6,124 research outputs found

    Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Get PDF
    This paper describes the design of a current-mode single-input multiple-output (SIMO) universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF) applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory

    Log-domain Universal Biquad Filter Design Using Lossy Integrators

    Get PDF
    In this paper, a new current mode low voltage log domain Class A universal biquad filter is proposed. The proposed circuit is derived from the block diagram based on Kerwin-Huelsman-Newcomb (KHN) circuit using lossy integrators. The circuit can provide second-order low pass,band pass and high pass filter characteristics. State space method and translinear principle is used for circuit synthesis.The natural frequency f0 and quality factor Q of the circuit is electronically tunable by varying amplitudes of the current sources. PSpice simulation results are given in order to verify the theoretical analysis. The simulations are performed with both ideal transistor models and AT&T CBIC-R type real transistor models

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Electronically Tunable Current-Mode Third-Order Square-Root-Domain Filter Design

    Get PDF
    In this study, electronically-tunable, current-mode, square-root-domain, third-order low-pass filter is proposed. The study is carried out with three circuit designs. First circuit is third-order low-pass Butterworth filter, second circuit is third-order low-pass Chebyshev filter and the last circuit is third-order low-pass elliptic filter. All the input and output values of the filter circuit are current. Only grounded capacitors and MOSFETs are required in order to realize the filter circuit. Additionally, natural frequency f0 of the current-mode filter can be adjusted electronically using outer current sources. To validate the theory and to demonstrate the performance of third-order filter, frequency and time domain simulations of PSPICE program are used. To that end, TSMC 0.35μm Level 3 CMOS process parameters are utilized to realize the simulations of the filter. © 2018 World Scientific Publishing Company

    Novel active function blocks and their applications in frequency filters and quadrature oscillators

    Get PDF
    Kmitočtové filtry a sinusoidní oscilátory jsou lineární elektronické obvody, které jsou používány v široké oblasti elektroniky a jsou základními stavebními bloky v analogovém zpracování signálu. V poslední dekádě pro tento účel bylo prezentováno velké množství stavebních funkčních bloků. V letech 2000 a 2006 na Ústavu telekomunikací, VUT v Brně byly definovány univerzální proudový konvejor (UCC) a univerzální napět'ový konvejor (UVC) a vyrobeny ve spolupráci s firmou AMI Semiconductor Czech, Ltd. Ovšem, stále existuje požadavek na vývoj nových aktivních prvků, které nabízejí nové výhody. Hlavní přínos práce proto spočívá v definici dalších původních aktivních stavebních bloků jako jsou differential-input buffered and transconductance amplifier (DBTA), current follower transconductance amplifier (CFTA), z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), generalized current follower differential input transconductance amplifier (GCFDITA), voltage gain-controlled modified current-feedback operational amplifier (VGC-MCFOA), a minus-type current-controlled third-generation voltage conveyor (CC-VCIII-). Pomocí navržených aktivních stavebních bloků byly prezentovány původní zapojení fázovacích článků prvního řádu, univerzální filtry druhého řádu, ekvivalenty obvodu typu KHN, inverzní filtry, aktivní simulátory uzemněného induktoru a kvadraturní sinusoidní oscilátory pracující v proudovém, napět'ovém a smíšeném módu. Chování navržených obvodů byla ověřena simulací v prostředí SPICE a ve vybraných případech experimentálním měřením.Frequency filters and sinusoidal oscillators are linear electric circuits that are used in wide area of electronics and also are the basic building blocks in analogue signal processing. In the last decade, huge number of active building blocks (ABBs) were presented for this purpose. In 2000 and 2006, the universal current conveyor (UCC) and the universal voltage conveyor (UVC), respectively, were designed at the Department of Telecommunication, BUT, Brno, and produced in cooperation with AMI Semiconductor Czech, Ltd. There is still the need to develop new active elements that offer new advantages. The main contribution of this thesis is, therefore, the definition of other novel ABBs such as the differential-input buffered and transconductance amplifier (DBTA), the current follower transconductance amplifier (CFTA), the z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), the generalized current follower differential input transconductance amplifier (GCFDITA), the voltage gain-controlled modified current-feedback operational amplifier (VGC-MCFOA), and the minus-type current-controlled third-generation voltage conveyor (CC-VCIII-). Using the proposed ABBs, novel structures of first-order all-pass filters, second-order universal filters, KHN-equivalent circuits, inverse filters, active grounded inductance simulators, and quadrature sinusoidal oscillators working in the current-, voltage-, or mixed-mode are presented. The behavior of the proposed circuits has been verified by SPICE simulations and in selected cases also by experimental measurements.

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Realization of Resistorless Lossless Positive and Negative Grounded Inductor Simulators Using Single ZC-CCCITA

    Get PDF
    This paper is in continuation with the very recent work of Prasad et al. [14], wherein new realizations of grounded and floating positive inductor simulator using current differencing transconductance amplifier (CDTA) are reported. The focus of the paper is to provide alternate realizations of lossless, both positive and negative inductor simulators (PIS and NIS) in grounded form using z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), which can be considered as a derivative of CDTA, wherein the current differencing unit (CDU) is reduced to a current-controlled current inverting unit. We demonstrate that only a single ZC-CCCITA and one grounded capacitor are sufficient to realize grounded lossless PIS or NIS. The proposed circuits are resistorless whose parameters can be controlled through the bias currents. The workability of the proposed PIS is validated by SPICE simulations on three RLC prototypes

    Design of log domain differential class AB universal biquad filter by employing lossy integrators

    Get PDF
    A new current mode low voltage differential Class AB second order universal biquad filter has been designed in this work. In design process, inspiring from Kerwin-Huelsman-Newcomb circuit, the circuit is realized with lossy integrators. The circuit has fundamental filter outputs namely; low pass, high pass and band pass. All pass and notch filter outputs have also been obtained by using additional circuits. In circuit design process, the state space method and translinear principle have been used. Two of the circuit parameters are electronically tunable which are the quality factor Q and the pole frequency f0. PSpice circuit simulations have been obtained to check the theoretical results’ validity. In PSpice simulations, both ideal and AT&T CBIC-R type real transistor models have been used

    Log-domain electronically-tuneable fully differential high order multi-function filter

    Get PDF
    This paper presents the synthesis of fully deferential circuit that is capable of performing simultaneous high-pass, low-pass, and band-pass filtering in the log domain. The circuit utilizes modified Seevinck’s integrators in the current mode. The transfer function describing the filter is first presented in the form of a canonical signal flow graph through applying Mason’s gain formula. The resulting signal flow graph consists of summing points and pick-off points associated with current mode integrators within unity-gain negative feedback loops. The summing points and the pick-off points are then synthesized as simple nodes and current mirrors, respectively. A new fully differential current-mode integrator circuit is proposed to realize the integration operation. The proposed integrator uses grounded capacitors with no resistors and can be adjusted to work as either lossless or lossy integrator via tuneable current sources. The gain and the cutoff frequency of the integrator are adjustable via biasing currents. Detailed design and simulation results of an example of a 5th order filter circuit is presented. The proposed circuit can perform simultaneously 5th order low-pass filtering, 5th order high-pass filtering, and 4th order band-pass filtering. The simulation is performed using Pspice with practical Infineon BFP649 BJT model. Simulation results show good matching with the target

    Realization of Low-Voltage Modified CBTA and Design of Cascadable Current-Mode All-Pass Filter

    Get PDF
    In this paper, a low voltage modified current backward transconductance amplifier (MCBTA) and a novel first-order current-mode (CM) all-pass filter are presented. The MCBTA can operate with ±0.9 V supply voltage and the total power consumption of MCBTA is 1.27 mW. The presented all-pass filter employs single MCBTA, a grounded resistor and a grounded capacitor. The circuit possesses low input and high output impedances which make it ideal for current-mode systems. The presented all-pass filter circuit can be made electronically tunable due to the bias current of the MCBTA. Non-ideal study along with simulation results are given for validation purpose. Further, an nth-order cascadable all-pass filter is also presented. It uses n MCBTAs, n grounded resistors and n grounded capacitors. The performance of the proposed circuits is demonstrated by using PSPICE simulations based on the 0.18 µm TSMC level-7 CMOS technology parameters
    corecore