3,720 research outputs found

    Detection of urinary bladder mass in CT urography with SPAN

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134872/1/mp2503.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134872/2/mp2503_am.pd

    Ultrasound Imaging

    Get PDF
    This book provides an overview of ultrafast ultrasound imaging, 3D high-quality ultrasonic imaging, correction of phase aberrations in medical ultrasound images, etc. Several interesting medical and clinical applications areas are also discussed in the book, like the use of three dimensional ultrasound imaging in evaluation of Asherman's syndrome, the role of 3D ultrasound in assessment of endometrial receptivity and follicular vascularity to predict the quality oocyte, ultrasound imaging in vascular diseases and the fetal palate, clinical application of ultrasound molecular imaging, Doppler abdominal ultrasound in small animals and so on

    Diseases of the Abdomen and Pelvis 2018-2021: Diagnostic Imaging - IDKD Book

    Get PDF
    Gastrointestinal disease; PET/CT; Radiology; X-ray; IDKD; Davo

    Practical recommendations for performing ultrasound scanning in the urological and andrological fields

    Get PDF
    Aim: US scanning has been defined as the urologist's stethoscope. These recommendations have been drawn up with the aim of ensuring minimum standards of excellence for ultrasound imaging in urological and andrological practice. A series of essential recommendations are made, to be followed during ultrasound investigations in kidney, prostate, bladder, scrotal and penile diseases. Methods: Members of the Imaging Working Group of the Italian Society of Urology (SIU) in collaboration with the Italian Society of Ultrasound in Urology, Andrology and Nephrology (SIEUN) identified expert Urologists, Andrologists, Nephrologists and Radiologists. The recommendations are based on review of the literature, previously published recommendations, books and the opinions of the experts. The final document was reviewed by national experts, including members of the Italian Society of Radiology. Results: Recommendations are listed in 5 chapters, focused on: kidney, bladder, prostate and seminal vesicles, scrotum and testis, penis, including penile echo-doppler. In each chapter clear definitions are made of: indications, technological standards of the devices, the method of performance of the investigation. The findings to be reported are described and discussed, and examples of final reports for each organ are included. In the tables, the ultrasound features of the principal male uro-genital diseases are summarized. Diagnostic accuracy and second level investigations are considered. Conclusions: Ultrasound is an integral part of the diagnosis and follow-up of diseases of the urinary system and male genitals in patients of all ages, in both the hospital and outpatient setting. These recommendations are dedicated to enhancing communication and evidence-based medicine in an inter- and multi-disciplinary approach. The ability to perform and interpret ultrasound imaging correctly has become an integral part of clinical practice in uro-andrology, but intra and inter-observer variability is a well known limitation. These recommendations will help to improve reliability and reproducibility in uro-andrological ultrasound scanning

    Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: Correlation with FDG-PET/CT

    Get PDF
    Purpose: The aim of the study was to assess correlations between parameters on diffusionweighted imaging and 2-deoxy-2-[ 18F]fluoro-D-glucose- positron emission tomography/computed tomography (FDG-PET/CT) in rectal cancer. Procedures: Thirty-three consecutive patients with pathologically confirmed rectal adenocarcinoma were included in this study. Apparent diffusion coefficient (ADC) maps were generated to calculate ADC mean (average ADC), ADC min (lowest ADC), tumor volume, and total diffusivity index (TDI). PET/CT exams were performed within 1 week of magnetic resonance imaging. Standardized uptake values (SUVs) were normalized to the injected FDG dose and body weight. SUV max (maximum SUV), SUV mean (average SUV), tumor volume, and total lesion glycolysis (TLG) were calculated using a 50% threshold. Results: Significant negative correlations were found between ADC min and SUV max (r=-0.450, p=0.009), and between ADC mean and SUV mean (r=-0.402, p=0.020). A significant positive correlation was found between TDI and TLG (r=0.634, p<0.001). Conclusion: The significant negative correlations between ADC and SUV suggest an association between tumor cellularity and metabolic activity in primary rectal adenocarcinoma. © Academy of Molecular Imaging and Society for Molecular Imaging, 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Urology

    Get PDF
    УЧЕБНО-МЕТОДИЧЕСКИЕ ПОСОБИЯУРОЛОГИЯУРОЛОГИЧЕСКИЕ БОЛЕЗН

    IMAGE PROCESSING, SEGMENTATION AND MACHINE LEARNING MODELS TO CLASSIFY AND DELINEATE TUMOR VOLUMES TO SUPPORT MEDICAL DECISION

    Get PDF
    Techniques for processing and analysing images and medical data have become the main’s translational applications and researches in clinical and pre-clinical environments. The advantages of these techniques are the improvement of diagnosis accuracy and the assessment of treatment response by means of quantitative biomarkers in an efficient way. In the era of the personalized medicine, an early and efficacy prediction of therapy response in patients is still a critical issue. In radiation therapy planning, Magnetic Resonance Imaging (MRI) provides high quality detailed images and excellent soft-tissue contrast, while Computerized Tomography (CT) images provides attenuation maps and very good hard-tissue contrast. In this context, Positron Emission Tomography (PET) is a non-invasive imaging technique which has the advantage, over morphological imaging techniques, of providing functional information about the patient’s disease. In the last few years, several criteria to assess therapy response in oncological patients have been proposed, ranging from anatomical to functional assessments. Changes in tumour size are not necessarily correlated with changes in tumour viability and outcome. In addition, morphological changes resulting from therapy occur slower than functional changes. Inclusion of PET images in radiotherapy protocols is desirable because it is predictive of treatment response and provides crucial information to accurately target the oncological lesion and to escalate the radiation dose without increasing normal tissue injury. For this reason, PET may be used for improving the Planning Treatment Volume (PTV). Nevertheless, due to the nature of PET images (low spatial resolution, high noise and weak boundary), metabolic image processing is a critical task. The aim of this Ph.D thesis is to develope smart methodologies applied to the medical imaging field to analyse different kind of problematic related to medical images and data analysis, working closely to radiologist physicians. Various issues in clinical environment have been addressed and a certain amount of improvements has been produced in various fields, such as organs and tissues segmentation and classification to delineate tumors volume using meshing learning techniques to support medical decision. In particular, the following topics have been object of this study: • Technique for Crohn’s Disease Classification using Kernel Support Vector Machine Based; • Automatic Multi-Seed Detection For MR Breast Image Segmentation; • Tissue Classification in PET Oncological Studies; • KSVM-Based System for the Definition, Validation and Identification of the Incisinal Hernia Reccurence Risk Factors; • A smart and operator independent system to delineate tumours in Positron Emission Tomography scans; 3 • Active Contour Algorithm with Discriminant Analysis for Delineating Tumors in Positron Emission Tomography; • K-Nearest Neighbor driving Active Contours to Delineate Biological Tumor Volumes; • Tissue Classification to Support Local Active Delineation of Brain Tumors; • A fully automatic system of Positron Emission Tomography Study segmentation. This work has been developed in collaboration with the medical staff and colleagues at the: • Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi (DIBIMED), University of Palermo • Cannizzaro Hospital of Catania • Istituto di Bioimmagini e Fisiologia Molecolare (IBFM) Centro Nazionale delle Ricerche (CNR) of Cefalù • School of Electrical and Computer Engineering at Georgia Institute of Technology The proposed contributions have produced scientific publications in indexed computer science and medical journals and conferences. They are very useful in terms of PET and MRI image segmentation and may be used daily as a Medical Decision Support Systems to enhance the current methodology performed by healthcare operators in radiotherapy treatments. The future developments of this research concern the integration of data acquired by image analysis with the managing and processing of big data coming from a wide kind of heterogeneous sources

    Performing PET/CT studies: do they create anxiety?

    Get PDF
    Introduction: Anxiety is a common problem in primary care and specialty medical settings. Treating an anxious patient takes more time and adds stress to staff. Unrecognised anxiety may lead to exam repetition, image artifacts and hinder the scan performance. Reducing patient anxiety at the onset is probably the most useful means of minimizing artifactual FDG uptake, both fat brown and skeletal muscle uptake, as well patient movement and claustrophobia. The aim of the study was to examine the effects of information giving on the anxiety levels of patients who are to undergo a PET/CT and whether the patient experience is enhanced with the creation of a guideline. Methodology: Two hundred and thirty two patients were given two questionnaires before and after the procedure to determine their prior knowledge, concerns, expectations and experiences about the study. Verbal information was given by one of the technologists after the completion of the first questionnaire. Results: Our results show that the main causes of anxiety in patients who are having a PET/CT is the fear of the procedure itself, and fear of the results. The patients who suffered from greater anxiety were those who were scanned during the initial stage of a disease. No significant differences were found between the anxiety levels pre procedural and post procedural. Findings with regard to satisfaction show us that the amount of information given before the procedure does not change the anxiety levels and therefore, does not influence patient satisfaction. Conclusions: The performance of a PET/CT scan is an important and statistically generator of anxiety. PET/CT patients are often poorly informed and present with a range of anxieties that may ultimately affect examination quality. The creation of a guideline may reduce the stress of not knowing what will happen, the anxiety created and may increase their satisfaction in the experience of having a PET/CT scan
    corecore