4 research outputs found

    Tuberculosis Disease Detection through CXR Images based on Deep Neural Network Approach

    Get PDF
    Tuberculosis (TB) is a disease that, if left untreated for an extended period of time, can ultimately be fatal. Early TB detection can be aided by using a deep learning ensemble. In previous work, ensemble classifiers were only trained on images that shared similar characteristics. It is necessary for an ensemble to produce a diverse set of errors in order for it to be useful; this can be accomplished by making use of a number of different classifiers and/or features. In light of this, a brand-new framework has been constructed in this study for the purpose of segmenting and identifying TB in human Chest X-ray. It was determined that searching traditional web databases for chest X-ray was necessary. At this point, we pass the photos that we have collected over to Swin ResUnet3 so that they may be segmented. After the segmented chest X-ray have been provided to it, the Multi-scale Attention-based Densenet with Extreme Learning Machine (MAD-ELM) model will be applied in the detection stage in order to effectively diagnose tuberculosis from human chest X-ray. This will be done in order to maximize efficiency. Because it increased the variety of errors made by the basic classifiers, the supplied variation of the approach that was proposed was able to detect tuberculosis more effectively. The proposed ensemble method produced results with an accuracy of 94.2 percent, which are comparable to those obtained by past efforts

    Automated methods for tuberculosis detection/diagnosis : a literature review

    Get PDF
    Funding: Welcome Trust Institutional Strategic Support fund of the University of St Andrews, grant code 204821/Z/16/Z.Tuberculosis (TB) is one of the leading infectious causes of death worldwide. The effective management and public health control of this disease depends on early detection and careful treatment monitoring. For many years, the microscopy-based analysis of sputum smears has been the most common method to detect and quantify Mycobacterium tuberculosis (Mtb) bacteria. Nonetheless, this form of analysis is a challenging procedure since sputum examination can only be reliably performed by trained personnel with rigorous quality control systems in place. Additionally, it is affected by subjective judgement. Furthermore, although fluorescence-based sample staining methods have made the procedure easier in recent years, the microscopic examination of sputum is a time-consuming operation. Over the past two decades, attempts have been made to automate this practice. Most approaches have focused on establishing an automated method of diagnosis, while others have centred on measuring the bacterial load or detecting and localising Mtb cells for further research on the phenotypic characteristics of their morphology. The literature has incorporated machine learning (ML) and computer vision approaches as part of the methodology to achieve these goals. In this review, we first gathered publicly available TB sputum smear microscopy image sets and analysed the disparities in these datasets. Thereafter, we analysed the most common evaluation metrics used to assess the efficacy of each method in its particular field. Finally, we generated comprehensive summaries of prior work on ML and deep learning (DL) methods for automated TB detection, including a review of their limitations.Publisher PDFPeer reviewe

    A Survey of Deep Learning for Lung Disease Detection on Medical Images: State-of-the-Art, Taxonomy, Issues and Future Directions

    Get PDF
    The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis
    corecore