30 research outputs found

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Surface Micromachined Widely Tunable VCSEL and OAM-Filter for Optical Data Transmission

    Get PDF
    The implication of wavelength division multiplexed passive optical network (WDM PON) is becoming more evident as the traffic demands of the mobile network operators keep increasing. It offers a cost-efficient solution to handle the bandwidth and latency requirements of the mobile fronthaul. The key component of such a WDM-PON system is a centralized wavelength-controlled tunable laser. The biggest challenge up to now is the lack of low-cost wideband 1550 nm tunable lasers with 10 Gbit/s transmission capacity. In the first part of this work, a widely-tunable microelectromechanical system vertical-cavity surface-emitting laser (MEMS VCSEL) is developed. The cost-efficient, directly-modulated laser can be utilized for 10Gbit/s transmission over relevant reach. It also offers simplicity for wideband autonomous tuning. The device is suitable for applications including hot backup and fixed wavelength laser replacement for inventory reduction. Within the framework of this work, a PECVD-deposited MEMS distributed Bragg reflector (DBR) mirror is surface-micromachined on top of a short-cavity active VCSEL structure. The MEMS-DBR consisting of SiNx/SiOy dielectric materials has a very high reflectivity with wide stopband. Wavelength tuning is realized by the electrothermal actuation of the MEMS electrode. The fabrication steps of the MEMS aiming for large volume production is discussed in detail. A comprehensive static and dynamic characterizations of MEMS VCSEL including far-field, linewidth, polarization behavior, modulation capacity and relative intensity noise is presented. The effect of the temperature change on its tuning behavior as well as on the static and dynamic performance is investigated. The obtained wavelength tuning range of more than 100 nm covers the complete telecom C-band (1530–1565 nm) and part of L-band (1565–1625 nm). A small-signal amplitude modulation bandwidth of up to 8.35GHz is demonstrated for the center emission wavelength around 1550 nm. This enables to implement a directly-modulated MEMS VCSEL based back-to-back link at 10Gbit/s data transmission for 76 nm tuning range. Also, quasi error-free 10Gbit/s transmission over 40 km standard single-mode fiber for a tuning range of more than 60 nm validates its potential for the above mentioned novel WDM-PON system. Apart from optical communication, the scope of this tunable source is investigated in applications such as dispersion spectroscopy and tunable terahertz (THz) signal generation. Experimental validation of multi-species dispersion spectroscopy using MEMS VCSEL is presented for the first time in this work, where concurrent detection of acetylene (C2H2), hydrogen cyanide (HCN), and carbon monoxide (CO) is demonstrated. The second part of the work constitutes demonstration and experimental validation of a novel optical component called MEMS orbital angular momentum (OAM) filter. The filter consists of a micro-sized spiral phase plate (SPP) which is integrated to the MEMS-DBR of a Fabry-Perot optical filter by means of direct laser writing. The onchip devices are suitable for distinguishing different OAM modes for a broad tuning range around 1550 nm emission and considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. The utilization of the OAM modes as an additional orthogonal basis of information carriers in both free space and optical fiber communication systems potentially enhances the transmission capacity tremendously. Four devices with OAM orders of 0 (i.e., no SPP on MEMS), 1, 2 and 3 have been investigated. They are capable of generating/receiving the OAM beam of corresponding order over a continuous tuning range of more than 30 nm, for which the designed SPPs work with high mode purity. The system performance is evaluated by multiplexing two wavelength- and two OAM channels. Error-free free-space transmission at 10Gbit/s suggests that OAM-filters functioning over a wide wavelength range could be employed as an additional degree of freedom for increasing the capacity of free-space communication to a great extent

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Integrated Optoelectronic Devices and System Limitations for WDM Passive Optical Networks

    Get PDF
    This thesis puts focus on the technological challenges for Wavelength Division Multiplexed Passive Optical Network (WDM-PON) implementation, and presents novel semiconductor optical devices for deployment at the optical network unit (ONU). The first-ever reported L-band Reflective semiconductor optical amplifier (RSOA) is presented based on InP-base material. A theoretical model is developed to estimate the optical gain and the saturation power of this device compared to a conventional SOA. Experiments on this device design show long-range telecom wavelength operation, with polarization-independent gain of greater than 20 dB, and low saturation output power of 0 dBm suitable for PON applications. Next, the effect of the amplified spontaneous emission noise of RSOA devices on WDM-PON system is investigated. It is shown through theoretical modeling and simulations that the RSOA noise combined with receiver noise statistics increase probability of error, and induce considerable power penalties to the WDM-PON system. By improving the coupling efficiencies, and by distributing more current flow to the input of these devices, steps can be taken to improve device noise characteristics. Further, in spectrally-spliced WDM-PONs deploying RSOAs, the effect of AWG filter shape on system performance is investigated. Simulation modeling and experiments show that deployment of Flat-band AWGs is critical for reducing the probability of error caused by AWG spectral shape filtering. Flat-band athermal AWGs in comparison to Gaussin-shape counterparts satisfy the maximum acceptable error probability requirements, and reduce the power penalty associated with filtering effect. In addition, detuning between two AWG center wavelengths impose further power penalties to the WDM-PON system. In the last section of this thesis, motivated by RSOA device system limitations, a novel injection-locked Fabry-Perot (IL-FP) device is presented which consists of a gain section monolithically integrated with a phase section. The gain section provides locking of one FP mode to a seed source wavelength, while the phase modulator allows for adjusting the wavelength of the internal modes by tuning bias current to maintain mode-locking. This device counters any mode drifts caused by temperature variations, and allows for cooler-less operation over a wide range of currents. The devices and the performance metrics subsequently allow for a hybrid integration platform on a silicon substrate and integrate many functionalities like reflective modulator with thin film dielectric filter and receiver on a single chip for deployment at the user-end of future-proof low cost WDM-PONs

    Integrated Optical-Wireless Interface and Detection

    Get PDF
    This chapter elaborates on the beneficial aspects and hardware implementations of incorporating ultradense WDM-PONs (UDWDM-PONs) with hybrid optical-wireless fronthaul links and fiber to the home applications. Simulation results on the synthesis of a low-cost and low-energy consumption optoelectronic unit within the future 5G base stations (BS) are presented. In addition, an advanced neural network is investigated capable of compensating for the linear and nonlinear effects induced by semiconductor optical amplifiers (SOA)

    Dynamically reconfigurable long-reach PONs for high capacity access

    Get PDF
    Fibre-to-the-Premises (FTTP) is currently seen as the ultimate in high-speed transmission technologies for delivering ubiquitous bandwidth to customers. However, as the deployment of network infrastructure requires a substantial investment, the main obstacle to fibre deployment is that of financial viability. With this in mind, a logical strategy to offset network costs is to optimise the infrastructure in order to capture a greater amount of customers over larger areas with increased sharing of network resources. This approach prompted the design of a long-reach passive optical network (LR-PON) in which the physical reach and split of a conventional PON is significantly increased through the use of intermediate optical amplification. In particular, the LR-PON architecture effectively integrates the metro and access networks enabling the majority of local exchange sites to be bypassed resulting in a substantial reduction in field equipment requirements and power consumption. Furthermore, the extension in physical reach and split can be coupled with an increased information capacity through the use of time- and wavelength division multiplexing (TWDM) which serve to exploit the large bandwidth capabilities offered by single-mode fibre. In this project, reconfigurable TWDM LR-PON architectures which dynamically exploit the wavelength domain are proposed, assembled and characterised in order to establish an economically viable ‘open access’ environment that is capable of concurrently supporting multiple operators offering converged services (residential, business and mobile) to support diverse customer requirements and locations. The main investigations in this work address the key physical layer challenges within such wavelength-agile networks. In particular, a range of experimental analysis has been carried out in order to realise the critical component technologies which include low-cost, 10G-capable, wavelength-tuneable transmitters for mass-market residential deployment and the development of gain-stabilised optical amplifier nodes to support the targeted physical reach (≄ 100km) and split (≄ 512). Finally, the feasibility of the proposed dynamically reconfigurable LR-PON configurations as a flexible and cost-effective solution for future access networks is verified through full-scale network demonstrations using an experimental laboratory test-bed

    LASER Tech Briefs, Spring 1994

    Get PDF
    Topics in this Laser Tech Brief include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Mechanics, Fabrication Technology, and books and reports

    Optimising the efficiency of coherent optical packet switched networks

    Get PDF
    There is a continuing need to increase throughput in optical networks to satisfy the demands of internet applications. However, the non-linear Shannon capacity of standard single mode fibre is being approached. Also, almost all of the power used in optical networks is used by electronic routers. One possible solution to deal with both problems is to use optical packet switching. Optical packet switching uses fast switching tuneable lasers, which can change wavelength in the order of a several nanoseconds, to dynamically vary wavelength assignments in a network, and thus achieve routing in the network without electronic routers. In addition, fast wavelength assignment reduces waiting times, resulting in better utilization of network resources. However, the frequency dynamics of the tuneable lasers after switching wavelengths increases the waiting times required to successfully transmit data packets. In this thesis, frequency and phase dynamics of a tuneable laser transmitter, after a wavelength switching event, are initially characterised accurately using a novel technique. The effects that the frequency dynamics have on the transmission of coherent optical communication signals are mitigated using doubly differential decoding, a new approach proposed in this work for application in optical packet switched networks. This technique reduces the waiting times required to successfully transmit data after a wavelength switching event, and this enhances overall network efficiency and throughput. In addition, this work proposes and demonstrates the use of a least-mean squares algorithm to overcome polarisation demultiplexing issues which are present in these networks, which also decreases waiting times, increases network efficiency, and improves system robustness

    Digital signal processing optical receivers for the mitigation of physical layer impairments in dynamic optical networks

    Get PDF
    IT IS generally believed by the research community that the introduction of complex network functions—such as routing—in the optical domain will allow a better network utilisation, lower cost and footprint, and a more efficiency in energy usage. The new optical components and sub-systems intended for dynamic optical networking introduce new kinds of physical layer impairments in the optical signal, and it is of paramount importance to overcome this problem if dynamic optical networks should become a reality. Thus, the aim of this thesis was to first identify and characterise the physical layer impairments of dynamic optical networks, and then digital signal processing techniques were developed to mitigate them. The initial focus of this work was the design and characterisation of digital optical receivers for dynamic core optical networks. Digital receiver techniques allow for complex algorithms to be implemented in the digital domain, which usually outperform their analogue counterparts in performance and flexibility. An AC-coupled digital receiver for core networks—consisting of a standard PIN photodiode and a digitiser that takes samples at twice the Nyquist rate—was characterised in terms of both bit-error rate and packet-error rate, and it is shown that the packet-error rate can be optimised by appropriately setting the preamble length. Also, a realistic model of a digital receiver that includes the quantisation impairments was developed. Finally, the influence of the network load and the traffic sparsity on the packet-error rate performance of the receiver was investigated. Digital receiver technologies can be equally applied to optical access networks, which share many traits with dynamic core networks. A dual-rate digital receiver, capable of detecting optical packets at 10 and 1.25 Gb/s, was developed and characterised. The receiver dynamic range was extended by means of DC-coupling and non-linear signal clipping, and it is shown that the receiver performance is limited by digitiser noise for low received power and non-linear clipping for high received power

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number
    corecore