
Thesis for the Degree of Licentiate of Engineering

Towards Measuring and Understanding Performance in
Infrastructure- and Function-as-a-Service Clouds

Joel Scheuner

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2020

Towards Measuring and Understanding Performance in Infrastructure-
and Function-as-a-Service Clouds

Joel Scheuner

Copyright ©2020 Joel Scheuner
except where otherwise stated.
All rights reserved.

Technical Report
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2020.

ii

∼100% of benchmarks are wrong.
- Brendan Gregg, Senior Performance Architect

iv

Abstract
Context Cloud computing has become the de facto standard for deploying
modern software systems, which makes its performance crucial to the efficient
functioning of many applications. However, the unabated growth of established
cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of
new services, such as Function-as-a-Service (FaaS), has led to an unprecedented
diversity of cloud services with different performance characteristics.

Objective The goal of this licentiate thesis is to measure and understand
performance in IaaS and FaaS clouds. My PhD thesis will extend and leverage
this understanding to propose solutions for building performance-optimized
FaaS cloud applications.

Method To achieve this goal, quantitative and qualitative research methods
are used, including experimental research, artifact analysis, and literature
review.

Findings The thesis proposes a cloud benchmarking methodology to estimate
application performance in IaaS clouds, characterizes typical FaaS applications,
identifies gaps in literature on FaaS performance evaluations, and examines the
reproducibility of reported FaaS performance experiments. The evaluation of
the benchmarking methodology yielded promising results for benchmark-based
application performance estimation under selected conditions. Characterizing
89 FaaS applications revealed that they are most commonly used for short-
running tasks with low data volume and bursty workloads. The review of
112 FaaS performance studies from academic and industrial sources found a
strong focus on a single cloud platform using artificial micro-benchmarks and
discovered that the majority of studies do not follow reproducibility principles
on cloud experimentation.

Future Work Future work will propose a suite of application performance
benchmarks for FaaS, which is instrumental for evaluating candidate solutions
towards building performance-optimized FaaS applications.

Keywords

Cloud Computing, Performance, Benchmarking, Infrastructure-as-a-Service,
Function-as-a-Service, Serverless

Acknowledgments

First and foremost, I express special thanks to my advisor and long-term
mentor Philipp Leitner for his advice, trust, and collaboration during the
journey from my undergraduate studies towards this licentiate thesis. His right
balance between giving guidance and autonomy in developing my research
fosters my growth towards becoming an independent researcher. I also thank
my co-supervisor Jan-Philipp Steghöfer for his valuable feedback. Further, I
am grateful for the freedom my examiner Robert Feldt gives me in conducting
my research.

Thank you to all my colleagues at the Software Engineering Division for
shaping a great work environment and engaging in fun social activities. My
gratitude also includes the extended ICET-lab team in Zurich and WASP
colleagues at Chalmers and from other Swedish universities. I wish to thank
my collaborators at SPEC-RG Cloud for many fruitful discussions and I am
looking forward to continuing the good work.

I appreciate the support and visits of my family and friends from Switzerland
and abroad. I wish to express my deepest gratitude to my wife Yao for her
positivity ☼, love, care, and continuos encouragement throughout my work.

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, and by the Swedish Research Council VR under grant number
2018-04127 (Developer-Targeted Performance Engineering for Immersed Release
and Software Engineers).

vii

List of Publications

Appended Publications
This thesis is based on the following publications:

[α] J. Scheuner, P. Leitner
“A Cloud Benchmark Suite Combining Micro and Applications Bench-
marks”
Companion of the 9th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE): 4th Workshop on Quality-Aware DevOps
(QUDOS), 2018.
doi:10.1145/3185768.3186286

[β] J. Scheuner, P. Leitner
“Estimating Cloud Application Performance Based on Micro-Benchmark
Profiling”
Proceedings of the 11th IEEE International Conference on Cloud Com-
puting (CLOUD), 2018.
doi:10.1109/CLOUD.2018.00019

[γ] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, A. Iosup
“Serverless Applications: Why, When, and How?”
Under revision for IEEE Software.

[δ] J. Scheuner, P. Leitner
“Function-as-a-Service Performance Evaluation: A Multivocal Literature
Review”
Journal of Systems and Software (JSS), 2020.
doi:10.1016/j.jss.2020.110708

[ε] J. Scheuner, P. Leitner
“Transpiling Applications into Optimized Serverless Orchestrations”
Proceedings of the 4th IEEE FAS*W: 2nd Workshop on Hot Topics in
Cloud Computing Performance (HotCloudPerf) at ICAC/SASO, 2019.
doi:10.1109/FAS-W.2019.00031

ix

https://doi.org/10.1145/3185768.3186286
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1109/FAS-W.2019.00031

x

Other Publications
The following publications were published before or during my PhD studies.
However, they are not appended to this thesis because they were published
before my PhD studies [a-f], unrelated to the thesis, or overlapping with the
thesis content.

An updated list of all my publications is available on my website1 and
Google Scholar profile2.

[a] J. Scheuner, P. Leitner, J. Cito, H. Gall
“Cloud WorkBench – Infrastructure-as-Code Based Cloud Benchmarking”
Proceedings of the 6th IEEE International Conference on Cloud Comput-
ing Technology and Science (CloudCom), 2014.
doi:10.1109/CloudCom.2014.98

[b] J. Scheuner, P. Leitner, J. Cito, H. Gall
“CloudWorkBench: Benchmarking IaaS Providers based on Infrastructure-
as-Code”
Companion of the 24th International Conference on World Wide Web
(WWW Demo), 2015.
doi:10.1145/2740908.2742833

[c] P. Leitner, J. Scheuner
“Bursting With Possibilities – an Empirical Study of Credit-Based Burst-
ing Cloud Instance Types”
Proceedings of the 8th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2015.
doi:10.1109/UCC.2015.39

[d] J. Scheuner, G. Mazlami, D. Schöni, S. Stephan, A. De Carli, T. Bocek,
B. Stiller
“Probr – A Generic and Passive WiFi Tracking System”
Proceedings of the 41st IEEE Conference on Local Computer Networks
(LCN), 2016.
doi:10.1109/LCN.2016.30

[e] J. Scheuner, G. Mazlami, D. Schöni, S. Stephan, A. De Carli, T. Bocek,
B. Stiller
“Probr Demonstration – Visualizing Passive WiFi Data”
Proceedings of the 41st IEEE Conference on Local Computer Networks
(LCN Demo), 2016. Best Demo Award LCN’16.
doi:10.1109/LCN.2016.135

[f] J. Scheuner, P. Leitner, J. Cito, H. Gall
“An Approach and Case Study of Cloud Instance Type Selection for
Multi-Tier Web Applications”
Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2017.
doi:10.1109/CCGRID.2017.12

1https://joelscheuner.com/
2https://scholar.google.com/citations?user=EfD_tnUAAAAJ

https://doi.org/10.1109/CloudCom.2014.98
https://doi.org/10.1145/2740908.2742833
https://doi.org/10.1109/UCC.2015.39
https://doi.org/10.1109/LCN.2016.30
https://doi.org/10.1109/LCN.2016.135
https://doi.org/10.1109/CCGRID.2017.12
https://joelscheuner.com/
https://scholar.google.com/citations?user=EfD_tnUAAAAJ

xi

[g] C. Laaber, J. Scheuner, P. Leitner
“Software microbenchmarking in the cloud. How bad is it really?”
Empirical Software Engineering (EMSE), 2019.
doi:10.1007/s10664-019-09681-1

[h] J. Scheuner, P. Leitner
“Performance Benchmarking of Infrastructure-as-a-Service (IaaS) Clouds
with Cloud WorkBench”
Companion of the 10th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE Tutorial), 2019.
doi:10.1145/3302541.3310294

[i] J. Scheuner, P. Leitner
“Tutorial – Performance Benchmarking of Infrastructure-as-a-Service
(IaaS) Clouds with Cloud WorkBench”
Proceedings of the 4th IEEE International Workshops on Foundations
and Applications of Self* Systems (FAS*W) at ICAC/SASO, 2019.
doi:10.1109/FAS-W.2019.00070

[j] E. v. Eyk, J. Scheuner, S. Eismann, C. L. Abad, A. Iosup
“Beyond Microbenchmarks: The SPEC-RG Vision for a Comprehensive
Serverless Benchmark”
Companion of the 11th ACM/SPEC International Conference on Per-
formance Engineering (ICPE): 3rd Workshop on Hot Topics in Cloud
Computing Performance (HotCloudPerf), 2020.
doi:10.1145/3375555.3384381

[k] S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L Abad, A. Iosup
“A Review of Serverless Use Cases and their Characteristics”
SPEC-RG-2020-5 Technical Report, 2020. Endorsed by SPEC-RG but
not formally peer reviewed.

https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1145/3302541.3310294
https://doi.org/10.1109/FAS-W.2019.00070
https://doi.org/10.1145/3375555.3384381

xii

Research Contribution
Following the Contributor Roles Taxonomy (CrediT)3:

For papers α, β, δ and ε, I was the main contributor for Conceptualization,
Methodology, Software, Validation, Investigation, Data curation, Writing -
Original Draft, Writing - Review & Editing, Visualization.

Paper γ was the result of collaborative research by SPEC-RG Cloud4 and
a bachelor thesis supervised by me. I was highly involved in Conceptualization,
Methodology, Validation, and Writing - Review & Editing. Investigation and
Data curation was split equally among the authors. The first author contributed
Visualization and Writing - Original Draft based on the underlying technical
report SPEC-RG-2020-5 [k], where Writing - Original Draft was largely split
equally among the authors.

3https://casrai.org/credit/
4https://research.spec.org/home.html

https://casrai.org/credit/
https://research.spec.org/home.html

xiv

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xiii

1 Synopsis 1
1.1 Background . 2

1.1.1 Cloud Computing . 2
1.1.2 Serverless Computing and Function-as-a-Service 3
1.1.3 Performance Evaluation 4
1.1.4 Micro- and Application-Benchmarks 4
1.1.5 Reproducibility . 5

1.2 Research Scope . 6
1.2.1 Research Questions . 6
1.2.2 Research Map . 7

1.3 Related Work . 7
1.3.1 IaaS Performance Evaluation 7

1.3.1.1 Cloud Benchmarking Execution Methodology . 8
1.3.1.2 Cloud Application Performance Prediction . . 9

1.3.2 FaaS Performance Evaluation 10
1.3.2.1 FaaS Application Characteristics 10
1.3.2.2 FaaS Performance Evaluation Landscape . . . 10
1.3.2.3 Reproducibility of FaaS Performance Experiments 10

1.4 Research Methodology . 11
1.4.1 Field Experiment . 11
1.4.2 Qualitative Sample Study 11
1.4.3 Literature Review . 13

1.5 Contributions . 14
1.5.α Cloud Benchmark Suite 14
1.5.β Cloud Application Performance Estimation 15
1.5.γ Serverless Applications 17
1.5.δ Function-as-a-Service Performance Evaluation 18
1.5.ε Optimized Serverless Orchestrations 18

1.6 Results . 18
1.6.1 RQ1: IaaS Performance Evaluation 19

xv

xvi CONTENTS

1.6.1.1 RQ1.1: IaaS Benchmark Suite 19
1.6.1.2 RQ1.2: Application Performance Estimation . 20

1.6.2 RQ2: FaaS Performance Evaluation 22
1.6.2.1 RQ2.1: FaaS Applications 22
1.6.2.2 RQ2.2: Existing FaaS Performance Studies . . 23
1.6.2.3 RQ2.3: Reproducibility of FaaS Experiments . 24

1.7 Discussion . 26
1.7.1 IaaS Performance Evaluation 26
1.7.2 FaaS Performance Evaluation 27

1.8 Threats to Validity . 28
1.8.1 Construct Validity . 28
1.8.2 Internal Validity . 28
1.8.3 External Validity . 29
1.8.4 Reliability . 30

1.9 Future Work . 31
1.9.1 FaaS Application Performance Benchmark 31
1.9.2 Performance-Optimized FaaS Applications 32

1.10 Conclusions . 33

α Cloud Benchmark Suite 35
α.1 Introduction . 35
α.2 Related Work . 36
α.3 Benchmarking Methodology . 37

α.3.1 Architecture . 37
α.3.2 Cloud WorkBench Extensions 37
α.3.3 Benchmarks . 38

α.3.3.1 Micro Benchmarks 38
α.3.3.2 Application Benchmarks 39

α.4 Case Study . 41
α.4.1 Setup . 41
α.4.2 Results . 42
α.4.3 Discussion . 44

α.5 Conclusion . 44

β Cloud Application Performance Estimation 47
β.1 Introduction . 47
β.2 Related Work . 49
β.3 Methodology . 50
β.4 Benchmarking Dataset . 52
β.5 Variability for the same Instance Types 53

β.5.1 Results . 53
β.5.2 Discussion . 53
β.5.3 Implications . 54

β.6 Results and Discussion . 55
β.6.1 RQ1 – Estimation Accuracy 55

β.6.1.1 Results . 55
β.6.1.2 Discussion . 56
β.6.1.3 Implications 57

β.6.2 RQ2 – Micro-Benchmark Selection 57

CONTENTS xvii

β.6.2.1 Results . 57
β.6.2.2 Discussion . 59
β.6.2.3 Implications 59

β.7 Conclusion . 60

γ Serverless Applications 63
γ.1 Introduction . 63
γ.2 Methodology . 63
γ.3 Serverless Adoption (Why?) . 64
γ.4 Serverless Context (When?) . 66
γ.5 Serverless Implementation (How?) 67
γ.6 Conclusion . 68

δ Function-as-a-Service Performance Evaluation 69
δ.1 Introduction . 69
δ.2 Background . 70

δ.2.1 Micro-Benchmarks . 70
δ.2.2 Application-Benchmarks 71

δ.3 Research Questions . 72
δ.4 Study Design . 73

δ.4.1 MLR Process Overview 73
δ.4.2 Search Strategies . 75

δ.4.2.1 Manual Search for Academic Literature 75
δ.4.2.2 Database Search for Academic Literature . . . 76
δ.4.2.3 Web Search for Grey Literature 76
δ.4.2.4 Complementary Search 77
δ.4.2.5 Snowballing 77

δ.4.3 Selection Strategy . 77
δ.4.4 Data Extraction and Synthesis 78
δ.4.5 Threats to Validity . 79

δ.5 Study Results and Discussion 80
δ.5.1 Publication Trends (RQ1) 80
δ.5.2 Benchmarked Platforms (RQ2) 82
δ.5.3 Evaluated Performance Characteristics (RQ3) 85

δ.5.3.1 Evaluated Benchmark Types (RQ3.1) 85
δ.5.3.2 Evaluated Micro-Benchmarks (RQ3.2) 86
δ.5.3.3 Evaluated General Characteristics (RQ3.3) . . 87

δ.5.4 Used Platform Configurations (RQ4) 88
δ.5.4.1 Used Language Runtimes (RQ4.1) 88
δ.5.4.2 Used Function Triggers (RQ4.2) 90
δ.5.4.3 Used External Services (RQ4.3) 90

δ.5.5 Reproducibility (RQ5) 91
δ.6 Implications and Gaps in Literature 96

δ.6.1 Publication Trends (RQ1) 96
δ.6.2 Benchmarked Platforms (RQ2) 96
δ.6.3 Evaluated Performance Characteristics (RQ3) 96

δ.6.3.1 Evaluated Benchmark Types (RQ3.1) 96
δ.6.3.2 Evaluated Micro-Benchmarks (RQ3.2) 97
δ.6.3.3 Evaluated General Characteristics (RQ3.3) . . 97

xviii CONTENTS

δ.6.4 Used Platform Configurations (RQ4) 97
δ.6.4.1 Used Language Runtimes (RQ4.1) 97
δ.6.4.2 Used Function Triggers (RQ4.2) 98
δ.6.4.3 Used External Services (RQ4.3) 98

δ.6.5 Reproducibility (RQ5) 98
δ.7 Related Work . 99

δ.7.1 Literature Reviews on FaaS 99
δ.7.2 Literature Reviews on Cloud Performance 100
δ.7.3 Reproducibility Principles 100

δ.8 Conclusion . 100

ε Optimized Serverless Orchestrations 107
ε.1 Introduction . 107
ε.2 Vision . 108
ε.3 Current Work and Challenges 109
ε.4 Conclusion and Future Research 110

Bibliography 111

Chapter 1

Synopsis

Cloud computing [1, 2] has become the de facto standard for deploying modern
software systems. The established cloud computing paradigm Infrastructure-
as-a-Service (IaaS) grows unabated1 and the emerging paradigm Serverless
computing experiences rapid adoption2. IaaS can be seen as the core of cloud
environments offering low-level computing resources (e.g., CPU processing
time or disk space) as self-service, prevalently in the form of virtual machines
(VMs). As cloud computing evolves towards higher-level abstractions, it aims to
liberate users entirely from operational concerns, such as managing or scaling
server infrastructure. Function-as-a-Service (FaaS) offers such a high-level
fully-managed service with fine-grained billing to execute event-triggered code
snippets (i.e., functions).

The continuing growth of the cloud computing market has led to an un-
precedented diversity of cloud services offered in many different configurations
with varying performance characteristics. Hence, selecting an appropriate cloud
service with an optimal configuration for a performance- and cost-efficient
functioning of an application is a non-trivial challenge.

Performance evaluation is a field of research that systematically measures
characteristics such as latency or throughput to build an understanding of
performance in a given environment. Performance evaluation in IaaS clouds is
an established area of research (see Section 1.3.1) but requires new methods for
reproducible experimentation and for understanding the relationship between
different performance benchmarks (i.e., performance tests). In contrast, FaaS
performance evaluation (see Section 1.3.2) is a much younger but very active
area of research that lacks a consolidated understanding. Therefore, this thesis
formulates the following goal:

Goal

My licentiate thesis aims towards measuring and understanding
performance in IaaS and FaaS clouds. My PhD thesis will extend
and leverage this understanding to propose solutions for building
performance-optimized FaaS cloud applications.

1https://aws.amazon.com/ec2/gartner-mq-2019/
2https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-

market-64917099.html

1

https://aws.amazon.com/ec2/gartner-mq-2019/
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html

2 CHAPTER 1. SYNOPSIS

To achieve this goal, this thesis contributes experimental research to measure
and understand performance in IaaS clouds and primary as well as secondary
research to understand the landscape of FaaS applications and FaaS performance
evaluations.

The remainder of this chapter is organized as follows. Section 1.1 introduces
relevant background on cloud computing and the foundations of performance
evaluation. Section 1.2 raises and motivates the research questions of this
thesis and discusses its scope related to my PhD thesis. Section 1.3 extends the
context discussion to related work in the fields of IaaS and FaaS performance
evaluation. Section 1.4 summarizes the methodology used to address the
research questions. The contributions of the individual papers are summarized
and linked to the research questions in Section 1.5. The research questions are
then answered in Section 1.6 and discussed in a larger context in Section 1.7.
Threats to the validity of the results are discussed in Section 1.8. Section 1.9
outlines future work as part of my PhD thesis and Section 1.10 concludes this
thesis.

1.1 Background
This section defines cloud computing, distinguishes FaaS and serverless comput-
ing, introduces the foundations of performance evaluation, and distinguishes
between micro- and application-level benchmarks.

1.1.1 Cloud Computing

Cloud computing [2–6] is most commonly defined as:

a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort
or service provider interaction.

—The NIST Definition [1]

Cloud computing continues to evolve, moving from low-level generalist
services towards more specialized high-level services. Early Infrastructure-as-a-
Service (IaaS) clouds offer a low-level abstraction of computing resources. These
resources are most commonly provided in the form of self-administered virtual
machines (VMs) where users have near full control of the software stack [7].
Cloud VMs are offered in many different sizes (also called instance types) with
different performance and cost characteristics. A prominent example of an
IaaS compute service is the Elastic Compute Cloud (EC2) offered by the cloud
provider Amazon Web Services (AWS).

As cloud computing matures, new services push towards more fine-grained
deployment units of increasingly specialized services as depicted in Figure 1.1.
VMs virtualized the hardware of bare metal machines, containers provide
virtualization on top of a shared operating system, and Function-as-a-Service
(FaaS) offers prepackaged runtimes for high-level application development. FaaS
deployment units are small code functions written in programming languages

1.1. BACKGROUND 3

such as JavaScript or Python. Hence, FaaS allows developers to focus on
business logic while abstracting away operational concerns, such as autoscaling
VMs.

VM VM

VM

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)
Le

ve
l o

f A
bs

tra
ct

io
n

Unit of DeploymentCoarse-grained Fine-grained

Lo
w

H
ig

h

Bare Metal

Virtual Machines
(IaaS)

Containers

Functions
(FaaS)

Figure 1.1: Evolution of deployment options

1.1.2 Serverless Computing and Function-as-a-Service
There are no widely accepted definitions for serverless computing and Function-
as-a-Service (FaaS). Both terms are often used interchangeably and sometimes
even with contradicting interpretations [8]. The term server-less (i.e., without
managing servers) is also considered confusing but widely adopted by academics
and practitioners3. This thesis adopts an interpretation in line with an accessible
introduction to serverless computing [9] and the SPEC cloud group’s research
vision on FaaS and serverless architectures [10].

Serverless computing is a cloud computing paradigm that aims to
liberate users entirely from operational concerns, such as managing
or scaling server infrastructure, by offering a fully-managed high-
level event-driven service with fine-grained billing.

Function-as-a-Service (FaaS) is one embodiment of serverless com-
puting and is defined through FaaS platforms (e.g., AWS Lambda)
executing event-triggered code snippets (i.e., functions).

Figure 1.2 visualizes the relationship between serverless and FaaS and lists
example FaaS platforms4. This thesis focuses on FaaS but also considers
its relevant serverless context given the tight integration. For example, the
performance of serverless storage (e.g., AWS S3) can be relevant as part of
FaaS applications [11] but not in isolation [12].

3https://martinfowler.com/articles/serverless.html
4https://landscape.cncf.io/format=serverless

https://martinfowler.com/articles/serverless.html
https://landscape.cncf.io/format=serverless

4 CHAPTER 1. SYNOPSIS

Function-as-a-Service

Event-driven ComputingServerless Computing

AWS Lambda

Google Cloud
Functions

IBM Cloud
Functions

Knative

Figure 1.2: Relationship between serverless and FaaS (adapted from [8])

1.1.3 Performance Evaluation
Performance evaluation, also known as performance benchmarking or perfor-
mance testing, is the process of systematically evaluating performance features
(e.g., latency or throughput [13]) of computing resources (e.g., CPU, memory)
and applications.

The fundamental performance testing terminology includes: system under
test, workload, benchmark, and benchmark suite. A system under test (SUT)
refers to environments or components that are evaluated according to clearly
defined metrics, such as response time. In the context of this thesis, the SUT
is typically either a cloud environment (i.e., IaaS or FaaS) or an application
within a cloud environment. A workload refers to the stimulation that is
applied to a SUT to observe a certain effect (e.g., change in performance).
This thesis distinguishes between synthetic workloads for micro-benchmarks
and realistic workloads for application-benchmarks, which intend to imitate
real-world scenarios. A benchmark tests performance in a controlled setup
by applying a workload to a SUT. A benchmark suite groups a set of related
benchmarks and defines an execution methodology for combined execution.

Concrete performance features [13], metrics [14], and evaluation methods [15,
16] are cataloged in related work and described within the thesis where relevant.

1.1.4 Micro- and Application-Benchmarks
Figure 1.3 compares two common types of benchmarks, namely micro- and
application-benchmarks. Micro-benchmarks target a narrow performance aspect
(e.g., floating-point CPU performance) with synthetic workloads. These generic
benchmarks are not bound to a certain domain (e.g., Web serving) but can
provide performance insights that are potentially transferable within certain
environments. Application-benchmarks, also known as macro-benchmarks, aim
to cover the overall performance of real-world application scenarios. Typical
metrics are end-to-end response time or throughput. Their results are either
specific to a certain application under a given workload or a domain of related
applications (e.g., Web serving or scientific computing). Their resource usage
profile might be complex and dynamic as they are designed to solve a real-

1.1. BACKGROUND 5

world task rather than testing a specific resource in isolation. In comparison to
micro-benchmarks, application-benchmarks tend to be long-running, complex
to configure, and hard to debug due to non-trivial bottleneck analysis caused
by heterogeneous resource usage profiles. Examples of both benchmark types
are described in Section α.3.3 for IaaS and in Section δ.2 for FaaS.

Micro-Benchmarks

CPU Memory Storage Network

Application-Benchmarks

Overall performance
(e.g., response time)

Domain

Workload

Resource
Usage

Generic Specific

Real-worldSynthetic

HeterogenousNarrow

Figure 1.3: Micro- vs application-benchmarks

1.1.5 Reproducibility

“Repeatability and reproducibility are cornerstones of the scientific process” [17]
but often neglected in natural [18] and computer [17] science research. Re-
peatability refers to the extent successive measurements with the same method
under the same conditions yield the same results [19]. Collberg and Proebsting
[17] found that more than 50% of 601 papers from top-rated ACM systems
conferences around 2012 lack functional code. Even after spending ample
efforts to fix build failures, repeatability was impossible for the results of at
least half of these papers. Further, repeatability will likely degrade as Lin
and Zhang [20] argued for an understanding as a process rather than as an
achievement due to the fast evolution of modern computational environments.
However, reproducibility could still be achieved as it refers to the extent the
same results can be achieved with the same method under changed conditions
of measurements [19].

Following these definitions, repeatability is practically impossible in public
cloud environments due to the lack of control over a multi-tenant environ-
ment offered by a third-party cloud provider. Therefore, this thesis focuses
on technical reproducibility of cloud experimentation, which requires several
aspects to ensure an experiment can be repeated with the same methodology.
A sufficiently detailed experiment description is required but its completeness
is often infeasible due to space restrictions (e.g., in academic papers) [21].
Therefore, technical artifacts should be published as an appendix in a usable
form [22]. This might include source code, input data (e.g., workloads), and
technical descriptions. Access to the same infrastructure is fundamentally
given for public clouds but hampered due to their continuous evolution and
potentially high costs.

6 CHAPTER 1. SYNOPSIS

1.2 Research Scope
This section introduces and motivates the research questions of this licentiate
thesis and discusses its scope concerning my PhD project and related work.

1.2.1 Research Questions
To addresses the goal of this licentiate thesis, I formulate the following research
questions (RQs) covering performance in IaaS (RQ1) and FaaS (RQ2) clouds:

RQ1: How can performance be measured and evaluated in IaaS clouds?

Performance evaluation in IaaS clouds is an established field of research
(see Section 1.3) and the following sub-questions focus on open chal-
lenges. They specifically target measurement methodology with a focus
on reproducible IaaS experimentation and the understanding of low-level
systems performance in relation to high-level applications. Accordingly, I
formulate the follow sub-questions:

RQ1.1: How can multiple performance benchmarks reproducibly evaluate
IaaS cloud performance?
This question calls for a new cloud benchmarking methodology to sys-
tematically combine and execute multiple performance benchmarks.
It seeks to improve the reproducibility of cloud experimentation
with multiple benchmarks in inherently variable cloud environments.
The ability to systematically evaluate multiple performance bench-
marks leads to the follow-up question on how such different perfor-
mance benchmarks relate to application performance.

RQ1.2: How suitable are micro-benchmarks to estimate application per-
formance in IaaS clouds?
By leveraging the execution methodology from RQ1.1., this question
aims to explore the potential of generic micro-benchmarks to esti-
mate the performance of specific applications from certain domains
to support cloud service selection.

RQ1 targets the performance understanding of low-level IaaS computing
resources and RQ2 extends this understanding towards high-level FaaS
performance. In contrast to IaaS, performance evaluation in FaaS clouds is
a much younger but very active field of research [23]. However, it currently
lacks a consolidated view, which motivates the following research question.

RQ2: What is the current understanding of performance in FaaS clouds?

This question aims to characterize the landscape of existing work on FaaS
applications and their performance to systematically map prior work
and guide future research. I divide this question into the following sub-
questions related to FaaS applications, FaaS performance characteristics,
and the reproducibility of FaaS performance experiments:

RQ2.1: What are the characteristics of typical FaaS applications?
A meaningful understanding of FaaS performance requires knowledge
about relevant applications, which this question seeks to build.

1.3. RELATED WORK 7

RQ2.2: What do existing FaaS performance studies evaluate?
This question aims to identify and classify the experimental designs
of existing FaaS performance studies. Such a consolidated view of
existing FaaS performance studies is instrumental to identify gaps
in literature and guide future research.

RQ2.3: How reproducible are existing FaaS performance experiments?
Reproducibility is an inherently important quality of experimental
designs and a common challenge in cloud experimentation, which is
performed in inherently variable cloud environments. Hence, this
question seeks to assess the reproducibility of existing FaaS perfor-
mance experiments in terms of compliance with existing guidelines
for reproducible cloud experimentation [21].

1.2.2 Research Map
Figure 1.4 visualizes the scope of my licentiate thesis and its relation to
my PhD thesis as well as to related work. RQ1 extends related work on
IaaS performance evaluation and hereby contributes to the licentiate goals of
measuring and understanding performance in IaaS clouds. Specifically, Paper α
contributes a IaaS benchmark suite, which Paper β builds upon to propose a new
methodology to estimate the performance of cloud application in IaaS clouds.
Overall, RQ1 inspires the literature review in Paper δ targeting the active field
of performance evaluation in FaaS clouds. However, the lacking knowledge
about FaaS applications and their performance requirements in this new field
motivated Paper γ, which guides the literature review in Paper δ. Paper γ
is a summary of the key findings reported in a more detailed technical report
[k] describing the review of existing FaaS applications. Both, Papers γ and δ
further guide the work in progress (WIP) on a FaaS application performance
benchmark, as envisioned by Paper j. Finally, Paper ε describes a vision of
performance-optimized FaaS applications by motivating how the performance
understanding from this licentiate thesis could be leverage in future work.

1.3 Related Work
This section discusses related work on IaaS (RQ1) and FaaS (RQ2) performance
evaluation.

1.3.1 IaaS Performance Evaluation
Performance evaluation in IaaS cloud environments has a 13-year history with
first reports [24–26] appearing around 2007. The first reports followed the beta
release of Amazon EC2 in 20065, which is considered to be the first commer-
cially available IaaS cloud provider. Since then, cloud performance evaluation
has become a popular research area with hundreds of papers published on
topics such as benchmarking expectations [27, 28], performance metrics [13, 14],
benchmarking approaches [15, 16], performance benchmarks [29], performance
experiments [30–33], or hardware heterogeneity [34, 35]. Secondary studies

5https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

8 CHAPTER 1. SYNOPSIS

[!] QUDOS’18
A Cloud Benchmark Suite

Combining Micro and
Applications Benchmarks

["] IEEE Software
Serverless Applications:
Why, When, and How?

WIP
FaaS Application

Performance Benchmark

WIP
Performance-Optimized

FaaS Applications

Measuring and understanding performance in IaaS and FaaS clouds

Li
c

G
oa

l

Measuring Performance

Understanding Performance

Related Work on IaaS
Performance Evaluation

(since ~2007)

extends

extends

contributes to

Related Work on FaaS
Performance Evaluation

(since ~2016)

[k] SPEC-RG TechReport
A Review of Serverless

Use Cases and their
Characteristics

Existing FaaS Applications
(status 2020)

contributes to

guides

summarizes

reviews

envisions

Proposing solutions for
building performance-
optimized FaaS cloud

applicationsPh
D

 G
oa

l

contributes to

IaaS FaaS

extends

contributes to

evaluates

inspires

guides

reviews

contributes to

[#] CLOUD’18
Estimating Cloud

Application Performance
Based on Micro-

Benchmark Profiling

[$] HotCloudPerf’19
Transpiling Applications

into Optimized Serverless
Orchestrations

[%] JSS’20
Function-as-a-Service

Performance Evaluation: A
Multivocal Literature

Review

PhD Vision

RQ1

RQ2

Figure 1.4: Licentiate (Lic) and PhD research map

classified existing research [36] and experimentally validated hypotheses derived
by codifying primary studies [37]. Unfortunately, the rapid evolution of cloud
systems requires continuous re-evaluation [37] and new methods towards repro-
ducible experimentation in inherently unstable cloud environments [37–39].

1.3.1.1 Cloud Benchmarking Execution Methodology

Existing measurement methodology often makes incorrect assumptions about
the underlying system under test when combining multiple performance bench-
marks. Abedi and Brecht [40] proposed a new execution methodology called
Randomized Multiple Interleaved Trials (RMIT). Figure 1.5 visualizes RMIT
with 3 alternatives, which could represent different benchmarks. Single trial
and multiple consecutive trials (MCT) are currently the most common method-
ologies in practice but could lead to erroneous conclusions. Therefore, RMIT
should be used to attribute for potential periodic effects in cloud environments
beyond the control of experimenters. RMIT was evaluated through simulation
based on measurements of micro-benchmarks collected by other researchers [33].

1.3. RELATED WORK 9

i) Single Trial

A B C

A

ii) Multiple Consecutive Trials (MCT)

B C

iii) Multiple Interleaved Trials (MIT)

A B C A B C A B C

iv) Randomized Multiple Interleaved Trials (RMIT)

AB C AB A BC

A A B B CC

C

Figure 1.5: Different execution methodologies for 3 alternatives (reproduced
from [40]

Several IaaS cloud experiment automation frameworks have been pro-
posed [41–43] but only IBM’s Cloud Rapid Experimentation and Analysis
Toolkit (CBTOOL)6 described by Silva et al. [41], Google’s PerfKitBench-
marker7, and my Cloud WorkBench (CWB)8 framework [44] are still maintained
and provide a diverse suite of benchmarks. None of the existing frameworks
provide execution methodologies beyond serial trials. Hence, I am not aware of
any IaaS benchmark suite that systematically combines multiple benchmarks
using a state of the art execution methodology.

1.3.1.2 Cloud Application Performance Prediction

Application performance prediction for optimizing cloud service selection is a
common area of research, especially in the context of cloud migration. Initial
prediction methods, such as CloudProphet [45], primarily focused on predicting
application performance in cloud environments when migrating an application
from an on-premise application, for example through trace-and-replay. As
cloud offerings started to become more diverse, wholistic methods and tools for
cloud rightsizing [46, 47] have been proposed to support cloud migration and
optimal service selection. Optimization methods based on micro-benchmarking
were proposed and validated for scientific applications [48]. So far, these
methods are typically limited to few service types and applications from a
single domain. Further, training and validation of existing studies might be
negatively impacted by the lack of state of the art execution methodology.

Two of the most related studies were published shortly before and after
my paper. Yadwadkar et al. [49] predict the performance of video-encoding
and Web serving applications with diverse resource profiles across two cloud
providers using hybrid online and offline data collection and modeling. Their
profiling benchmarks are limited to their workload requirements, described in
insufficient details, and unavailable, neither as code nor dataset. Baughman
et al. [50] predict the performance of bioinformatic workflows by combining
historical resource traces with online profiling. Neither of the two studies uses
interleaved or randomized trials.

6https://github.com/ibmcb/cbtool
7https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
8https://github.com/sealuzh/cloud-workbench

https://github.com/ibmcb/cbtool
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/sealuzh/cloud-workbench

10 CHAPTER 1. SYNOPSIS

1.3.2 FaaS Performance Evaluation

Performance evaluation in FaaS has a 4-year history with first studies [51, 52]
appearing around 2016. The first reports followed the public release of AWS
Lambda in 20159, which is considered the first FaaS offering by a large public
cloud provider. Yussupov et al. [23] indicate that FaaS performance is the
most popular area of research in the field of FaaS computing. However, current
reports on FaaS performance are disparate originating from different studies
executed with different setups and different experimental assumptions. The
FaaS community is lacking a consolidated view on the state of research on
FaaS performance. To the best of my knowledge, there exists no unified
view on FaaS performance and its applications apart from a literature review
methodology reporting on preliminary results [53] and two limited collections
of FaaS applications.

1.3.2.1 FaaS Application Characteristics

The most extensive curated collection of real-world FaaS applications lists
15 applications10 and another collection of 13 applications summarizes how
serverless is used for 4 common use cases [9]. Cloud providers (e.g., AWS
Serverless Application Repository11) and FaaS frameworks (e.g., Serverless
Framework12) publish their collections of FaaS applications but these examples
typically rather serve as developer documentation than real-world applications.
Other studies addressed developer experience [54] and FaaS patterns [55].
However, the characteristics of individual FaaS applications have not been
systematically analyzed by prior work.

1.3.2.2 FaaS Performance Evaluation Landscape

Kuhlenkamp and Werner [53] proposed a methodology for a collaborative
literature review on FaaS performance evaluation along with preliminary results.
Otherwise, the FaaS performance evaluation landscape has only been discussed
as part of limited related work sections in primary studies, most thoroughly by
Somu et al. [56].

1.3.2.3 Reproducibility of FaaS Performance Experiments

Reproducibility of performance experiments is an active area of research in
IaaS [21, 57] but has not been addressed for FaaS experimentation, apart from
preliminary results reported by Kuhlenkamp and Werner [53]. However, their
reproducibility score derived from information completeness is limited in scope
and coverage.

9https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
10https://serverlessfirst.com/real-world-serverless-case-studies/
11https://aws.amazon.com/serverless/serverlessrepo/
12https://github.com/serverless/examples

https://aws.amazon.com/blogs/compute/aws-lambda-is-generally-available/
https://serverlessfirst.com/real-world-serverless-case-studies/
https://aws.amazon.com/serverless/serverlessrepo/
https://github.com/serverless/examples

1.4. RESEARCH METHODOLOGY 11

1.4 Research Methodology

This section summarizes the research methodology used to answer the research
questions of this thesis. RQ1 was mainly addressed through experimental
research methods and RQ2 through a qualitative sample study and a literature
review.

1.4.1 Field Experiment

To answer RQ1, an IaaS cloud experiment [15, 16] was conducted as an empirical
measurement study in a real cloud environment. According to “the ABC of
software engineering research” framework [58], cloud experimentation can be
classified as field experiment research strategy because the experimental study
is conducted in a natural setting (i.e., in a real public cloud environment)
but the researcher manipulates some variables (i.e., instance type, benchmark
configurations) to observe some effect (i.e., performance metrics).

The experimental research followed a 4-step process depicted in Figure 1.6.
First, benchmark design involved a combination of configuring, porting, and
implementing several performance benchmarks into a new benchmark suite.
Second, benchmark execution consisted of defining experiment plans, scheduling
executions, and monitoring multi-week experiments in the real public IaaS cloud
environment of AWS EC2. A performance dataset of over 60 000 measurements
was collected from over 240 virtual machines across 11 distinct virtual machine
types. Third, data pre-processing was required to filter (e.g., skip erroneous
executions), re-shape (e.g., transpose or rename), and cleanup (e.g., convert
units or replace missing values in a few documented cases) the raw data. Fourth,
data analysis included calculating and visualizing summary statistics as well as
selecting, optimizing, and evaluating an estimation model.

App-Benchmarks

MDSim

WPBench

Micro-Benchmarks

Sysbench – Memory

Sysbench – Threads

Sysbench – Mutex

Sysbench – File I/O

Sysbench – CPU

StressNg – CPU

StressNg – Network

FIO

iperf

25 Performance Benchmarks

4.2 Benchmark Design 29

CWB WPBench Wordpress Server Load Generator CWB Server

Start Server

Submit JMeter Task

Wait for Completion

Run Scenario 1 (Read)

Run Scenario 2 (Search)

Run Scenario 3 (Write)

notenote Load Scenarios (4.2.4)

Compute Metric Summary

Submit Metrics
Notify Completion

Stop Server

Figure 4.4: WPBench Execution

completion and CWB WPBench stops the server to prevent interference with subsequent bench-
marks.

WPBench is substantially more involved than all other benchmarks used in this thesis. The
following sections elaborate on the extended Wordpress installation automation, the generation
of test data sets including migrations, the three different load scenarios, and the load patterns
within these scenarios. Additionally, system resource monitoring during test execution and the
distributed testing mode are described.

Automated Wordpress Installation

WPBench is able to automatically install and setup Wordpress including all of its dependencies
to achieve portability across different platforms and cloud providers as encouraged by CWB
[SLCG14]. The Wordpress installation builds upon the Chef cookbook wordpress from the Chef
Supermarket community34 to implement necessary extensions required for WPBench within a

34https://supermarket.chef.io/cookbooks/wordpress

244 Executions >60 000 Measurements

Benchmark Design Benchmark Execution Data Pre-processing Data Analysis

4.41 4.3
3.16 3.32

4.14

2 outliers

(54% and 56%)

0

5

10

20

30

m1.small (eu) m1.small (us) m3.medium (eu) m3.medium (us) m3.large (eu)

Configuration [Instance Type (Region)]

R
e
la

tiv
e
 S

ta
n
d
a
rd

 D
e
vi

a
tio

n
 (

R
S

D
)

[%
]

1000

2000

3000

4000

25 50 75 100

Sysbench - CPU Multi Thread Duration [s]

W
P

B
e

n
c
h

 W
ri
te

 -
 R

e
s
p

o
n

s
e

 T
im

e
 [
m

s
]

Instance Type

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

c3.xlarge

c4.xlarge

c1.xlarge

Group

test

train

Figures, Tables, and Values

Figure 1.6: Experimental research process

1.4.2 Qualitative Sample Study

To answer RQ2.1, a qualitative sample study was conducted with the main
goal to characterize common FaaS applications. The study was conducted in a
neutral setting (i.e., desk research) and involved a purely observational analysis
of documentation and source code from a broad range of different sources. It
can therefore be classified as sample study research strategy according to Stol
and Fitzgerald [58]. Further, the analysis of documentation and source code
qualifies as primary research. The inclusion of academic literature in the broad

12 CHAPTER 1. SYNOPSIS

data collection might initially hint towards secondary research but the goal
was to study FaaS applications and not the contributions of primary studies.

Figure 1.7 summarizes the process of analyzing 89 FaaS applications from
four different sources. First, descriptions of FaaS applications were collected
from open-source projects, academic literature, industrial literature, and a sci-
entific computing organization. Second, two randomly assigned reviewers out of
seven available reviewers characterized each application along 24 characteristics
in a structured collaborative review sheet. The characteristics and potential
values were defined a priori by the authors and iteratively refined, extended,
and generalized during the review process. The initial moderate inter-rater
agreement [59] was followed by a discussion and consolidation phase, where
all differences between the two reviewers were discussed and resolved. The 6
scientific applications were not publicly available and therefore characterized
by a single domain expert, who is either involved in the development of the
applications or in direct contact with the development team.

Scientific
Computing

2 Researchers

24 Characteristics

83 FaaS
Applications

Review 1

Review 2

89 Analyzed
FaaS Applications

6 FaaS
Applications

Review

Domain Expert

Open-source
Projects

Academic
Literature

Industrial
Literature

Discussion and
Consolidation32

23

28

Figure 1.7: Qualitative sample study process

The sampling strategy of FaaS applications is important to achieve a varied
sample from different sources, although the qualitative characterization is
the primary goal of this study (i.e., following a positivist and reductionist
philosophical stance [60]). Following the terminology and guidelines by Baltes
and Ralph [61], this study applied different kinds of purposive sampling for
the 83 publicly available FaaS applications and convenience sampling for the 6
internal scientific computing applications analyzed by an author employed at
the German Aerospace Center. Heterogeneity sampling motivated a roughly
balanced selection of open source projects, academic literature (including
scientific computing), and industrial literature. Search-based sampling was
applied for open source projects through an initial keyword search of the
offline GitHub mirror GHTorrent [62] and refined through filtering based on
date range, repository activity, repository popularity, and manual selection
following inclusion and exclusion criteria. Search-based sampling was applied
for academic literature mainly based upon manual selection from the “Serverless
Literature Dataset” [63]. Collaborative referral-chain sampling was the main

1.4. RESEARCH METHODOLOGY 13

source for grey literature seeded by case studies reported by cloud providers,
an existing article [9], blog posts, forum discussions, and podcasts known to
the authors.

1.4.3 Literature Review
To answer RQ2.2 and RQ2.3, I conducted a multivocal literature review (MLR)
based on the guidelines from Garousi et al. [64]. Secondary research was
suitable to address the lack of a consolidated view on existing FaaS performance
evaluation research. Further, the inclusion of grey literature was relevant
given the strong industrial interest in FaaS performance and the goal to
identify potential mismatches between the academic and industrial perspectives.
Figure 1.8 shows how an MLR fits into the landscape of secondary studies
and clarifies its scope regarding types of analysis and sources under study.
Notice that literature reviews do not fit into the previously discussed “ABC
of Software Engineering” framework [58] because the framework exclusively
focuses on primary research and knowledge-seeking studies.

Types of secondary studies

SLM/SM

MLM MLR

GLRSLR GLM

Synthesis of
evidenceMapping

Types of analysis

Sources under study
! academic literature
" grey literature

! " MLM: Multivocal literature mapping
! " MLR: Multivocal literature review
! " SLM/SM: Systematic (literature) mapping (i.e., classification)
! " SLR: Systematic literature review
! " GLM: Grey literature mapping
! " GLR: Grey literature review includes

"!

Figure 1.8: Taxonomy of systematic secondary studies (adapted from [64])

Figure 1.9 summarizes the MLR process divided into a part for academic
and grey literature. The MLR process identified a total of 112 relevant primary
studies. I classified peer-reviewed papers (e.g., papers published in journals,
conferences, workshops) as academic literature (i.e., white literature) and other
studies (e.g., preprints of unpublished papers, student theses, blog posts) as grey
literature. The search process and source selection for academic literature follow
a conventional systematic literature review (SLR) process [65]. It was guided
through an initial seed of studies [66] discovered through manual search [67] and
refined through complementary search strategies, such as alert-based search.
The search and selection process for grey literature is based on guidelines for
including grey literature [64].

14 CHAPTER 1. SYNOPSIS

51

Manual Search

Database Search

Web Search

Complementary
Search

Complementary
Search

112 FaaS
Performance

Studies

Data Extraction
and Synthesis

Analysis and
Visualization

61

Structured Review Sheet

Results

Grey Literature

Academic Literature
Selection
Strategy

Figure 1.9: Literature review process

1.5 Contributions

This section summarizes the papers, their main contributions this thesis is built
on, and their relation to the overarching research questions of this thesis (see
Table 1.1). The full papers are appended in the chapters α-ε.

1.5.α A Cloud Benchmark Suite Combining Micro and
Applications Benchmarks

Cloud benchmarking literature extensively studied the performance in IaaS
clouds using micro- and application-level benchmarks. However, existing work
largely focuses on evaluating performance benchmarks in isolation without
systematically combining multiple performance benchmarks.

The contribution of Paper α is to fill this gap by presenting an execution
methodology that combines micro- and application-benchmarks into a new
benchmark suite, integrating this suite into an automated cloud benchmarking
framework, and implementing a repeatable execution methodology proposed in
related work [40].

Based on cloud benchmarking guidelines [16, 27, 28, 68], relevant bench-
marks that cover different cloud resources and application domains were selected,
designed, and integrated into the CWB [44] execution framework. The execu-
tion of these benchmarks was then automated following the RMIT execution
methodology for repeatable experimentation proposed by Abedi and Brecht

1.5. CONTRIBUTIONS 15

Table 1.1: Overview of papers with main contributions

Paper Venue Main Contribution Thesis RQ

α QUDOS’18 Automated benchmark suite
that combines 23 micro- and 2
application-benchmarks

RQ1.1

β CLOUD’18 Cloud benchmarking methodology
for application-benchmark estima-
tion based on micro-benchmark pro-
filing

RQ1.2

γ
IEEE Software
(under revision) Characterization of 89 serverless ap-

plications along 24 dimensions re-
garding motivation, context, and im-
plementation

RQ2.1

δ JSS’20 Characterization of 112 FaaS perfor-
mance studies regarding evaluated
performance characteristics and con-
figurations

RQ2.2

Reproducibility assessment of 112
FaaS performance studies based on
cloud experimentation guidelines

RQ2.3

ε HotCloudPerf’19 Vision towards performance-
optimized serverless applications

WIP

[40]. The execution methodology was instantiated in the AWS EC2 cloud
and the paper presents selected results related to cost-performance efficiency,
network bandwidth, and disk utilization.

Paper α layed the methodological and technical foundations for the follow-up
study in Paper β. The ability to systematically collect performance measure-
ments for multiple benchmarks raises the question of how their performance
relates to each other. In particular, I wanted to explore the potential of
generic micro-benchmarks to estimate the performance of specific applications
to support cloud service selection.

1.5.β Estimating Cloud Application Performance Based
on Micro-Benchmark Profiling

The continuing growth of the cloud computing market has led to an un-
precedented diversity of cloud services. To support service selection, micro-
benchmarks are commonly used to identify the best performing cloud service.
However, it remains unclear how relevant these synthetic micro-benchmarks
are for gaining insights into the performance of real-world applications.

Therefore, Paper β contributes a cloud benchmarking methodology for
application-benchmark estimation based on micro-benchmark profiling, an
evaluation of this methodology in a real IaaS cloud provider, and a performance
dataset for micro- and application-benchmarks of over 60 000 measurements
from over 240 virtual machines across 11 distinct virtual machine types.

16 CHAPTER 1. SYNOPSIS

Building upon the benchmark suite from Paper α, these automated bench-
marks were repeatedly executed in the AWS EC2 cloud environment and
performance measurements were collected from all these benchmark executions.
Hereby, relevant metrics (e.g., execution time, response time, latency, through-
put, failure rate) were defined and extracted from the detailed output logs of
each benchmark trial. Subsequently, offline data pre-processing was required
to filter (e.g., skip erroneous executions), re-shape (e.g., transpose or rename),
and cleanup (e.g., convert units or replace missing values in a few documented
cases) the collected measurements.

The data analysis comprises a prestudy and a main study. A prestudy in line
with previous work on cloud benchmarking [31, 37] quantifies the performance
variability for equally configured services (i.e., how variable do repeatedly
acquired instances of the same instance type perform) because high variability
could favor (if correlated) or hamper (if random) meaningful estimates and
low variability could facilitate estimation across instance types. Performance
variability is quantified as coefficient of variation (CV) across 33 executions for
38 benchmark metrics in five configurations (i.e., different instance types and
cloud regions). The main study investigates the suitability of micro-benchmarks
for estimating cloud application performance across different instance types
in terms of estimation accuracy and micro-benchmark selection. To estimate
the application performance, a linear regression model was trained using 38
metrics from 23 micro-benchmarks and evaluated in terms of relative error for
two applications from different domains. To select the most relevant estimators,
forward feature selection was used to identify the most useful micro-benchmarks
and compare them against three common baselines.

Overall, this paper contributes to measuring and understanding performance
in low-level IaaS clouds but also helps towards understanding high-level FaaS
clouds. In FaaS, providers abstract away operational concerns from the user
and thus make them partially inaccessible but still relevant for performance.
FaaS platform limitations (e.g., no direct network access, execution time limits)
make it impossible to execute the same benchmark suite from this paper in a
FaaS environment. However, the concept of using synthetic resource-specific
micro-benchmarks to estimate the performance of application-benchmarks
inspired by real-world scenarios appears also applicable to FaaS. Unfortunately,
the understanding of typical FaaS applications is currently limited and therefore
motived further investigation in Paper γ.

The performance experimentation within IaaS clouds (RQ1) highlighted
many challenges related to reproducibility and hereby inspired and guided
the literature review in Paper δ. The challenges of reusing other application-
benchmarks limited the scope of RQ1 and motivated a more systematic analysis
of experimental reproducibility for FaaS in Paper δ. The experience of IaaS
experimentation also guided the study design of Paper δ. For example, the
refinement of the cloud experimentation guideline on open access artifact
allowed for a more in-depth discussion on replicating the study design (with
provided code) and replicating the (statistical) analyses (with provided dataset).
Hence, this research helped to formulate discussions and implications more
relevant for future experimenters. It contributed a valuable perspective to the
literature review, which is conducted as desk research and inherently limited
to explicitly reported results and experiences from primary studies.

1.5. CONTRIBUTIONS 17

1.5.γ Serverless Applications: Why, When, and How?

The emerging cloud computing paradigms Function-as-a-Service and serverless
computing are increasingly adopted by industry (as shown by market analyses13
and surveys14) and academics [11, 69–71]. Initial case studies from early
adopters indicate significant cost reduction and time-to-market15 benefits for
FaaS applications compared to traditional applications [72]. However, such
existing reports are scattered and unstructured. The FaaS community lacks
an understanding of typical FaaS applications, which is crucial for designing
relevant performance benchmarks.

Therefore, Paper γ characterizes 89 serverless applications along 24 dimen-
sions regarding motivation, context, and implementation to answer questions
such as: Why do so many companies adopt serverless?, When are server-
less applications well-suited?, and How are serverless applications currently
implemented?

Notice that this study focuses on FaaS applications and their serverless
context but is framed as serverless applications in the appended manuscript.
One reason is the aim to target a primarily industrial readership, where FaaS
and serverless are often used interchangeably but serverless appears to be
known more widespread16. Similarly, the term Backend-as-a-Service (BaaS)
solutions refers to external services following the serverless paradigm (e.g.,
AWS S3 for blob storage).

The collection and characterization of existing FaaS applications follow
a structured collaborative review process. Descriptions of FaaS applications
were collected from diverse sources including open source projects, academic
literature, industrial literature, and a scientific computing organization. Each
application was either reviewed by two researchers followed by a discussion
and consolidation of all disagreements or by a single domain expert for the 6
scientific applications unavailable to the public. A detailed description of the
study design is available in the accompanying technical report [73].

The results and insights gained during the review process guided the study
design of Paper δ and thus helped to appropriately consolidate existing research
on FaaS performance evaluation. For example, the high adoption of integrating
external services (e.g., data stores or message queues) in FaaS applications
motivated to capture their usage and further analyzing trigger types. The
results also emphasize the importance of performance with about 20% of the
analyzed FaaS applications explicitly mentioning improved performance as
motivation for adopting FaaS. Further, more than 60% of the applications
have latency requirements for at least parts of the application, about 40%
experience high traffic intensity, and more than 80% exhibit bursty workloads.
Cost savings is the most common (≈50%) motivator for FaaS adoption and
can also be linked to performance because execution time directly translates
into costs with the fine-grained pay-per-use billing model.

13https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-
market-127202409.html

14https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-
works-and-what-to-expect/

15https://medium.com/lego-engineering/accelerating-with-serverless-
625da076964b

16https://martinfowler.com/articles/serverless.html

https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.marketsandmarkets.com/Market-Reports/function-as-a-service-market-127202409.html
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://martinfowler.com/articles/serverless.html

18 CHAPTER 1. SYNOPSIS

1.5.δ Function-as-a-Service Performance Evaluation: A
Multivocal Literature Review

While performance benchmarking in IaaS clouds has been an active research
topic for over a decade (starting 2008), performance benchmarking in FaaS
environments is a more recent trend (starting 2015) and lacks a consolidated
view on the state of research on FaaS performance. Paper δ fills this gap by
conducting the first systematic and comprehensive literature review on FaaS
performance evaluation studies from academic and grey literature. It maps
the landscape of existing isolated FaaS performance studies, identifies gaps in
current research, and systematically investigates their reproducibility based on
principles for reproducible performance evaluation [21].

The literature review was designed based on guidelines for systematic liter-
ature reviews [65] and multivocal literature reviews [64]. A total of 112 studies
were selected from academic (51) and grey (61) literature. The analysis visual-
izes, describes, and discusses results related to publication trends, benchmarked
platforms, evaluated performance characteristics, used platform configurations,
and reproducibility of experiments. The paper also highlights and discusses
notable differences between academic and grey literature studies.

The implications and gaps in literature identified in this paper directly aim to
guide future work on FaaS performance evaluation. Conceptually, the identified
gaps in literature from this paper together with the gained understanding of
FaaS applications from Paper γ steer future research to address novel and
relevant problems. Practically, the datasets of the Papers γ and δ provide a
valuable resource for discovering relevant applications and implementations
towards a comprehensive FaaS benchmark suite.

1.5.ε Transpiling Applications into Optimized Serverless
Orchestrations

The empirical work on reproducible performance evaluation contributes to the
understanding of runtime performance monitoring, which is a key idea of the
feedback-driven self-adaptive system for building performance-optimized FaaS
applications as envisioned in Paper ε. This paper presents the vision of work
in progress towards performance-optimized FaaS applications where developers
are liberated from conforming to particular forms of deployment units, such as
individual functions, and FaaS applications are automatically and dynamically
transpiled into a set of individually deployed functions. Such an approach
could enable a broader range of serverless applications, lead to more flexible
cost-performance trade-off decisions, and increase developer productivity by
providing a unified source code view.

1.6 Results

This section answers the research questions raised in Section 1.2.

1.6. RESULTS 19

1.6.1 RQ1: IaaS Performance Evaluation

RQ1: How can performance be measured and evaluated in IaaS clouds?

A new benchmark suite and its experimental evaluation demonstrated
how to systematically measure IaaS cloud performance by combining multiple
performance benchmarks and understanding the connection between micro- and
application-level benchmarks. The follow sub-questions provide more detailed
answers regarding reproducible measurements (RQ1.1) and understanding
performance (RQ1.2):

1.6.1.1 RQ1.1: IaaS Benchmark Suite

RQ1.1: How can multiple performance benchmarks reproducibly evaluate IaaS
cloud performance?

Main findings: A new IaaS benchmark suite demonstrated that 24
micro- and 2 application-benchmarks can be systematically combined
and executed in a fully-automated way. The applied RMIT execution
methodology has shown that reproducible execution can be achieved with
coefficient of variations (CVs) below 5% for the majority of 38 benchmark
metrics across 33 executions in 5 different configurations (i.e., instance
types and cloud regions).

Figure 1.10 illustrates the high-level architecture of the proposed benchmark
suite. The two most relevant components are the Benchmark Manager and
the Cloud VM. The Benchmark Manager [44] coordinates the entire lifecycle of
all benchmark executions. The Cloud VM represents the system under test
wherein all benchmarks are automatically installed and configured. The CWB
Client within a cloud VM steers the execution of the entire benchmark suite
following the RMIT execution methodology. The remaining components play a
supportive role in resource management, benchmark provisioning, and external
load generation.

The selection of benchmarks is motivated by prior use in research and
industry. The micro-benchmarks aim for broad resource coverage in the domains
computation, I/O, network, and memory but also specifically test individual
resources (e.g., dividing I/O into low-level disk I/O and higher-level file I/O with
different operation types and sizes). The application benchmarks consist of a
Molecular Dynamics Simulation (MDSim) from the scientific computing domain
and a Word-Press Benchmark (WPBench) from the Web serving domain.

The results demonstrate the capability of the benchmark suite to achieve
low variability (i.e., high precision) for the majority of benchmarks across
different VM instances of the same type in multiple configurations. The violin
plot in Figure 1.11 compares the variability of 38 benchmark metrics in terms of
relative standard deviation (i.e., coefficient of variation) against a 5% relevancy
threshold following the definition of a large benchmarking study [37]. The
relative standard deviation of each configuration (i.e., the combination of
instance type and cloud region) is based on 33 executions from different VM
instances of the same type. Each execution is the averaged result of 3 iterations

20 CHAPTER 1. SYNOPSIS

Figure 1.10: Architecture overview of IaaS benchmark suite

(or trials). The results show that the majority of benchmarks are clearly below
the 5% threshold for all tested instance types and cloud regions. Similar levels
of variability for the same instance types support the ability of the methodology
for precise measurements across different regions. The higher variability for
the smaller instance type m1.small is also in line with the findings of prior
work [37, 74, 75].

1.6.1.2 RQ1.2: Application Performance Estimation

RQ1.2: How suitable are micro-benchmarks to estimate application perfor-
mance in IaaS clouds?

Main findings: The evaluation of a linear regression model found that
selected micro-benchmarks were able to estimate the duration of a sci-
entific computing application with a relative error of less than 10% and
the response time of a Web serving application with a relative error
between 10% and 20%. However, it also highlights that benchmarks
cannot necessarily be used interchangeably even if they seetest the same
resource and benchmark parameters can have a profound impact. Overall,
benchmark-based metrics are better in estimating application performance
than specification-based metrics.

The proposed methodology uses micro-benchmarks to estimate the perfor-
mance of an application in previously unseen IaaS computing environments
(i.e., on other VM instance types). A suite of systematically combined micro-
benchmarks is used to capture a performance footprint of a wide range of VM
instance types that are potentially suitable to host an application of interest.
The performance of the application is then measured on the smallest and largest
candidate instance types to serve as training data. A linear regression model

1.6. RESULTS 21

4.41 4.3
3.16 3.32

4.14

2 outliers

(54% and 56%)

0

5

10

20

30

m1.small (eu) m1.small (us) m3.medium (eu) m3.medium (us) m3.large (eu)

Configuration [Instance Type (Region)]

R
e

la
ti
ve

 S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 (

R
S

D
)

[%
]

Figure 1.11: Performance variability of benchmarks across different VM in-
stances of the same type

subsequently estimates how the application would perform on a large range of
instance types to guide cloud service selection.

The evaluation of the methodology in the AWS EC2 cloud with 11 different
instance types showed promising results when using selected micro-benchmarks.
Table 1.2 compares the estimation error and degree of correlation for two
applications based on two selected benchmarks against common baselines.
The estimation accuracy is quantified as average relative error (RE) including
standard deviation (±) and the degree of correlation between the predicted and
actual values is expressed as coefficient of determination (R2). The max RE
estimates the upper bound for the relative error assuming that the smallest
instance performs worst and the largest instance performs best. The best
benchmark-based estimator (Sysbench CPU Multi-Thread) achieved relative
error rates below 10% for the duration of MDSim and between 10% and 20%
for the response time of WPBench (omitting the search and write scenario
here for brevity). This promising result is much better than a differently
configured alternative micro-benchmark estimator (e.g., Sysbench CPU Single-
Thread). It also outperforms common baselines, such as the number of virtual
CPUs (vCPUs) and a provider-defined unit for describing computational power
(ECU). The bad results for cost show that computational power is often not
proportionally related to the usage costs.

22 CHAPTER 1. SYNOPSIS

Table 1.2: Estimators [%] for two applications

WPBench MDSim

Benchmark Read Response Time Duration

Sysbench CPU Multi-Thread
RE±Range 12.5±7.1 8.2±4.7
R2 99.2 99.8

Sysbench CPU Single-Thread
RE±Range 454±520 232±163
R2 85.1 87.3

Baseline

vCPUs
RE±Range 616±607 317±184
R2 68.0 68.3

ECU
RE±Range 359±219 206±95
R2 64.6 65.6

Cost
RE±Range 663±730 329.3±222
R2 59.1 57.9

Max Relative Error (RE) 2100 600

1.6.2 RQ2: FaaS Performance Evaluation
RQ2: What is the current understanding of performance in FaaS clouds?

Synthetic micro-benchmarks have been studied extensively but the FaaS
community lacks a performance understanding of typical production appli-
cations. The following sub-questions provide insights into FaaS applications,
evaluated FaaS performance aspects, and the reproducibility of FaaS perfor-
mance experiments:

1.6.2.1 RQ2.1: FaaS Applications

RQ2.1: What are the characteristics of typical FaaS applications?

Main findings: The analysis of 89 FaaS applications has shown that
FaaS is adopted to save costs for irregular or bursty workloads, to avoid
operational concerns, and for the built-in scalability. FaaS applications
are most commonly used for short-running tasks with low data volume
and bursty workloads but are also frequently used for latency-critical,
high-volume core functionality. FaaS applications are mostly implemented
on AWS, in either Python or JavaScript, and make heavy use of external
services for persistency and coordination functionality.

Figure 1.12 summarizes the most common characteristics of 89 FaaS appli-
cations.

The most common motivator for adopting FaaS is cost savings (47%), espe-
cially for irregular or bursty workloads. Seemingly-infinite built-in scalability
with minimal engineering effort and outsourcing of operational concerns to
a provider are both the second most common mentioned by 35% of the 89
FaaS applications. Other reasons were improved performance (19%) and faster
time-to-market (13%).

1.6. RESULTS 23

47% Save costs 38% None 84% Yes
34% Built-in scalability 32% Complete application 26% No
34% No operations 28% Parts of the application

80% AWS Lambda 42% JavaScript 61% Storage
10% Azure Functions 42% Python 48% Database

8% Private Cloud 12% Java 38% Messaging

Motivators Latency Requirements

Deployment Platform Programming Languages External Services

Workload Burstiness

Figure 1.12: Key findings limited to the top 3 values. A single application
can have multiple values for motivators, programming languages, and external
services.

Latency performance is not relevant for 38% of the FaaS applications.
However, 32% of the applications have latency requirements for all function-
ality, 28% have partial latency requirements, and 2% even mention real-time
requirements. Bursty workloads are very typical (84%) for FaaS applications.

AWS Lambda is the most common deployment platform used by 80% of
the reviewed 89 applications, followed by Microsoft Azure Functions (10%),
and internal hosting in a private cloud (8%). IBM Cloud Functions (7%) and
Google Cloud Functions (3%) were less common. Some FaaS applications
support multiple deployment platforms and therefore the numbers cumulatively
exceed 100%.

JavaScript (42%) and Python (42%) were by far the most popular pro-
gramming languages. Some applications are also written in Java (12%),
C/C++ (11%), or C# (8%), while only a few use Go (5%) or Ruby (2%).

The most common external services provide persistency functionality in-
cluding blob storage (61%), such as AWS S3, and cloud databases (48%), such
as AWS DynomoDB. Different kinds of messaging solutions were seen in 38%
of the applications and only 12% integrated no external services.

1.6.2.2 RQ2.2: Existing FaaS Performance Studies

RQ2.2: What do existing FaaS performance studies evaluate?

Main findings: The review of 112 performance evaluation studies found
that AWS Lambda is the most evaluated FaaS platform (88%), that micro-
benchmarks are the most common type of benchmark (75%), and that
application benchmarks are prevalently evaluated on a single platform. It
also indicates a broad coverage of language runtimes but shows that other
platform configurations focus on very few function triggers and external
services.

Figure 1.13 summarizes the most commonly evaluated characteristics and
configurations of 51 academic and 61 grey literature studies on FaaS performance
evaluation.

The most evaluated deployment platforms are AWS Lambda (88%), Mi-
crosoft Azure Functions (26%), Google Cloud Functions (23%), IBM Cloud

24 CHAPTER 1. SYNOPSIS

100% 51 academic literature studies
100% 61 grey literature studies

88% 67% 41%
89% 82% 39%
27% 57% 22%
25% 31% 43%
27% 24% 18%
20% 13% 5%

65% 49% 57%
48% 43% 57%
45% 29% 47%
56% 56% 10%
10% 14% 10%
13% 34% 18%

Literature Type

Workload Concurrency

Platform Overhead

Instance Lifetime

CPU

Network

Others

Micro-benchmarks

Application-benchmarks

Both

AWS Lambda

Azure Functions

Google Cloud Functions

Python

Node.js

Java

API Gateway

Storage

None

Deployment Platform Benchmark Type

General Characteristics Language Runtimes External Services

Micro-Benchmarks

Figure 1.13: Top-3 key findings from 51 academic and 61 grey literature studies
on FaaS performance. Multiple values can apply, thus the sum can exceed
100%.

Functions (13%), and self-hosted platforms (14%), predominantly Apache
OpenWhisk.

The predominant use of micro-benchmarks in 75% of all studies indicates
an over-emphasis on simple easy-to-build benchmarks, compared to application-
benchmarks, which are used in 57% of the academic and 31% of the grey
literature studies (i.e., overall 18% use both).

Most micro-benchmarks (40%) evaluate CPU performance and show that
CPU performance in FaaS systems is indeed proportional to the memory size
of the selected function type for certain providers (i.e., AWS, Google). The
Others category mainly consists of platform overhead and workload concurrency
evaluated through micro-benchmarks.

The most evaluated general performance characteristics are FaaS platform
overhead (i.e., cold starts) and workload concurrency (i.e., invoking the same
function in parallel), both used by about half of the studies.

Language runtimes exhibit a mismatch between academic and industrial
sources as Node.js, Java, Go, and C# are evaluated two times more frequently
in grey literature than in academic work.

A majority of studies (57%) focuses on HTTP triggers and other trigger
types remain largely insufficiently researched. This finding is also reflected in
external services with 57% of the studies using an API gateway for implementing
HTTP triggers. Cloud storage shows a large discrepancy between academic
(47%) and grey (10%) literature studies. Apart from cloud databases (10–15%),
external services are used sparingly or not at all (10–18%).

1.6.2.3 RQ2.3: Reproducibility of FaaS Experiments

RQ2.3: How reproducible are existing FaaS performance experiments?

1.6. RESULTS 25

Main findings: The review of 112 performance evaluation studies discov-
ered that the majority of studies do not follow principles on reproducible
cloud experimentation from prior work [21]. Academic studies tend to
satisfy the principles more comprehensively than grey literature, but the
data shows no clear trend that academic literature is less susceptible to
disregarding the principles.

Literature Type Academic Grey

20

63

18 21

69

10
0

25

50

75

100

Yes Partial No

%

P1: Repeated Experiments

49

16

35

69

20
11

0

25

50

75

100

Yes Partial No

%

P2: Workload and Config. Coverage

22
31

47

23

51

26

0

25

50

75

100

Yes Partial No

%

P3: Experimental Setup Description

61

16
24

4343

15

0

25

50

75

100

Yes Partial No

%

P4: Open Access Artifact

47

14

39 34
26

39

0

25

50

75

100

Yes Partial No

%

P5: Probabilistic Result Description
96

4

98

2
0

25

50

75

100

Yes Partial No

%

P6: Statistical Evaluation

2

98

16

84

0

25

50

75

100

Yes Partial No

%

P7: Measurement Units

55

4

41

79

0

21

0

25

50

75

100

Yes Partial No

%

P8: Cost

Figure 1.14: Evaluation of reproducibility principles P1–P8 [21] for 51 academic
and 61 grey literature studies

Figure 1.14 shows to what extent the reproducibility principles from Pa-
padopoulos et al. [21] are followed by the selected academic and grey literature.
Overall, 7 of 8 reproducibility principles are not followed by the majority of the
analyzed studies. The first subplot shows that the majority (≈65%) of our se-
lected studies perform some kind of repetition in their experiments, but without
justifying or reporting confidence values. About 50% of the academic and 70%
of the grey literature studies do not use different workloads and configurations

26 CHAPTER 1. SYNOPSIS

motivated by real world scenarios. More than half of all studies insufficiently
describe their experimental setup. Technical artifacts are unavailable for 61% of
the academic and 43% of the grey literature studies. About 40% of all studies
appropriately visualize or characterize their empirical performance data, but
roughly the same percentage of all studies ignore complex distributions and
primarily focus on reporting averages. Almost none of the selected studies
perform any statistical evaluations but almost all studies specify measurement
units without any major violations. Cost models are missing in 55% of the
academic and 79% of grey literature.

The results motivate the following actionable recommendations for future
FaaS studies:

P1: Repeated Experiments Explicitly report the number of iterations.

P2: Workload and Configuration Coverage Motivate workloads through
industrial use cases.

P3: Experimental Setup Description Report the time of experiment and
follow good examples [A26, A8, A34] (see Section δ.5.5–P3).

P4: Open Access Artifact Publish the dataset in addition to the bench-
mark code.

P5: Probabilistic Result Description Stop reporting mean values exclu-
sively, but use appropriate statistical tools, such as cumulative density
functions (CDFs), instead.

P6: Statistical Evaluation Use appropriate statistical tests, such as Wilcoxon
rank-sum or overlapping bootstrapped confidence intervals, for stronger
conclusions [39].

P7: Measurement Units Include measurement units in all figures.

P8: Cost Report a cost model.

1.7 Discussion
This section discusses the results and implications of the results in the context
of related work.

1.7.1 IaaS Performance Evaluation
My instantiation of the new IaaS benchmark suite in a single cloud provider
demonstrated the ability to achieve relatively precise (i.e., CVs <5%) results
across different instances of the same type. I assume the remaining variability
mainly originates from inherently variable cloud environments [37] because
several benchmarks achieved almost perfect stability. Further, some outliers
indicate inherently unstable benchmarks [39].

In contrast to some prior reports of high performance variability [37, 38],
the surprisingly stable results can be partly explained through improved per-
formance stability of the evaluated cloud provider. Nevertheless, the first
demonstration of systematically combining micro- and application-benchmarks

1.7. DISCUSSION 27

using state of the art execution methodologies is a valuable contribution to the
IaaS research community towards reproducible experimentation.

The results emphasize the importance of performance benchmarking in IaaS
clouds by substantiating the suitability of micro-benchmarks for estimating
application performance in comparison to common baselines. An independent
study [50] with the same goal published very similar results shortly after my
paper for bioinformatic workflows. This supports that the proposed idea is
replicable [76] by other researchers with a slightly different methodology. It
might also hint towards potential transferability of application estimates within
a certain application domain, such as scientific computing. Another independent
study [49] with the same goal was published shortly before my paper and
reported similar or worse relative errors depending on application, metric,
and prediction method. They concluded to achieve better prediction accuracy
for non-linear relationships using a random forest prediction model. Their
results indicate that the proposed methodology can work across multiple cloud
providers. However, I want to highlight that only selected micro-benchmarks
were relevant to estimate the performance of a particular application. This
limitation motivates future research to focus on detailed profiling and a better
understanding of real-world cloud applications as envisioned by Evangelinou
et al. [46]. Additionally, I envision that this methodology could be adjusted
to be trained directly on monitoring traces from production systems [77] as
opposed to dedicated benchmarking efforts.

1.7.2 FaaS Performance Evaluation

Conducted as part of this thesis, the largest systematic analysis of FaaS applica-
tions to date contributes a valuable dataset, interesting insights, and encourages
community-wide sharing and discussion of FaaS applications. The collection
of 89 FaaS applications is a valuable resource of relevant applications for re-
searchers and can guide practitioners on why and when to choose FaaS over
alternative paradigms. The results support existing hypotheses (e.g., strong
focus on AWS Lambda) but also reveal unexpected (e.g., latency-critical work-
loads were relatively common) and interesting (e.g., most applications integrate
external services) results. The structured characterization and collection of
FaaS application hopefully fosters a productive discussion and proves useful for
both industry and academia. It goes beyond the existing collections of 10 to
15 real-world applications, which are merely lists with limited discussion and
characterization. The most related article by Castro et al. [9] discusses four
common use case scenarios in their accessible introduction to FaaS and Server-
less computing. Their discussions are rather describing than characterizing and
therefore not directly comparable to the results of this thesis.

My results of the first systematic and comprehensive literature review on
FaaS performance evaluation studies from academic and grey literature go
beyond the existing partial efforts in this area. I analyzed 112 selected studies
from over 1500 screened sources, which goes far beyond the most related
preliminary work covering 9 out of potential 30 academic studies. Nevertheless,
the results of the preliminary study [53] hint towards some of my findings
regarding over-emphasis on simple micro-benchmarks and lack of reproducible
experimentation in academic studies. However, the preliminary results on

28 CHAPTER 1. SYNOPSIS

evaluated performance characteristics appear clearly biased due to a very
limited sample size and omitted the important industrial perspective, which I
covered through the inclusion of grey literature.

1.8 Threats to Validity

This section discusses threats to the validity of the results of this thesis,
limitations of the applied research methods, and a summary of mitigation
strategies. It is structured based on the four common criteria for validity for
empirical research [60]: construct validity, internal validity, external validity,
and reliability.

1.8.1 Construct Validity

Construct validity relates to measuring the right thing, i.e., the extent a study
actually measures what it aims to measure according to the research questions.

For RQ1.1, experimental evaluation demonstrated the feasibility of the
proposed methodology and achieved satisfactory results with one possible
metric for evaluating the reproducibility of measurements. Other reproducibility
aspects were discussed qualitatively but additional quantitative metrics and
statistical evaluations could strengthen the reproducibility claim. Benchmark
selection and configuration was motivated to cover relevant performance aspects
of IaaS cloud performance. However, the large scope of IaaS performance makes
it unrealistic to claim complete coverage. For RQ1.2, the main threats concern
the selection of appropriate IaaS cloud applications and the choice of error
quantification metrics. The selected applications are accepted examples for
applications in academic literature [48, 78] from two popular domains but more
cloud-native applications [25, 29] could improve the relevance of the application-
level workloads. Some related work used different error quantification metrics,
such as rankings [48] or normalized service efficiency [46]. My choice of using
relative errors is motivated by its usefulness when applying the methodology in
practice and was independently adopted by closely related work [49, 50], which
was published shortly before and afterward my paper.

For RQ2, construct validity mainly relates to inappropriate selection criteria
and a lack of standard language and terminology. To mitigate these threats,
the selection criteria were refined based on related work and documented
insights from trial classifications. The lack of standard language is a major
threat as there exist no established definitions of FaaS and serverless [8]. This
threat was mitigated by clarifying and citing selected definitions and providing
illustrational examples where applicable.

1.8.2 Internal Validity

Internal validity relates to measuring right, i.e., the extent a study measures a
causal relationship without interference from external factors.

For RQ1, cloud experimentation is inherently susceptible to confounding
factors as a field experiment due to its natural setting [58]. Public clouds
cannot be under full control of an experimenter but appropriate execution

1.8. THREATS TO VALIDITY 29

methodologies as proposed for RQ1.1 can mitigate this threat. Further miti-
gation includes careful experimental design based on cloud experimentation
guidelines [15, 16] and fully automated experiment execution [44].

For RQ2.1, a qualitative sample study has inherent limitations in measure-
ment precision due to its neutral setting and lack of interactivity (i.e., research
must deal with discoverable data as is) [58]. To mitigate this threat, each
FaaS application was reviewed by two researchers and after initial moderate
agreement [73], all differences were discussed and consolidated. The lack of
interactive data collection could only be mitigated partially through explorative
web search and backward snowballing for discovering new sources. This lead
to the explicit labeling of unknowns ranging from 0–35% (with two exceptions
around 70%) depending on the characteristic. Paper γ excludes these unknowns
for brevity and refers to the accompanying technical report [73] for more details
and discussion.

For RQ2.2 and RQ2.3, bias in study selection, bias in data extraction,
and inappropriate or incomplete database search terms have been identified
as the most common threats in literature reviews [79]. To mitigate selection
bias, different established search strategies were combined, refined [66], and
complemented with targeted strategies (e.g., alert-based search to discover
recent studies). Search terms were iteratively refined and motivated in de-
tail (see replication package [80]). Potential inaccuracies in data extraction
were mitigated through traceability with over 700 additional comments and
a well-defined MLR process based on established guidelines for SLR [65] and
MLR [64] studies, methodologically related publications [81], and topically
relevant publications [23, 53]. The main threat remains individual researcher
bias as the majority of studies were reviewed or validated by a single researcher.

1.8.3 External Validity

External validity relates to generalizability, i.e., the extent the results of a study
can be transferred to other contexts.

For RQ1, field experimentation inherently lacks statistical generalizabil-
ity [58]. Thus, I cannot claim generalizability beyond the specific setting studied
in two geographically distinct data centers of a single cloud provider across
11 different VM instance types. Although related work also focuses almost
exclusively on AWS as a single cloud provider, another study [49] indicated
that a similar methodology can also work across multiple cloud providers. This
is unsurprising given that most IaaS clouds build upon the same abstractions
(i.e., virtualization technology) and individual benchmarks within my suite
were previously used across four different cloud providers [37] with the same
benchmark manager [44]. In contrast, it is unclear to what extent the results
for IaaS are applicable for FaaS. Wang et al. [82] indicated that the underlying
hardware infrastructure of AWS Lambda shares the same specifications as VM
instance types I have evaluated for answering RQ1.

For RQ2.1, the sampling strategy of the qualitative sample study (Sec-
tion 1.4.2) motivates a varied mostly purposive sample from different sources.
Further, about half of the FaaS applications were classified as deployed in pro-
duction and the about the same share is open source, which makes the dataset
relevant and traceable for publicly documented FaaS applications. However, I

30 CHAPTER 1. SYNOPSIS

cannot claim generalizability of the results to all FaaS applications, in partic-
ular not for private FaaS applications. For RQ2.2 and RQ2.3, the literature
review was designed to systematically cover the field of FaaS performance
benchmarking for peer-reviewed academic literature (i.e., white literature) and
unpublished grey literature including preprints, theses, and articles on the
internet. The inclusion of grey literature targets an industrial perspective but
is limited to published and indexed content freely available and discoverable
on the internet (e.g., excluding paywall articles or internal corporate feasibility
studies).

1.8.4 Reliability

Reliability relates to replicability by others, i.e., the extent to which the results
of a study can be replicated by other researchers.

For RQ1, the experimental design strives for technical reproducibility of
the data collection and analysis process because the exact reproduction of the
measurement results is impossible in this kind of field experimentation due to
limited control over the environment [21]. The data collection process leverages
Cloud WorkBench (CWB) [44], a web-based cloud experimentation framework
purposefully built for technically reproducible performance evaluation in differ-
ent IaaS clouds and used for other cloud experimentation studies [39, 44, 83, 84].
All performance benchmarks are available as open source software17 together
with extensive documentation, test suites, and automation scripts on how to set
up the toolchain and benchmarks. The experimentation framework builds upon
appropriate abstractions to isolate technical maintenance changes from more
conceptual benchmark definitions but the fast technological evolution might
require more corrective maintenance. These mitigation strategies should enable
other researchers to conduct the same experiment and collect a new dataset
representing the current state of performance. Such a new dataset will be
subject to internal changes of the cloud provider, which continuously updates
underlying software and hardware infrastructure. Therefore, it is essential
to additionally provide the raw dataset and analysis scripts for independent
inspection.

The data analysis process strives for replicability [76] based on a documented
online replication package18 providing data and analysis code. The ability to
re-run (R1) the code is hampered by dependencies and could be improved by
adopting Docker containerization [85]. Repeatability (R2) requires repeated
code executions to produce the same expected results [76] and was validated by
managing interim data with version control. Reproducible (R3) results require
other researchers to be able to re-obtain the same result [76] and is fostered
by publicly available data and code under version control but could also be
improved by adopting Docker containerization [85]. Reusability (R4) is partially
addressed by documentation but hampered by using a commercial analysis
tool. Replicability (R5) refers to the ability of independent investigators to
obtain the same results without re-using the technical artifacts [85] and was
partially addressed by re-implementing parts of the analysis in another tool for
validation purpose.

17https://github.com/sealuzh/cwb-benchmarks
18https://github.com/joe4dev/cwb-analysis

https://github.com/sealuzh/cwb-benchmarks
https://github.com/joe4dev/cwb-analysis

1.9. FUTURE WORK 31

For RQ2, structured review sheets with actionable guidance were used and
published in online replication packages [80, 86]. The qualitative sample study
alleviated subjective interpretation of the extracted data through multiple
reviews from a total of seven reviewers. Bi-lateral and group discussions were
an important part of the data consolidation process and captured through
systematic spreadsheet commenting and meeting notes but are currently not
(yet) publicly available. The literature review mitigated this threat through
detailed documentation and traceability annotations.

1.9 Future Work
Future work will firstly extend the current performance understanding for FaaS
applications and secondly build on top of this understanding and measurement
capabilities to propose solutions for building performance-optimized FaaS
applications.

1.9.1 FaaS Application Performance Benchmark

An application-level FaaS performance benchmark suite aims to fill gaps in
literature on FaaS performance evaluation identified in this thesis. The FaaS
community lacks an application performance benchmark motivated by real-
world applications and workloads. This contribution will motivate such an
application performance benchmark based on insights from studied FaaS appli-
cation characteristics. It will further be guided by the insights and actionable
recommendations on reproducible FaaS experimentation from this thesis. To
its end, I envision that this contribution could lay the foundation for a stan-
dardized FaaS benchmarking protocol and implementation. Beyond extending
the understanding of FaaS performance, this vision would be a very valuable
contribution to the research community for evaluating research prototypes.

To achieve this goal, I am currently leading a long-term effort of the SPEC-
RG Cloud19 working group. This joint work is guided by the insights from this
thesis, the expertise of international collaborators, and related work in the field.
Hereby, current work in progress highlights challenges specific to evaluating
FaaS platforms including:

Performance Requirements Compared to traditional cloud models, such
as IaaS, FaaS applications have more stringent performance requirements
regarding fast elasticity. Acquiring new VM instances in IaaS yields overheads
measured in minutes. In contrast, user-facing FaaS applications typically have
latency requirements quantified in milliseconds (see RQ2.1). This motivates
the evaluation of platform overhead and workload concurrency (see RQ2.2),
which become essential aspects to support for future FaaS benchmarks.

System opaqueness FaaS platforms are opaque by design, attempting to
abstract away from the cloud user as much of the operational logic as possible.
Despite the benefits of this model, the higher level of abstraction impedes our
understanding of what and how internal and external factors influence the

19https://research.spec.org/working-groups/rg-cloud.html

https://research.spec.org/working-groups/rg-cloud.html

32 CHAPTER 1. SYNOPSIS

performance and other characteristics. Therefore, it is valuable to build on top
of an understanding of lower-level IaaS cloud (see RQ1) to reason about baseline
performance or aspects that cannot be measured (to the same extent) in FaaS
clouds due to inherent platform limitations. For example, related work [82] has
linked evaluated FaaS infrastructure to a VM instance type I benchmarked as
part of answering RQ1. Further, the inability for direct networking in FaaS
and the runtime limitations prevent (or hamper) certain network performance
characteristics, such as function-to-function network performance. An open
question remains to what extent the methodology proposed as part of RQ1 for
IaaS cloud is transferable to FaaS clouds.

System heterogeneity The FaaS ecosystem consists of widely heteroge-
neous systems compared to standardized interfaces for IaaS clouds (i.e., VMs).
FaaS platforms have different approaches how functions are built, deployed,
scaled, upgraded, and executed. Hence, these are constraints an ecosystem-wide
benchmark has to consider and related to active research in the field. For
example, Eyk et al. [87] proposed a high-level reference architecture for FaaS
platforms and Yussupov et al. [88] introduced a method to automatically assess
the portability of FaaS applications.

Complex ecosystems FaaS platforms are, in most cases, not intended as
standalone systems. Instead, they provide deep integrations with other cloud
services, such as integrations with event sources. To comprehensively evaluate
a serverless platform, the performance and implications of these integrations
need to be taken into account.

Multi-tenancy and dynamic deployments The short-lived and ephemeral
nature of FaaS functions enables cloud providers to dynamically schedule and
consolidate the workloads on multiplexed resources. The performance of FaaS
platforms varies [82] due to co-located workloads and overall resource demands.
These time- and location-related variances need to be considered by a sound
FaaS benchmarking methodology. This aspect is very much related to the
benchmarking methodology of RQ1 and assessing the reproducibility of FaaS
studies (see RQ2.3).

Further details are described in the vision paper “Beyond Microbench-
marks” [89].

1.9.2 Performance-Optimized FaaS Applications

Paper ε presents a vision towards facilitating the development of performance-
optimized FaaS applications. The evaluation of the proposed vision requires
relevant FaaS applications and can hence leverage the FaaS application bench-
mark for evaluating the proposed solution. A key motivation for this future
work is to make performance insights more actionable in the context of applica-
tion development through tighter integration of performance aspects into the
development cycle. Another avenue for future research could aim to ease the
development of multi-function FaaS applications.

1.10. CONCLUSIONS 33

1.10 Conclusions
This licentiate thesis extended the existing body of research on measuring
and understanding performance in low-level IaaS clouds, established a consoli-
dated understanding of performance in high-level FaaS clouds, and envisioned
how this understanding can be leveraged for building performance-optimized
FaaS cloud applications. It proposed a benchmark suite combining synthetic
micro-benchmarks with real-world application-benchmarks for systematically
measuring performance in IaaS clouds. The benchmark suite is part of a cloud
benchmarking methodology introduced to estimate application performance
in previously unseen compute environments based on performance profiling
with micro-benchmarks. An instantiation and evaluation of this methodology
yielded promising results that selected micro-benchmarks were able to estimate
the performance of two applications from the domains of scientific computing
and Web serving. However, the results also highlighted that presumably sim-
ilar micro-benchmark estimators cannot necessarily be used interchangeably
because benchmark parameters can have a profound impact on performance. I
conclude that benchmark-based metrics are better estimators for application
performance of the tested applications than specification-based metrics (e.g.,
number of vCPUs, provider-defined unit for computational power), which are
currently used as common baselines.

In contrast to IaaS clouds, performance evaluation in high-level FaaS clouds
is a more recent but related field of research. The largest analysis of FaaS
applications to date identified common performance requirements and other
characteristics related to adoption and implementation. In particular, FaaS
applications are most commonly used for short-running tasks with low data
volume and bursty workloads but are also frequently used for latency-critical,
high-volume core functionality. A review of studies on FaaS performance
evaluation from academic and industrial sources found that AWS Lambda
is the most evaluated FaaS platform, that micro-benchmarks are the most
common type of benchmark, and that application benchmarks are prevalently
evaluated on a single platform. It also indicated a broad coverage of language
runtimes but showed that other platform configurations focus on very few
function triggers and external services. Finally, the majority of studies did not
follow principles on reproducible cloud experimentation from prior work [21].

The last contribution of this thesis envisioned new solutions towards facili-
tating the development of performance-optimized FaaS applications through
performance feedback-driven application transformation. Towards this goal,
current work on an application-level FaaS benchmark suite will enable the
evaluation of such envisioned solution prototypes.

34 CHAPTER 1. SYNOPSIS

Bibliography

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” Na-
tional Institute of Standards and Technology (NIST), Tech. Rep., 2011.
doi:10.6028/NIST.SP.800-145

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech. Rep., 2009. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: Towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, pp. 50–55, 2008. doi:10.1145/1496091.1496100

[4] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” Georgia Institute of Technology, Tech.
Rep., 2009. [Online]. Available: http://www.cercs.gatech.edu/tech-
reports/tr2009/git-cercs-09-13.pdf

[5] S. A. Ahson and M. Ilyas, Cloud Computing and Software Services:
Theory and Techniques. CRC Press, Inc., 2010.

[6] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: Principles
and Paradigms. John Wiley & Sons, 2011.

[7] S. Kächele, C. Spann, F. J. Hauck, and J. Domaschka, “Beyond IaaS
and PaaS: An extended cloud taxonomy for computation, storage
and networking,” in Proceedings of the 6th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC), 2013, pp. 75–2.
doi:10.1109/UCC.2013.28

[8] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski,
“Status of serverless computing and function-as-a-service (faas) in
industry and research,” CoRR, 2017. [Online]. Available: http:
//arxiv.org/abs/1708.08028

[9] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, pp. 44–54, 2019.
doi:10.1145/3368454

111

https://doi.org/10.6028/NIST.SP.800-145
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://doi.org/10.1145/1496091.1496100
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
https://doi.org/10.1109/UCC.2013.28
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
https://doi.org/10.1145/3368454

112 BIBLIOGRAPHY

[10] E. V. Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC Cloud group’s
research vision on FaaS and serverless architectures,” in Proceedings of
the 2nd International Workshop on Serverless Computing (WOSC), 2017,
pp. 1–4. doi:10.1145/3154847.3154848

[11] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Oc-
cupy the cloud: distributed computing for the 99%,” in Proceed-
ings of the 2017 Symposium on Cloud Computing, 2017, pp. 445–451.
doi:10.1145/3127479.3128601

[12] V. Persico, A. Montieri, and A. Pescapè, “On the network performance
of amazon S3 cloud-storage service,” in Proceedings of the 5th IEEE
International Conference on Cloud Networking (Cloudnet), 2016, pp.
113–118. doi:10.1109/CloudNet.2016.16

[13] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On the conceptualization of
performance evaluation of IaaS services,” IEEE Transactions on Services
Computing, pp. 628–41, 2014. doi:10.1109/TSC.2013.39

[14] ——, “On a catalogue of metrics for evaluating commercial cloud services,”
in Proceedings of the 13th ACM/IEEE International Conference on Grid
Computing (GRID), 2012, pp. 164–173. doi:10.1109/Grid.2012.15

[15] Z. Li, L. O’Brien, and H. Zhang, “CEEM: A practical method-
ology for cloud services evaluation,” in Proceedings of the 9th
IEEE World Congress on Services (SERVICES), 2013, pp. 44–51.
doi:10.1109/SERVICES.2013.73

[16] A. Iosup, R. Prodan, and D. H. J. Epema, “IaaS cloud benchmarking:
Approaches, challenges, and experience,” in Cloud Computing for Data-
Intensive Applications, 2014, pp. 83–104. doi:10.1007/978-1-4939-1905-
5_4

[17] C. S. Collberg and T. A. Proebsting, “Repeatability in computer
systems research,” Communications of the ACM, pp. 62–69, 2016.
doi:10.1145/2812803

[18] M. Baker, “Reproducibility crisis,” Nature, pp. 353–66, 2016. [Online].
Available: https://www.nature.com/news/1-500-scientists-lift-the-lid-
on-reproducibility-1.19970

[19] B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing
the uncertainty of NIST measurement results,” National Institute
of Standards and Technology, Tech. Rep., 1994. [Online]. Available:
https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf

[20] J. Lin and Q. Zhang, “Reproducibility is a process, not an achievement:
The replicability of IR reproducibility experiments,” in Proceedings of
the 42nd European Conference on Advances in Information Retrieval IR,
2020, pp. 43–49. doi:10.1007/978-3-030-45442-5_6

https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3127479.3128601
https://doi.org/10.1109/CloudNet.2016.16
https://doi.org/10.1109/TSC.2013.39
https://doi.org/10.1109/Grid.2012.15
https://doi.org/10.1109/SERVICES.2013.73
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/10.1145/2812803
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf
https://doi.org/10.1007/978-3-030-45442-5_6

BIBLIOGRAPHY 113

[21] A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. von Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tuma, and A. Iosup, “Method-
ological principles for reproducible performance evaluation in cloud com-
puting,” IEEE Transactions on Software Engineering (TSE), pp. 93–94,
2019. doi:10.1109/TSE.2019.2927908

[22] D. G. Feitelson, “Experimental computer science: The need for a cultural
change,” The Hebrew University of Jerusalem, Tech. Rep., 2006.

[23] V. Yussupov, U. Breitenbücher, F. Leymann, and M. Wurster, “A
systematic mapping study on engineering function-as-a-service plat-
forms and tools,” in Proceedings of the 12th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing, 2019, pp. 229–240.
doi:10.1145/3344341.3368803

[24] S. L. Garfinkel, “An evaluation of Amazon’s grid computing services:
EC2, S3, and SQS,” Harvard University, Tech. Rep., 2007.

[25] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone:
Multi-platform, multi-language benchmark and measurement tools for
web 2.0,” 2008. [Online]. Available: https://pdfs.semanticscholar.org/
34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf

[26] E. Walker, “Benchmarking amazon EC2 for high-performance scientific
computing,” Usenix Login, pp. 18–23, 2008. [Online]. Available:
https://www.usenix.org/system/files/login/articles/277-walker.pdf

[27] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: Towards a benchmark for the cloud,” in Proceedings of the
2nd International Workshop on Testing Database Systems (DBTest), 2009,
pp. 9:1–9:6. doi:10.1145/1594156.1594168

[28] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the cloud: What it should, can, and cannot be,” in
Proceedings of the 4th TPC Technology Conference on Selected Topics in
Performance Evaluation and Benchmarking (TPCTC), 2012, pp. 173–188.
doi:10.1007/978-3-642-36727-4_12

[29] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clear-
ing the clouds: A study of emerging scale-out workloads on modern
hardware,” SIGARCH Computer Architecture News, pp. 37–48, 2012.
doi:10.1145/2189750.2150982

[30] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. H. J. Epema, “A performance analysis of EC2 cloud computing ser-
vices for scientific computing,” in Cloud Computing, 2009, pp. 115–131.
doi:10.1007/978-3-642-12636-9_9

[31] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, pp. 931–945, 2011. doi:10.1109/TPDS.2011.66

https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1145/3344341.3368803
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://pdfs.semanticscholar.org/34dd/c3da70f5b17ae0a73266ad1e4f9ae155811f.pdf
https://www.usenix.org/system/files/login/articles/277-walker.pdf
https://doi.org/10.1145/1594156.1594168
https://doi.org/10.1007/978-3-642-36727-4_12
https://doi.org/10.1145/2189750.2150982
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1109/TPDS.2011.66

114 BIBLIOGRAPHY

[32] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–154.
doi:10.1145/1807128.1807152

[33] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: Observing, analyzing, and reducing variance,” Proceedings of
the VLDB Endowment, pp. 460–471, 2010. doi:10.14778/1920841.1920902

[34] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui,
“Exploiting hardware heterogeneity within the same instance type
of amazon EC2,” in Proceedings of the 4th USENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2012. [Online].
Available: https://www.usenix.org/conference/hotcloud12/workshop-
program/presentation/ou

[35] Z. Ou, H. Zhuang, A. Lukyanenko, J. K. Nurminen, P. Hui, V. Mazalov,
and A. Ylä-Jääski, “Is the same instance type created equal? exploiting
heterogeneity of public clouds,” IEEE Transactions on Cloud Computing,
pp. 201–14, 2013. doi:10.1109/TCC.2013.12

[36] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint, “On evaluating com-
mercial cloud services: A systematic review,” Journal of Systems and
Software, pp. 2371–2393, 2013. doi:10.1016/j.jss.2013.04.021

[37] P. Leitner and J. Cito, “Patterns in the chaos – a study of performance
variation and predictability in public IaaS clouds,” ACM Transactions
on Internet Technology, pp. 1–23, 2016. doi:10.1145/2885497

[38] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of
production cloud services,” in Proceedings of the 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2011, pp. 104–13. doi:10.1109/CCGrid.2011.22

[39] C. Laaber, J. Scheuner, and P. Leitner, “Software microbenchmarking
in the cloud. How bad is it really?” Empirical Software Engineering
(EMSE), pp. 2469–2508, 2019. doi:10.1007/s10664-019-09681-1

[40] A. Abedi and T. Brecht, “Conducting repeatable experiments in highly
variable cloud computing environments,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
(ICPE), 2017, pp. 287–292. doi:10.1145/3030207.3030229

[41] M. Silva, M. Hines, D. Gallo, Q. Liu, K. D. Ryu, and D. Da Silva, “Cloud-
bench: Experiment automation for cloud environments,” in Proceedings
of the IEEE International Conference on Cloud Engineering (IC2E), 2013,
pp. 302–11. doi:10.1109/IC2E.2013.33

[42] M. Cunha, N. das Chagas Mendonça, and A. Sampaio, “Cloud crawler: a
declarative performance evaluation environment for infrastructure-as-a-
service clouds,” Concurrency and Computation: Practice and Experience,
2017. doi:10.1002/cpe.3825

https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/1920841.1920902
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/ou
https://www.usenix.org/conference/hotcloud12/workshop-program/presentation/ou
https://doi.org/10.1109/TCC.2013.12
https://doi.org/10.1016/j.jss.2013.04.021
https://doi.org/10.1145/2885497
https://doi.org/10.1109/CCGrid.2011.22
https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1145/3030207.3030229
https://doi.org/10.1109/IC2E.2013.33
https://doi.org/10.1002/cpe.3825

BIBLIOGRAPHY 115

[43] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and C. Pu,
“Expertus: A generator approach to automate performance testing in IaaS
clouds,” in Proceedings of the 5th IEEE International Conference on Cloud
Computing (CLOUD), 2012, pp. 115–22. doi:10.1109/CLOUD.2012.98

[44] J. Scheuner, P. Leitner, J. Cito, and H. Gall, “Cloud WorkBench –
infrastructure-as-code based cloud benchmarking,” in Proceedings of the
6th IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2014, pp. 246–253. doi:10.1109/CloudCom.2014.98

[45] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “Cloudprophet:
Towards application performance prediction in cloud,” in Proceedings of
the ACM SIGCOMM 2011 Conference (SIGCOMM), 2011, pp. 426–427.
doi:10.1145/2018436.2018502

[46] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris,
and T. Varvarigou, “Enterprise applications cloud rightsizing through
a joint benchmarking and optimization approach,” Future Generation
Computer Systems, pp. 102–114, 2016. doi:10.1016/j.future.2016.11.002

[47] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017, pp. 469–482. [Online]. Available: https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/alipourfard

[48] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker,
“Cloud benchmarking for maximising performance of scientific appli-
cations,” IEEE Transactions on Cloud Computing, pp. 170–182, 2019.
doi:10.1109/TCC.2016.2603476

[49] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz,
“Selecting the best VM across multiple public clouds: a data-driven per-
formance modeling approach,” in Proceedings of the Symposium on Cloud
Computing (SoCC), 2017, pp. 452–465. doi:10.1145/3127479.3131614

[50] M. Baughman, R. Chard, L. T. Ward, J. Pitt, K. Chard, and I. T. Foster,
“Profiling and predicting application performance on the cloud,” in Pro-
ceedings of the 11th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC), 2018, pp. 21–30. doi:10.1109/UCC.2018.00011

[51] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless Computation
with OpenLambda,” in Proceedings of the 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud), 2016. [Online].
Available: https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/hendrickson

[52] G. McGrath, J. Short, S. Ennis, B. Judson, and P. Brenner, “Cloud event
programming paradigms: Applications and analysis,” in Proceedings of
the 9th IEEE International Conference on Cloud Computing (CLOUD),
2016, pp. 400–06. doi:10.1109/CLOUD.2016.0060

https://doi.org/10.1109/CLOUD.2012.98
https://doi.org/10.1109/CloudCom.2014.98
https://doi.org/10.1145/2018436.2018502
https://doi.org/10.1016/j.future.2016.11.002
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://doi.org/10.1109/TCC.2016.2603476
https://doi.org/10.1145/3127479.3131614
https://doi.org/10.1109/UCC.2018.00011
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://doi.org/10.1109/CLOUD.2016.0060

116 BIBLIOGRAPHY

[53] J. Kuhlenkamp and S. Werner, “Benchmarking FaaS platforms: Call for
community participation,” in Companion of the 11th IEEE/ACM UCC:
4th International Workshop on Serverless Computing (WoSC), 2018, pp.
189–194. doi:10.1109/UCC-Companion.2018.00055

[54] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method
empirical study of function-as-a-service software development in indus-
trial practice,” Journal of Systems and Software, pp. 340–359, 2019.
doi:10.1016/j.jss.2018.12.013

[55] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, “Patterns for
serverless functions (function-as-a-service): A multivocal literature re-
view,” Proceedings of the 10th International Conference on Cloud Comput-
ing and Services Science (CLOSER), 2020. doi:10.5220/0009578501810192

[56] N. Somu, N. Daw, U. Bellur, and P. Kulkarni, “Panopticon: A comprehen-
sive benchmarking tool for serverless applications,” in Proceedings of the
International Conference on COMmunication Systems NETworkS (COM-
SNETS), 2020, pp. 144–51. doi:10.1109/COMSNETS48256.2020.9027346

[57] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J. S. Rellermeyer,
C. Maltzahn, R. Ricci, and A. Iosup, “Is big data performance
reproducible in modern cloud networks?” in Proceedings of
the 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2020, pp. 513–527. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/uta

[58] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology, pp. 1–51,
2018. doi:10.1145/3241743

[59] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977. doi:10.2307/2529310

[60] S. Easterbrook, J. Singer, M. D. Storey, and D. E. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering, 2008, pp. 285–311. doi:10.1007/978-1-
84800-044-5_11

[61] S. Baltes and P. Ralph, “Sampling in software engineering research:
A critical review and guidelines,” CoRR, 2020. [Online]. Available:
https://arxiv.org/abs/2002.07764

[62] G. Gousios, “The GHTorent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories (MSR),
2013, pp. 233–236. doi:10.1109/MSR.2013.6624034

[63] J. Spillner and M. Al-Ameen, “Serverless literature dataset,” 2019.
doi:10.5281/zenodo.2649001

[64] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, pp. 101–121, 2019.
doi:10.1016/j.infsof.2018.09.006

https://doi.org/10.1109/UCC-Companion.2018.00055
https://doi.org/10.1016/j.jss.2018.12.013
https://doi.org/10.5220/0009578501810192
https://doi.org/10.1109/COMSNETS48256.2020.9027346
https://www.usenix.org/conference/nsdi20/presentation/uta
https://doi.org/10.1145/3241743
https://doi.org/10.2307/2529310
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://arxiv.org/abs/2002.07764
https://doi.org/10.1109/MSR.2013.6624034
https://doi.org/10.5281/zenodo.2649001
https://doi.org/10.1016/j.infsof.2018.09.006

BIBLIOGRAPHY 117

[65] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University, Tech.
Rep., 2007. [Online]. Available: http://cdn.elsevier.com/promis_misc/
525444systematicreviewsguide.pdf

[66] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, pp. 625–637,
2011. doi:10.1016/j.infsof.2010.12.010

[67] Y. Zacchia Lun, A. D’Innocenzo, F. Smarra, I. Malavolta, and M. D. a.
Di Benedetto, “State of the art of cyber-physical systems security: An
automatic control perspective,” Journal of Systems and Software, pp.
174–216, 2019. doi:10.1016/j.jss.2018.12.006

[68] V. Vedam and J. Vemulapati, “Demystifying cloud benchmarking
paradigm – an in depth view,” in Proceedings of the 36th IEEE Computer
Software and Applications Conference (COMPSAC), 2012, pp. 416–21.
doi:10.1109/COMPSAC.2012.61

[69] S. Fouladi, R. S. Wahby, B. Shacklett, K. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads,” in Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017, pp. 363–376.
[Online]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[70] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers,”
in Proceedings of the USENIX Annual Technical Conference
(USENIX ATC), 2019, pp. 475–488. [Online]. Available: https:
//www.usenix.org/conference/atc19/presentation/fouladi

[71] S. Bebortta, S. K. Das, M. Kandpal, R. K. Barik, and H. Dubey,
“Geospatial serverless computing: Architectures, tools and future di-
rections,” ISPRS International Journal of Geo-Information, p. 311, 2020.
doi:10.3390/ijgi9050311

[72] G. Adzic and R. Chatley, “Serverless computing: Economic and
architectural impact,” in Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering (FSE), 2017, pp. 884–889.
doi:10.1145/3106237.3117767

[73] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “A review of server-
less use cases and their characteristics,” SPEC RG Cloud
Working Group, Tech. Rep., 2020. [Online]. Available: https:
//research.spec.org/fileadmin/user_upload/documents/rg_cloud/
endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf

http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1016/j.infsof.2010.12.010
https://doi.org/10.1016/j.jss.2018.12.006
https://doi.org/10.1109/COMPSAC.2012.61
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.3390/ijgi9050311
https://doi.org/10.1145/3106237.3117767
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf

118 BIBLIOGRAPHY

[74] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon EC2 data center,” in Proceedings of the 29th IEEE
International Conference on Computer Communications (INFOCOM),
2010, pp. 1163–1171. doi:10.1109/INFCOM.2010.5461931

[75] L. Kotthoff, “Reliability of computational experiments on virtualised
hardware,” Journal of Experimental & Theoretical Artificial Intelligence,
pp. 33–9, 2014. doi:10.1080/0952813X.2013.784812

[76] F. C. Y. Benureau and N. P. Rougier, “Re-run, repeat, reproduce, reuse,
replicate: Transforming code into scientific contributions,” Frontiers in
Neuroinformatics, p. 69, 2018. doi:10.3389/fninf.2017.00069

[77] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Pat-
terson, “Automatic exploration of datacenter performance regimes,” in
Proceedings of the 1st Workshop on Automated Control for Datacenters
and Clouds, 2009, pp. 1–6. doi:10.1145/1555271.1555273

[78] A. H. Borhani, P. Leitner, B. Lee, X. Li, and T. Hung, “WPress:
An application-driven performance benchmark for cloud-based virtual
machines,” in Proceedings of the 18th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), 2014, pp. 101–109.
doi:10.1109/EDOC.2014.23

[79] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats
to validity of systematic literature reviews in software engineering,” in
Proceedings of the 23rd Asia-Pacific Software Engineering Conference
(APSEC), 2016, pp. 153–160. doi:10.1109/APSEC.2016.031

[80] J. Scheuner and P. Leitner, “Replication package for "function-as-a-
service performance evaluation: a multivocal literature review",” v1.0,
2020, dataset. doi:10.5281/zenodo.3906613

[81] V. Garousi, M. Felderer, and T. Hacaloglu, “Software test matu-
rity assessment and test process improvement: A multivocal litera-
ture review,” Information and Software Technology, pp. 16–42, 2017.
doi:10.1016/j.infsof.2017.01.001

[82] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2018, pp. 133–146. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/wang-liang

[83] P. Leitner and J. Scheuner, “Bursting with possibilities – an empirical
study of credit-based bursting cloud instance types,” in Proceedings of the
8th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), 2015, pp. 227–36. doi:10.1109/UCC.2015.39

[84] C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach and
case study of cloud instance type selection for multi-tier web applica-
tions,” in Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 534–543.
doi:10.1109/CCGRID.2017.12

https://doi.org/10.1109/INFCOM.2010.5461931
https://doi.org/10.1080/0952813X.2013.784812
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1145/1555271.1555273
https://doi.org/10.1109/EDOC.2014.23
https://doi.org/10.1109/APSEC.2016.031
https://doi.org/10.5281/zenodo.3906613
https://doi.org/10.1016/j.infsof.2017.01.001
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1109/UCC.2015.39
https://doi.org/10.1109/CCGRID.2017.12

BIBLIOGRAPHY 119

[85] C. Boettiger, “An introduction to docker for reproducible research,” Op-
erating Systems Review, pp. 71–79, 2015. doi:10.1145/2723872.2723882

[86] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Iosup, “SPEC RG technical report: A
review of serverless use cases and their characteristics – dataset,” 2020.
doi:10.5281/zenodo.3822191

[87] E. V. Eyk, A. Iosup, J. Grohmann, S. Eismann, A. Bauer, L. Ver-
sluis, L. Toader, N. Schmitt, N. Herbst, and C. L. Abad, “The SPEC-
RG reference architecture for FaaS: From microservices and contain-
ers to serverless platforms,” IEEE Internet Computing, pp. 7–18, 2019.
doi:10.1109/MIC.2019.2952061

[88] V. Yussupov, U. Breitenbücher, A. Kaplan, and F. Leymann, “Seaport:
Assessing the portability of serverless applications,” in Proceedings of the
10th International Conference on Cloud Computing and Services Science
(CLOSER), 2020, pp. 456–467. doi:10.5220/0009574104560467

[89] E. V. Eyk, J. Scheuner, S. Eismann, C. L. Abad, and A. Iosup, “Beyond
microbenchmarks: The SPEC-RG vision for a comprehensive serverless
benchmark,” in Companion of the 11th ACM/SPEC ICPE: 3rd Workshop
on Hot Topics in Cloud Computing Performance (HotCloudPerf), 2020,
pp. 26–31. doi:10.1145/3375555.3384381

[90] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers, and
M. M. Swift, “More for your money: exploiting performance heterogeneity
in public clouds,” in Proceedings of the 3rd ACM Symposium on Cloud
Computing (SoCC), 2012. doi:10.1145/2391229.2391249

[91] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmark-
ing,” in Proceedings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2016, pp. 122–132.
doi:10.1109/ISPASS.2016.7482080

[92] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 performance analysis for
resource provisioning of service-oriented applications,” in Proceedings
of the 7th ICSOC / 2nd ServiceWave Workshops, 2009, pp. 197–207.
doi:10.1007/978-3-642-16132-2_19

[93] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud WorkBench: Bench-
marking IaaS providers based on infrastructure-as-code,” in Companion
of the 24th International Conference on World Wide Web (WWW Demo),
2015, pp. 239–242. doi:10.1145/2740908.2742833

[94] C. Spectator, “2017 top 10 european cloud providers,” Cloud Spectator,
Tech. Rep., 2017. [Online]. Available: https://cloudspectator.com/top-
10-european-cloud-service-providers/

[95] (2016) SPEC Cloud™ IaaS 2016 Benchmark. [Online]. Available:
http://spec.org/cloud_iaas2016/

https://doi.org/10.1145/2723872.2723882
https://doi.org/10.5281/zenodo.3822191
https://doi.org/10.1109/MIC.2019.2952061
https://doi.org/10.5220/0009574104560467
https://doi.org/10.1145/3375555.3384381
https://doi.org/10.1145/2391229.2391249
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1007/978-3-642-16132-2_19
https://doi.org/10.1145/2740908.2742833
https://cloudspectator.com/top-10-european-cloud-service-providers/
https://cloudspectator.com/top-10-european-cloud-service-providers/
http://spec.org/cloud_iaas2016/

120 BIBLIOGRAPHY

[96] M. Cunha, N. Mendonça, and A. Sampaio, “A declarative environment
for automatic performance evaluation in IaaS clouds,” in Proceedings of
the 6th IEEE International Conference on Cloud Computing (CLOUD),
2013, pp. 285–92. doi:10.1109/CLOUD.2013.12

[97] J. Scheuner, “Cloud benchmarking – estimating cloud application
performance based on micro benchmark profiling,” Master Thesis,
University of Zurich, 2017. [Online]. Available: https://www.merlin.uzh.
ch/publication/show/15364

[98] B. Gregg, Systems Performance: Enterprise and the Cloud. Prentice
Hall, 2013. [Online]. Available: http://books.google.ch/books?id=
pTYkAQAAQBAJ

[99] J. Scheuner and P. Leitner, “A cloud benchmark suite combining micro
and applications benchmarks,” in Companion of the 9th ACM/SPEC
ICPE: 4th Workshop on Quality-Aware DevOps (QUDOS), 2018, pp.
161–166. doi:10.1145/3185768.3186286

[100] J. O’Loughlin and L. Gillam, “Towards performance prediction for public
infrastructure clouds: An EC2 case study,” in Proceedings of the 5th
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2013, pp. 475–80. doi:10.1109/CloudCom.2013.69

[101] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Compar-
ing public cloud providers,” in Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement (IMC), 2010, pp. 1–14.
doi:10.1145/1879141.1879143

[102] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi, “Flexible CPU
provisioning in clouds: A new source of performance unpredictability,” in
Proceedings of the 9th International Conference on Quantitative Evalua-
tion of Systems (QEST), 2012, pp. 230–37. doi:10.1109/QEST.2012.23

[103] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the 1st ACM
SIGMM Conference on Multimedia Systems (MMSys), 2010, pp. 35–46.
doi:10.1145/1730836.1730842

[104] M. Canuto, R. Bosch, M. Macias, and J. Guitart, “A methodology for full-
system power modeling in heterogeneous data centers,” in Proceedings of
the 9th International Conference on Utility and Cloud Computing (UCC),
2016, pp. 20–29. doi:10.1145/2996890.2996899

[105] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2006, pp. 114–122.
doi:10.1145/1152154.1152174

[106] C. Stewart and K. Shen, “Performance modeling and system
management for multi-component online services,” in Proceedings of
the 2nd Conference on Symposium on Networked Systems Design

https://doi.org/10.1109/CLOUD.2013.12
https://www.merlin.uzh.ch/publication/show/15364
https://www.merlin.uzh.ch/publication/show/15364
http://books.google.ch/books?id=pTYkAQAAQBAJ
http://books.google.ch/books?id=pTYkAQAAQBAJ
https://doi.org/10.1145/3185768.3186286
https://doi.org/10.1109/CloudCom.2013.69
https://doi.org/10.1145/1879141.1879143
https://doi.org/10.1109/QEST.2012.23
https://doi.org/10.1145/1730836.1730842
https://doi.org/10.1145/2996890.2996899
https://doi.org/10.1145/1152154.1152174

BIBLIOGRAPHY 121

& Implementation (NSDI), 2005, pp. 71–84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251209

[107] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the perfor-
mance fluctuations of HPC workloads on clouds,” in Proceedings of the
2nd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2010, pp. 383–87. doi:10.1109/CloudCom.2010.84

[108] B. G. Tabachnick, L. S. Fidell, and J. B. Ullman, Using Multivariate
Statistics. Pearson, 2012.

[109] C. Lowery, R. Bala, L. Leong, and D. Smith, “Magic quadrant for cloud
infrastructure as a service, worldwide,” Gartner Research, Tech. Rep.,
2017. [Online]. Available: https://www.gartner.com/en/documents/
3738058/magic-quadrant-for-cloud-infrastructure-as-a-service-wor

[110] (2017) $7.72 billion function-as-a-service market 2017. [Online]. Available:
https://bwnews.pr/2VBDBgC

[111] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One
step forward, two steps back,” in Proceedings of the 9th Conference on
Innovative Data Systems Research (CIDR), 2019. [Online]. Available:
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[112] (2020) Accelerating with serverless! [Online]. Available: https://medium.
com/lego-engineering/accelerating-with-serverless-625da076964b

[113] A. Eivy, “Be wary of the economics of "serverless" cloud computing,”
IEEE Cloud Computing, pp. 6–2, 2017. doi:10.1109/MCC.2017.32

[114] J. Demian. (2018) Serverless case study - netflix. [Online]. Available:
https://dashbird.io/blog/serverless-case-study-netflix/

[115] (2019) Worldwide IaaS public cloud services market grew 31.3[Online].
Available: https://bwnews.pr/2ZcI7o4

[116] N. Malishev. (2019) AWS Lambda cold start lan-
guage comparisons, 2019 edition. [Online]. Avail-
able: https://levelup.gitconnected.com/aws-lambda-cold-start-language-
comparisons-2019-edition-%EF%B8%8F-1946d32a0244

[117] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rab-
bah, P. Suter, and O. Tardieu, “The serverless trilemma: Function
composition for serverless computing,” in Proceedings of the ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), 2017, pp. 89–103.
doi:10.1145/3133850.3133855

[118] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: The
prospect of serverless scientific computing and HPC,” in Proceedings of
the 4th Latin American Conference on High Performance Computing
(CARLA), 2017, pp. 154–168. doi:10.1007/978-3-319-73353-1_11

http://dl.acm.org/citation.cfm?id=1251203.1251209
https://doi.org/10.1109/CloudCom.2010.84
https://www.gartner.com/en/documents/3738058/magic-quadrant-for-cloud-infrastructure-as-a-service-wor
https://www.gartner.com/en/documents/3738058/magic-quadrant-for-cloud-infrastructure-as-a-service-wor
https://bwnews.pr/2VBDBgC
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://medium.com/lego-engineering/accelerating-with-serverless-625da076964b
https://doi.org/10.1109/MCC.2017.32
https://dashbird.io/blog/serverless-case-study-netflix/
https://bwnews.pr/2ZcI7o4
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://levelup.gitconnected.com/aws-lambda-cold-start-language-comparisons-2019-edition-%EF%B8%8F-1946d32a0244
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1007/978-3-319-73353-1_11

122 BIBLIOGRAPHY

[119] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learn-
ing models in a serverless platform,” in Proceedings of the IEEE Inter-
national Conference on Cloud Engineering (IC2E), 2018, pp. 257–62.
doi:10.1109/IC2E.2018.00052

[120] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in Companion of the 11th IEEE/ACM
UCC: 4th International Workshop on Serverless Computing (WoSC),
2018, pp. 181–88. doi:10.1109/UCC-Companion.2018.00054

[121] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Perfor-
mance evaluation of heterogeneous cloud functions,” Concurrency and
Computation: Practice and Experience, 2018. doi:10.1002/cpe.4792

[122] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive
cloud native applications: A performance study on AWS,” in Proceed-
ings of the 12th IEEE International Conference on Cloud Computing
(CLOUD), 2019, pp. 272–280. doi:10.1109/CLOUD.2019.00054

[123] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell, Experi-
mentation in Software Engineering. Springer, 2012. doi:10.1007/978-3-
642-29044-2

[124] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of
function-as-a-service computing,” in Proceedings of the 52nd IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019, pp. 1063–
1075. doi:10.1145/3352460.3358296

[125] J. Scheuner and P. Leitner, “Estimating cloud application performance
based on micro-benchmark profiling,” in Proceedings of the 11th IEEE
International Conference on Cloud Computing (CLOUD), 2018, pp. 90–97.
doi:10.1109/CLOUD.2018.00019

[126] J. Kuhlenkamp, S. Werner, M. C. Borges, D. Ernst, and D. Wenzel,
“Benchmarking elasticity of FaaS platforms as a foundation for objective-
driven design of serverless applications,” in Proceedings of the 35th
ACM/SIGAPP Symposium on Applied Computing (SAC), 2020, pp. 1576–
1585. doi:10.1145/3341105.3373948

[127] J. Kuhlenkamp and M. Klems, “Costradamus: A cost-tracing system for
cloud-based software services,” in Proceedings of the 15th International
Conference on Service-Oriented Computing (ICSOC), 2017, pp. 657–672.
doi:10.1007/978-3-319-69035-3_48

[128] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: The
correct way to summarize benchmark results,” Communications of the
ACM, pp. 218–221, 1986. doi:10.1145/5666.5673

[129] M. Al-Ameen and J. Spillner, “Systematic and open exploration of FaaS
and serverless computing research,” in Proceedings of the European
Symposium on Serverless Computing and Applications (ESSCA), 2018,
pp. 30–35. [Online]. Available: http://ceur-ws.org/Vol-2330/short2.pdf

https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/UCC-Companion.2018.00054
https://doi.org/10.1002/cpe.4792
https://doi.org/10.1109/CLOUD.2019.00054
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1145/3341105.3373948
https://doi.org/10.1007/978-3-319-69035-3_48
https://doi.org/10.1145/5666.5673
http://ceur-ws.org/Vol-2330/short2.pdf

BIBLIOGRAPHY 123

[130] Z. Li, L. O’Brien, R. Cai, and H. Zhang, “Towards a taxonomy of
performance evaluation of commercial cloud services,” in Proceedings of
the 5th IEEE International Conference on Cloud Computing (CLOUD),
2012, pp. 344–51. doi:10.1109/CLOUD.2012.74

[131] N. Bjørndal, A. Bucchiarone, M. Mazzara, N. Dragoni, S. Dust-
dar, F. B. Kessler, and T. Wien, “Migration from monolith to
microservices: Benchmarking a case study,” 2020, unpublished.
doi:10.13140/RG.2.2.27715.14883

[132] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “SAND: towards high-performance serverless
computing,” in Proceedings of the USENIX Annual Technical
Conference (ATC), 2018, pp. 923–935. [Online]. Available: https:
//www.usenix.org/conference/atc18/presentation/akkus

[133] L. F. Albuquerque Jr, F. S. Ferraz, R. F. Oliveira, and S. M. Galdino,
“Function-as-a-service x platform-as-a-service: Towards a comparative
study on FaaS and PaaS,” ICSEA 2017, p. 217, 2017. [Online].
Available: https://www.thinkmind.org/download.php?articleid=icsea_
2017_9_30_10096

[134] T. Back and V. Andrikopoulos, “Using a microbenchmark to compare
function as a service solutions,” in Proceedings of the 7th European
Service-Oriented and Cloud Computing (ESOCC), 2018, pp. 146–160.
doi:10.1007/978-3-319-99819-0_11

[135] D. Balla, M. Maliosz, C. Simon, and D. Gehberger, “Tuning runtimes
in open source FaaS,” in Proceedings of the Internet of Vehicles. Tech-
nologies and Services Toward Smart Cities (IOV), 2020, pp. 250–266.
doi:10.1007/978-3-030-38651-1_21

[136] D. Bardsley, L. Ryan, and J. Howard, “Serverless performance
and optimization strategies,” in Proceedings of the IEEE Interna-
tional Conference on Smart Cloud (SmartCloud), 2018, pp. 19–6.
doi:10.1109/SmartCloud.2018.00012

[137] D. Bortolini and R. R. Obelheiro, “Investigating performance and cost
in function-as-a-service platforms,” in Proceedings of the 14th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2019, pp. 174–185. doi:10.1007/978-3-030-33509-0_16

[138] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz,
“A case for serverless machine learning,” in Workshop on Sys-
tems for ML and Open Source Software at NeurIPS, 2018.
[Online]. Available: http://learningsys.org/nips18/assets/papers/
101CameraReadySubmissioncirrus_nips_final2.pdf

[139] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,
Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark suite

https://doi.org/10.1109/CLOUD.2012.74
https://doi.org/10.13140/RG.2.2.27715.14883
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.thinkmind.org/download.php?articleid=icsea_2017_9_30_10096
https://www.thinkmind.org/download.php?articleid=icsea_2017_9_30_10096
https://doi.org/10.1007/978-3-319-99819-0_11
https://doi.org/10.1007/978-3-030-38651-1_21
https://doi.org/10.1109/SmartCloud.2018.00012
https://doi.org/10.1007/978-3-030-33509-0_16
http://learningsys.org/nips18/assets/papers/101CameraReadySubmissioncirrus_nips_final2.pdf
http://learningsys.org/nips18/assets/papers/101CameraReadySubmissioncirrus_nips_final2.pdf

124 BIBLIOGRAPHY

for microservices and their hardware-software implications for cloud &
edge systems,” in Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2019, pp. 3–18. doi:10.1145/3297858.3304013

[140] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework
and a performance assessment for serverless mapreduce on AWS
Lambda,” Future Generation Computer Systems, pp. 259–274, 2019.
doi:10.1016/j.future.2019.02.057

[141] V. Gupta, S. Wang, T. A. Courtade, and K. Ramchandran, “Oversketch:
Approximate matrix multiplication for the cloud,” in Proceedings of
the IEEE International Conference on Big Data (Big Data), 2018, pp.
298–304. doi:10.1109/BigData.2018.8622139

[142] A. Hall and U. Ramachandran, “An execution model for serverless func-
tions at the edge,” in Proceedings of the International Conference on
Internet of Things Design and Implementation (IoTDI), 2019, pp. 225–
236. doi:10.1145/3302505.3310084

[143] C. Ivan, R. Vasile, and V. Dadarlat, “Serverless computing: An inves-
tigation of deployment environments for Web APIs,” Computers, 2019.
doi:10.3390/computers8020050

[144] D. Jackson and G. Clynch, “An investigation of the impact of lan-
guage runtime on the performance and cost of serverless functions,”
in Companion of the 11th IEEE/ACM UCC: 4th International Workshop
on Serverless Computing (WoSC), 2018, pp. 154–60. doi:10.1109/UCC-
Companion.2018.00050

[145] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of
scientific workflows,” in Proceedings of the 15th International Con-
ference on Service-Oriented Computing (ICSOC), 2017, pp. 706–721.
doi:10.1007/978-3-319-69035-3_51

[146] J. Kim and K. Lee, “FunctionBench: A suite of workloads for serverless
cloud function service,” in Proceedings of the 12th IEEE International
Conference on Cloud Computing (CLOUD WIP), 2019, pp. 502–504.
doi:10.1109/CLOUD.2019.00091

[147] J. Kim, J. Park, and K. Lee, “Network resource isolation in serverless
cloud function service,” in Proceedings of the 7th International Workshop
on Autonomic Management of High-Performance Grid and Cloud Com-
puting (AMGCC) at ICAC/SASO, 2019, pp. 182–187. doi:10.1109/FAS-
W.2019.00051

[148] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle, and
A. Trivedi, “Understanding ephemeral storage for serverless analytics,” in
Proceedings of the USENIX Annual Technical Conference (ATC), 2018,
pp. 789–794. [Online]. Available: https://www.usenix.org/conference/
atc18/presentation/klimovic-serverless

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1016/j.future.2019.02.057
https://doi.org/10.1109/BigData.2018.8622139
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.3390/computers8020050
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1109/UCC-Companion.2018.00050
https://doi.org/10.1007/978-3-319-69035-3_51
https://doi.org/10.1109/CLOUD.2019.00091
https://doi.org/10.1109/FAS-W.2019.00051
https://doi.org/10.1109/FAS-W.2019.00051
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless
https://www.usenix.org/conference/atc18/presentation/klimovic-serverless

BIBLIOGRAPHY 125

[149] J. Kuhlenkamp, S. Werner, M. C. Borges, K. El Tal, and S. Tai, “An evalu-
ation of FaaS platforms as a foundation for serverless big data processing,”
in Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2019, pp. 1–9. doi:10.1145/3344341.3368796

[150] H. Lee, K. Satyam, and G. C. Fox, “Evaluation of production serverless
computing environments,” in Proceedings of the 11th IEEE CLOUD:
3rd International Workshop on Serverless Computing (WoSC), 2018, pp.
442–50. doi:10.1109/CLOUD.2018.00062

[151] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Understanding
open source serverless platforms: Design considerations and performance,”
in Proceedings of the 5th International Workshop on Serverless Computing
(WoSC) at Middleware, 2019, pp. 37–42. doi:10.1145/3366623.3368139

[152] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice per-
formance,” Proceedings of the IEEE International Conference on Cloud
Engineering (IC2E), 2018. doi:10.1109/IC2E.2018.00039

[153] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improving ap-
plication migration to serverless computing platforms: Latency mitigation
with keep-alive workloads,” in Companion of the 11th IEEE/ACM UCC:
4th International Workshop on Serverless Computing (WoSC), 2018, pp.
195–00. doi:10.1109/UCC-Companion.2018.00056

[154] P. G. López, M. Sánchez-Artigas, G. París, D. B. Pons, Á. R. Ollobar-
ren, and D. A. Pinto, “Comparison of FaaS orchestration systems,” in
Companion of the 11th IEEE/ACM UCC: 4th International Workshop
on Serverless Computing (WoSC), 2018, pp. 148–53. doi:10.1109/UCC-
Companion.2018.00049

[155] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela, “Serverless
execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions,” Future Generation Computer
Systems, 2017. doi:10.1016/j.future.2017.10.029

[156] S. Malla and K. Christensen, “HPC in the cloud: Performance comparison
of function as a service (FaaS) vs infrastructure as a service (IaaS),”
Internet Technology Letters, 2019. doi:10.1002/itl2.137

[157] G. McGrath and P. R. Brenner, “Serverless computing: Design, implemen-
tation, and performance,” in Proceedings of the 37th IEEE International
Conference on Distributed Computing Systems Workshops (ICDCSW),
2017, pp. 405–10. doi:10.1109/ICDCSW.2017.36

[158] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak,
and V. Sukhomlinov, “Agile cold starts for scalable serverless,”
in Proceedings of the 11th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 19), 2019. [Online]. Available:
https://www.usenix.org/conference/hotcloud19/presentation/mohan

https://doi.org/10.1145/3344341.3368796
https://doi.org/10.1109/CLOUD.2018.00062
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/UCC-Companion.2018.00056
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1109/UCC-Companion.2018.00049
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1002/itl2.137
https://doi.org/10.1109/ICDCSW.2017.36
https://www.usenix.org/conference/hotcloud19/presentation/mohan

126 BIBLIOGRAPHY

[159] S. K. Mohanty, G. Premsankar, and M. D. Francesco, “An evaluation of
open source serverless computing frameworks,” in Proceedings of the IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), 2018, pp. 115–120. doi:10.1109/CloudCom2018.2018.00033

[160] X. Niu, D. Kumanov, L. Hung, W. Lloyd, and K. Y. Yeung, “Leveraging
serverless computing to improve performance for sequence comparison,” in
Proceedings of the 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics (BCB), 2019, pp. 683–687.
doi:10.1145/3307339.3343465

[161] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with
serverless-optimized containers,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2018, pp. 57–70. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/oakes

[162] A. Pérez, G. Moltó, M. Caballer, and A. Calatrava, “A programming
model and middleware for high throughput serverless computing applica-
tions,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing (SAC), 2019, pp. 106–113. doi:10.1145/3297280.3297292

[163] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow:
Scalable analytics on serverless infrastructure,” in Proceedings of
the 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019, pp. 193–206. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/pu

[164] H. Puripunpinyo and M. H. Samadzadeh, “Effect of optimizing Java
deployment artifacts on AWS Lambda,” in Proceedings of the IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2017, pp. 438–43. doi:10.1109/INFCOMW.2017.8116416

[165] A. Saha and S. Jindal, “EMARS: efficient management and allocation
of resources in serverless,” in Proceedings of the 11th IEEE Interna-
tional Conference on Cloud Computing (CLOUD), 2018, pp. 827–830.
doi:10.1109/CLOUD.2018.00113

[166] S. Shillaker, “A provider-friendly serverless framework for latency-
critical applications,” in 12th Eurosys Doctoral Workshop, 2018.
[Online]. Available: http://conferences.inf.ed.ac.uk/EuroDW2018/
papers/eurodw18-Shillaker.pdf

[167] A. Singhvi, S. Banerjee, Y. Harchol, A. Akella, M. Peek, and P. Rydin,
“Granular computing and network intensive applications: Friends or foes?”
in Proceedings of the 16th ACM Workshop on Hot Topics in Networks,
2017, pp. 157–163. doi:10.1145/3152434.3152450

[168] S. Werner, J. Kuhlenkamp, M. Klems, J. Müller, and S. Tai, “Serverless big
data processing using matrix multiplication as example,” in Proceedings
of the IEEE International Conference on Big Data (Big Data), 2018, pp.
358–65. doi:10.1109/BigData.2018.8622362

https://doi.org/10.1109/CloudCom2018.2018.00033
https://doi.org/10.1145/3307339.3343465
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/3297280.3297292
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1109/INFCOMW.2017.8116416
https://doi.org/10.1109/CLOUD.2018.00113
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-Shillaker.pdf
https://doi.org/10.1145/3152434.3152450
https://doi.org/10.1109/BigData.2018.8622362

BIBLIOGRAPHY 127

[169] M. Zhang, Y. Zhu, C. Zhang, and J. Liu, “Video processing with serverless
computing: A measurement study,” in Proceedings of the 29th ACM
Workshop on Network and Operating Systems Support for Digital Audio
and Video, 2019, pp. 61–66. doi:10.1145/3304112.3325608

[170] K. Kimura, A. Sekiguchi, S. Choudhary, and T. Uehara, “A JavaScript
transpiler for escaping from complicated usage of cloud services and APIs,”
in Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC), 2018, pp. 69–78. doi:10.1109/APSEC.2018.00021

[171] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016, pp. 249–264.
[Online]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gao

https://doi.org/10.1145/3304112.3325608
https://doi.org/10.1109/APSEC.2018.00021
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gao

128 BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Synopsis
	Background
	Cloud Computing
	Serverless Computing and Function-as-a-Service
	Performance Evaluation
	Micro- and Application-Benchmarks
	Reproducibility

	Research Scope
	Research Questions
	Research Map

	Related Work
	IaaS Performance Evaluation
	Cloud Benchmarking Execution Methodology
	Cloud Application Performance Prediction

	FaaS Performance Evaluation
	FaaS Application Characteristics
	FaaS Performance Evaluation Landscape
	Reproducibility of FaaS Performance Experiments

	Research Methodology
	Field Experiment
	Qualitative Sample Study
	Literature Review

	Contributions
	Cloud Benchmark Suite
	Cloud Application Performance Estimation
	Serverless Applications
	Function-as-a-Service Performance Evaluation
	Optimized Serverless Orchestrations

	Results
	RQ1: IaaS Performance Evaluation
	RQ1.1: IaaS Benchmark Suite
	RQ1.2: Application Performance Estimation

	RQ2: FaaS Performance Evaluation
	RQ2.1: FaaS Applications
	RQ2.2: Existing FaaS Performance Studies
	RQ2.3: Reproducibility of FaaS Experiments

	Discussion
	IaaS Performance Evaluation
	FaaS Performance Evaluation

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Future Work
	FaaS Application Performance Benchmark
	Performance-Optimized FaaS Applications

	Conclusions

	Cloud Benchmark Suite
	Introduction
	Related Work
	Benchmarking Methodology
	Architecture
	Cloud WorkBench Extensions
	Benchmarks
	Micro Benchmarks
	Application Benchmarks

	Case Study
	Setup
	Results
	Discussion

	Conclusion

	Cloud Application Performance Estimation
	Introduction
	Related Work
	Methodology
	Benchmarking Dataset
	Variability for the same Instance Types
	Results
	Discussion
	Implications

	Results and Discussion
	RQ1 – Estimation Accuracy
	Results
	Discussion
	Implications

	RQ2 – Micro-Benchmark Selection
	Results
	Discussion
	Implications

	Conclusion

	Serverless Applications
	Introduction
	Methodology
	Serverless Adoption (Why?)
	Serverless Context (When?)
	Serverless Implementation (How?)
	Conclusion

	Function-as-a-Service Performance Evaluation
	Introduction
	Background
	Micro-Benchmarks
	Application-Benchmarks

	Research Questions
	Study Design
	MLR Process Overview
	Search Strategies
	Manual Search for Academic Literature
	Database Search for Academic Literature
	Web Search for Grey Literature
	Complementary Search
	Snowballing

	Selection Strategy
	Data Extraction and Synthesis
	Threats to Validity

	Study Results and Discussion
	Publication Trends (RQ1)
	Benchmarked Platforms (RQ2)
	Evaluated Performance Characteristics (RQ3)
	Evaluated Benchmark Types (RQ3.1)
	Evaluated Micro-Benchmarks (RQ3.2)
	Evaluated General Characteristics (RQ3.3)

	Used Platform Configurations (RQ4)
	Used Language Runtimes (RQ4.1)
	Used Function Triggers (RQ4.2)
	Used External Services (RQ4.3)

	Reproducibility (RQ5)

	Implications and Gaps in Literature
	Publication Trends (RQ1)
	Benchmarked Platforms (RQ2)
	Evaluated Performance Characteristics (RQ3)
	Evaluated Benchmark Types (RQ3.1)
	Evaluated Micro-Benchmarks (RQ3.2)
	Evaluated General Characteristics (RQ3.3)

	Used Platform Configurations (RQ4)
	Used Language Runtimes (RQ4.1)
	Used Function Triggers (RQ4.2)
	Used External Services (RQ4.3)

	Reproducibility (RQ5)

	Related Work
	Literature Reviews on FaaS
	Literature Reviews on Cloud Performance
	Reproducibility Principles

	Conclusion

	Optimized Serverless Orchestrations
	Introduction
	Vision
	Current Work and Challenges
	Conclusion and Future Research

	Bibliography

