in, for example, HTTP headers to schedule the execution of functions.
Thus, it is possible to encrypt the message data and add extra information to it without any
effects on the system operation.
To facilitate secure function chaining, the protocol must allow functions to detect and to

cryptographically verify the following violations of function chaining:

• A function is dropped from the chain.

• A function is inserted into the chain.

• The functions are executed in the wrong order.

We recognize that themessage of the protocol should contain the plaintextmetadata (user
certificate fingerprint and function chain name) to query the decryption key from Palaemon.
Additionally, the format must include the information necessary to identify if the processing
happened in the right order. To achieve this goal, we store the chain as a list of functions
inside Palaemon, and include the index of the functions in the chain in the protocol message.
Thus, given a user message M, the resulting protocol message has the following fields:

BASE64(C,CN,N, IV , AESGCM(M, IV , ⟨C,CN,N⟩)K) (6.1)

where:

• C—the fingerprint of user certificate;

• CN—name of the function chain (carries no semantic information for the function);

1OpenWhisk-provided components were designed to run inside of the trusted network and thus lack provisions
for message confidentiality after the API Gateway.

115

• N—index of the current function in the chain;

• AESGCM(M, IV ,B)K—AES-GCM encryption of plain-text messageM using key K , initializa-
tion vector IV , and associated data B;

The function can use the certificate fingerprint C, chain name CN, and index N to detect the
violations as follows. First, it performs remote attestation, and gets lists of functions in the
chain and AES-GCM key for each C, CN pair from Palaemon. Then, it uses the fingerprint and
function chain name to select the correct AES-GCM key, and verifies that the attacker did
not modify the abovementioned fields. The action uses the function name and index fields
to ensure that the processing in chains happens in the specified order. OpenWhisk action
looks up a function with index N in the chain CN, and checks if it matches the identity of the
action currently executing. If there is a match, the execution of the function chain is correct.
The index field N is incremented as the function finishes execution and passes the message
to the next function for processing.
The user request in OpenWhisk is submitted in JSON format, and the API gateway fully

includes the request into the encrypted message (i.e., all service metadata is included as
well). The output of the API Gateway and the functions is also in JSON format, where the
output of the function or original user request is encrypted according to Equation 6.1. This
cyphertext is added to the output message in a dictionary, as the value for the “enc” key.

Function Identity. To allow chain verification, an action running with SGX must be able to
learn and verify its name (i.e. identity) CN. In the simple case when the identity corresponds
to a single binary, we can ensure its validity using information from SCONE and Palaemon.
When SCONE builds an enclave, it also calculates a cryptographic checksum of its initial im-
age, called enclavemeasurement, verified during the remote attestation. Palaemon can send
an attested enclave a secret that depends on the enclave measurement. In our case, Palae-
mon sends the enclave the intended identity for this measurement after the remote attes-
tation.
However, actions implemented in interpreted programming languages require additional

care. As the attestation verifies only the interpreter and the libraries, the interpreted appli-
cation source is not included in the attestation report. Thus, for such functions, additional
measures are necessary to bind the function identity to the executing memory image. For
Python, we suggest using SCONE file system shield with integrity and confidentiality protec-
tion [71]. In this scenario, Palaemon performs remote attestation of the Python interpreter
and sends the keys to the enclave for decrypting the shielded file system image. Then, Python
can read the identity of the function from the file in the shielded file system. Support for this
identity verification requires changes to the Python interpreter, to prevent it from loading
executable scripts from unprotected file systems.

Key and Configuration Management

The protocol message outlined in ±6.4.3 uses symmetric AES-GCM encryption. The keys
used for the encryption are generated and stored in an external key management service—
Palaemon—with a unique key for every user-chain pair. It allows Clemmys to isolate requests
from different clients and prohibits the adversaries from moving a message from one chain
to another.
Palaemon also stores the information necessary for the chain integrity protocol:

• Lists of functions inside each chain in the system.

116

• Bindings of function names to enclavemeasurements (for native functions, C/C++/Rust).

• Decryption keys to function sources stored in a protected file system (for interpreted
programming languages, Python/Node.js).

The protected components (gateway and the functions) fetch the keys and other configu-
ration data at the startup of the corresponding program, after the remote attestation. Thus,
an extra round trip is required to start the application. Its effect, however, is moderate as all
communicationwith Palaemon happens locally, unlike during the Intel attestation procedure.
Clemmys relies on client certificates for client authentication, instead of the authentication

system available in the FaaS platform. Clients generate a private key and use it to receive a
valid certificate signed by the Clemmys key. The gateway verifies the client certificates and
rejects connections with those clients that do not present one. The fingerprint of the pre-
sented certificate is used in the protocol message to identify the client. We make this deci-
sion because the FaaS controller, which normally implement authentication in OpenWhisk, is
run without SGX protection in our case, and therefore can be easily attacked by a privileged
adversary. In our design, Palaemon acts as an authenticating authority instead.

6.5 Implementation

We rely on Apache Openwhisk to implement Clemmys. To keep the performance impact of
the protection low, we strive to restrict the changes to as few components as possible.

API Gateway. In the original OpenWhisk design, API Gateway terminates TLS connections
and manages functions triggered over REST. The original API Gateway is implemented using
OpenResty (Nginx distribution with Luajit and numerous Lua extensions) [37]. Therefore, to
extend the API Gateway with the message reencryption functionality (as explained in ±6.4.3),
we have implemented a dedicated Nginx plugin.
The core functionality of our plugin is:

• Maintaining key and chain information after startup and remote attestation.

• Performing message reencryption.

• Performing security checks on the messages and client connections.

The plugin implements anNginx rewrite phase handler to encrypt the request before pass-
ing it to the OpenWhisk Controller, and uses the header and body filter to receive the reply,
verify its correctness, decrypt it, and pass it to the client (1230 lines of C code in total). We
use the Nginx configuration file to specify the REST endpoints for which the plugin must be
active.
At the plugin initialization, it scans through the process environment variables supplied

by Palaemon, and populates the configuration tables, which are later used to process user
requests. So far, our Nginx plugin does not support dynamic updates to the Palaemon-
provided configuration: to receive new chain configurations and keys, the API Gateway has
to be restarted. Alternatively, operators can use systems like HAProxy [18] to perform a
zero-downtime configuration update. We plan to alleviate this limitation of Palaemon and
the Nginx plugin in the future.

117

Function image skeleton. We implement our skeleton images for native SGX functions and
Python SGX functions. The native SGX image adds a configuration file for SCONE asyn-
chronous system call interface and configures the environment variables to set default en-
clave heap size. The SGX Python image additionally replaces the stock Python from the Alpine
Linux repository with SCONE-build Python and installs a set of predefined Python packages
using pip utility and SCONE cross-compiler.

Controller. We modify the Controller to put the action name in the header of replies to the
“activation get” command, which is used to retrieve the results of asynchronous function
invocation. Before our change, neither client nor Controller passed the function name to
the API Gateway for this command, and it was possible to retrieve the function name only
by parsing the user response. This change allows us to avoid costly parsing functionality
inside of the Nginx plugin, that we would have to otherwise implement to secure this REST
endpoint.

Invoker. Invoker is a service running on the worker node that communicates with the Kafka
queue and launches containers with functions to serve the user requests. The input from
the user is provided to the function via standard input.
We also modify the Invoker to pass additional SGX and SCONE-specific parameters to the

Docker. Our modified Invoker adds /dev/isgx device to the function container. Also, the
Invoker configures additional container resource limits required by SCONE, most notably,
allowing the spawning of the threads running under the realtime scheduling policy.

6.5.1 Function Startup Optimization

The requirement of not degrading the system latency clashes with the reality of running
dynamic language runtimes inside SGX enclaves. These runtimes typically run with huge
heaps, which increases the startup time of SGXv1 to the range of seconds, or even tens of
seconds (Table 6.1).
The enclave loading procedure has several steps: creating control structures, adding and

measuring EPC pages, and launching the enclave using the EINITTOKEN structure. Based on
our observations, the main bottleneck is in adding pages: Even though heap pages are not
measured, adding them to the enclave still takes significant amounts of time. To reduce the
attack surface, the SCONE mmap implementation also zeroes the added pages, which slows
down the application startup when large chunks of memory are allocated.
To mitigate the impact of this issue, we rely on SGXv2 EDMM [217] features to reduce

the startup time. We use the SGXv2 EPC augmentation feature to skip adding most of the
pages during enclave creation, which can take a significant amount of time during the enclave
startup. Instead, we allocate only a small number of heap pages at the beginning of the heap
region—20 MB by default—and around 40 pages (164 kB) at the end of the region, where
the metadata (bitmap) for SCONE mmap allocator is located. SCONE loader skips adding all
other pages. These changes sum up to significant savings: the SGX loader issues an ioctl

to the driver for each page that needs to be added, which copies the full page contents
into the kernel before adding them to the enclave. Avoiding this work brings a significant
improvement to the startup time. Batching cannot reduce this cost, because it is mostly
caused by EPC metadata updates, not ioctl calls.
On top of the SGXv2 support, we implement two additional optimizations: batch EPC aug-

mentation and zeroing pages upon deallocations instead of allocations.

118

Because most of the accesses during startup cause augmenting enclave exits, we modify
the driver and SCONE runtime to do batch augmentation of enclave memory. On the EPC
augmentation event for page with address Addr, we additionally augment all pages in range
[B⌊AddrB ⌋,B⌈

Addr+1
B ⌉), where B is batch size. The runtime, in this case, would calculate the same

range of pages, and accepts it using the EACCEPT instruction. We allow users to configure the
amount of batching, as this optimization may not have a large effect on most applications.
While this optimization moves the cost of adding pages to time after the application start, it
distributes the faulting memory accesses over a long time, reducing the EPC paging rate.
We also modify SCONE to perform page zeroing on page deallocation, instead of page

allocation. Deallocated pages are kept within EPC, and thus, the OS cannot modify their
contents in-between allocations. The benefits of this design are twofold. First, the fresh
pages added to the enclave via the augmentationmechanismare automatically zeroed by the
hardware. Thus, enclaves can use these pageswithout zeroing them. Second, the application
may optimize its run time by exiting without zeroing its memory.
In general, we expect a much lower effect from the latter two optimizations than from just

switching to SGXv2. Our optimizations are orthogonal to those published in recent stud-
ies [62, 230, 113] and can be applied independently.

6.6 Evaluation

In this section, we answer the following questions:

• Howdoes Clemmys perform compared to nativeOpenWhisk in terms of the best achiev-
able throughput and latency?

• What is the performance impact of the function chain integrity protocol?

• What is the impact of our optimizations on the function startup latency?

Applications. We base our evaluation on the Fex [232] evaluation framework, with six computa-
tionally-intensive applications from PARSEC [87] and Phoenix [251] benchmark suites as
workloads. We use the largest inputs that do not cause intensive EPC paging.

Methodology. The reported results are averaged over 10 runs and “mean” is a geomean
across all the benchmarks.

Testbed. We ran all the experiments on two machines with different generations of the SGX
technology. Themachine with SGXv1 has a 4-core (8 hyperthreads) Intel Xeon CPU operating
at 3.6 GHz (Skylake microarchitecture) with 32 KB L1 and 256 KB L2 private caches, an 8 MB
L3 shared cache, and 64 GB of RAM. The machine with SGXv2 is a NUC with a 4-core (4
hyperthreads) Intel Pentium Silver CPU operating at 1.5 GHz (Apollo Lake microarchitecture)
with 16 KB L1 and 128 KB L2 private caches, an 4 MB L3 shared cache, and 32 GB of RAM.
We have used this machine because it was the only released SGXv2-enabled machine at the
time this work was performed.

6.6.1 Security Evaluation

We begin with a security evaluation of the protocol outlined in the ±6.4.3. To this end, we
run a chain of two echo functions implemented in Python with different identities. When
the message processing order corresponds to the specified processing order in the chain,

119

matrix
multiply

string match word count dedup x264 fluidanimate

0

1

2

3

4

R
e

s
p

o
n

s
e

 t
im

e
,
s

Native SGX Gateway

Figure 6.3: Response time with a protected API Gateway compared to native API Gateway,
for different functions from a Parsec benchmarking suite. The functions are non-
protected to highlight the impact of the Gateway.

the functions succeed. Then, we modify several components of the message and test if the
modified message is accepted. The results were as follows.

• Changes to certificate fingerprint, chain name, and counter are detected by AES-GCM
tag comparison.

• Sending the message to a wrong function in a chain causes function failure due to a
mismatch between function identity and the intended function in the chain.

Finally, to simulate a rollback attack, we save the message after it has been processed
by the first function, and separately invoke the second function with the same message.
We see that the second function accepts and processes this message without signaling an
error, even though this message has been already processed before. Thus, we can see that
Clemmys offers no defense against rollback attacks. This attack vector targets only stateful
functions, which must counter it at the application level.

6.6.2 Response time

Next, we measure the impact of Clemmys on the overall system response time. Because
Clemmys hardens two components of OpenWhisk—API Gateway and the functions—we per-
form two experiments to evaluate their impacts separately.
In the first experiment, we evaluate the impact of the Gateway in isolation by running

native functions with two configurations of the Gateway: native (as in OpenWhisk) and pro-
tected (with our Nginx plugin, see ±6.5). In the second experiment, we isolate the impact
of protecting the functions by running the native and SGX-protected functions separately,
without a gateway. In both cases, we use SGXv2 machine as the function startup time on it
is independent from the heap size (see ±6.6.3 for details).
The response time in the second experiment is measured for different levels of oversub-

scription, from 1 to 16 instances of a function running in parallel, showing how many en-
claves running in parallel the system can sustain on a single worker node. This information

120

streamcluster swaptions vips

blackscholes bodytrack dedup ferret

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

1

2

3

4

5

0

5

10

0

1

2

3

4

0

2

4

6

8

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

0

1

2

Number of functions sharing the machine

R
e

s
p

o
n

s
e

 t
im

e
,
s

Native functions SGX functions

Figure 6.4: Response time with Clemmys-protected functions compared to native functions,
for different numbers of functions sharing amachine. The API Gateway overheads
are not included (worst-case overhead).

allows operators to assess the requirements for their hardware platform. As native func-
tions achieve oversubscriptions at much higher concurrency levels (in the out-of-memory
situations), we skip oversubscription in the first experiment.
Figure 6.3 represents the overheads of the API Gateway. It can be seen that the cost of

protection at API gateway is minimal and is amortized by the overhead of the OpenWhisk
itself.
However, the evaluation of function impacts on Figure 6.4 has shown bigger overheads,

where all SCONE functions display an increase of latency for both short-running and long-
running functions, which linearly increases with the contention level and is independent of
function benchmarked. We perform additional performance analysis, which has shown that
this slowdown happens due to contention on the EPC memory.
Our investigation has shown that this is caused by several reasons:

• There is a minimum amount of time necessary to create the enclave, even if only 20Mb
ofmemory are initialized during the enclave creation. This extra initialization time drives
the overheads at low oversubscription levels.

• At higher oversubscription levels, beyond 2 enclaves, there is extra overhead caused
by oversubscription of cores: enclave threads and system call threads must execute in
parallel to make forward progress, while the CPU on the benchmarking machine has
only 4 cores.

• As the number of functions increases to 8 and 16, an extra factor of EPC oversubscription

121

Heap Size SGXv1 startup time SGXv2 startup time

4 Gb 35 s 0.37 s
2 Gb 15.6 s 0.37 s
128 Mb 0.84 s 0.37 s

Table 6.1: Startup time of a no-op enclave depending on the dedicated heap size for SGXv1
and SGXv2.

g

appears: during the enclave creation, the EPC is exhausted, and EPC paging starts to
affect the enclave creation process.

To alleviate these issues, we propose the following measures:

• To reduce the amount of memory used during the enclave creation, it is possible to use
profiling: record which pages are required by the enclave during runtime, and add only
them to the enclave during the start-up. Alternatively, theminimum initialized heap size
can be decreased to a few Mb.

• To alleviate the core oversubscription, a centralized server can be used during the en-
clave creation for core allocation, and the SCONE runtime can automatically switch to
synchronous system call processing mode in case core oversubscription is detected.

However, we leave the implementation of the performance improvements to future work.
We further discuss these results in ±6.7. It should be further noted that Parsec functions
are relatively short-running, and real-world applications can be expected to at least partly
amortize the startup cost.

6.6.3 Function startup optimizations

To evaluate the impact of our SGXv2-based optimizations on the function startup time, we do
measurements on the SGXv2machine. The SCONE configuration uses a single enclave and a
system call thread, with a 4Gbheap. We chose this particular heap size because it exemplifies
a CPU-bounded application running with a dynamic programming language runtime.
We evaluate several versions of the runtime:

• SGXv1—no optimizations;

• SGXv2—SGXv2 version with EPC augmentation batch of 20 pages;

• SGXv2 (NB)—SGXv2 version with the batching disabled (No Batching);

• SGXv2 (NB, NO)—SGXv2 version without batching and without optimized mmap allo-
cator (No Batching, No Optimizations).

Because of the greatly varying runtimes of experiments, we normalize the results to the
runtime of SGXv1 version. We skip the raytrace benchmark in all cases as it required X11
libraries to build.
We show the results of these experiments in Figure 6.5. We can see that in all cases there

is a significant speedup from using SGXv2. On average, applications have ~20× lower latency
on Parsec benchmarks, and 10× lower latency on Phoenix benchmarks.

122

vi
ps

flu
id
an

im
at

e

bo
dy

tra
ck

fe
rre

t

de
du

p

st
re

am
cl
us

te
r

bl
ac

ks
ch

ol
es

x2
64

ca
nn

ea
l

sw
ap

tio
ns

1

2

4

8

16

32

64

S
p

e
e

d
u

p
 w

.r
.t
.
S

G
X

v
1 SGXv2 SGXv2 (NB) SGXv2 (NB,NO)

Figure 6.5: Parsec benchmarks results for our SGXv2-based optimizations.

To explain these results, we conduct an additional experiment (Table 6.1), where we mea-
sure the application startup time of a no-op C application while varying heap sizes with SGXv1
and SGXv2. We discover that enclave startup time depends linearly on the heap size in SGXv1
case. With larger heap sizes initialization time can reach 35 seconds (for 4GB heap), and it
dominates the total application runtime. For comparison, the initialization time for 4 GB heap
with SGXv2 is ~0.37 seconds. Thus, the results in Figure 6.5 do notmean that the applications
were running faster, only that the cost of enclave initialization became greatly reduced.
The impact of additional optimizations is limited compared to just switching to SGXv2. On

short-running Phoenix benchmarks (figure not shown), these optimizations do not have any
influence. After investigation of PARSEC benchmarks, we have discovered that only dedup
and facesim benchmarks had working sets larger than the EPC size. All other benchmarks
dynamically allocate less than 30 Mb of memory, experience no EPC paging, and get no
benefit from the proposed optimizations. The impact of the optimizations is smaller on the
dedup benchmark: after the initial setup phase, facesim allocates memory without freeing
it, leading to highly local memory use. On the other hand, dedup has approximately 1 free
call per 2 allocations, reducing the memory allocation locality. Thus, we conclude that our
optimizations are beneficial only for functions that constantly allocate memory, and have no
influence on most functions.

6.6.4 Impact of API Gateway

We evaluate the API Gateway of our system to answer the following question: At which point
does the API Gateway become a bottleneck in our system compared to the native version? To
answer this question, we perform benchmarking using our modified API Gateway running
inside SGX enclave, and a native version of API Gateway. The reencryption plugin is disabled
in the native version, otherwise the configuration file used is the same in both versions. We
do not perform any advanced Nginx configuration tuning. We evaluate Clemmys in two sce-
narios:

• With dummy OpenWhisk functions: We run stock OpenWhisk with a minimal function
after the API Gateway. The function is implemented in C and returns a hardcoded
correct message.

123

histogram kmeans linear
regression

matrix
multiply

PCA string
match

word
count

1

2

4

8

16

32

64

S
p

e
e

d
u

p
 w

.r
.t
.
S

G
X

v
1

SGXv2 SGXv2 (NB) SGXv2 (NB,NO)

Figure 6.6: Phoenix benchmarks results for our SGXv2-based optimizations.

• Without functions: the Gateway passes the request to the Nginx upstream that replies
to all requests with the same hardcoded message (OpenWhisk is not used at all).

We run the experiments on SGXv1 machine. We skip the second scenario with a native API
Gateway, as it corresponds to normal file serving over HTTPS. On ourmachine, the saturation
point for a single core is at 6000 requests/s.
The results are shown in Figure 6.7. We can see that without functions, the SGX-based

API Gateways scales up to 300 requests/s. With the OpenWhisk functions, we see that both
native and SGX versions saturate at around 225 requests/s, suggesting a bottleneck in the
OpenWhisk components different from the API Gateway. The increased latency at 25 re-
quests per second is caused by the increased rate of container spawning, which increases
system load; but this rate is insufficient to always cause container reuse: 14% of all contain-
ers at this rate are freshly started, vs. less than 1% at 100 requests/s. On the other hand, at
the higher request rates, starting at 200 requests/s, the system is running above its capacity
and queuing excessive messages in the Kafka queue; the fresh container ratio at this rate is
approximately 2%, and the (median, 95th percentile) latency at Invoker is (0,045s, 0.06s).

6.7 Discussion

As we mentioned in ±6.1, typical FaaS applications are CPU-intensive, run for several sec-
onds, and require a scalability guarantee. Applications that are I/O bound or have very short
runtime would have huge overheads from running inside serverless platforms, as these plat-
forms are designed for very different workloads. Current research shows that OpenWhisk
can add up to a second of latency [65]; accordingly, as our evaluation of Clemmys shows, the
OpenWhisk overhead completely masks the overheads of SGX. The results, however, are not
representative of the workloads with very long runtimes, or if OpenWhisk system latency im-
proves. In this case, the overhead of SGX would not be masked by the OpenWhisk overhead,
as the latter does not depend on the workload. Previous research shows that SGX can cause
applications to become up to 100 times slower during EPC paging; even without resource
starvation, SGX application may see 8-25% SGX overhead due to memory encryption and

124

●

●

● ●
●

● ● ●

● ●

●

●

●
●

●

●

● ● ●

●
●

● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

0

2

4

6

8

10

0 100 200 300

Throughput, ops/s

L
a

te
n

c
y,

 s

● ● ●Native (dummy func.) SGX (dummy func.) SGX (no func.)

Figure 6.7: System latency (95th percentile) with SGX and native API Gateway with and with-
out OpenWhisk functions.

interrupts (±3.4.2). These overheads can become even greater if side-channel or Spectre
attack mitigations are deployed.
Currently, Clemmys has some limitations. We have already mentioned in ±6.5 the inability

to update the secure configuration after application startup. Also, OpenWhisk and Palaemon
management systems are not integrated. Thus, when an operator creates a new function
chain in the OpenWhisk, it is not automatically added to the Palaemon, and will not run
until she manually updates the chain using the Palaemon API. The same is true for defining
keys, signing user certificates, and so on. These inconsistencies can lead to denial of service
when, for example, function chain configurations are separately changed in Palaemon and
OpenWhisk.
OpenWhisk supports several action triggers, including periodic activations and activations

based on, for example, Kafka streams. In our work, we have focused on the actions triggered
via REST interfaces. In the future, Clemmys can be extended to support these triggers as
well.
The function chaining protocol so far supports only linear processing chains, without branch-

ing and loops. In the case of more advanced chaining graphs [77], the format of the function
chaining protocol would have to be redesigned. The format is not OpenWhisk-specific and
can be reused with other FaaS platforms.
Clemmys does not depend on SCONE conceptually: the same functionality can be imple-

mented with Graphene-SGX and Intel SGX SDK.

Security discussion. In this section, we argue why the security design of Clemmys is sound.
First, we observe the communication in the system: at each hop between system nodes
the communication is encrypted, either with TLS or with Clemmys function chaining proto-
col. Thus, neither eavesdropping nor message modification can cause a violation of security
guarantees.
Likewise, each node that handles the plaintext data from the user is protected inside an

Intel SGX enclave. All nodes that are running without SGX get access to the user data only
in the cyphertext form. Thus, observation and modification of the data is either not possible
(access denied by Intel SGX), or cannot affect the data confidentiality and integrity, as neither
message plaintext nor keys are available. To guarantee integrity and confidentiality of the

125

data from third parties (e.g. Amazon S3), it must be accessed only via TLS.
With these defenses, the attacker is still able to perform two attacks: send the message

to the wrong function in a chain, and send an outdated message to the same function chain
(rollback attack).
We have shown in the evaluation (±6.6) that our protocol protects the system from the

first attack: when the wrong function receives the cyphertext message, it will verify that the
destination index in the chain of the message matches the identity of the current function.
If this is not the case, the function will reject the message. Thus this attack should not be
possible. As far as the rollback attack is concerned, it is still possible and should be countered
at the application level.

Performance. In Section 6.6.2, we have shown three issues, that are limiting the perfor-
mance of SGX-enabled functions on the worker node: CPU contention, EPC paging, and rel-
atively high latency of function startup. We have concluded that the EPC paging is a major
limiting factor for co-location of multiple independent enclaves on the same machine.
One of the approaches to alleviate this problem is switching to the language-based or

sandbox-based function isolation model, which allows putting all functions inside a single
enclave. This would improve the startup performance of functions even further, while sharing
the trusted runtimememory, and of system call threads would use the limited EPC resources
more sparingly, allowing to run more functions on a single node.
However, wewould like to argue that switching the function isolationmodel eliminates only

one of the issues (function startup latency), but does not solve the fundamental issue: the
scarceness of the EPC memory, which would limit the performance of most FaaS framework
even for the applications with moderate memory usage through EPC paging. Indeed, the
RAM consumption of tasks like video processing or neural network processing ismuch bigger
than the EPC even for a single function: around 190-220 Mb [243, 187].
Thus, the possibilities for concurrent execution of multiple enclaves on a single node will

remain limited until the amount of EPC memory is increased. In this context, increased EPC
sizes in recent Intel CPUs and switch to the MKTME-based encryption in Ice Lake-generation
CPUs are key factors that maymake Intel SGX a useful technology for protection of serverless
function. Another solution comes from the features of serverless platforms themselves: as
the cloud user has no control over the placement of functions, it is possible to distribute
execution of functions over different nodes, reducing their contention over EPC memory.

Potential future extensions. One of the approaches for improving the startup latency of
SGX-based Faas platforms is the use of zygotes—a pre-initialized “template” application, that
is used for quickly starting its instances by forking. Zygotes have been used to improve the
application startup times of Android applications, and more importantly, of the container-
and VM-based serverless functions [230, 113, 88]. Adapting this approach to SGX can be
done by using a fork system call after initialization.
Another important extension may be required by serverless users that want to keep the

binary code of their application confidential. In this case, a functionality similar to that of the
Protected Code Loader in the Intel SGX SDK [16] must be implemented.

6.8 Related Work

Secure FaaS platforms. Researchers and the industry have proposed several FaaS plat-
forms. The first production system built with serverless architecture is AWS Lambda [5];

126

soon, several other open-source [3, 36, 27, 14] and commercial [17, 20, 7] platforms ap-
peared. Yet, none of them protects against privileged attackers.
The work that most closely resembles ours is S-FaaS [65], a trustworthy accountable FaaS

system. Like Clemmys, S-FaaS is built on Apache OpenWhisk, and uses transitive attestation,
a scheme similar to that of Palaemon: a special Key Distribution Enclave (KDE) attests the
worker enclaves and distributes the keys to them. These keys allow enclaves at worker nodes
to establish a secure channel to clients, to produce the signed statement about the inputs
and outputs to each function, and to report the function resource usage. As each function in
the chain can perform the same attestation as the KDE, S-FaaS naturally supports function
chaining. The client needs to attest the identities of the key distribution enclave and all worker
enclaves. S-FaaS functions append function- and invocation-specific tags to the resource
usage report to allow detection changes to the intended order of functions in a chain.
TFaaS is a system that aims to secure the execution of serverless workloads, which takes

an approach different from Clemmys: instead of running user functions each in a different
enclave and container, it executes them inside a single enclave for protection of user func-
tion from the untrusted host environment, and relies on the language-based isolation and
sandboxing technologies to protect user functions from each other. It provides two exe-
cution modes, based on a minimal Javascript engine with low resource usage and lean TCB
(Duktape) formost of the functions, and runs functions that require a high-performance JIT in
Google’s V8 engine. TFaaS provides a protocol for attesting both the enclave runtime and the
in-enclave function when establishing the client connection. The limitations of TFaaS include
lack of trusted resource accounting or explicit support of secure function chaining.
Similar to Clemmys, Se-Lambda relies on Intel SGX to protect the API Gateway and the

user functions. For the API Gateway, it minimizes the system TCB by placing only the mod-
ules critical to the user data confidentiality into the SGX enclave, while keeping the rest of
the gateway untrusted. Se-Lambda API Gateway contains code for remote attestation of
user functions, and for establishing a secure channel to them. For the service runtime, Se-
Lambda implements a two-way sandbox using Intel SGX, and WebAssembly as a software
fault isolation technique, to strengthen the weaker isolation properties of containers com-
monly used in the serverless runtimes. As a performance optimization, Se-Lambda allows
reusing the service runtime across invocations of different functions, improving the startup
time by 20%. Se-Lambda also adds a shieldingmodule for protection against the Iago attacks
to the service runtime. Se-Lambda is built on top of OpenLambda, and uses Node.js as a ser-
vice runtime. Unlike Clemmys, it does not implement any provisions for function chaining.
Also, it does not rely on SGXv2, thus requiring costly initialization during the enclave startup.

Trustworthy resource accounting. In serverless platforms, reliable and trustworthy resource
accounting is extremely important, as the cloud usage is billed per resource consumption.
On the one hand, if the cloud operator has a bug in the resource accounting routine, it can
lead to suboptimal system scaling or even allow dishonest users to get free executions. On
the other hand, lack of transparency and independent verification of resource consumption
allows dishonest cloud operators to increase the bills of the clients.
In the context of the former problem, Liang Wang et al. have studied and reverse engi-

neered resource management policies of several commercial cloud platforms and discov-
ered that they do not achieve the claimed levels of scaling [293]. Furthermore, the authors
have discovered that there were several resource accounting issues, which could affect the
host system operator.
In the context of the second problem, multiple research systems have been proposed:

127

VeriCount is an early system that explored resource accounting for SGX enclaves [282].
It relies on the compiler instrumentation to automatically insert the calls into the runtime
accounting library, and the presence of the instrumentation code is checked by the static
verifier. The runtime accounting library produces the resource accounting logs, which are
processed by the post-execution analyzer and can be used to bill the client. VeriCount relies
on SGX-provided trusted time source and on themonotonic counters to prevent the provider
from slowing down the enclave by preempting or killing it, and to measure CPU time. For
the network and disk I/O, VeriCount measures the number of transmitted bytes, but does
not implement any mechanism for memory accounting. It has been since identified that
SGX-provided time cannot be used for establishing the upper bound of CPU time inside
enclave [134]; this topic is further explored in ±7. VeriCount has also identified the problemof
protection of the in-enclave accounting data from the enclave user code, and has proposed
several solutions to this problem.
AccTEE is a two-way sandboxing framework for trustworthy resource accounting, built us-

ing WebAssembly for Intel SGX protection [134]. To allow the trustworthy accounting, it in-
struments the user code to count the number of executedWebAssembly instructions, mem-
ory allocations, and I/O operations. AccTEE is platform-independent and can be used with
any programming language that supports the execution on WebAssembly virtual machine.
It relies on the instrumentation enclave for modifying the user binary with the resource ac-
counting instructions, which can be inspected by both cloud operator and user. For the
CPU utilization, AccTEE efficiently maintains a weighted counter, which takes into account
the complexity of the executed instructions, while minimizing the overhead of counting us-
ing static analysis. For memory, it tracks the usage of WebAssembly linear memory. For I/O
operations, AccTEE tracks the executed operations of the underlying runtime (SGX-LKL).
S-FaaS also implements themechanisms for trustworthy accounting, focusing on the three

core metrics: memory, network utilization, and CPU time. Accounting for these metrics is
implemented by extending the in-enclave runtime. For network utilization, S-FaaS measures
the amount of data transmitted over socket interfaces. The CPU time inside the enclave is
measured using an additional timer thread, which increments a counter in memory every N
cycles, where the value of N is chosen to represent a commonly used real-world duration
(e.g. 1 second). S-FaaS ensures that long preemptions cannot be used to slow down the
counter by using a mechanism inspired by Varys [233], extended with the usage of Intel TSX
to speed up the detection of interrupts. To estimate the memory usage, S-FaaS reads the
CPU time on every operation that allocated or frees system memory. The CPU time is used
to compute the memory-time integral, the amount of time at eachmemory allocation level in
Mb×sec. S-FaaS provides in-enclave isolation (interpreter- or sandbox-based) to forbid the
user-provided code from tampering with the accounting data.

Optimizations of serverless performance. The performance issue of serverless computing
has been the focus of research for quite some time already. In particular, function startup
latency is the main performance bottleneck. Several approaches to alleviate this issue have
been proposed, based on the reuse of function state, fast container or VM creation, or
checkpoint-restore technologies.
SOCK [230] and Cntr [280] have suggested the use of lean containers to reduce the func-

tion startup cost. Additionally, SOCK uses the Zygote-based design to further speed up
function startup. SAND [62] achieves low startup time using fine-grained function sand-
boxing where multiple instances of the same issue share the container, and by ensuring
that message queuing and storage in the system have high locality. These optimizations do

128

not consider SGX-protected functions, but they are orthogonal to those proposed in our
work. It should also be noted that using local queues or key-value storage to increase spa-
tial and temporal locality of the processed data is a well-known approach in the serverless
platforms [269, 97, 278].
Catalyzer [113] is a system for optimizing serverless system performance without compro-

mising security. To this end, Catalyzer runs the functions in the virtual machines, however
instead of booting them from scratch, they are restored from a known-good system im-
age. As in Clemmys, the pages of the function image are added to the running instance on-
demand, albeit using virtualization technologies, not Intel SGX. The creation of the function
image allows optimizing both the boot time of the service runtime (VM), and of the language
interpreters necessary to execute the function. To facilitate the creation of the images, a
new system call, sfork, a sandbox fork, is proposed. It is possible to use Catalyzer with In-
tel SGX-protected enclaves as well, at the cost of modifying the enclave runtime. It should
also be noted restoring system state from image typically removes the benefit of ASLR, and
simplifies the exploitation of memory-based vulnerabilities.
Faasm [269] extendsWebAssembly-based functionswith two important extensions: shared

memory support, and with a checkpoint-restore-based startup, achieving even lower func-
tion startup latency and per-function memory footprint. For resource isolation, on the other
hand, Faasm relies on the operating system features, such as cgroups, virtual network inter-
faces, and firewall rules. Applications that need to interact with external systems can use a
minimal systems interface, a message queue, and a read-global write-local file system. While
Faasm assumes a trusted cloud provider, all of its optimizations can be applied to SGX en-
claves.

Secure distributed computing frameworks. Several systems use Intel SGX to implement
trusted distributed computing:
VC3 [262] is a framework for Map-Reduce computations in the cloud that relies on SGX

to achieve its security properties. The authors also design a cryptographic protocol that
enables verification of computations integrity. Unlike our work, the authors use an enclave
partitioning scheme with minimal TCB for mapper and reducer code, and cannot run generic
workloads.
SecureStreams [147] proposes a system for secure stream computations. In this system,

ZeroMQ and symmetric encryption are used for secure network communication, while the
stream processing functions are implemented in the Lua programming language. In our
work, we also rely on custom protocol with symmetric encryption, while the function can be
implemented in several programming languages.
Opaque [305] is a Spark-based data analytics platformwith data-oblivious processing func-

tions for untrusted cloud platforms. Unlike Clemmys, it ensures that no information about
workload is leaked through metadata; in Clemmys, this property is considered to be out of
scope, as Clemmys deals with much more generic workloads. Pesos [185] and Speicher [76]
proposed secure storage solutions based on Intel SGX, which can be potentially used for the
secure storage layer.
AirTNT combines blockchain-based smart contracts with Intel SGX-based TEEs and remote

attestation to rent computing time on the machines of the remote users [63]. By repeatedly
publishing the intermediate results of computations in exchange of payments, this systems
ensures that the computation makes forward progress in presence of worker nodes that
connect and disconnect from the distributed system.
In AirBox, Bhardwaj et al. design a system for efficiently outsourcing compute-intensive

129

computations to the edge nodes [86]. The authors reach a sweetspot between security, pro-
visioning flexibility, and developer constraints for edge function by building on the container
interfaces and Intel SGX TEEs. As a result, AirBox is performant and scalable in common edge
computing benchmarks, and runs a wide variety of functions, including soft-state functions
like caching. It should be noted that the performance evaluation of AirBox was done in a
simulator, which may not faithfully represent Intel SGX overheads.

6.9 Conclusion

In this chapter, we have presented Clemmys, a secure platform for serverless computing,
which allows users to ensure the confidentiality and integrity of functions’ sources and data.
Clemmys achieves these properties by building on Apache OpenWhisk, a popular serverless
platform, Palaemon, a key management solution for Intel SGX, and SCONE, an Intel SGX TEE
framework for unmodified POSIX applications. As part of Clemmys, we propose a message
encryption scheme that ensures the integrity of the function chains. We have evaluated
Clemmys in different scenarios and show that Clemmys achieves high throughput of function
execution, while protecting against privileged adversaries.
Additionally, we show how the amount of EPC memory is likely to remain a limiting factor

for real-world FaaS deployment until CPUs with alternative memory encryption technology
become more widespread in the cloud.

130

7 A Trusted Lease Primitive for
Distributed Systems

In the previous chapter, we have applied Intel SGX to serverless computing with Clemmys,
allowing users to execute functions in the cloud with high scalability and low management
overhead. However, an important challenge for Intel SGX was uncovered when stating the
system model: are the users of the FaaS platforms function providers? This question is im-
portant, because the function provider may limit the number of concurrently running func-
tions. This problem can be trivially solved by leases, but lacking a trustworthy time source, it
is impossible to provide a lease mechanism that can operate in the threat models typical for
Intel SGX.
A similar question was raised in the ±5: while we have discovered a low-latency time source

for SGX enclaves, this time source is not trustworthy, and can be manipulated by the OS.
Even if this limitation affects only the availability of the system, which cannot be ensured
with Intel SGX, the trustworthy time source and time-based protocols are a recurring theme
when constructing systems based on TEEs. In this chapter, we will show that it is possible
to build a trustworthy time-based protocol by constructing a lease protocol for untrusted
environments using Intel SGX TEEs.
We focus on a lease as it is an important primitive for building distributed protocols, and

it is ubiquitously employed in distributed systems. However, the scope of the classic lease
abstraction is restricted to the trusted computing infrastructure. Unfortunately, this impor-
tant primitive cannot be employed in the untrusted computing infrastructure because, as we
have shown, the trusted execution environments (TEEs) do not provide a trusted time source.
In an untrusted environment, an adversary can easily manipulate the system clock to violate
the correctness properties of lease-based systems.
We will tackle this problem by introducing trusted lease—a lease that maintains its correct-

ness properties even in the presence of a clock-manipulating attacker. To achieve these
properties, we follow a “trust but verify” approach for an untrusted timer, and transform it
into a trusted timing primitive by leveraging two hardware-assisted ISA extensions (Intel TSX
and SGX) available in commodity CPUs. We provide a design and implementation of a trusted
lease in a system called T-Lease—the first trusted lease system that achieves high security,
performance, and precision. For the application developers, T-Lease exposes an easy-to-use
generic APIs that facilitate its users to build a wide range of distributed protocols.

131

7.1 Introduction

Leases are one of the fundamental building blocks of distributed systems [137]. On an ab-
stract level, a lease is a permission to access a shared resource for a certain period of time
(the lease term). The lease is issued by an authoritative resource owner (the lease granter) to
an entity that wants to access the resource (the lease holder). While the lease is active, the
holder can freely access the resource without requiring any coordination with the granter.
Due to this coordination-less scheme, leases bring a significant benefit to building dis-

tributed systems for workloads with heavy read skew by eliminating the need for repeated
resource locking. Therefore, leases are ubiquitously used in the design of distributed pro-
tocols and systems, such as two-phase commit [61], locking [299], consensus [193, 223],
caching [300], leader election [123], failure detector [151], databases [229, 130, 102], stor-
age [57], sharding [58], and file systems [226, 177, 213, 153, 130, 274]. Thanks to leases, such
systems can achieve high performance and strong consistency with low overheads, while still
allowing the writes to proceed. In this regard, leases are favorable compared to the tradi-
tional locking protocols for synchronization [152, 96]: with locks, the writes cannot proceed
until all readers have unlocked their data.
Even though leases are widely used in distributed systems, their scope is mainly confined

to the trusted computing infrastructure. However, this assumption is no longer valid with
the prevalence of cloud computing: the potential risks of security violations in third-party
cloud computing infrastructure have increased significantly. In an untrusted environment, an
attacker can compromise the security properties of distributed systems. Many studies show
that software bugs, configuration errors, and security vulnerabilities pose a serious threat
to distributed systems deployed on the untrusted computing infrastructure [141, 259]. In
particular, lease violations can lead to both denial of service and correctness issues (see
±7.2.1).
Intel SGX and SCONE can be used to protect the nodes which use lease-based protocols.

However, even with Intel SGX, the design of a trusted lease is non-trivial: to enforce a lease
term, TEE must have access to a trusted time source. Unfortunately, this important primitive
is missing in the current versions of Intel SGX. In practice, an attacker has the capabilities to
control the time sources (by setting value and frequency), the CPU frequency, by delivering
interrupts and delaying messages, etc. Therefore, a strawman design for a trusted lease is
bound to either be insecure (for a design where the lease duration is measured using the
Timestamp Counter) or suffer from high performance overheads (for a TPM-based clock).
To overcome these limitations, we focus on the following question—how can we design

a trusted lease abstraction for distributed systems? To answer this question, we present an
abstraction of trusted leases, which we design and implement in a system called T-Lease. The
trusted lease retains all properties of the classic lease [137], but it is designed to maintain
its correctness properties even in the presence of a privileged attacker. More specifically,
T-Lease is the first system for trusted leases with the following design properties:

• Security: It always maintains the lease correctness invariant; that is, the lease duration
at the granter must be a superset of the lease duration at the holder.

• Performance: It imposesminimal performance overheads compared to classical leases.

• Usability (time precision & APIs generality): It provides an easy-to-use generic APIs to
support both short-termed (fine-grained time resolution) and long-termed leases for
implementing a wide range of distributed protocols.

132

Timer Type OS mediated OS controled Cost
Software timer [263] Software No Yes Low
TSC [160] Architectural No (SGXv2) Yes Low
HPET [155] Architectural Yes: MMIO Yes Medium
PTP clock [284] Hardware Yes: MMIO Yes Medium
TPM [72] Hardware Yes: OS No High

Table 7.1: Time sources on the x86 architecture.

To achieve these design goals, we apply a “trust but verify” approach to a high-resolution
low-overhead untrusted timer, improving its security without sacrificing performance and
usability. More specifically, we transform the untrusted timer into a trusted time source by
leveraging ISA extensions available in commodity CPUs. This transformation is based on a
simple observation: the untrusted timer can only be manipulated on interrupts; thus, T-Lease
needs to detect interrupts and verify the correctness of the timer after each interrupt detec-
tion. Thus, in addition to architectural features of Intel SGX, T-Lease relies on Intel TSX [160].
T-Lease relies on Intel SGX to detect interrupts by examining the memory used for the en-
clave state storage during the interrupt handling. Intel TSX provides us with a transaction
primitive which we use to close a window of vulnerability after the lease check. A combina-
tion of these two features allows us to (a) detect interrupts before checking the lease, and
(b) ensure that critical instruction sequences are executed without interrupts.
More specifically, our design builds on three core contributions: (1) enclave-interval timer

allows secure and low-overhead measurement of the time intervals that the application
spends inside the enclave; (2) timer frequency verification mechanism to prevent an attacker
from manipulating the timer frequency, thus allowing verification of the timer correctness;
(3) transactional system call interface using the hardware transactional memory to prevent the
time-of-check to time-of-use (TOCTOU) vulnerability between a lease check and the corre-
sponding system call submission.
We implement T-Lease as a static library, which provides an easy-to-use generic lease APIs

for implementing a wide range of distributed protocols. In the evaluation, we study the per-
formance, correctness, and precision properties of T-Lease using a set of microbenchmarks
both in single-node and distributed system setups. We further employ T-Lease to design
three real-world distributed case studies: (a) failure detector in FaRM [111], (b) Paxos Quo-
rum Leases [223], and (c) strongly consistent caching [137]. The evaluation results show that
T-Lease is effective at detecting timer tampering for TSC (x86 Timestamp Counter) and the
overhead from the timer is minimal in a wide range of configurations (0-25%, up to 5% in
most cases). Finally, the basic version of T-Lease protocol has been verified using TLA+ and
TLC model checker.

7.2 Overview

A lease is a contract issued by a resource owner to give control to a holder over the protected
resource for a certain time duration. This duration is defined using a lease term parameter. A
lease term might have any length, from zero to infinity. In practice, however, the lease term
is typically set to a limited amount of time. When the lease term expires, the holder has to
either renew the lease or continue with reduced consistency (if allowed by the protocol).
Typically, classical distributed systems assume trusted environments in which they rely on

133

the system time sources, like clock_gettime to enforce the lease term. It provides resolution
up to nanoseconds and has an extremely low overhead on modern Linux systems that use
vDSO (virtual dynamic shared object) [55]. Compared to the classical systems, distributed
systems built with TEEs assume a more privileged attacker who can affect the lease term
by manipulating the system time resources. Hence, in this chapter, we introduce a novel
concept of trusted leases to tackle this challenge.

7.2.1 A Case for Trusted Leases

The trusted lease abstraction is motivated by the necessity to secure distributed systems
built using TEEs. TEEs provide strong confidentiality and integrity properties for the appli-
cation memory but do not extend these security guarantees to the system time sources.
Typically, the failure of the lease mechanism causes only denial of service. However, in the
untrusted environment, a privileged attacker can manipulate the lease term as perceived
by the holder or by the granter, leading to the violations of correctness, e.g., system security
properties that depend on the specific protocol. For example, leases may be used to limit
the number of concurrently running enclaves (as a licensing mechanism for SGX runtime, or
as a security measure, e.g. to limit brute-force throughput). In this case, the ability to con-
tinue running an enclaved application while the lease granter assumes that the enclave has
stopped execution would constitute a violation of a safety property.
To support such use-cases, trusted leases retain all of the properties of classic leases, but

extend them with a stronger threat model, where a privileged attacker tries to subvert its
correctness by influencing the runtime environment. Therefore, in contrast to the leases for
trusted environments, trusted leases cannot rely on the operating system time sources to
enforce the lease term: these time sources are by definition under the control of the OS.
Thus, only architectural time sources and TPMs could be used for the trusted lease imple-
mentation.
Hence, a trusted lease can be defined as a lease designed to maintain its correctness proper-

ties even in the presence of a privileged attacker. A timer manipulation, in the worst case, results
in a performance loss.

Threatmodel. We assume a powerful attacker that has full control over theOS and can intro-
duce arbitrary changes to the system configuration. We focus on the attacker that manipu-
lates clocks: changes clock value and frequency, introduces delays into application execution
and message delivery, manipulates CPU frequency. Therefore, standard timers provided by
the platform or the OS are untrusted [69, 284].
Table 7.1 shows examples of the time sources available on the x86 architecture, their over-

heads, and the amount of control the OS (thus, the attacker) has over the time source. An
attacker can directly affect the time readings using a variety ofmechanisms: usingMMIO con-
trol registers for HPET and PTP clocks, writing to model specific registers for TSC, and chang-
ing power management settings to modify the frequency of a software timer. She also has
indirect ways to affect time reading by delaying the time reading requests and pre-empting
the running application between the timer access and the use of the timing information (Time
of Check vs. Time of Use vulnerability).
We assume a correctly implemented CPU and ISA extensions; that is, SGX protects the

confidentiality and the integrity of enclave memory and TSX aborts transactions on inter-
rupts. Other attacks, like buffer overflows [190, 231] and microachitectural side-channel
attacks [233, 93, 294], are out-of-scope for T-Lease. Likewise, Denial of Service and perfor-

134

(H) Init_Lease(Lease timeout)

Initializes a lease with configuration.

(G, H) Init_Client(Local Addr, Remote Addr, AES key)

Initializes client communication endpoints.

(H) Update_Renew_Lease(Lease, Client)

Updates and renews the lease.

(G) Update_Lease(Lease, Current time)

Updates lease state without renewing it.

(G, H) Lease_Protected_Syscall(Lease)
Enables TSX protection for system calls if lease is active.

(G, H) T, AEX? = RDTSC_AEX()

Reports current rdtsc value and if enclave was interrupted since last call.

Table 7.2: T-Lease library APIs: G marks the functions used by the granter and H by the lease
holder.

mance degradation attacks cannot be prevented using Intel SGX and are out-of-scope.
We consider attacks that delay the messages with the results of lease-conditional compu-

tations (in contrast to time read RPCs) out-of-scope: these attacks must be handled by the
higher-level protocol, for example by including timestamps in those messages, as delays are
common in distributed systems even without an attack.

7.2.2 T-Lease: A Trusted Lease Primitive

T-Lease overview. T-Lease allows building distributed lease-based applications that run in-
side Intel SGX enclaves and withstand attacks on the time sources by privileged adversaries.
T-Lease builds on three core abstractions:

• T-Lease presents an enclave-interval timer to securely estimate the duration of the time
intervals using an untrusted, OS-controllable time source. This functionality is neces-
sary to track the lease term on the granter and the holder sides. To achieve this, the
enclave-interval timer builds on the SGX architectural features for interrupt detection
and uses TSC as an underlying timer.

• T-Lease presents a timer frequency verification mechanism for thwarting attacks that
manipulate timer tick rate. To achieve this, we design an empirical approach that mea-
sures the duration of a sequence of attacker-uncontrollable instructions (RDRAND) and
aborts execution if the result is out of architecture-determined bounds.

• T-Lease presents a transactional system call interface to communicate the results of com-
putations that depend on the lease being present. So, the holder can atomically check
the lease state and communicate the computed results; thus, avoiding the TOCTOU
vulnerability. We achieve this by starting an Intel TSX transaction before checking the
lease and committing it on a successful system call submission.

T-Lease APIs. T-Lease implementation consists of a client library and a reference imple-
mentation of a lease granter, which communicate over a UDP socket. The granter runs on

135

Update_Renew_Lease

U
pdat

e_
Le

as
e Ack

Start lease, periodically

update lease timer

Holder

Granter

Submit system call

Lease_Protected_Syscall

Submit system call

Lease_Protected_Syscall

Executed as a transaction Lease expired or

interrupt delivered

Lease_Protected_Syscall

U
pd

at
e_

Le
as

e

Ack

Submit system call

Lease_Protected_Syscall

Update_Renew_Lease

Fail!

1

2

3

4
5 6

Figure 7.1: Basic workflow of the T-Lease protocol.

a dedicated machine and typically serves several clients. Table 7.2 lists the core APIs that
are exported by the library for use by the granter and the holder (the service and auxiliary
functions are not shown).
The functions can be divided into the following categories: Initially, two initialization func-

tions are used for the lease and lease protocol client: Init_Lease and Init_Client. They
are called by the granter and holders to initiate working with T-Lease. Then, two core func-
tions are used to maintain a correct T-Lease protocol state: Update_Renew_Lease, called by
the holder to request a lease and update the lease state, and Update_Lease, called by the
granter to update the state of the lease at its side. Lease_Protected_Syscall is a function
for secure results submission: it is used by the holder to atomically check the lease state and
submit the computation results to the client. RDTSC_AEX is a low-level function, exported to
facilitate building more complex distributed protocols than the default lease protocol used
in T-Lease. Note that while T-Lease provides a simple, minimal lease protocol, it can be gen-
eralized to more complex protocols.

T-Lease basic workflow. Figure 7.1 describes the operation of T-Lease. First, since T-Lease
uses TSC as a time source, whichmeasures time in cycles, it is necessary to calculate nanoseconds-
cycles conversion factors. Then, both the holder and the granter can initialize endpoints by
using Init_Client(). This function opens the connection to the granter and configures
the cryptographic key used to secure the communication. Next, the lease holder initializes
the lease: sets the requested lease term and the lease identifier. Thereafter, the holder can
request the lease from the granter 1 .
The granter enters a work loop, where it first receives a message from the holder, and

based on the holder command activates or disables the lease 2 . After serving a message
from a holder, it updates the state of all active leases, by using Update_Lease function 3 .
This function updates the enclave-interval timer for each lease, disabling all leases for which
the accumulated timer value is larger than the lease term.
The holder, upon receiving a lease, enters a work loop: for example, a cache server may

be handling user requests. It gets the user’s request, processes it, and submits the re-
sults to the user. This operation is only valid if the lease is active, hence, it needs to call
Lease_Protected_Syscall() to check the lease state and submit the system call in a trans-
actional manner 4 . If the return value indicates that the transaction is active, the system call
can be submitted. If the transaction is inactive 5 , the holder needs to renew its lease using
Update_Renew_Lease and retry 6 . The conditions under which transactions may become
inactive are explained in ±7.3.2.

136

7.3 Design

In this section, we first present two strawman designs and associated design challenges to
realize the trusted lease abstraction. Thereafter, we present a detailed design of T-Lease.

7.3.1 Strawman Designs and Associated Challenges

As T-Lease is designed to operate with Intel SGX enclaves, it may access several timers, pre-
sented in Table 7.1. There is a set of trade-offs associated with each timer, that fall on the
axis of the timer access cost and the control that the OS has over the timer. For example,
some timers can be accessed only via the OS. For these timers, the OS can introduce arbi-
trary delays into message reads, so that these timers can be used only to establish the lower,
but not the upper bound on the elapsed time. Other timers, like software timer and TSC with
Intel SGXv2, can be accessed directly1. However, the OS can use the following capabilities to
subvert the timer readings:

• Power management: Changing the CPU frequency influences the tick rate of a software
timer.

• Preempting the application or delaying messages: This attack can be used on any OS-
mediated timer.

• Modifying timer value: The OS can change TSC readings by writing to IA32_TSC_ADJUST
or IA32_TIME_STAMP_COUNTERmodel-specific registerswhen the enclave is preempted,
and spoof HPET or NIC PTP clock readings via MMIO writes.

• Modifying timer frequency: On virtualized platforms, writing to TSC Multiplier and TSC
Offset fields in the VM control structure changes the TSC speed [160]. This attack also
requires preemption of the VM.

All of these attacks must be thwarted by the T-Lease design, which is a non-trivial task.
Consider, for example, the following two strawman solutions:

TPM-based design. Consider a design where the enclave checks the lease expiration using
the time read from the TPM timer. Because the OS mediates in TPM communication, such
a design cannot guarantee the correctness property. Specifically, during the lease check pe-
riod, the OS can delay the TPM read beyond the lease expiration time. The holder gets the
TPM read result after the lease expires, thus violating the lease invariant. Another vector for
subverting system correctness is the delivery of an interrupt between the lease check and
returning the results from the enclave. If the enclave execution resumes only after the lease
expires, the lease invariant is also invalid. Besides, the TPM fails to meet the speed and ac-
curacy goals. Reading a digitally signed TPM time takes from 50 ms to 600 ms depending on
the selected cryptography system, i.e., hash-based or asymmetric cryptography.
We note that sgx_get_trusted_time2 from Intel SGX SDK suffers from the same issue.

It involves OS-mediated communication between several enclaves and the hardware: the
time read RPCs are passed between the application enclave, the service enclave manager,
and Platform Services Enclave, which communicates with the hardware via an OS driver.

1This is also true with common configurations of VMs, which do not cause #VM exception when the guest reads
TSC.

2This function has been removed in the Intel SGX SDK v2.8.

137

These RPCs are cryptographically protected, but the OS can delay their delivery to any of the
components.

TSC-based design. In a TSC-based design, the lease is initialized, its term in seconds is con-
verted into rdtsc cycles using the CPU-specific multiplier, and the lease requested from the
granter. After the granter acknowledges the lease, the expiration point (in rdtsc cycles) is
calculated; as soon as this point of time elapses, the lease becomes invalid. The granter and
holder both track the lease duration. With this design, the attacker has two prospects for
subverting the security requirements. First, the OS can preempt the application, write to the
Model Specific Registers to set the time inside the enclave back into the past, and then con-
tinue the application execution. Secondly, the attacker could launch the application in a VM,
and use TSC Multiplier control to slow down the TSC. Next time when the enclave reads the
time, it will not be able to detect the lease expiration.

Design challenges. To summarize, these attack vectors present the following design chal-
lenges for T-Lease:

1. How can the lease term be securely measured by the granter and the holder?

2. How can the timer frequency be verified?

3. How to atomically perform the timer check and return results?

We next explain our system design that addresses these challenges.

7.3.2 T-Lease Detailed Design

In this section, we describe the detailed design of T-Lease that addresses the aforementioned
challenges. We explain how enclave-interval timer abstraction allows T-Lease ensure that the
time measurement is untampered (±7.3.2) while the timer frequency is correct (±7.3.2). In
±7.3.2, we show how T-Lease closes the window of vulnerability between lease check and
returning computation results using the hardware transactional memory.

Enclave-Interval Timer

To help solve the first challenge, we use the following intuition: for the lease implementation,
there is no need to measure the absolute time, only the relative—that is, time differences.
To securely measure time intervals using the OS-controlled untrusted timer, which would
retain the performance characteristics of the underlying clock, we need to: (a) ensure that the
underlying timer was not manipulated or delayed for some period of time, and (b) precisely
establish points when the manipulation could take place.
First, it is necessary to choose a time source. We note that all of the OS-mediated sources

do not allow establishing whether the timer was not manipulated (i.e., each access is poten-
tially manipulated), so, they cannot be used in the design of T-Lease. Thus, only the software
timer and TSC with SGXv2 can be used since their value or frequency can be manipulated
only when the enclave is preempted. We chose to use TSC in the implementation of T-Lease,
because it incurs lower performance overhead: it does not require a dedication of a CPU
core to a timer thread. Since in our case the resulting clock measures the duration of time
intervals inside the enclave, we call this timer an enclave-interval timer.
Observing the capabilities of an attacker, we conclude that the attacker needs to deliver an

interrupt to tamper with system clock configuration in all cases. T-Lease uses the corollary

138

Interrupt!

Timer Epoch 1

Lease

Check

Lease

Check

Lease

Check

Lease Check,

Timer Verification

Lease

Check

Timer Epoch 2(1) (2)

Figure 7.2: Enclave-interval timer operation. (1) Under-accounted time inside enclave; (2)
Correctly unaccounted time outside enclave.

of this fact: we can safely estimate a period of time as long as the entire period is spent inside
the enclave, that is as long as no interrupts happen during that period. We call such a non-
interrupted period of time an epoch.
We detect interrupts by inspecting enclave State Save Area (SSA), a preconfiguredmemory

region that saves the register state of enclave upon receiving an interrupt [103]. SSA has a
predefined format, with fields for the registers and service data. We write 0 (zero) into the
field of the IP register, which is an invalid value for that register. Later, we can check the value
of that field, and if an interrupt happened, we will detect a non-zero value there.
To estimate the duration of an active lease, T-Lease periodically reads the TSC value and

checks for the interrupts using the aforementioned mechanism. If no interrupt was deliv-
ered, it adds the duration of an interval from the previous such check to the current moment
to the lease active time. In case there was an interrupt, the operations for the granter and
holder are different. Because the lease term on granter must be a superset of the lease term
on the holder, upon detecting an interrupt at the granter T-Lease can continue operation in
a normal mode. This functionality is implemented in function Update_Lease.
The holder, however, cannot do the same, because it could have been preempted for

an arbitrarily long period of time, and its lease on the granter could have expired in the
meantime. Thus, upon each interrupt, the holder has to renew its lease from the granter. As
before, the request-reply interaction should happen in the same epoch; otherwise, there is
no guarantee that the packet has not been delayed. We have implemented the lease state
update and communication in function Update_Renew_Lease.

Timer Frequency Verification

To solve the second challenge in which the attacker could change the TSC frequency in ad-
dition to the TSC value, T-Lease must verify the timer frequency after each interrupt.
A strawman design of the verification routine could consist of a sequence of instructions

with deterministic execution time, e.g.; noops or in-register additions. However, these actions
have a significant drawback: they open a privileged attacker a possibility to tamper with the
execution speed of the CPU using the power management features.
The ability of an attacker to control the power management features has far-reaching im-

plications for the verification routine: most modern Intel CPUs have constant TSCs, that is
TSC speed is independent of the CPU frequency. On the other hand, the speed of other com-
ponents of the CPU does depend on the CPU frequency: bymanipulating CPU frequency and
rdtsc speed simultaneously, an attacker can trick a simple verification routine into believing
that the TSC rate is normal.
Therefore, the procedure that verifies the timer frequency must not depend on the CPU

speed. By analyzing the literature [159, 143] and performing experiments on multiple SGX-
enabled platforms, we have discovered that the RNG module embedded into the Intel CPUs

139

to implement RDRAND instructions is independent of the CPU frequency: entropy collection
module is self-clocked at 3 GHz, and the post-processing module runs unconditionally at
800 MHz. Therefore, we use a sequence of six RDRAND instructions to measure the rdtsc

rate. The number of RDTSC instructions to execute is a trade-off between accuracy and the
verification cost.
Our measurements (±7.5.2) have shown that the latency variance of RDRAND is high: be-

tween 7000 and 10500 cycles. Due to an inherent variation of cost of this instruction, the
attacker would still be able to modify the TSC frequency in some bounds. To increase the
reliability of the rate estimation, the measurement can be repeated several times. While
our verification routine depends on the microarchitectural details of the RNG, the RDRAND
latency falls into these bounds on all SGX-enabled CPUs that were available to us, thus we
argue that this technique is applicable in practice.

Transactional System Call Interface

Finally, T-Lease has to close a window of vulnerability between the lease check and the
externally-observable actions that are conditional on the lease state. In our model, we use
system calls (which may involve writing to disk or sending a message over the network). We
argue that this model is adequate for most of the currently used distributed systems, as the
number of TEE-based systems that use kernel bypass for the communication is comparably
small.
We observe that with Intel SGX, the only way for an enclave to submit computation results

is via the shared memory writes. Thus, the required atomicity of the lease check and the
result submission can be achieved using the hardware transactional memory: if an interrupt
is raised while the transaction is active, the underlying hardware will automatically rollback
all changes made in the transaction. We consider a system call submitted when it becomes
visible on the unprotected shared memory.
T-Lease uses Intel TSX to check the lease and submit computation results in a single atomic

transaction [160, 189]. Intel TSX allows applications to perform arbitrary memory reads and
writes in an atomic, transactional manner. TSX imposes some limitations on these transac-
tions: the amount of writes that may happen in a transaction is limited by the L1 cache size,
some instructions inside transactions are forbidden. In case these limitations are violated, a
read-write or write-write conflict is detected, or an interrupt is delivered, the transaction is
rolled back with an error flag set. To limit these effects, we commit the transaction immedi-
ately after a system call is submitted (±7.4.1).
The attacker can still delay the message or disk write after they are submitted, but this

cannot violate the security properties: the messages/writes can be delayed in a distributed
system even without an attack, and designing a system to tolerate these delays is out of
scope of T-Lease. For synchronous and timed asynchronous systems, the maximum delay
must be taken into account when checking if the lease is active.

7.4 Implementation

7.4.1 Implementation of the T-Lease Library

We implement T-Lease as a static library in 1037 lines of ANSI C, and 26 lines of inline assem-
bly for the Intel TSX support and reading TSC.

140

Intel SGX framework. T-Lease relies on SCONE (±3) as an underlying SGX framework and to
access the SSA region. Our work, however, is conceptually independent of SCONE and can
be built on top of Graphene-SGX [287] and Intel SGX SDK [158]. Other than modifying the
system call thread code for reducing the Intel TSX abort rate, we have added a transaction
commit code in the SCONE system call handler to reduce the transaction length, and to
ensure the pinning of threads to cores.

Communication. T-Lease uses UDP sockets for the communication, which is common for
latency-sensitive services. All communication between the nodes is encrypted with AES-
GCM-256. We use Intel IPSec Multibuffer Encryption library [54] for these cryptographic
functions. T-Lease leases currently use a pre-shared AES key; in production use, we ex-
pect to use a full-fledged key management service, for example Palaemon [138], for the key
distribution.

TSX-specific optimization. When designing the TSX protection, we need to take into account
the architecture of SCONE. Since SCONE uses asynchronous communication via concurrent
queues between the enclave and the untrusted world, the transaction abort rate due to the
read-write conflicts between the system call thread and the in-enclave thread was reaching
79%. We have fixed this issue by adding six pause instructions into the back-off routine of the
system call thread, as a trade-off between the instruction overhead and the abort rate. This
has reduced the abort rate of transactions to 0.008% on a system call intensive benchmark
without reducing its performance. This code can be further improved using the recent Intel’s
TSXLDTRK extension for suspending load tracking inside the transaction region, however we
do not expect a significant performance effect from this optimization.

7.4.2 Implementation of the T-Lease Case Studies

To demonstrate how T-Lease can be used in practice, we apply it to three state-of-the-art
distributed systems that rely on leases. In the following case studies, we implement a stan-
dalone implementation of granters (or nodes with equivalent features); for the holder part,
support for each of the use-cases was added into the client library.

• FaRM [111]: Uses leases for failure detection;

• Paxos Quorum Leases [223]: Uses leases in its lease configuration activation protocol
(after which it switches to leases with the unlimited term).

• Strongly Consistent Caching [137]: Uses leases as a part of a file system caching service.

Failure detector in FaRM [111]. FaRM is a high-performance distributed transactional stor-
agewith high availability and strong consistency [111]. FaRMuses leases as a failure detector:
each worker node has to maintain a lease on a cluster manager node. When a lease expires,
this signals to the lease granter that the lease holder has failed, and triggers the FaRM cluster
reconfiguration. We implement the same failover protocol, recreating as many details of the
original paper as possible (the lease renewal rate is set to 1/5 of lease duration, etc.). An
attacker may choose to modify the time at the cluster manager node, preventing the detec-
tion of outdated leases. In this case, the cluster reconfiguration will not be updated, and the
client would be directed to a node in a failed state.

Paxos Quorum Leases [223]. Paxos Quorum Leases is a modification of the Paxos protocol
that splits objects and nodes of the system into lease groups according to the frequency of

141

0

50

100

150

200

Discrete
TPM

PTT T−Lease Read
SGX MC

Inc
SGX MC

Read
AMCS

Inc
AMCS

Time source

A
c
c
e

s
s
 L

a
te

n
c
y,

 m
s
e

c Counter

Timer

Figure 7.3: Access latency of trustworthy clocks and timers.

accesses to each of the objects on each node [223]. Inside lease groups, each node has an
infinite term lease to objects belonging to the group, and it can serve read accesses to these
objects without consulting themajority of the nodes; thus, it significantly improves the system
throughput. While the lease itself has an infinite term, to activate a lease configuration, each
node must exchange a non-infinite lease with a majority of the nodes in the lease group.
An attacker that manipulates the time on one or multiple machines can cause the node to
assume that it has successfully established the lease with the majority of the nodes, while in
practice this would not be true. By using T-Lease inside the lease activation protocol, we can
ensure that the attacker cannot violate the system correctness.

Consistent caching [137]. Strongly consistent caching is a use-case that is commonly used
in distributed systems to improve throughput and latency [137]. It uses standard leases to
grant caching node access to a set of objects (files on the file system, database rows) for a
lease term, during which reads from the caching node can be done without consulting an
authoritative data source, and the data source will notify the caching node about any write
to objects under a lease. This system relies on the invariant that a lease duration at the lease
holder is shorter than the lease duration at the granter. Violation of this requirement may
cause stale reads or even conflicting, inconsistent results. Strongly consistent caching imple-
mented with T-Lease detects the manipulations of system time and ensures the correctness
of the system.

7.5 Evaluation

Our experimental evaluation answers the following questions:

1. Single-node setup: What are the performance, correctness, and precision properties
of individual low-level components of T-Lease? (±7.5.2)

2. Distributed setup: What is the performance of T-Lease in a distributed multi-node
setup? (±7.5.3)

3. Case studies: Can T-Lease be used for real-world distributed protocols? What are the
associated overheads compared to classical untrusted leases? (±7.5.4)

142

0.00

0.05

0.10

0.15

0.20

7000 8000 9000 10000 11000

Check duration, cycles

P
ro

b
a

b
ili

ty

Performance Powersave

Figure 7.4: Latency of TSC timer check using 6 rdrand instructions.

To this end, we devise a set of microbenchmarks to answer the Question 1, and develop
a set of distributed experiments to answer the Question 2. To answer the Question 3, we
evaluate the systems outlined in ±7.4.2.

7.5.1 Experimental Setup

Testbed. We use two types of machines. SGXv2 NUC is an SGXv2-capable Intel Pentium Silver
NUC (Gemini Lake) operating at 1.5 GHz with 16 KB L1, 128 KB L2, and 4 MB L3 caches, and
32GBof RAM. SGXv1 server is a Dell PowerEdge R330 server with an SGXv1-capable Intel Xeon
E3-1270 v5 CPU (Skylake), with 32 KB L1, 256 KB L2, and 8 MB L3 caches, 64 GiB RAM, and a
discrete Infineon 9665 TPM 2.0. We use the SGXv1 server in distributed experiments. Both
machines are connected to a 1 Gb/s switched network. To measure Intel PTT access times,
we use Intel NUC with an Intel Core i7-7567U CPU at 3.5 GHz (Kaby Lakemicroarchitecture, 2
cores, 4 hyperthreads) with 32 KB L1 and 256 KB L2 private caches, 4 MB L3 shared cache, 8
GBof RAM, and TPM2.0 compliant Intel PTT provided by IntelME under version 11.8.50.3425.

Methodology. As system interrupts have a major influence on the functioning of the T-Lease
timer, we reconfigure the system to reduce their frequency. We change the kernel config-
uration to the lowest possible timer interrupt frequency (100 Hz), enable the dynamic ticks
kernel mechanism, and steer all device interrupts to core 0. Because of the severe per-
formance impact of interrupts on SGX enclaves, these changes are generally beneficial to
SGX-based systems [103].

7.5.2 Single-node Setup

We first evaluate (a) performance, (b) correctness, and (c) precision properties of T-Lease in
a single-node setup.

(a) Performance: Access latency. We begin by measuring the access latency of available
secure clocks and timers (Figure 7.3). Without interrupts, the access latency for T-Lease
is ∼30 ns. When interrupts are delivered, the minimum cost is approximately 10k cycles
(20.3 µs), and the full cost of using a timer will depend on the interrupt recovery actions. This

143

●●● ●● ●●
●

●

●

●

●

● ●

●

●

●

●
●

●● ●● ●● ●
●

●● ●● ●● ●● ●●
●

●
●

● ●● ●● ●● ●● ●● ●●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●
●

● ●● ●● ●● ●● ●●

0.00

0.25

0.50

0.75

1.00

−100 −50 0 50 100

TSC speedup, %

N
o

rm
a

liz
e

d
 f
a

il
ra

te

● ●Performance Powersave

Figure 7.5: Probability of detecting the TSC rate manipulation.

latency is significantly lower than the latency of TPM-based timers (220 ms for discrete TPM,
and 145 ms for Intel PTT).
To put the results into a perspective, we also show the access latencies of several counter

implementations, which may also be used in a distributed system for message ordering and
conflict resolution. SGX MC is the Intel SGX SDK monotonic counter implementation, which
is built using Intel ME. AMCS is the network service that exposes the Intel SGX MC over the
network, with on-disk caching for counter values (see ±7.6). T-Lease performs favorably to
these systems as well.

(a) Performance: Epoch duration. To apply T-Lease in practice, the epoch duration must
be large enough for both communication with the granter and performing useful work. We
evaluate the average duration of the lease on the system configured to reduce the interrupt
frequency. We have discovered that an in-enclave thread running with normal priority has
an average epoch duration of 15 ms; when a thread is running with a real-time priority, it
achieved an average duration of 650 ms. Thus, in further experiments, we configure the
enclave threads to run with real-time priority. In general, this change is beneficial for the SGX
enclaves since frequent enclave exits significantly reduce enclave performance [103, 75].

(b) Correctness: TSC rate estimator. Next, we evaluate the operation of T-Lease rdtsc rate
estimator (±7.3.2). Since an attacker can break the operation of a naive rate estimator by
changing the CPU frequency, we perform this experiment at two extreme CPU frequency
values (800MHz and 1.5GHz on SGXv2 NUC). If the estimator performs correctly for both
of these values, T-Lease will operate correctly with any intermediate frequency value. We
change the CPU frequency by setting the system frequency scaling governor to performance
for 1.5GHz, and powersave for 800MHz.
Because the latency of rdrand and rdtsc is not fully deterministic, there is noise in the

measurements. To illustrate it, we measure the latency distribution of our estimator (Fig-
ure 7.4). The check duration is largely independent of the CPU frequency, which matches
the documentation [159]. Thus, we can use these operations to implement a TSC rate esti-
mator. Execution of the estimator should take between 7.5k and 10.5k cycles.
However, a range of 3,000 cycles is still large enough to allow an attacker to manipulate

the TSC rate. We evaluate the bounds in which the attacker can successfully manipulate
the tick rate without being detected (Figure 7.5). To this end, we measure the probability

144

●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

0

5

10

250 500 750 1000

Interrupt frequency, Hz

U
n

a
c
c
o

u
n

te
d

 c
y
c
le

s
,
%

● ● ●10 instrs. 1000 instrs. 100000 instrs.

Figure 7.6: Underaccounted cycles as a function of an interrupt rate and an interval between
lease checks. The microbenchmark executes a number of in-register instructions
(10/1000/100000) between increments of the enclave-interval timer. The plot
shows the relative difference between the ground truth timer and the enclave-
interval timer.

with which T-Lease estimator will declare rdtsc manipulation depending on the change in
the tick rate. We can see that the attacker can slow down the timer by approximately 40%
or speed it up by 45% with a high success probability (low risk of detection). To protect
against this manipulation, we need to either make the lease 1+0.45

1–0.45 = 2.64 times shorter at
the lease holder, or increase its length at the granter by the same factor. We increased the
lease duration at the granter by a factor of 2, which is a trade-off between attack detection
probability and lease term extension, and which we use in all further experiments.

(c) Precision: Under-accounting due to interrupts. For leases to operate correctly, the
granter’s lease term must be longer than the holder’s. However, this can cause a precision
issue even if there is no attack: interrupt causes under-accounting of time by the interval
starting from the last time update or lease check; this extends the lease by the lost interval
(Region (1) in Figure 7.2). Wemeasure the amount of time that is lost depending on the inter-
rupt rate, and the number of instructions between the interval timer updates. The results are
in Figure 7.6. We see that if the lease is checked in a tight loop, the loss of precision is minimal
even at the extreme interrupt frequencies. If the granter performs significant work between
the timer updates, it can incur up to 14% precision loss. Yet, we note that the normal in-
terrupt frequency on Linux is 250Hz for desktop and 100Hz for the server configuration, so
even in the case of significant work between the timer updates, the lease extension should
stay within 5% of the nominal lease term.

7.5.3 Distributed Setup

Next, we evaluate trusted leases in a distributed setup with various system configurations:
local (granter and holder on the samemachine) and remote (different machines), to estimate
the network latency impact.

Lease check frequency. First, we measure the frequency with which the lease holder can
check the lease expiration (Figure 7.7). The measurement shows whether T-Lease can be-

145

●●●

●●
●

●●
●

●●
●

●

●

●●●
●●●●

●

●

●●● ●●
●● ● ●●

●

0

5

10

15

20

25

0.001 0.01 0.1 1 10

Lease duration, s

L
e

a
s
e

 c
h

e
c
k
s
,
1

0
6
 o

p
s
/s

● ●Local Remote

Figure 7.7: Client lease expiration check rate as a function of lease duration.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

100

1000

0.0 2.5 5.0 7.5 10.0

Lease duration, s

G
ra

n
te

r
re

q
u
e
s
ts

 p
e
r

s
e

c
o

n
d

● ●Local Remote

Figure 7.8: Frequency of network requests from holder to granter as a function of lease du-
ration.

come a bottleneck if the checks are located on a hot path. As we can see, the frequency has
aminor dependency on the lease duration: The longer the leases are, the less frequent lease
requests become, and the less time is spent waiting on granter responses. In the remote
setup, network delays also decrease the check rate, but only up to the lease duration of 12.5
ms, after which the effect becomes negligible. Notably, with longer leases, the remote setup
has higher check rates compared to the local setup because in the local setup there are not
enough free cores for system tasks, thus causing higher interrupt rates.

Frequency of remote requests. We also measure the rate of lease extension requests (Fig-
ure 7.8). They happen when either a lease expires at the holder, or an interrupt ends the
holder’s epoch. The message rate is driven by the lease duration for very short leases; with
longer leases, interrupts maintain the minimum message rate. In this experiment, we have
not discovered any difference between the local and remote setups.

Impact of interrupts. In T-Lease, the holder must request a new lease after every interrupt,
causing an increased lease request rate if the system issues frequent interrupts. We eval-

146

●●●●

●

●●●●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●●●

●

●

●●

●

●

10

100

1000

0.0 2.5 5.0 7.5 10.0

Lease duration, s

R
e

m
o

te
 r

e
q

u
e

s
ts

,
o

p
s
/s

e
c

● ● ● ● ● ●1 50 100 250 500 1000

Figure 7.9: Request rate as a function of system interrupt rate (HZ).

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●● ● ● ● ● ● ● ●

10
−8

10
−6

10
−4

10
−2

0.0 2.5 5.0 7.5 10.0

Lease duration, s

R
e
tr

ie
s
 p

e
r

le
a
s
e
 u

p
d

a
te

●● ●● ●●Local Remote TPM

Figure 7.10: Frequency of retries due to interrupt delivery during lease renewal. TPM has
much higher rate of retries due to its high access latency.

uate this property in Figure 7.9. While typical Linux systems are configured to have a timer
interrupt rate between 100 and 250 Hz, devices such as disks can generate interrupts at a
much higher rate. In this measurement, we estimate the message rate in a local setup that
results from different interrupt rates, from 1 to 1000 Hz. They cover a wide range of usage
scenarios, from a mostly idle server (1 Hz) to a server overloaded with interrupts (1000 Hz).
For longer leases, the interrupt rate determines the communication rate in all of these cases;
for the short leases, the communication rate is driven by the lease expiration. For high inter-
rupt rates, the system may experience a high message load (2000 messages/s for response
and reply).

Lease acquisition retries. If an interrupt is delivered before the granter response arrives,
the holder sends onemore request. Wemeasure the average number of retries due to such
interrupts, normalized by the total number of lease checks (Figure 7.10). With T-Lease timer,
the number of retries is negligible (below 10–6 for leases longer than 100 ms). When instead
a TPM is used as a trusted time source, the average retry rate is 0.28 per lease renewal. It

147

●●●●

●

●

●●● ●●●● ● ●●● ●●●●● ● ●●● ●●●● ● ●●●0.000

0.005

0.010

0.015

0.020

0.001 0.01 0.1 1 10

Lease duration, s

L
e

a
s
e

 l
o

s
s
 r

a
te

,
1

/s

● ●Local Remote

Figure 7.11: Number of lost leases per second for the local and remote T-Lease setups.

●

●

●

●

● ●

●

●

●

●

● ●

0

100

200

300

1 10 100

Lease duration, msec

L
e
a
s
e
 l
o
s
s
 r

a
te

,
1

/s

● ●Native T−Lease

Figure 7.12: Number of lost leases for the FaRM failover protocol as a function of lease du-
ration.

proves our previous claim that TPM cannot be used to efficiently implement the lease service
as-is.

Lost leases. We evaluate T-Lease performance as a failure detector (Figure 7.11). To this end,
wemeasure the rate of lease expiration despite the lease holder being active (false positives).
The lease expires when the holder is descheduled for a long time, or if the packets with lease
renewal messages are delayed or lost in the network. T-Lease performs without lost leases
in the local communication case. However, in the case of network communication, leases
with terms shorter than 5 ms exhibit a false positive rate of around 1 lost lease every 2 s. In
practice, network delays are taken into account when choosing a lease duration [137], which
allows minimizing the lease loss.

7.5.4 Case Studies

In our use-case study, we focus on the following questions:

148

●

●

●●

●

●

●

●
●

●

0

50

100

150

200

250

1 10 100 1000

Lease and guard interval duration, msec

A
c
ti
ve

 l
e

a
s
e

 d
u

ra
ti
o

n
,
m

s
e

c

● ●Native T−Lease

Figure 7.13: Timer interval duration with active lease for the PQL case study with varying
active and guard intervals duration.

• Can T-Lease be used for implementing real-world distributed protocols?

• What overhead does T-Lease add compared to the standard leases?

To showcase T-Lease in realistic conditions, we applied it to time-critical components of
several distributed systems as outlined in ±7.4.2. In this section, we compare the perfor-
mance of the use-cases as implementedwith T-Lease to the implementations using standard
leases.

Failure detector in FaRM [111]. Following the original FaRM paper, we measure the number
of lease expirations (i.e. due to message delays or thread inactivity) over 10 minutes (Fig-
ure 7.12). FaRM uses unreliable datagrams over RDMA for transport, while T-Lease relies on
UDP/IP and Ethernet, thus rendering the direct number comparison meaningless; neverthe-
less, the comparison of T-Lease with its version without interrupt detection allows us to de-
termine the overhead of T-Lease. Unlike the original FaRM, which operates successfully with
a 10 ms lease interval, T-Lease achieves operation without lost leases only at 100 ms lease
duration: FaRM implements optimizations for eliminating false positives at shorter lease du-
rations. On the other hand, the lease loss rate is the same in native and the T-Lease cases.

Paxos Quorum Leases (PQL) [223]. We implement the protocol in two variants: T-Lease and
native. Because interrupt delivery may cause additional lease requests and affect perfor-
mance, we measure the average duration of a lease depending on guard and lease interval,
set to the same value (Figure 7.13). As the lease interval increases, the active lease duration
also increases, albeit in smaller steps. The native variant has slightly longer durations of ac-
tive intervals, as the interrupts cause lease invalidation. This makes active interval for long
leases close to 247 msec, while it is 185 ms in the case of T-Lease. To put these numbers in
a perspective, PQL authors used a 2-second lease duration with a 500 ms interval between
renewal.

Strongly consistent caching service [137]. Our strongly consistent caching service imple-
mentation follows that of the original lease paper. We configure the system such that the
granter is running on the SGXv1 machine outside of the enclave, and two cache nodes are
running on the SGXv2 machine. One of the cache nodes is acquiring only read leases, while

149

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ● ●

●

0

50

100

150

200

0 25 50 75 100

Share of writes, %

T
h

ro
u

g
h

p
u

t,
 o

p
s
/s

● ●Native T−Lease

Figure 7.14: Message rate for the strongly consistent caching case study as a function of write
ratio.

the second node acquiring read or write leases with a controlled probability. Wemeasure the
average number of messages per second over a 5 minute period (Figure 7.14). As the num-
ber of writes in the system becomes non-zero, the messaging rate in the system increases
from 55 to approximately 175 msg/s. This is caused by frequent changes between reading
and writing lease states, causing frequent lease invalidation and re-establishment. As the
write share reaches 100%, the messaging rate decreases, as the writer submits requests
faster than the reader reacquires the lease.

Summary. Overall, we can see that in most cases using T-Lease does not influence the sys-
tem performance, with exception of the PQL use-case, where we have detected a reduction
of active lease interval due to interrupts.

7.6 Related Work

In this chapter, we present the systems related to T-Lease in three categories: trusted hard-
ware for distributed protocols, trustworthy monotonic counters, and trustworthy timers. For
the low-overhead timers for Intel SGX enclave, we refer the reader to ±5.2.

Trusted hardware for distributed systems. The pioneering systems that used commodity
trusted hardware for securing distributed protocols were TrInc [200] and Assayer [239]. TrInc
uses hardware-provided trusted counters to protect against equivocation attacks. Unlike T-
Lease, it uses counters, not timers, and proposes non-standard, albeit minimal, hardware
extensions. Assayer relies on the standard TPM hardware, which it leverages to convey end-
host information to the network in a trustworthy and efficient manner. These both systems
are not designed to secure lease-based protocols.
Pasture [183] provides secure offline data access, allowing a remote party to audit the

data access log. As cryptographic keys are used to access the data, Pasture uses TPM for key
and log management. Memoir [240] uses a conceptually similar state continuity technique,
which relies on TPM in its operation.

Monotonic counters. Another important problem that shares design space with T-Lease
is protecting storage systems from rollback attacks. This is typically accomplished using

150

monotonic counters or trusted disks [185]. Intel SGX SDK contained the implementation
of monotonic counters using Intel Management Engine [158]. However, their performance
was insufficient for applications. This has influenced the design of systems that use mono-
tonic counters: these systems either cache the counter value on the disk, or exploit workload
properties to update the counter asynchronously as proposed in Speicher [76].
ROTE [212] presents an alternative approach that overcomes the performance and secu-

rity limitations of NVMEM-based monotonic counters using a distributed consensus-based
trusted counters, relying on the modern low-latency high-throughput networks to avoid the
bottlenecks in incrementing the counters.

Trustworthy timers. Intel has originally provided Trusted Time service through using the
Platform Service Enclave, which communicated with Intel ME to read the system time. How-
ever, as communication happened in the operating system interfaces, the communication
path turned out to be vulnerable to the attacks that employed delaying the messages to and
from Intel ME. Due to this vulnerability, this functionality has been removed in the Intel SGX
SDK v2.8.
TimeSeal [68] is a system that aims to provide to provide timing primitives to applications

in a trustworthy manner on untrusted platforms for cyber-physical or real-time systems.
To this end, TimeSeal is using Intel SGX enclaves, but does not rely fully on the vulnerable
and coarse-grained SGX trusted time to provide these guarantees. Instead, it uses counting
threads inside an SGX enclave that augment the SGX trusted time with fine-grained timing
information in a secure manner, which is not vulnerable to malicious scheduling by the oper-
ating system, using a software timer thread and a set of threads that interpolate reading of
SGX trusted time and the software timer. To prevent the scheduling attacks on the counting
threads, TimeSeal uses a carefully-constructed counting policy that guarantees robust and
controllable degradation under different scheduling scenarios, combined with time correc-
tion mechanisms. The high number of threads and mechanisms employed makes TimeSeal
a resource-intensive application, which is justifiable given the guarantees it provides without
any network back-up.
Aurora [202] addresses the trustworthiness requirement by using the System Manage-

ment Interrupts to access the timer in a trustworthy environment (System Management
Mode). However, it has high costs because an application is preempted when the SMM
software is running. The operating system can also manipulate the time reads by delaying
the return path from the SMI interrupt.
Several systems [101, 233, 263] require high-precision low-latency clock to measure cache

access time inside enclave to mitigate side-channel attacks, motivated by the initial restric-
tion on the execution of rdtsc instruction inside SGX enclaves. To that end, they employ
a timer thread that increments a memory location in a tight loop. While OS interrupts can
be detected by some systems [101] by timing the code runtime under Intel TSX protection,
they are still prone to false positives as the CPU frequency changes due to the power saving
features.
Lastly, S-FaaS [65] is a trustworthy serverless platform build using Intel SGX, similar to

Clemmys (±6). For trusted CPU time accounting, it measures the duration of enclave time
intervals, but uses a timer thread on the sibling hyperthread for this task, which has more
overhead than T-Lease. S-Faas ensures that at no point of time the timer thread is running
while the worker thread is not running. S-Faas timer thread executes tight loops inside the
timer thread under Intel TSX transaction to measure the time intervals. S-Faas does not
prevent frequency manipulations, as it is not required by its threat model.

151

7.7 Discussion

Formal verification. As the verification of the T-Lease protocol was performed without active
involvement of the author of this thesis, we have omitted it detailed description in this chap-
ter. Instead, we will provide a telegraphic summary of the verification effort here, referring
the reader to the paper for the full details [283].
The verification was performed using TLA+ toolkit and the TLC model checker [301], mod-

elling the main T-Lease scenario with one granter node and multiple holder nodes. The
model assumes that each of nodes has a clock with the bounded drift, with relative bounds
which we obtained empirically for our CPU frequency verification routine. This drift repre-
sents the attacker control over the node’s clock when the probability of attack detection is
low. The model also includes the exchange of messages between system nodes, and the
delivery of intrerrupts which preempt the operation of nodes.
For this model, two system properties were verified: safety and liveness. Safety property

states that the main system invariant (a lease at granter is a superset of a lease at holder)
holds. Liveness states that in absense of attacker the lease protocolmakes forward progress,
assuming certain conditions hold, for example that the OS does not deny enclave the service
using interrupts.
Verification of the model using TLC has shown that there are no violations of the system

properties in absence of an attacker. With an attacker that can manipulate the timer fre-
quency in the range of ±50% (see ±7.5.2 (b)), the properties are not violated as long as the
lease time at granter is 3× larger than the lease duration at holder.

Compiler support. We currently implement T-Lease as a library. Therefore, the developer
has to spend additional effort to instrument timer invocations in the application to use our
library calls. This presents a barrier to adoption, especially when the application has to con-
stantly maintain a lease from the granter: in this case, the developers must carefully select
the locations where these library calls are necessary, and complex control flow graphs of
networking applications make this task challenging.
However, we believe that it is possible to avoid this effort by automatically transforming

the calls to rdtsc and system time into our library calls, and if necessary, automatically in-
jecting the lease checks into the basic blocks of the application. We plan to implement this
transformation as an LLVM compiler pass to transparently benefit existing applications.

Hardware extensions. The design of T-Lease could be simplified using a simple hardware
extension to the TSC functionality. For example, if TSC would include a separate read-only
register incremented every time the TSC value is modified by the platform operator, our
system would be able to provide precise timing for much longer intervals. This extension
would reduce the rate of messages in the lease-based systems. Also, if the hardware would
expose the TSC frequency to the user-space applications, the timer verification mechanism
would not be necessary. Finally, in the case of real-time and cyber-physical applications,
the hardware vendor should provide the trusted, unmediated, and non-modifiable real-time
clock to the TEE, as in this case the availability of the system becomes increasingly important,
and the available network may not satisfy these requirements.

Multiple time sources. Anwar et al. has shown how multiple time sources can be used to
maintain the real-world time in a secure fashion [68]. The same approach can be applied to
T-Lease, which could potentially reduce the number of network messages. Given that most
of the other available time sources have comparably high latency, this approach would work
only for the lease terms with longer duration than that currently supported by the T-Lease.

152

7.8 Conclusion

In this chapter, we have introduced a concept of a trusted lease, a variant of the classical
lease primitive that maintains its correctness properties in the presence of a privileged at-
tacker. We have designed and implemented T-Lease—a trusted lease system for Intel SGX
enclaves. T-Lease exposes an easy-to-use interface that allows system designers to imple-
ment a wide range of trusted distributed lease-based protocols for the untrusted computing
infrastructure. To achieve our design goals, T-Lease relies on three core contributions: (a)
enclave-interval timer for secure measurement of time intervals which are free from manip-
ulations, (b) a timer frequency verification routine that detects manipulations of TSC speed,
and (c) transactional syscall interface for atomic lease state check and resource access. T-
Lease implements these abstractions using Intel SGX and Intel TSX ISA extensions. T-Lease
protocol has been formally verified. Our evaluation with a wide range of state-of-the-art dis-
tributed protocols shows that in most cases T-Lease adds up to 5% overhead, allowing its
practical utilization in building trusted distributed systems.

153

8 Conclusions

8.1 Summary of contributions

In this dissertation, we tackled several problems related to trusted execution environments.
We aimed to make Intel SGX-based TEEs practical to use in the cloud, and we achieved our
goal: the results of our work show how to protect most of the key components of cloud-
based applications with low overhead. We provide a brief summary of the contributions of
each of the proposed systems below:

SCONE, or How to run unmodified POSIX applications inside Intel SGX enclaves? (±3). SCONE
succeeded with this task, allowing us to run a wide range of cloud software inside of the
enclave. SCONE overcomes most severe restrictions of Intel SGX on performance and sup-
ported features: SCONE uses an asynchronous system call interface and M:N threading to
avoid the high enclave entry cost, emulates the minimum necessary amount of system calls
inside of the enclave, forwarding the rest to the operating system to provide a comprehen-
sive and efficient interface to the operating system. SCONE uses musl-libc as a foundation,
extending it with the necessary OS-like functionality, exhibiting a minimal TCB as a result.

FFQ, or How to make the SCONE I/O interfaces performant? (±4). To improve the performance
of the SCONE system call interface, we designed a new concurrent queue, called Fast FIFO
Queue. The key insight of FFQ is that by exploiting common domain-specific assumptions, it
is possible to increase the performance of shared memory communication interfaces. With
FFQ, SCONE achieves 5 times higher throughput in system call intensive microbenchmark:
we reach this result by designing FFQ as an SPMC queue with wait-free enqueue and lock-
free dequeue, and implicit flow control.

ShieldBox, or How can enclaves interact with devices directly? (±5). The NFV paradigm has
allowed network operators to improve network flexibility and reduce operational costs by
replacing the hardware middleboxes with the software ones. As a result, there is a necessity
to protect the network functions with trusted execution environments. ShieldBox achieves
this goal by using Intel SGX and SCONE. To process the network traffic at line rate, it uses
the DPDK framework rather than the OS networking interfaces. To reduce the latency im-
pact of the idle system call threads, ShieldBox uses an untrusted but low-latency on-NIC PTP
clock instead of theOS-provided time source and SCONE’s asynchronous system calls. These
design decisions allow ShieldBox to avoid most SGX-related performance overheads.

Clemmys, or How to make function startup fast? (±6). Modern cloud services are moving to

154

the FaaS architecture to provide users with services that are easier and cheaper to use and
to develop. Clemmys is the system that uses Intel SGX to bring confidentiality and integrity
to the FaaS paradigm. We identify and solve the main issues that arise: we introduce an
architecture that runs only the necessary components inside of the enclave, client and func-
tion attestation and secret distribution, and optimize the startup time for network functions
using SGXv2 EDMM features. We also establish that the low EPC size is a hard limitation that
must be alleviated by Intel before TEE-protected functions can truly be used in practice.

T-Lease, or How to protect timing requirements in the practical, lease-based distributed sys-
tems? (±7). Distributed systems commonly use leases to implement a wide range of pro-
tocols and use-cases. It is challenging to make leases trusted, as they depend on system
timing which cannot be protected using cryptography. With T-Lease, we introduce a trusted
lease primitive, revisiting one of the Intel SGX restrictions: lack of trusted time source. Unlike
ShieldBox, we use the SGXv2-provided untrusted timestamp counter, but after identification
of potential attacks, show how it can be used tomeasure in-enclave time durations in a trust-
worthy manner. This primitive allows us to construct a trusted lease protocol, which can be
applied in a wide range of distributed systems with at most 15% overhead.

8.2 Challenges and future work

Trusted Execution Environments have a long history, which starts with IBM 4758 crypto-
graphic accelerator and industry TPM efforts, and within twenty years have culminated with
the general-purpose design adopted by the majority of CPU designs (AMD, ARM, IBM, Intel,
RISC-V). However, general-purpose Trusted Execution Environments still have not reached
their full potential, and offer rich possibilities for research and industrial development. Below
are some of the challenges that merit further investigation.
We envision a future of the cloud where the trust could be established end-to-end, be-

tween each component of the system, both high-level and low-level. The research has shown
that a clean-slate approach to such systems is necessary: the legacy functionality or over-
sight has undermined the security of enclaves in the past, and this should not repeat with
the newer architectures. Finally, the open and compatible TEEs can be easily modified or
extended without losing interoperability with existing trustworthy systems.

Trustworthy TEE design. There remains a question of how to design the TEE application
and TEE technologies that are resilient to both microarchitectural and classic, memory- and
synchronization-based attacks. Wider use of formalmethods for the specification of hardware-
software contracts, and for the design of both software and hardware promises to eradicate
whole classes of bugs that plague the current TEE-based systems, while runtime mecha-
nisms like Intel MPX or CHERI capabilities could significantly improve the security of code
that is currently too costly to formally verify or rewrite in safe programming languages.

Uniform OS-enclave interfaces. Current TEE technologies do not provide a uniform inter-
face to the operating system. While some of them, like AMD SEV, Intel TDX, and IBM SE,
present a virtual machine interface to guests and to the host, Intel SGX and RISC-V Keystone
enclaves are not integrated into the OS in any useful way. Thus, the user and the platform
owner cannot performmanagement tasks, like listing, stopping, or debugging enclave perfor-
mance issues using technology-independent tools. Furthermore, enclave startup and com-
munication is exposed to the user code directly, without any OS-level interface that could
hide the technology-specific details. As different vendors introduce their TEE technologies,

155

a common API or even ABI would increase the portability of enclave-enabled software.

Intra-enclave isolation and capabilities As we have seen in the context of FaaS, a promis-
ing approach to running functions is to run them in a single enclave, relying on the software
sandboxing features for intra-enclave function isolation. However, in this case, it is necessary
to protect the system against sandbox escape vulnerabilities. Two approaches to this prob-
lem could be hardware-assisted technologies for intra-process isolation, like Intel MPK [288],
or trusted shared memory, which is possible with Keystone enclaves. A research direction
worthy of attention in this context is the integration of TEE technologies with capability-based
architectures like CHERI.

Heterogenous, distributed enclaves. Recent research has shown that on-core TEEs are
vulnerable to a wide range of side-channel attacks, which motivates the research into off-
core TEEs, which run on an isolated CPU with dedicated on-die memory. Additionally, mod-
ern SmartNICs have a hardware root of trust, that allows running TEEs on these periph-
eral devices as well. These developments raise the question the about construction of TEE-
protected applications that span several different TEE technologies. The problems of mutual
attestation, secure communication channels, and distribution of secrets betweenmore trust-
worthy (off-core enclaves) and less-trustworthy components (on-core enclaves) all need to
be solved.

Enclaves for storage systems: NDP and freshness. In the context of storage, off-core TEEs
present additional opportunities for off-core Near-Data Processing: offloading the compu-
tations on user data to the storage engine. Another problem in the field of storage that calls
for an efficient solution is rollback protection, which currently causes 35-times performance
drop in state-of-the-art systems [76].

* * *

I prepared this thesis while workingwith one of the first commercial trusted execution tech-
nology, namely Intel SGX, and was confined to its limitations. For the majority of its lifetime,
practical TEE design was limited to the labs of CPU vendors, but the situation has radically
changed with the arrival RISC-V architecture, which, in my opinion, will further stimulate the
research in this field. I hope that the new generation of researchers will use it to make great
progress on all of these issues, bringing us more mature, performant, and secure trusted
execution technologies.

156

Bibliography

[1] Amazon Simple Storage Service (S3). https://aws.amazon.com/s3/. Accessed on
2020-06-15.

[2] AmazonWeb Services (AWS) - Cloud Computing Services. https://aws.amazon.com/.
Accessed on 2020-06-15.

[3] Apache OpenWhisk: a serverless, open source cloud platform. https://openwhisk.
apache.org. Accessed on 2020-08-27.

[4] Asylo Enclave Framework. https://asylo.dev/. Accessed on 2020-06-19.

[5] AWS Lambda - Serverless Compute - Amazon Web Services. https://aws.amazon.
com/lambda/. Accessed on 2020-08-27.

[6] AWS Nitro Enclaves. https://aws.amazon.com/de/ec2/nitro/nitro-enclaves/.
Accessed on 2020-06-19.

[7] Azure Functions Serverless Compute (Microsoft Azure). https://azure.microsoft.
com/en-us/services/functions/. Accessed on 2020-08-27.

[8] BearSSL - Constant-Time Crypto. https://www.bearssl.org/constanttime.html.
Accessed on 2021-03-08.

[9] Bionic: Android’s C library, math library, and dynamic linker. https://android.

googlesource.com/platform/bionic. Accessed on 2020-07-02.

[10] Cloudflare Workers. https://workers.cloudflare.com/. Accessed on 2020-10-27.

[11] Diet libc - a libc optimized for small size. https://www.fefe.de/dietlibc/. Accessed
on 2020-07-02.

[12] Docker Hub. https://hub.docker.com/. Accessed on 2018-02-05.

[13] Fastly Terrarium Documentation. https://wasm.fastlylabs.com/docs. Accessed
on 2020-10-27.

[14] Fission: Serverless Functions for Kubernetes. https://fission.io. Accessed on
2020-08-27.

157

https://aws.amazon.com/s3/
https://aws.amazon.com/
https://openwhisk.apache.org
https://openwhisk.apache.org
https://asylo.dev/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/de/ec2/nitro/nitro-enclaves/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.bearssl.org/constanttime.html
https://android.googlesource.com/platform/bionic
https://android.googlesource.com/platform/bionic
https://workers.cloudflare.com/
https://www.fefe.de/dietlibc/
https://hub.docker.com/
https://wasm.fastlylabs.com/docs
https://fission.io

[15] Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17% in 2020. https:

//www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-

forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020.
Accessed on 2020-01-27.

[16] GitHub - intel/linux-sgx-pcl: Intel(R) SoftwareGuard Extensions Protected Code Loader
for Linux* OS. https://github.com/intel/linux-sgx-pcl. Accessed on 2020-11-
18.

[17] Google Cloud: Cloud Functions. https://cloud.google.com/functions/. Accessed
on 2020-08-27.

[18] HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer. https://www.

haproxy.org/. Accessed on 2020-08-27.

[19] IBM Cloud. https://www.ibm.com/cloud. Accessed on 2020-06-15.

[20] IBM Cloud Functions. https://www.ibm.com/cloud/functions. Accessed on 2020-
08-27.

[21] Intel Data Direct I/O Technology. https://www.intel.com/content/www/us/en/io/
data-direct-i-o-technology.html. Accessed on 2020-08-24.

[22] Intel DPDK. http://dpdk.org/. Accessed on 2018-02-05.

[23] Intel Software Guard Extensions Remote Attestation End-to-End Example.
https://software.intel.com/en-us/articles/intel-software-guard-

extensions-remote-attestation-end-to-end-example. Accessed on 2018-
02-05.

[24] Intel Trust Domain Extensions. https://software.intel.com/content/www/us/en/
develop/articles/intel-trust-domain-extensions.html. Accessed on 2020-08-
18.

[25] Intel Xeon E-2278G Processor (16M Cache, 3.40 GHz) Product Specifications.
https://ark.intel.com/content/www/us/en/ark/products/193745/intel-

xeon-e-2278g-processor-16m-cache-3-40-ghz.html. Accessed on 2020-06-18.

[26] Krustlet: the WebAssembly Kubelet. https://deislabs.io/posts/introducing-

krustlet/. Accessed on 2020-10-27.

[27] Kubeless: The Kubernetes Native Serverless Framework. https://kubeless.io. Ac-
cessed on 2020-08-27.

[28] Linux End of Year 2019 Statistics. https://phoronix.com/misc/linux-eoy2019/

index.html. Accessed on 2020-01-28.

[29] Linux kernel documentation: overview of Amazon Nitro En-
claves. https://git.kernel.org/pub/scm/linux/kernel/

git/gregkh/char-misc.git/tree/Documentation/virt/ne_

overview.rst?h=e82ed736ad2d2dddf1384fc4c8a0f26021af04fe&id=

bf15d79ce142fe1d01eb88bdad96367a3887648c. Accessed on 2020-09-23.

158

https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://github.com/intel/linux-sgx-pcl
https://cloud.google.com/functions/
https://www.haproxy.org/
https://www.haproxy.org/
https://www.ibm.com/cloud
https://www.ibm.com/cloud/functions
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://dpdk.org/
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://ark.intel.com/content/www/us/en/ark/products/193745/intel-xeon-e-2278g-processor-16m-cache-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193745/intel-xeon-e-2278g-processor-16m-cache-3-40-ghz.html
https://deislabs.io/posts/introducing-krustlet/
https://deislabs.io/posts/introducing-krustlet/
https://kubeless.io
https://phoronix.com/misc/linux-eoy2019/index.html
https://phoronix.com/misc/linux-eoy2019/index.html
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/tree/Documentation/virt/ne_overview.rst?h=e82ed736ad2d2dddf1384fc4c8a0f26021af04fe&id=bf15d79ce142fe1d01eb88bdad96367a3887648c
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/tree/Documentation/virt/ne_overview.rst?h=e82ed736ad2d2dddf1384fc4c8a0f26021af04fe&id=bf15d79ce142fe1d01eb88bdad96367a3887648c
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/tree/Documentation/virt/ne_overview.rst?h=e82ed736ad2d2dddf1384fc4c8a0f26021af04fe&id=bf15d79ce142fe1d01eb88bdad96367a3887648c
https://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc.git/tree/Documentation/virt/ne_overview.rst?h=e82ed736ad2d2dddf1384fc4c8a0f26021af04fe&id=bf15d79ce142fe1d01eb88bdad96367a3887648c

[30] LLVM libc. https://github.com/llvm/llvm-project/commits/master/libc. Ac-
cessed on 2020-07-02.

[31] Microsoft Azure Cloud Computing Services. azure.microsoft.com. Accessed on
2020-06-15.

[32] Microsoft Security Response Center: A proactive approach to more secure
code. https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-

to-more-secure-code/. Accessed on 2020-06-19.

[33] musl-cross-make: Simple makefile-based build for musl cross compiler. https://

github.com/richfelker/musl-cross-make. Accessed on 2020-07-02.

[34] Ocalls interfaces of Graphene-SGX (source code). https://github.com/oscarlab/
graphene/blob/master/Pal/src/host/Linux-SGX/enclave_ocalls.h. Accessed
on 2021-02-02.

[35] Open Portable Trusted Execution Environment - OP-TEE. https://www.op-tee.org/.
Accessed on 2020-06-15.

[36] OpenFaaS - Serverless Functions Made Simple. https://www.openfaas.com. Ac-
cessed on 2020-08-27.

[37] OpenResty - Official Site. https://openresty.org/en/. Accessed on 2021-04-10.

[38] Oracle Database Classic Cloud Service - Get Started. https://docs.oracle.com/en/
cloud/paas/database-dbaas-cloud/index.html. Accessed on 2020-06-15.

[39] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/
index.php/Main_Page. Accessed on 2018-02-05.

[40] Samsung Knox. https://www.samsungknox.com/en. Accessed on 2020-06-18.

[41] SAP HANA Cloud Services. https://saphanacloudservices.com/. Accessed on
2020-06-15.

[42] SierraTEE. http://www.sierraware.com/open-source-ARM-TrustZone.html. Ac-
cessed on 2020-06-15.

[43] Snort. https://www.snort.org/. Accessed on 2018-02-05.

[44] The Cloud Market: EC2 Statistics. https://thecloudmarket.com/stats. Accessed
on 2020-06-23.

[45] The GNU C Library. https://www.gnu.org/software/libc/. Accessed on 2020-07-
02.

[46] Transport Layer Development Kit. https://wiki.fd.io/view/TLDK. Accessed on
2018-02-05.

[47] uClibc-ng - Embedded C library. https://uclibc-ng.org/. Accessed on 2020-07-02.

159

https://github.com/llvm/llvm-project/commits/master/libc
azure.microsoft.com
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://github.com/richfelker/musl-cross-make
https://github.com/richfelker/musl-cross-make
https://github.com/oscarlab/graphene/blob/master/Pal/src/host/Linux-SGX/enclave_ocalls.h
https://github.com/oscarlab/graphene/blob/master/Pal/src/host/Linux-SGX/enclave_ocalls.h
https://www.op-tee.org/
https://www.openfaas.com
https://openresty.org/en/
https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/index.html
https://docs.oracle.com/en/cloud/paas/database-dbaas-cloud/index.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.samsungknox.com/en
https://saphanacloudservices.com/
http://www.sierraware.com/open-source-ARM-TrustZone.html
https://www.snort.org/
https://thecloudmarket.com/stats
https://www.gnu.org/software/libc/
https://wiki.fd.io/view/TLDK
https://uclibc-ng.org/

[48] USB Authentication Specification Rev. 1.0 with ECN and Errata through Jan-
uary 7, 2019. https://www.usb.org/document-library/usb-authentication-

specification-rev-10-ecn-and-errata-through-january-7-2019. Accessed on
2020-08-24.

[49] USB Security Foundation Specification Rev. 1.0 with ECN and Errata through Jan-
uary 7, 2019. https://www.usb.org/document-library/usb-authentication-

specification-rev-10-ecn-and-errata-through-january-7-2019. Accessed on
2020-08-24.

[50] V8 Isolates: Getting started with embedding V8. https://v8.dev/docs/embed. Ac-
cessed on 2020-10-11.

[51] Wolf SSL Library. https://www.wolfssl.com/. Accessed on 2018-02-05.

[52] Oxford English Dictionary (3rd Edition). Oxford University Press, 2015. Trust.

[53] AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More. 2020.

[54] Intel Multi-Buffer Crypto for IPsec Library. https://github.com/intel/intel-

ipsec-mb, accessed on 07/12/2018.

[55] vdso(7) - Linux manual page. https://man7.org/linux/man-pages/man7/vdso.7.
html, accessed on 10/08/2020.

[56] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A.
Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A System
for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages
265–283, 2016.

[57] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment. In 5th Symposium on Operating Sys-
tem Design and Implementation (OSDI 2002), Boston, Massachusetts, USA, December 9-11,
2002, 2002.

[58] A. Adya, D.Myers, J. Howell, J. Elson, C.Meek, V. Khemani, S. Fulger, P. Gu, L. Bhuvanagiri,
J. Hunter, R. Peon, L. Kai, A. Shraer, A. Merchant, and K. Lev-Ari. Slicer: Auto-Sharding
for Datacenter Applications. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 739–
753, 2016.

[59] G. Adzic and R. Chatley. Serverless Computing: Economic and Architectural Impact.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pages 884–889, New York, NY, USA, 2017. ACM.

[60] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and D. Popa.
Firecracker: Lightweight Virtualization for Serverless Applications. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, pages 419–434, 2020.

160

https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://v8.dev/docs/embed
https://www.wolfssl.com/
https://github.com/intel/intel-ipsec-mb
https://github.com/intel/intel-ipsec-mb
https://man7.org/linux/man-pages/man7/vdso.7.html
https://man7.org/linux/man-pages/man7/vdso.7.html

[61] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: A
New Paradigm for Building Scalable Distributed Systems. ACM Trans. Comput. Syst.,
27(3):5:1–5:48, Nov. 2009.

[62] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt. SAND:
Towards high-performance serverless computing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 923–935, Boston, MA, July 2018. USENIX Association.

[63] M. Al-Bassam, A. Sonnino, M. Król, and I. Psaras. Airtnt: Fair Exchange Payment for
Outsourced Secure Enclave Computations. CoRR, abs/1805.06411, 2018.

[64] H. Alayli. halayli/lthread: lthread, a multicore enabled coroutine library written in C.
github.com/halayli/lthread. Accessed on 2021-03-13.

[65] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner. S-FaaS: Trustworthy and
Accountable Function-as-a-Service using Intel SGX. In Proceedings of the 2019 ACM
SIGSAC Conference on Cloud Computing Security Workshop, CCSW@CCS 2019, London,
UK, November 11, 2019, pages 185–199, 2019.

[66] A. Alim, R. G. Clegg, L. Mai, L. Rupprecht, E. Seckler, P. Costa, P. Pietzuch, A. L. Wolf,
N. Sultana, J. Crowcroft, A.Madhavapeddy, A.W.Moore, R.Mortier, M. Koleni, L. Oviedo,
M. Migliavacca, and D. McAuley. FLICK: Developing and Running Application-Specific
Network Services. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC),
2016.

[67] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xOMB: Extensible Open
Middleboxeswith Commodity Servers. In Proceedings of the Eighth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS), 2012.

[68] F. M. Anwar, L. Garcia, X. Han, and M. B. Srivastava. Securing Time in Untrusted Op-
erating Systems with TimeSeal. In IEEE Real-Time Systems Symposium, RTSS 2019, Hong
Kong, SAR, China, December 3-6, 2019, pages 80–92, 2019.

[69] F. M. Anwar and M. B. Srivastava. Applications and Challenges in Securing Time. In
12th USENIX Workshop on Cyber Security Experimentation and Test, (CSET), 2019.

[70] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming Slick Network Functions.
In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Re-
search (SOSR), 2015.

[71] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthuku-
maran, D. O’Keeffe, M. Stillwell, D. Goltzsche, D. M. Eyers, R. Kapitza, P. R. Pietzuch,
and C. Fetzer. SCONE: Secure Linux Containers with Intel SGX. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., pages 689–703, 2016.

[72] W. Arthur and D. Challener. A Practical Guide to TPM 2.0: Using the Trusted Platform
Module in the New Age of Security. Apress, 2015.

[73] R. Avanzi, S. Banik, O. Dunkelman, H. Montaner, P. Ramrakhyani, F. Regazzoni, and
A. Sandberg. Protecting Memory Contents on ARM Cores. In Proceedings of the Real
World Crypto Symposium 2020, New York, USA, January 8, 2020, 2020.

161

github.com/halayli/lthread

[74] J. Axboe. Efficient IO with io_uring. Accessed on 2021-01-10.

[75] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer. TEE-Perf: A Profiler for Trusted Exe-
cution Environments. In 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, pages 414–421,
2019.

[76] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and K. Vaswani. SPEICHER:
Securing LSM-based Key-Value Stores using Shielded Execution. In 17th USENIX Con-
ference on File and Storage Technologies, FAST 2019, Boston, MA, February 25-28, 2019,
pages 173–190, 2019.

[77] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter, and
O. Tardieu. The Serverless Trilemma: Function Composition for Serverless Comput-
ing. In Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2017, pages
89–103, New York, NY, USA, 2017. ACM.

[78] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace Packet Processing. In Proceedings
of the Eleventh ACM/IEEE Symposium on Architectures for networking and communications
systems, ANCS 2015, Oakland, CA, USA, May 7-8, 2015, pages 5–16, 2015.

[79] E. Barker and A. Roginsky. Recommendation for Cryptographic Key Generation. Dec
2012.

[80] E. B. Barker, M. Smid, and D. Branstad. A Profile for U. S. Federal Cryptographic Key
Management Systems. Oct 2015.

[81] G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira, S. Priya, T. Rezk, and
P. Schwabe. High-assurance cryptography software in the spectre era. IACR Cryptol.
ePrint Arch., 2020:1104, 2020.

[82] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe. A fork() in the road. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS 2019, Bertinoro, Italy, May
13-15, 2019, pages 14–22, 2019.

[83] A. Baumann, M. Peinado, and G. C. Hunt. Shielding Applications from an Untrusted
Cloud with Haven. ACM Trans. Comput. Syst., 33(3):8:1–8:26, 2015.

[84] A. Beaupré. New approaches to network fast paths. https://lwn.net/Articles/

719850/. Accessed on 2018-02-05.

[85] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion.
The IX Operating System: Combining Low Latency, High Throughput, and Efficiency in
a Protected Dataplane. ACM Trans. Comput. Syst., 34(4):11:1–11:39, 2017.

[86] K. Bhardwaj, M. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and K. Schwan. Fast, Scalable
and Secure Onloading of Edge Functions Using AirBox. In IEEE/ACM Symposium on Edge
Computing, SEC 2016, Washington, DC, USA, October 27-28, 2016, pages 14–27, 2016.

[87] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors.
In Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), 2009.

162

https://lwn.net/Articles/719850/
https://lwn.net/Articles/719850/

[88] D. Bornstein. Dalvik VM Internals. In Google I/O developer conference, volume 23, pages
17–30, 2008.

[89] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: A Software-Defined Framework for
Developing, Deploying, and Managing Network Functions. In Proceedings of the 2016
ACM Conference on Special Interest Group on Data Communication (SIGCOMM), 2016.

[90] S. Brenner and R. Kapitza. Trust more, serverless. In Proceedings of the 12th ACM
International Conference on Systems and Storage, SYSTOR 2019, Haifa, Israel, June 3-5,
2019, pages 33–43, 2019.

[91] M. Budiu and C. Dodd. The P416 Programming Language. Operating Systems Review,
51(1):5–14, 2017.

[92] R. Buhren, C. Werling, and J. Seifert. Insecure Until Proven Updated: Analyzing AMD
SEV’s Remote Attestation. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2019, London, UK, November 11-15, 2019, pages
1087–1099, 2019.

[93] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F.
Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 991–1008, 2018.

[94] J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yarom, B. Sunar,
D. Gruss, and F. Piessens. LVI: hijacking transient execution throughmicroarchitectural
load value injection. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020, pages 54–72, 2020.

[95] J. V. Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and F. Piessens. A Tale of Two
Worlds: Assessing the Vulnerability of Enclave Shielding Runtimes. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 1741–1758, 2019.

[96] M. Burrows. The Chubby Lock Service for Loosely-coupled Distributed Systems. In
Proceedings of the 7th SymposiumonOperating SystemsDesign and Implementation, OSDI
’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association.

[97] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. H. Katz. Cirrus: a Serverless
Framework for End-to-end ML Workflows. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pages 13–24,
2019.

[98] R. Chandramouli. Security Strategies for Microservices-based Application Systems.
Technical report, NIST, 2019.

[99] O. Chang, A. Arya, K. Serebryany, and J. Armour. OSS-Fuzz: Five months later, and re-
warding projects. https://security.googleblog.com/2017/05/oss-fuzz-five-

months-later-and.html. Accessed on 2020-06-19.

[100] S. Checkoway and H. Shacham. Iago Attacks: Why the System Call API is a Bad Un-
trusted RPC Interface. In ASPLOS, 2013.

163

https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

[101] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged Side-Channel Attacks
in Shielded Execution with DéJà Vu. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ASIA CCS ’17, pages 7–18, New York, NY,
USA, 2017. ACM.

[102] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s Globally Distributed Database. ACM
Trans. Comput. Syst., 31(3):8:1–8:22, 2013.

[103] V. Costan and S. Devadas. Intel SGX Explained. IACR Cryptology ePrint Archive, 2016:86,
2016.

[104] V. Costan, I. A. Lebedev, and S. Devadas. Secure Processors Part I: Background, Tax-
onomy for Secure Enclaves and Intel SGX Architecture. Foundations and Trends in Elec-
tronic Design Automation, 11(1-2):1–248, 2017.

[105] M. Coughlin, E. Keller, and E. Wustrow. Trusted Click: Overcoming Security Issues
of NFV in the Cloud. In Proceedings of the ACM International Workshop on Security in
Software Defined Networks Network Function Virtualization (SDN-NFVSec), 2017.

[106] CVE-ID: CVE-2014-9357. Available fromMITRE at https://cve.mitre.org, Dec. 2014.

[107] CVE-ID: CVE-2015-3456. Available fromMITRE at https://cve.mitre.org, May 2015.

[108] CVE-ID: CVE-2015-5154. Available fromMITRE at https://cve.mitre.org, Aug. 2015.

[109] B. Danev, R. J. Masti, G. Karame, and S. Capkun. Enabling secure VM-vTPM migration
in private clouds. In ACSAC, 2011.

[110] M. David. A single-enqueuerwait-free queue implementation. In Proceedings of the 18th
International Conference on Distributed Computing, pages 132–143, Berlin, Heidelberg,
2004.

[111] A. Dragojevic, D. Narayanan, E. Nightingale, M. Renzelmann, A. Shamis, A. Badam, and
M. Castro. No compromises: distributed transactions with consistency, availability,
and performance. In Symposium on Operating Systems Principles (SOSP’15). ACM – As-
sociation for Computing Machinery, October 2015.

[112] D. Du, Z. Hua, Y. Xia, B. Zang, and H. Chen. XPC: architectural support for secure
and efficient cross process call. In Proceedings of the 46th International Symposium on
Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 671–684,
2019.

[113] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen. Catalyzer: Sub-
millisecond Startup for Serverless Computing with Initialization-less Booting. In ASPLOS
’20: Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, March 16-20, 2020, pages 467–481, 2020.

[114] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren. LightBox: Full-stack Pro-
tected Stateful Middlebox at Lightning Speed. In Proceedings of the 2019 ACM SIGSAC

164

https://cve.mitre.org
https://cve.mitre.org
https://cve.mitre.org

Conference on Computer and Communications Security, CCS 2019, London, UK, November
11-15, 2019, pages 2351–2367, 2019.

[115] A. Dunkels. Full TCP/IP for 8-Bit Architectures. In Proceedings of the First International
Conference on Mobile Systems, Applications, and Services, MobiSys 2003, San Francisco,
CA, USA, May 5-8, 2003, 2003.

[116] V. Duta, E. van der Kouwe, H. Bos, and C. Giuffrida. PIBE: Practical Kernel Control-flow
Hardening with Profile-guided Indirect Branch Elimination. In ASPLOS, Apr. 2021.

[117] Eta Labs. Comparison of C/POSIX standard library implementations for Linux. http:
//www.etalabs.net/compare_libcs.html. Accessed on 2020-07-02.

[118] P. Fatourou and N. D. Kallimanis. A Highly-efficient Wait-free Universal Construction.
In Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA’11, pages 325–334, New York, NY, USA, 2011.

[119] P. Fatourou and N. D. Kallimanis. Revisiting the Combining Synchronization Technique.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP’12, pages 257–266, New York, NY, USA, 2012.

[120] R. Felker. Musl Libc. https://www.musl-libc.org, 2016.

[121] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno. Komodo: Using verification to
disentangle secure-enclave hardware from software. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages
287–305, 2017.

[122] C. Fetzer. Building Critical Applications using Microservices. CoRR, abs/1908.08744,
2019.

[123] C. Fetzer and F. Cristian. A Highly Available Local Leader Election Service. IEEE Trans.
Softw. Eng., 25(5):603–618, Sept. 1999.

[124] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures, 2000.

[125] B. Fitzpatrick. Distributed caching with memcached. Linux Journal, Aug. 2004.

[126] FSF. GCC 6.1 Manual. https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc/.

[127] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer. Challenges and
Opportunities for Efficient Serverless Computing at the Edge. In 38th Symposium on
Reliable Distributed Systems, SRDS 2019, Lyon, France, October 1-4, 2019, pages 261–266,
2019.

[128] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcel-
los, P. Felber, and E. Riviere. Edge-centric Computing: Vision and Challenges. SIGCOMM
CCR, 2015.

[129] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtual machine-
based platform for trusted computing. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22,
2003, pages 193–206, 2003.

165

http://www.etalabs.net/compare_libcs.html
http://www.etalabs.net/compare_libcs.html
https://www.musl-libc.org
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc/

[130] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing,
NY, USA, October 19-22, 2003, pages 29–43, 2003.

[131] S. Ghosh, L. S. Kida, S. J. Desai, and R. Lal. A >100 Gbps Inline AES-GCM Hardware En-
gine and Protected DMA Transfers between SGX Enclave and FPGA Accelerator Device.
IACR Cryptol. ePrint Arch., 2020:178, 2020.

[132] J. Giacomoni. Fastforward for efficient pipeline parallelism: A cache-optimized concur-
rent lock-free queue. In In PPoPP’08: Proceedings of the The 13th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 2008.

[133] GlobalPlatform Technology. TEE System Architecture Version 1.1.0.10 (Target v1.2),
2018.

[134] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza. AccTEE: A WebAssembly-based Two-
way Sandbox for Trusted Resource Accounting. In Proceedings of the 20th International
Middleware Conference, Middleware 2019, Davis, CA, USA, December 9-13, 2019, pages
123–135, 2019.

[135] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. Weichbrodt, V. Schiavoni, P. Aublin,
P. Costa, C. Fetzer, P. Felber, P. R. Pietzuch, and R. Kapitza. EndBox: Scalable Mid-
dlebox Functions Using Client-Side Trusted Execution. In 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, June 25-28, 2018, pages 386–397, 2018.

[136] D. Grawrock. Dynamics of a Trusted Platform: A Building Block Approach. Intel Press, 1st
edition, 2009.

[137] C. Gray and D. Cheriton. Leases: An Efficient Fault-tolerant Mechanism for Distributed
File Cache Consistency. SIGOPS Oper. Syst. Rev., 23(5):202–210, Nov. 1989.

[138] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. L. Quoc, S. Arnautov, A. Martin, V. Schiavoni,
P. Felber, and C. Fetzer. Trust Management as a Service: Enabling Trusted Execution
in the Face of Byzantine Stakeholders. In 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020,
pages 502–514, 2020.

[139] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa. Strong and
Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In
26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017, pages 217–233, 2017.

[140] R. Guerzoni. Network Functions Virtualisation: An Introduction, Benefits, Enablers,
Challenges and Call for Action. Issue 1. Oct. 2012.

[141] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do, J. Adityatama,
K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and A. D. Satria. What Bugs Live in the
Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC), 2014.

166

[142] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Za-
kai, and J. F. Bastien. Bringing the web up to speed with WebAssembly. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 185–200, 2017.

[143] M. Hamburg, P. Kocher, and M. E. Marson. Analysis of Intel’s Ivy Bridge digital random
number generator. Technical report, Cryptography Research, Inc., San Francisco, CA
94105, 2012.

[144] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network Function Virtualization: Challenges
and opportunities for innovations. IEEE Communications Magazine, 53(2):90–97, 2015.

[145] J. Han, S. Kim, J. Ha, and D. Han. SGX-Box: Enabling Visibility on Encrypted Traffic
Using a Secure Middlebox Module. In Proceedings of the First Asia-Pacific Workshop on
Networking (APNet), 2017.

[146] S. Han, S. Marshall, B. Chun, and S. Ratnasamy. MegaPipe: A New Programming Inter-
face for Scalable Network I/O. In 10th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 135–148,
2012.

[147] A. Havet, R. Pires, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni. SecureStreams: A
Reactive Middleware Framework for Secure Data Stream Processing. In Proceedings of
the 11th ACM International Conference on Distributed and Event-based Systems, DEBS ’17,
pages 124–133, New York, NY, USA, 2017. ACM.

[148] M. Herlihy. Wait-free Synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124–149, Jan. 1991.

[149] M. Herlihy. The Art of Multiprocessor Programming. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Principles of Distributed Computing, PODC’06, pages 1–2,
New York, NY, USA, 2006.

[150] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–
492, July 1990.

[151] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing and Enhancing in Situ
SystemObservability for Failure Detection. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, pages 1–16, Berkeley, CA,
USA, 2018. USENIX Association.

[152] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In 2010 USENIX Annual Technical Conference, Boston, MA, USA,
June 23-25, 2010, 2010.

[153] F. Hupfeld, B. Kolbeck, J. Stender, M. Högqvist, T. Cortes, J. Martí, and J. Malo. FaTLease:
scalable fault-tolerant lease negotiation with Paxos. Cluster Computing, 12(2):175–188,
2009.

[154] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual; Chapter
16: Programming with Intel Transacactional Synchronization Extensions.

167

[155] Intel Corporation. IA-PC HPET (High Precision Event Timers), October 2004.

[156] Intel Corporation. Software Guard Extensions Programming Reference, Ref. 329298-
002US. https://software.intel.com/sites/default/files/managed/48/88/

329298-002.pdf, Oct. 2014.

[157] Intel Corporation. Intel Software Guard Extensions (Intel SGX) SDK. https://

software.intel.com/sgx-sdk, 2016.

[158] Intel Corporation. Intel® Software Guard Extensions SDK for Linux OS, November 2017.

[159] Intel Corporation. Intel Digital Random Number Generator (DRNG) Software Implementa-
tion Guide, Revision 2.1, October 2018.

[160] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual, May
2018.

[161] Intel Corporation. PCI Express Device Security Enhancements, version 0.71, September
2018.

[162] Intel Corporation. Intel Architecture Memory Encryption Technologies Specification, 2019.

[163] Intel Corporation. White Paper: Intel Trust Domain Extensions. https:

//software.intel.com/content/dam/develop/external/us/en/documents/tdx-

whitepaper-v4.pdf, August 2020.

[164] Intel Corporation. Attestation Service for Intel Software Guard Extensions (Intel
SGX): API Documentation. https://software.intel.com/sites/default/files/

managed/7e/3b/ias-api-spec.pdf, accessed on 2020-08-27.

[165] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mOS: A Reusable Networking Stack
for Flow Monitoring Middleboxes. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[166] W. Jansen and T. Grance. Guidelines on Security and Privacy in Public Cloud Comput-
ing. Technical report, NIST, 2011.

[167] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. mTCP: a Highly
Scalable User-level TCP Stack for Multicore Systems. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2014.

[168] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. Intel Software Guard Ex-
tensions: EPID Provisioning and Attestation Services. 2016.

[169] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, J. Car-
reira, K. Krauth, N. J. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patter-
son. Cloud Programming Simplified: A Berkeley View on Serverless Computing. CoRR,
abs/1902.03383, 2019.

[170] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. Stateless Network Functions.
In Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and
Network Function Virtualization (HotMiddlebox), 2015.

168

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sgx-sdk
https://software.intel.com/sgx-sdk
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf

[171] A. Kantee. Rump File Systems: Kernel Code Reborn. In 2009 USENIX Annual Technical
Conference, San Diego, CA, USA, June 14-19, 2009, 2009.

[172] D. Kaplan. Protecting VM Register State With SEV-ES. 2020.

[173] G. P. Katsikas, G. Q. Maguire Jr., and D. Kostic. Profiling and Accelerating Commodity
NFV Service Chains with SCC. Journal of Systems and Software, 2017.

[174] B. Kauer, P. Veríssimo, and A. N. Bessani. Recursive virtual machines for advanced
security mechanisms. In IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W 2011), Hong Kong, China, June 27-30, 2011, pages 117–122,
2011.

[175] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing Security and Privacy of Tor’s Ecosys-
tem by Using Trusted Execution Environments. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2017.

[176] S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications. In Proceedings of the 14th
ACM Workshop on Hot Topics in Networks (HotNets), 2015.

[177] J. J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.
In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, SOSP
’91, pages 213–225, New York, NY, USA, 1991. ACM.

[178] S. R. Kleiman. Vnodes: An Architecture for Multiple File System Types in Sun UNIX. In
Proceedings of the USENIX Summer Conference, Altanta, GA, USA, June 1986, pages 238–
247, 1986.

[179] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij. Integrating Remote
Attestation with Transport Layer Security. CoRR, abs/1801.05863, 2018.

[180] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting Speculative
Execution. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019, pages 1–19, 2019.

[181] E. Kohler. Click Modular Router Delay Example. https://raw.githubusercontent.
com/kohler/click/master/conf/delay.click. Accessed on 2020-08-24.

[182] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular Router.
ACM Transactions on Computer Systems (TOCS), 2000.

[183] R. Kotla, T. Rodeheffer, I. Roy, P. Stuedi, and B. Wester. Pasture: Secure Offline Data
Access Using Commodity Trusted Hardware. In 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012,
pages 321–334, 2012.

[184] K. Kourtis, N. Ioannou, and I. Koltsidas. Reaping the performance of fast NVM storage
with uDepot. In 17th USENIX Conference on File and Storage Technologies, FAST 2019,
Boston, MA, February 25-28, 2019, pages 1–15, 2019.

169

https://raw.githubusercontent.com/kohler/click/master/conf/delay.click
https://raw.githubusercontent.com/kohler/click/master/conf/delay.click

[185] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, andC. Fetzer. Pesos:
policy enhanced secure object store. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018, pages 25:1–25:17, 2018.

[186] D. Kreutz, F. M. V. Ramos, P. J. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-Defined Networking: A Comprehensive Survey. Proceedings of the
IEEE, 103(1):14–76, 2015.

[187] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer. TensorSCONE:
A Secure TensorFlow Framework using Intel SGX. CoRR, abs/1902.04413, 2019.

[188] D. Kuvaiskii, S. Chakrabarti, and M. Vij. Snort Intrusion Detection System with Intel
Software Guard Extension (Intel SGX). CoRR, abs/1802.00508, 2018.

[189] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer. HAFT: hardware-assisted
fault tolerance. In Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21, 2016, pages 25:1–25:17, 2016.

[190] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and C. Fetzer.
SGXBOUNDS: Memory Safety for Shielded Execution. In Proceedings of the Twelfth Euro-
pean Conference on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017,
pages 205–221, 2017.

[191] M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung. DC-Store: Eliminating Noisy
Neighbor Containers using Deterministic I/O Performance and Resource Isolation. In
18th USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara, CA, USA,
February 24-27, 2020, pages 183–191, 2020.

[192] L. Lamport. Specifying Concurrent Program Modules. ACM Trans. Program. Lang. Syst.,
5(2):190–222, Apr. 1983.

[193] B. W. Lampson. How to Build a Highly Available SystemUsing Consensus. InDistributed
Algorithms, 10th International Workshop, WDAG ’96, Bologna, Italy, October 9-11, 1996,
Proceedings, pages 1–17, 1996.

[194] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu. Embark: Securely Outsourcing
Middleboxes to the Cloud. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2016.

[195] R. Laufer, M. Gallo, D. Perino, and A. Nandugudi. CliMB: Enabling Network Function
Composition with Click Middleboxes. In Proceedings of the 2016Workshop on Hot Topics
in Middleboxes and Network Function Virtualization (HotMIddlebox), 2016.

[196] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J. Starke, C. May,
R. Odaira, and T. Nakaike. Transactional memory support in the IBM POWER8 proces-
sor. IBM Journal of Research and Development, 59(1):8:1–8:14, Jan 2015.

[197] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song. Keystone: an open frame-
work for architecting trusted execution environments. In EuroSys ’20: Fifteenth EuroSys
Conference 2020, Heraklion, Greece, April 27-30, 2020, pages 38:1–38:16, 2020.

170

[198] P. P. C. Lee, T. Bu, and G. Chandranmenon. A lock-free, cache-efficient multi-core
synchronization mechanism for line-rate network traffic monitoring. In 2010 IEEE In-
ternational Symposium on Parallel Distributed Processing (IPDPS), pages 1–12, April 2010.

[199] D. Lehmann, J. Kinder, and M. Pradel. Everything Old is New Again: Binary Security of
WebAssembly. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, pages 217–234, 2020.

[200] D. Levin, J. R. Douceur, J. R. Lorch, and T.Moscibroda. TrInc: Small TrustedHardware for
Large Distributed Systems. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA, pages
1–14, 2009.

[201] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen. ClickNP:
Highly Flexible and High Performance Network Processing with Reconfigurable Hard-
ware. In Proceedings of the 2016 ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM), 2016.

[202] H. Liang, M. Li, Q. Zhang, Y. Yu, L. Jiang, and Y. Chen. Aurora: Providing Trusted System
Services for Enclaves On an Untrusted System. CoRR, abs/1802.03530, 2018.

[203] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin, F. Kelbert, T. Reiher,
D. Goltzsche, D. M. Eyers, R. Kapitza, C. Fetzer, and P. R. Pietzuch. Glamdring: Auto-
matic Application Partitioning for Intel SGX. In 2017 USENIX Annual Technical Conference,
USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017., pages 285–298, 2017.

[204] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, pages 973–990, 2018.

[205] H. Lu, M. Matz, M. Girkar, J. Hubička, A. Jaeger, and M. Mitchell. System V Application
Binary Interface AMD64 Architecture Processor Supplement (With LP64 and ILP32 Program-
ming Models), June 2017.

[206] V. Maffione, G. Lettieri, and L. Rizzo. Cache-aware design of general-purpose Single-
Producer-Single-Consumer queues. Softw. Pract. Exp., 49(5):748–779, 2019.

[207] V. Maffione, L. Rizzo, and G. Lettieri. Flexible virtual machine networking using netmap
passthrough. In IEEE International Symposium on Local and Metropolitan Area Networks,
LANMAN 2016, Rome, Italy, June 13-15, 2016, pages 1–6, 2016.

[208] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. Ne-
tAgg: UsingMiddleboxes for Application-specific On-path Aggregation in Data Centres.
In Proceedings of the 10th ACM International on Conference on Emerging Networking Ex-
periments and Technologies (CoNEXT), 2014.

[209] M. Majkowski. Cloudflare blog: Kernel Bypass. https://blog.cloudflare.com/

kernel-bypass/. Accessed on 2020-08-19.

[210] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Yasukata, C. Raiciu,
and F. Huici. My VM is Lighter (and Safer) than your Container. In Proceedings of the

171

https://blog.cloudflare.com/kernel-bypass/
https://blog.cloudflare.com/kernel-bypass/

26th Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017,
pages 218–233, 2017.

[211] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici. ClickOS
and the Art of Network Function Virtualization. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2014.

[212] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. M. Sommer, A. Gervais, A. Juels, and
S. Capkun. ROTE: Rollback Protection for Trusted Execution. In 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pages
1289–1306, 2017.

[213] D. Mazières. A Toolkit for User-Level File Systems. In Proceedings of the General Track:
2001 USENIX Annual Technical Conference, pages 261–274, Berkeley, CA, USA, 2001.
USENIX Association.

[214] S. McCanne and V. Jacobson. The BSD Packet Filter: A New Architecture for User-level
Packet Capture. In Proceedings of the UsenixWinter 1993 Technical Conference, San Diego,
California, USA, January 1993, pages 259–270, 1993.

[215] S. McConnell. Code complete - a practical handbook of software construction, 2nd Edition.
Microsoft Press, 2004.

[216] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and A. Perrig. TrustVisor:
Efficient TCB Reduction and Attestation. In 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA, pages 143–158, 2010.

[217] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, and C. Rozas.
Intel® Software Guard Extensions (Intel® SGX) Support for Dynamic Memory Manage-
ment Inside an Enclave. In Proceedings of the Hardware and Architectural Support for
Security and Privacy 2016, HASP 2016, pages 10:1–10:9, New York, NY, USA, 2016. ACM.

[218] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[219] D. Merkel. Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux Journal, Mar. 2014.

[220] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-blocking and Blocking
Concurrent Queue Algorithms. In Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC’96, pages 267–275, New York, NY, USA,
1996.

[221] K. Mitropoulou, V. Porpodas, X. Zhang, and T. M. Jones. Lynx: Using OS and Hardware
Support for Fast Fine-Grained Inter-Core Communication. In Proceedings of the 2016
International Conference on Supercomputing, ICS’16, pages 18:1–18:12, New York, NY,
USA, 2016.

[222] A. Mogage, R. Pires, V. C. Craciun, E. Onica, and P. Felber. Supply chainmalware targets
SGX: Take care of what you sign. CoRR, abs/1907.05096, 2019.

172

[223] I. Moraru, D. G. Andersen, and M. Kaminsky. Paxos Quorum Leases: Fast Reads With-
out Sacrificing Writes. In Proceedings of the ACM Symposium on Cloud Computing, SOCC
’14, pages 22:1–22:13, New York, NY, USA, 2014. ACM.

[224] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel. SEVered: Subverting AMD’s Virtual
Machine Encryption. In Proceedings of the 11th European Workshop on Systems Security,
EuroSec@EuroSys 2018, Porto, Portugal, April 23, 2018, pages 1:1–1:6, 2018.

[225] A. Morrison and Y. Afek. Fast Concurrent Queues for x86 Processors. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’13, pages 103–112, New York, NY, USA, 2013.

[226] A. Muthitacharoen, B. Chen, and D. Mazières. A Low-bandwidth Network File System.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, SOSP
’01, pages 174–187, New York, NY, USA, 2001. ACM.

[227] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and P. Steenkiste. And Then There Were
More: Secure Communication for More Than Two Parties. In Proceedings of the 13th
International Conference on Emerging Networking EXperiments and Technologies (CoNEXT),
2017.

[228] J. Nider, M. Rapoport, and J. Bottomley. Address space isolation in the Linux kernel.
In Proceedings of the 12th ACM International Conference on Systems and Storage, SYSTOR
2019, Haifa, Israel, June 3-5, 2019, page 194, 2019.

[229] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny,
D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling Memcache at
Facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pages 385–398, 2013.

[230] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. SOCK: Rapid task provisioning with serverless-optimized containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 57–70, Boston, MA,
July 2018. USENIX Association.

[231] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel MPX Explained: A
Cross-layer Analysis of the Intel MPX System Stack. POMACS, 2(2):28:1–28:30, 2018.

[232] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, and C. Fetzer. Fex: A Software Systems Evalu-
ator. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2017, Denver, CO, USA, June 26-29, 2017, pages 543–550, 2017.

[233] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer. Varys: Protecting SGX
Enclaves from Practical Side-Channel Attacks. In 2018 USENIX Annual Technical Confer-
ence, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 227–240, 2018.

[234] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer. You Shall Not
Bypass: Employing data dependencies to prevent Bounds Check Bypass. CoRR,
abs/1805.08506, 2018.

[235] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer. Specfuzz: Bringing spectre-type
vulnerabilities to the surface. In 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 1481–1498, 2020.

173

[236] V. A. Olteanu and C. Raiciu. Efficiently Migrating Stateful Middleboxes. In Proceedings
of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2012.

[237] OMTP. Advanced Trusted Environment, 2009.

[238] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and S. Shenker. E2:
A Framework for NFV Applications. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP), 2015.

[239] B. Parno. Trust Extension as a Mechanism for Secure Code Execution on Commodity Com-
puters (dissertation, updated version), volume 2 of ACM Books. ACM / Morgan & Claypool,
2014.

[240] B. Parno, J. R. Lorch, J. R. Douceur, J. W. Mickens, and J. M. McCune. Memoir: Practical
State Continuity for ProtectedModules. In 32nd IEEE Symposiumon Security and Privacy,
S&P 2011, 22-25 May 2011, Berkeley, California, USA, pages 379–394, 2011.

[241] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. E. Anderson, and
T. Roscoe. Arrakis: The Operating System Is the Control Plane. ACM Trans. Comput.
Syst., 33(4):11:1–11:30, 2016.

[242] R. Pires, M. Pasin, P. Felber, and C. Fetzer. Secure Content-Based Routing Using Intel
Software Guard Extensions. In Arxiv, 2017.

[243] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa. Visor: Privacy-
Preserving Video Analytics as a Cloud Service. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 1039–1056, 2020.

[244] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. SafeBricks: Shielding Network Func-
tions in the Cloud. In 15th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2018, Renton, WA, USA, April 9-11, 2018, pages 201–216, 2018.

[245] A. Pop and A. Cohen. A Stream-computing Extension to OpenMP. In Proceedings of
the 6th International Conference on High Performance and Embedded Architectures and
Compilers, HiPEAC’11, pages 5–14, New York, NY, USA, 2011.

[246] T. Preud’Homme, J. Sopena, G. Thomas, and B. Folliot. An Improvement of OpenMP
Pipeline Parallelism with the BatchQueue Algorithm. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems (ICPADS), pages 348–355, Dec 2012.

[247] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and P. R. Pietzuch.
SGX-LKL: Securing theHost OS Interface for Trusted Execution. CoRR, abs/1908.11143,
2019.

[248] R. Rajesh, K. B. Ramia, and M. Kulkarni. Integration of LwIP Stack over Intel(R) DPDK for
High Throughput Packet Delivery to Applications. In 2014 Fifth International Symposium
on Electronic System Design, Surathkal, Mangalore, India, December 15-17, 2014, pages
130–134, 2014.

[249] A. Randal. The Ideal Versus the Real: Revisiting the History of Virtual Machines and
Containers. CoRR, abs/1904.12226, 2019.

174

[250] A. Randazzo and I. Tinnirello. Kata containers: An emerging architecture for enabling
MEC services in fast and secure way. In Sixth International Conference on Internet of
Things: Systems, Management and Security, IOTSMS 2019, Granada, Spain, October 22-
25, 2019, pages 209–214, 2019.

[251] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C. Kozyrakis. Evaluating
MapReduce for Multi-core and Multiprocessor Systems. In 13st International Confer-
ence on High-Performance Computer Architecture (HPCA-13 2007), 10-14 February 2007,
Phoenix, Arizona, USA, pages 13–24, 2007.

[252] Redis. http://redis.io, 2016.

[253] W. Reese. Nginx: the High-Performance Web Server and Reverse Proxy. Linux Journal,
Sept. 2008.

[254] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX Annual
Technical Conference, Boston, MA, USA, June 13-15, 2012, pages 101–112, 2012.

[255] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual machines. In Proceedings
of the 8th International Conference on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’12, page 61–72, New York, NY, USA, 2012. Association for Computing
Machinery.

[256] J. Rutkowska. Intel x86 considered harmful. https://blog.invisiblethings.org/
2015/10/27/x86_harmful.html, 2015. Accessed on 2019-10-09.

[257] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted Execution Environment: What It
is, and What It is Not. In 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, August
20-22, 2015, Volume 1, pages 57–64, 2015.

[258] J. Sakkinen. LKML: [PATCH v35 23/24] docs: x86/sgx: Document SGX micro architec-
ture and kernel internals. https://www.mail-archive.com/linux-kernel@vger.

kernel.org/msg2224088.html. Accessed on 2020-08-17.

[259] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud Computing. In
Proceedings of the 1st USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2009.

[260] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu. Policy-sealed Data: A New Ab-
straction for Building Trusted Cloud Services. In Proceedings of the 21st USENIX Confer-
ence on Security Symposium, Security’12, pages 10–10, Berkeley, CA, USA, 2012. USENIX
Association.

[261] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Supporting Third Party Attestation
for Intel SGX with Intel Data Center Attestation Primitives. 2018.

[262] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich. VC3: Trustworthy Data Analytics in the Cloud Using SGX. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy (Oakland), 2015.

[263] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard Exten-
sion: abusing Intel SGX to conceal cache attacks. Cybersecurity, 3(1):2, 2020.

175

http://redis.io
https://blog.invisiblethings.org/2015/10/27/x86_harmful.html
https://blog.invisiblethings.org/2015/10/27/x86_harmful.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2224088.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg2224088.html

[264] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and Implementation of
a Consolidated Middlebox Architecture. In In the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[265] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2017.

[266] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco, M. Manesh, J. a.
Martins, S. Ratnasamy, L. Rizzo, and S. Shenker. Rollback-Recovery for Middleboxes. In
Proceedings of the 2015 ACMConference on Special Interest Group onData Communication
(SIGCOMM), 2015.

[267] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. Making
Middleboxes Someone else’s Problem: Network Processing As a Cloud Service. In
Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM), 2012.

[268] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep Packet Inspection over
Encrypted Traffic. In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2015.

[269] S. Shillaker and P. R. Pietzuch. Faasm: Lightweight Isolation for Efficient Stateful Server-
less Computing. In 2020 USENIX Annual Technical Conference, USENIX ATC 2020, July
15-17, 2020, pages 419–433, 2020.

[270] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing Page Faults from Telling
Your Secrets. In Proceedings of the 11th ACM on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages 317–328,
2016.

[271] S. Shinde, J. Cui, S. Sen, P. Yuan, and P. Saxena. Binary Compatibility For SGX Enclaves.
CoRR, abs/2009.01144, 2020.

[272] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-TCB Linux Applications
With SGX Enclaves. In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017, 2017.

[273] S. Shinde, S. Wang, P. Yuan, A. Hobor, A. Roychoudhury, and P. Saxena. BesFS: A
POSIX Filesystem for Enclaves with a Mechanized Safety Proof. In 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, pages 523–540, 2020.

[274] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File System.
In IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST 2012, Lake
Tahoe, Nevada, USA, May 3-7, 2010, pages 1–10, 2010.

[275] R. Sinha, S. Rajamani, S. A. Seshia, and K. Vaswani. Moat: Verifying Confidentiality of
Enclave Programs. In The ACM Conference on Computer and Communications Security
(CCS). ACM Association for Computing Machinery, October 2015.

[276] S. W. Smith and S. H. Weingart. Building a high-performance, programmable secure
coprocessor. Comput. Networks, 31(8):831–860, 1999.

176

[277] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling with Exception-less
System Calls. In OSDI, 2010.

[278] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. Gonzalez, J. M. Hellerstein, and A. Tu-
manov. Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow., 13(11):2438–
2452, 2020.

[279] N. Suneja. ScyllaDB optimizes database architecture to maximize hardware perfor-
mance. IEEE Softw., 36(4):96–100, 2019.

[280] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci. Cntr: Lightweight OS Containers. In
2018 USENIX Annual Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018, pages 199–212, 2018.

[281] H. Tian, Y. Zhang, C. Xing, and S. Yan. SGXKernel: A Library Operating SystemOptimized
for Intel SGX. In Proceedings of the Computing Frontiers Conference, CF’17, Siena, Italy, May
15-17, 2017, pages 35–44. ACM, 2017.

[282] S. Tople, S. Park, M. S. Kang, and P. Saxena. VeriCount: Verifiable Resource Accounting
Using Hardware and Software Isolation. In Applied Cryptography and Network Security
- 16th International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings,
pages 657–677, 2018.

[283] B. Trach, R. Faqeh, O. Oleksenko, W. Ozga, P. Bhatotia, and C. Fetzer. T-lease: A trusted
lease primitive for distributed systems. CoRR, abs/2101.06485, 2021.

[284] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer. ShieldBox:
Secure Middleboxes Using Shielded Execution. In Proceedings of the Symposium on
SDN Research, SOSR ’18, pages 2:1–2:14, New York, NY, USA, 2018. ACM.

[285] C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter. A study of modern Linux API usage and
compatibility: what to support when you’re supporting. In Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys 2016, London, United Kingdom, April
18-21, 2016, pages 16:1–16:16, 2016.

[286] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalodner, V. Kulkarni,
D. Oliveira, and D. E. Porter. Cooperation and Security Isolation of Library OSes for
Multi-process Applications. In EuroSys, 2014.

[287] C.-C. Tsai, D. E. Porter, andM. Vij. Graphene-SGX: A Practical Library OS for Unmodified
Applications on SGX. In Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, pages 645–658, Berkeley, CA, USA, 2017. USENIX
Association.

[288] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and
D. Garg. ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK). In
28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-
16, 2019, pages 1221–1238, 2019.

[289] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune. Trustworthy Execu-
tion on Mobile Devices: What Security Properties Can My Mobile Platform Give Me?
In Trust and Trustworthy Computing - 5th International Conference, TRUST 2012, Vienna,
Austria, June 13-15, 2012. Proceedings, pages 159–178, 2012.

177

[290] M. A. M. Vieira, M. S. Castanho, R. Pacifico, E. R. da Silva Santos, E. P. M. C. Júnior, and
L. F. M. Vieira. Fast Packet Processing with eBPF and XDP: Concepts, Code, Challenges,
and Applications. ACM Comput. Surv., 53(1):16:1–16:36, 2020.

[291] D. Vyukov. Bounded MPMC queue - 1024cores. http://www.1024cores.net/home/
lock-free-algorithms/queues/bounded-mpmc-queue. Accessed on 2020-07-03.

[292] J.Wang, K. Zhang, X. Tang, andB. Hua. B-Queue: Efficient and Practical Queuing for Fast
Core-to-Core Communication. International Journal of Parallel Programming, 41(1):137–
159, 2013.

[293] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift. Peeking Behind the Curtains
of Serverless Platforms. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13, 2018, pages 133–146, 2018.

[294] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
R. Strackx, T. F. Wenisch, and Y. Yarom. Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution. Technical report, 2018.

[295] D. Williams, R. Koller, M. Lucina, and N. Prakash. Unikernels as Processes. In Proceed-
ings of the ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad, CA, USA, October
11-13, 2018, pages 199–211, 2018.

[296] W.Wu, K. He, and A. Akella. PerfSight: Performance Diagnosis for Software Dataplanes.
In Proceedings of the 2015 Internet Measurement Conference (IMC), 2015.

[297] Y. Xu, W. Cui, andM. Peinado. Controlled-Channel Attacks: Deterministic Side Channels
for UntrustedOperating Systems. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy (Oakland), 2015.

[298] C. Yang and J. Mellor-Crummey. A Wait-free Queue As Fast As Fetch-and-add. In Pro-
ceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP’16, pages 16:1–16:13, New York, NY, USA, 2016.

[299] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed Lock Management with RDMA:
DecentralizationWithout Starvation. In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, pages 1571–1586, New York, NY, USA, 2018.
ACM.

[300] H. Yu, L. Breslau, and S. Shenker. A Scalable Web Cache Consistency Architecture. In
Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’99, pages 163–174, New York, NY, USA, 1999.
ACM.

[301] Y. Yu, P. Manolios, and L. Lamport. Model Checking TLA+ Specifications. In Correct
Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research Working
Conference, CHARME ’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings,
pages 54–66, 1999.

[302] Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena. Elasticlave: An Efficient Memory Model
for Enclaves. CoRR, abs/2010.08440, 2020.

178

http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue

[303] K. Zetter. NSA Hacker Chief Explains How to Keep Him Out of Your System. Wired, Jan.
2016.

[304] T. Zhang, D. Xie, F. Li, and R. Stutsman. Narrowing the Gap Between Serverless and its
State with Storage Functions. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pages 1–12, 2019.

[305] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica. Opaque: An
oblivious and encrypted distributed analytics platform. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 283–298, Boston, MA,
2017. USENIX Association.

179

	Title page
	Abstract
	Acknowledgements
	Publications
	Contents
	Introduction
	Need for Trust in Cloud Computing
	A Running Example
	Challenges and Contributions
	Thesis Scope and Goals
	Contributions

	Background
	Concepts
	Brief History of Trusted Execution (in the Cloud)
	Intel SGX Runtimes
	Library OS based approaches
	Minimal TCB Systems
	Partitioning Approaches

	Related Work
	SGX Challenges
	SGX Challenges for Network Middleboxes
	Time Sources for Intel SGX Enclaves
	SGX Challenges for Distributed and Serverless Computing

	Efficient Support for POSIX Applications inside Intel SGX Enclaves
	Motivation
	Threat model

	Design
	Architecture
	Trusted runtime
	External Interface
	Threading model
	Asynchronous system calls

	Implementation
	Trusted runtime foundation
	System calls
	Thread management
	Memory management
	Signal handling
	Limitations and Future Work

	Evaluation
	Methodology
	Application Benchmarks
	Asynchronous System Calls

	Discussion
	Related Work
	Conclusions

	FFQ: Fast FIFO Queue
	Introduction
	Related Work
	The Algorithm
	Single Producer
	Multiple Producers

	Implementation and Optimizations
	Memory Mapping
	Thread Affinity
	Queue Length
	Implementation Notes

	Evaluation
	Methodology
	False Sharing
	Queue Size
	Cache Locality and Thread Affinity
	Maximizing Throughput
	Application Benchmark
	Comparative Study

	Conclusion

	Securing Middleboxes using Shielded Execution
	Introduction
	Background and Related Work
	Middlebox Challenges for Intel SGX
	Overview
	Design Details
	Configuration and Remote Attestation
	Secure Elements
	NFVs Chaining
	Middlebox State Persistence
	NIC Time Source
	Memory Safety for DPDK-Specific Iago Attacks

	Implementation
	Interaction with SCONE and Hardware
	Toolchain
	Optimizations

	Evaluation
	Experimental Setup
	Throughput
	Latency
	Scalability
	ToEnclave Overheads
	Configuration and Attestation
	NFVs Chaining
	Packet Sealing Performance
	Case Studies

	Discussion
	Conclusion

	Using Intel SGX Enclaves For Secure Remote Execution in FaaS
	Introduction
	Background
	Threat Model
	Design
	Preventing Memory Inspection
	Preventing Traffic Analysis and Modification
	Verifying Function Execution Order

	Implementation
	Function Startup Optimization

	Evaluation
	Security Evaluation
	Response time
	Function startup optimizations
	Impact of API Gateway

	Discussion
	Related Work
	Conclusion

	A Trusted Lease Primitive for Distributed Systems
	Introduction
	Overview
	A Case for Trusted Leases
	T-Lease: A Trusted Lease Primitive

	Design
	Strawman Designs and Associated Challenges
	T-Lease Detailed Design

	Implementation
	Implementation of the T-Lease Library
	Implementation of the T-Lease Case Studies

	Evaluation
	Experimental Setup
	Single-node Setup
	Distributed Setup
	Case Studies

	Related Work
	Discussion
	Conclusion

	Conclusions
	Summary of contributions
	Challenges and future work

