7,731 research outputs found

    Who are Like-minded: Mining User Interest Similarity in Online Social Networks

    Full text link
    In this paper, we mine and learn to predict how similar a pair of users' interests towards videos are, based on demographic (age, gender and location) and social (friendship, interaction and group membership) information of these users. We use the video access patterns of active users as ground truth (a form of benchmark). We adopt tag-based user profiling to establish this ground truth, and justify why it is used instead of video-based methods, or many latent topic models such as LDA and Collaborative Filtering approaches. We then show the effectiveness of the different demographic and social features, and their combinations and derivatives, in predicting user interest similarity, based on different machine-learning methods for combining multiple features. We propose a hybrid tree-encoded linear model for combining the features, and show that it out-performs other linear and treebased models. Our methods can be used to predict user interest similarity when the ground-truth is not available, e.g. for new users, or inactive users whose interests may have changed from old access data, and is useful for video recommendation. Our study is based on a rich dataset from Tencent, a popular service provider of social networks, video services, and various other services in China

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    A Survey of Graph Neural Networks for Social Recommender Systems

    Full text link
    Social recommender systems (SocialRS) simultaneously leverage user-to-item interactions as well as user-to-user social relations for the task of generating item recommendations to users. Additionally exploiting social relations is clearly effective in understanding users' tastes due to the effects of homophily and social influence. For this reason, SocialRS has increasingly attracted attention. In particular, with the advance of Graph Neural Networks (GNN), many GNN-based SocialRS methods have been developed recently. Therefore, we conduct a comprehensive and systematic review of the literature on GNN-based SocialRS. In this survey, we first identify 80 papers on GNN-based SocialRS after annotating 2151 papers by following the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Then, we comprehensively review them in terms of their inputs and architectures to propose a novel taxonomy: (1) input taxonomy includes 5 groups of input type notations and 7 groups of input representation notations; (2) architecture taxonomy includes 8 groups of GNN encoder, 2 groups of decoder, and 12 groups of loss function notations. We classify the GNN-based SocialRS methods into several categories as per the taxonomy and describe their details. Furthermore, we summarize the benchmark datasets and metrics widely used to evaluate the GNN-based SocialRS methods. Finally, we conclude this survey by presenting some future research directions.Comment: GitHub repository with the curated list of papers: https://github.com/claws-lab/awesome-GNN-social-recsy

    Fuzzy Group Decision Making for Influence-Aware Recommendations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Group Recommender Systems are special kinds of Recommender Systems aimed at suggesting items to groups rather than individuals taking into account, at the same time, the preferences of all (or the majority of) members. Most existing models build recommendations for a group by aggregating the preferences for their members without taking into account social aspects like user personality and interpersonal trust, which are capable of affecting the item selection process during interactions. To consider such important factors, we propose in this paper a novel approach to group recommendations based on fuzzy influence-aware models for Group Decision Making. The proposed model calculates the influence strength between group members from the available information on their interpersonal trust and personality traits (possibly estimated from social networks). The estimated influence network is then used to complete and evolve the preferences of group members, initially calculated with standard recommendation algorithms, toward a shared set of group recommendations, simulating in this way the effects of influence on opinion change during social interactions. The proposed model has been experimented and compared with related works

    A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups

    Get PDF
    In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, colleagues, etc. Our proposal deals with large numbers of automatically detected groups. Marketing and electronic commerce are typical targets of large homogenous groups. Large groups present a major difficulty in terms of automatically achieving homogeneity, equilibrated size and accurate recommendations. We provide a method that combines diverse machine learning algorithms in an original way: homogeneous groups are detected by means of a clustering based on hidden factors instead of ratings. Predictions are made using a virtual user model, and virtual users are obtained by performing a hidden factors aggregation. Additionally, this paper selects the most appropriate dimensionality reduction for the explained RS aim. We conduct a set of experiments to catch the maximum cumulative deviation of the ratings information. Results show an improvement on recommendations made to large homogeneous groups. It is also shown the desirability of designing specific methods and algorithms to deal with automatically detected groups
    • …
    corecore