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Abstract

Assessing the security level of IoT applications to be deployed to heteroge-
neous Cloud-Edge infrastructures operated by different providers is a non-
trivial task. In this article, we present a methodology that permits to express
security requirements for IoT applications, as well as infrastructure security
capabilities, in a simple and declarative manner, and to automatically ob-
tain an explainable assessment of the security level of the possible application
deployments. The methodology also considers the impact of trust relations
among different stakeholders using or managing Cloud-Edge infrastructures.
A lifelike example is used to showcase the prototyped implementation of the
methodology.

Keywords: secure application deployment, declarative programming,
probabilistic reasoning.

1. Introduction

Enforcing Quality-of-Service (QoS) requirements in the deployment of Internet-
of-Things (IoT) software systems is a non-trivial – yet necessary – task to
accomplish. Indeed, such systems are often developed in large, highly dis-
tributed, multi-service architectures, which are to be deployed to complex,
heterogeneous and highly distributed infrastructures, spanning the Cloud-
IoT continuum. Cloud-Edge computing [1] extends Cloud computing towards
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the edge of the Internet to better support latency-sensitive and bandwidth-
hungry IoT applications by mapping service application functionalities (e.g.,
device management, telemetry ingestion, processing and storage, status and
notification, multi-level analytics and data visualisation [2]) wherever it is
“best-placed” to suitably meet all the application (hardware, software and
QoS) requirements [3, 4].

Various works (e.g., [5, 6, 7, 8, 9, 10, 11]) have tackled the problem of
determining optimal placements (and management) of application services,
mainly taking into account resource usage, deployment costs, network QoS
(i.e., latency, response time, bandwidth), and energy consumption. Consider-
ing these aspects all together is of primary importance in Cloud-Edge scenar-
ios, where many life-critical (e.g., e-health, autonomous vehicles) or mission-
critical (e.g., drone packet deliveries, smart farming) application verticals can
significantly suffer from performance degradation due to bad resource allo-
cation or insufficient Internet connectivity. Analogously, their management
might aim at reducing operational costs, due to power consumption or to
resource leasing, so to increase profit.

However, to the best of our knowledge no approach has been proposed
that accounts for the security requirements of the application to be deployed
and matches them to the security capabilities available at different infrastruc-
ture nodes. Security of ICT solutions is an intrinsically complex problem,
which requires reasoning about a system model by analysing its security
properties and their effectiveness against potential attacks, and accounting
for trust relations among different involved stakeholders (e.g., infrastructure
and application operators). In addition, any methodology for optimal ser-
vice placement that accounts for security, should in principle enable decision-
makers to understand why a certain deployment can be considered optimal,
i.e. the provided recommendations should be explainable. Indeed, explain-
able artificial intelligence (XAI) techniques are getting more attention from
the security community since they can provide a concise explanation (proof )
of the query results [12]. In the case of determining secure and trustworthy
deployments of an application, for instance, XAI aims at answering ques-
tions like: Why is this deployment more secure than this other? Why and
how much are they secure?

As an extension to the Cloud, Cloud-Edge will share with it many security
threats, while including its new peculiar ones. On the one hand, Cloud-Edge
will increase the number of security enforcement points by allowing local
processing of private data closer to the IoT sources. On the other hand, new
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infrastructures will have to face brand new threats for what concerns the
physical vulnerability of devices. Indeed, application deployments to Cloud-
Edge infrastructures will often include accessible (Edge or IoT) devices that
may be easily hacked, broken or even stolen by malicious users and that can
only offer a limited set of security capabilities [13, 14].

Last but not least, as Cloud-Edge application deployments will likely
span various service providers (some of which may be not trustworthy), trust
must be considered when deciding where to place application services. Trust
relations are especially important at the edge of the Internet, due to the un-
certainty derived from dealing with multiple infrastructure providers. Indeed,
the security levels and reputation of edge capabilities might be as heteroge-
neous as their hardware capabilities, and might give rise to security zones,
i.e. collections of assets that share the exposure to certain security risks [15].
Thus, in Cloud-Edge scenarios, where part of the application could be de-
ployed to a mixture of well-established (e.g., Clouds, ISPs) and opportunistic
infrastructures (e.g., crowd-computing, ad-hoc networks [16]), trust models
are needed to estimate trust levels towards unknown providers, possibly ag-
gregating also trusted providers’ opinions.

All this considered, the move of utility computing towards the edge of the
network – and in continuity with existing Clouds – calls for new quantita-
tive and explainable methodologies that permit to assess the security level of
distributed multi-service IoT applications. Such methodologies should take
into account application requirements, security countermeasures featured by
the Cloud-Edge infrastructure, and trust relations in place among different
stakeholders that manage or use Cloud-Edge infrastructures.

In this paper, we propose a first step towards well-founded and declarative
reasoning methodologies for security- and trust-aware multi-service appli-
cation deployment in Cloud-Edge scenarios. Our proposal, SecFog, helps
application operators in Cloud-Edge scenarios in determining the most se-
cure application deployments by reducing manual tuning and by considering
specific application requirements, infrastructure capabilities and trust. Sec-

Fog has been prototyped in the ProbLog language [17] and, as we will show,
the prototype can be used together with existing approaches that solve the
problem of mapping IoT application services to Cloud-Edge infrastructures
according to requirements other than security and trust (e.g., hardware, net-
work QoS, cost). A generalised algebraic extension of the prototype, αSecFog,
is also presented. Such an extension features the possibility of using different
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(semiring-based) trust models so to weight (and assess) the security level of
eligible application deployments.

The rest of this paper is organised as follows. After briefly introducing the
ProbLog language (Section 2), needed to understand the proposed solution,
we detail (Section 3) the SecFog methodology and its implementation, while
showing how it can be used on simple examples, relying on a simple default
probabilistic trust model. Afterwards, we describe a larger lifelike example
of secure application deployment and illustrate how the SecFog prototype can
be used along with other existing tools for application placement in Cloud-
Edge scenarios (Section 4). Then, in Section 5, we discuss how SecFog can
embed more complex trust models based on the default one, and we present
an algebraic extension of the basic prototype, αSecFog, that permits relying
on arbitrary semiring-based trust models. Finally, after discussing related
work (Section 6), we draw some conclusions and point to some directions for
future work (Section 7).

2. Background: The ProbLog Language

Being SecFog a declarative methodology based on probabilistic reasoning
about declared infrastructure capabilities and security requirements, it was
natural to prototype it by relying on probabilistic logic programming. To
implement both the model and the matching strategy we used a language
called ProbLog [18]. ProbLog is a Python package that permits writing logic
programs that encode complex interactions between sets of heterogeneous
components, capturing the inherent uncertainties that are present in real-life
situations.

ProbLog programs are logic programs in which some of the facts are annotated
with (their) probabilities. ProbLog facts, such as

p::f.

represent a statement f which is true with probability2 p. ProbLog rules, like

r :- c1, ... , cn.

2A fact declared simply as f. is assumed to be true with probability 1.
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represent a property r inferred when c1 ∧ · · · ∧ cn holds. Variable terms start
with upper-case letters, constant terms with lower-case letters. Semicolon ;

can be used to express OR conditions.

Each program defines a probability distribution over logic programs where a
fact p::f. is considered true with probability p and false with probability 1−
p. The ProbLog engine [17] determines the success probability of a query q as
the probability that q has a proof, given the distribution over logic programs.
The engine also permits to automatically obtain a graphical representation
of the AND-OR tree associated with the ground program that it used to
answer a given query. This explains how the results are obtained. Finally,
the ProbLog engine can be used in explanation mode to get, for each query,
the list of all mutually exclusive proofs that lead to infer it.

3. Methodology and Implementation

3.1. Overview

Figure 1 offers an overview of the SecFog ingredients that will be thoroughly
described in this section. First of all, SecFog considers two roles for its users:

- infrastructure operators, in charge of managing targeted Cloud-Edge
nodes, and providing a description of the provisioned infrastructure
capabilities to their users, and

- application operators, in charge of designing and managing application
deployments by specifying their requirements (e.g., hardware, software,
QoS), by monitoring deployment performance, and by re-distributing
or re-configuring application services when needed.

Cloud-Edge stakeholders3 might want to look for secure deployments of their
applications and require explanations about such security assessment.

As per the SecFog input, infrastructure operators must provide a Node
Descriptor (ND) for each of their managed nodes, declaring all the available

3Naturally, one stakeholder can play more than one role at a time and there can be
more stakeholders playing the same role [19]. For instance, an infrastructure operator can
provide IoT, Edge, or Cloud infrastructures to its customers, whilst managing applications
and services over the very same infrastructure, or an application operator can act as an
infrastructure provider when sharing her home router as an Edge capability for application
deployment.
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Figure 1: Bird’s-eye view of SecFog.

security capabilities and their estimated effectiveness against attacks. These
constitute the description of all Security Capabilities in the Cloud-Edge sys-
tem.

On the other hand, application operators must provide a description of
their Application and specify the Security Requirements of each application
service (SR), in terms of the common vocabulary or, possibly, by means of
a custom set of Security Policies declared over that vocabulary. The appli-
cation operator can also possibly specify a complete or partial application
deployment in case she wants to assess the security level of deployments
under such constraints.

Finally, each stakeholder – infrastructure or application operator – can
declare a trust degree towards any other stakeholder, as a set of opinions.
Such weighted relations contribute to a Trust Network that is input to SecFog.

The SecFog prototype, given all Security Requirements, Security Capabilities
and a Trust Network, features:

1. a Generate & Test Strategy to determine secure deployments by match-
ing application requirements to infrastructure security capabilities (also
considering their effectiveness against attacks), and

2. a Trust Model that is capable of completing the Trust Network, exploit-
ing transitivity of trust chains and relying on the opinions declared by
all stakeholders.
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The output of SecFog is a Security Assessment of all eligible deployments
determined through the exploration of the search space. For each candidate
deployment, the prototype obtains its security level by multiplying the ef-
fectiveness of all exploited security capabilities, suitably weighted by trust
degrees towards the operator providing them. Trust weights are crucial to
mitigate and contrast the potential presence of operators that might declare
unprecise, outdated or deliberatedly false data about the security capabili-
ties they provide. As better detailed in Sections 3.4 and 5, our methodology
allows to embed different trust models and to consider alternative interpreta-
tions for the values related to the effectiveness of available security capabil-
ities. For instance, values declared by a certain provider can be overwritten
by the results of objective measurements performed directly by application
operators and based on their interactions with the provider, on asset loca-
tions, on the level of hardening of different host servers. Last but not least,
each output comes with a proof that explains in a graphical, human-readable
format how such result was obtained.

In the next paragraphs, we detail each of the ingredients we mentioned
and, for each, we give the implementation4 as well as concrete, executable
examples within our ProbLog prototype.

3.2. Security in Cloud-Edge Computing

In Cloud-Edge computing infrastructures, end-to-end security must cover ev-
erything between the Cloud and the IoT. Naturally, the security requirements
of multi-service applications will highly vary depending on business cases,
target markets and vertical use cases as well as on the functionality offered
by different components. For instance, a database storing video footage from
domestic CCTV will probably require more security countermeasures to be
active with respect to a database collecting outdoor temperature data from a
city or neighbourhood. The OpenFog Consortium [20] highlighted the need
for new Cloud-Edge computing platforms to guarantee privacy, anonymity,
integrity, trust, attestation, verification and measurement. Whilst security
control frameworks exist for Cloud computing scenarios (e.g., the EU Cloud
SLA Standardisation Guidelines [21] or the ISO/IEC 19086), to the best
of our knowledge, no standard exists yet that defines security objectives for

4The ProbLog code of SecFog prototype and of the examples of Section 3 and 4 is publicly
available at https://github.com/di-unipi-socc/SecFog.
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CLOUD-EDGE
SECURITY

Virtualisation Communications Data Physical Other

Access Logs

Authentication

Host IDS

Process Isolation

Permission Model

Resource Usage
Monitoring

Restore Points

User Data Isolation

Certificates

Firewall

IoT Data Encryp-
tion

Node Isolation
Mechanims

Network IDS

Public Key Cryp-
tography

Wireless Security

Backup

Encrypted Storage

Obfuscated Storage

Access Control

Anti-tampering
Capabilities

Audit

Figure 2: An example of taxonomy of security capabilities in Cloud-Edge.

Cloud-Edge application deployments. Based on recent surveys about security
aspects in the novel Cloud-Edge landscapes (i.e., [22], [23], [13]), we devised
a simple example of taxonomy (Figure 2) of security capabilities that can
be offered by Cloud and Edge nodes and therefore used for reasoning on the
security levels of given IoT application deployments.

Security capabilities that are common with the Cloud might assume re-
newed importance in Cloud-Edge scenarios, due to the limited resources of
the devices installed closer to the edge of the Internet. For instance, guar-
anteeing physical integrity of and user data isolation at an access point with
Edge capabilities might be very difficult. Dually, the possibility to encrypt or
obfuscate data at Edge nodes, along with encrypted IoT communication and
physical anti-tampering machinery, will be key to protect those application
deployments that need data privacy assurance.

In the following description of the SecFog methodology, we will assume
that all involved parties (viz., application and infrastructure operators) share
the vocabulary of the example taxonomy5 in Figure 2. Naturally, in an op-

5Factually, different operators can employ different vocabularies and then exploit me-
diation [24] mechanisms, capable of translating one into another.
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erational system based on SecFog , it will be necessary to adopt an extended
and refined version of such taxonomy – with full definitions of the considered
security capabilities – which we expect will be available as soon as normative
security frameworks will get established for (Cloud-)Edge computing infras-
tructures.

3.2.1. Security Capabilities: the Infrastructure

The Infrastructure can be simply described by infrastructure operators as a
set of facts declaring a node and its security capabilities, weighted by the
probability that each capability can resist against malicious attacks. Such
probability represents a measure of the effectiveness of the enforced security
countermeasure. Figure 3 lists the vocabulary of ProbLog facts that can be
used to describe node capabilities in terms of the taxonomy of Figure 2.

% virtualisation

access_logs(N).

authentication(N).

host_ids(N).

process_isolation(N).

permission_model(N).

resource_monitoring(N).

restore_points(N).

user_data_isolation(N).

% communication

certificates(N).

iot_data_encryption(N).

firewall(N).

node_isolation_mechanism(N).

network_ids(N).

public_key_cryptography(N).

wireless_security(N).

% data

backup(N).

encrypted_storage(N).

obfuscated_storage(N).

% physical

access_control(N).

anti_tampering(N).

% audit

audit(N).

Figure 3: Example Cloud-Edge security capabilities in ProbLog.

It is worth noting that undeclared capabilities are assumed to be unavailable
at the considered node. Dually, some providers might decide not to disclose
the effectiveness of security capabilities against malicious attacks. In such a
case, they would be unfairly considered as the best ones by the system as
plainly declared facts are assumed to be always true. To prevent this from
happening, application operators can for instance rely on data collected from
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previous interactions with the provider and specify probabilities on their own,
or leverage the adoption of a convenient trust model (see Sections 3.4 and
5) to mitigate the effects of such omissions. Indeed, we reasonably expect
that providers declaring unreliable data will get lower trust from application
operators within the system.

Example. A cloud node identified as cloud1 and managed by a certain
infrastructure operator cloudOp1 can be specified in SecFog as:

node(cloud1, cloudOp1).

In case node cloud1 features some form of firewall that is guaranteed to resist
an attack (e.g., network traffic flood, packet fragmentation) with a likelihood
of 99.99%, the previous line can be simply followed by:

0.9999::firewall(cloud1).

Similarly, an edge node edge3 managed by an operator appOp42 and featur-
ing a broken wireless security system like WEP and an encrypted storage
considered 99% effective, is declared as:

node(edge3, appOp42).

0.01::wireless_security(edge3).

0.99::encrypted_storage(edge3).

Overall, this type of fact declarations can be used to specify the Node De-
scriptors by infrastructure operators, as sketched in Figure 1. �

3.2.2. Security Requirements: the Application

As aforementioned, SecFog enables application operators to specify an appli-
cation along with the services that compose it. Based on the same common
vocabulary of Figure 3.2, application operators can then define (non-trivial)
custom Security Policies that can be used to declare the Security Require-
ments of each service composing the application. Custom security policies
can be either existing ones, inferred from the presence of certain node capa-
bilities, or they can be autonomously specified/enriched by the application
operators, depending on business-related considerations.

Example. First, an application for smartfarming consisting of three services
s1, s2 and s3 can be easily specified as:

app(smartfarming, [s1, s2, s3]).
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Then, the application operator can decide that a node offering backup ca-
pabilities together with encrypted storage or obfuscated storage can be
considered a secureStorage provider. The custom security policy described
above can be specified as:

secureStorage(N) :-

backup(N),

(encrypted_storage(N); obfuscated_storage(N)).

A different stakeholder might also require the availability of a certificate

at the node featuring secure storage and re-define the policy as:

secureStorage(N) :-

backup(N),

certificate(N),

(encrypted_storage(N); obfuscated_storage(N)).

The Security Requirements for service s2 of smartfarming, which needs both
secureStorage (as previously declared) and resource monitoring capabilities
can then be defined as:

securityRequirements(s2, N) :-

secureStorage(N),

resource_monitoring(N).

Overall, this permits application operators to quickly and flexibly specify all
the Security Requirements of their software systems by exploiting combina-
tions of custom Security Policies and basic security capabilities. �

3.3. Generate & Test Strategy

The ProbLog listing in Figure 4 defines the declarative Generate & Test strat-
egy of SecFog. This strategy exploits a knowledge base of facts and rules that
defines a Cloud-Edge infrastructure and its Security Capabilities along with
an application and its Security Requirements, declared as we have seen in the
previous section. It is worth noting that SecFog strategy can be used both

(a) to determine (or complete) secure application deployments, assessing
their security level, and

(b) to assess the security level guaranteed by complete input deployments,
which may be already used by the application operators.
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In both cases (a) and (b), the quantitative security assessment considers the
available security capabilities and their declared effectiveness against attacks.

The rule for secFog(OpA, A, D) inputs an application operator OpA, an
application A she is in charge of deploying and a (possibly empty, or par-
tial) deployment D of such application. First, it checks that A has been
declared as an application app(A, L) (line 2), then it evaluates the predicate
deployment(OpA, L, D) (line 3). Recursively, for each component C in the
list of the application components, it checks whether it (can be) has been de-
ployed to a node N (line 7) that can satisfy the security requirements declared
by the application operator for C, i.e. whether securityRequirements(C,N)

holds (line 8).

secFog(OpA, A, D) :- (1)

app(A, L), (2)

deployment(OpA, L, D). (3)

(4)

deployment(_,[],[]). (5)

deployment(OpA,[C|Cs],[d(C,N,OpN)|D]) :- (6)

node(N,OpN), (7)

securityRequirements(C,N), (8)

deployment(OpA,Cs,D). (9)

Figure 4: The Generate & Test strategy of SecFog.

Example. Considering a single-service application, managing the weather
data of a municipality, and an infrastructure composed of two (one Cloud
and one Edge) nodes declared as follows:

%%% Application, specified by appOp

app(weatherApp, [weatherMonitor]).

securityRequirements(weatherMonitor, N) :-

(anti_tampering(N); access_control(N)),

(wireless_security(N); iot_data_encryption(N)).

%%% Cloud node, specified by cloudOp

node(cloud, cloudOp).

0.99::anti_tampering(cloud).

0.99::access_control(cloud).

0.99::iot_data_encryption(cloud).

%%% Edge node, specified by edgeOp

node(edge, edgeOp).

12



0.8::anti_tampering(edge).

0.9::wireless_security(edge).

0.9::iot_data_encryption(edge).

Running the query

query(secFog(appOp,weatherApp,D)).

outputs the resulting secure deployments for the weatherApp, along with a
value in the range [0, 1] that represents their assessed security level (based
on the declared effectiveness of infrastructure capabilities that are exploited
by each possible deployment):

secFog(appOp,weatherApp,[d(weatherMonitor,cloud,cloudOp)]): 0.989901

secFog(appOp,weatherApp,[d(weatherMonitor,edge,edgeOp)]): 0.792

The result, highlighting the deployment to the Cloud as the most secure so-
lution, can be explained by looking at Figure 5, which graphically depicts the
AND-OR trees of the two ground programs that lead to the output results.
Such graphical explanations can be obtained automatically, by using ProbLog
in ground mode6. Note that the ProbLog engine performs an AND-OR graph
search over the ground program to determine the query results. For instance,
the value associated with securityRequirements(weatherMonitor,cloud) is
obtained as:

p(anti tampering(cloud))× p(iot data encryption(cloud)) +

(1− p(anti tampering(cloud)))× p(access control(cloud))× p(iot data encryption(cloud)) =

.99× .99 + (1− .99)× .99× .99 =

0.989901 (1)

As for the AND-OR graph of the ground program, also this proof can be
obtained automatically, by using ProbLog in explain mode7. �

3.4. Default Trust Model

The pervasive and highly distributed nature of new Cloud-Edge deployments
imposes to deal not only with the effectiveness of the adopted security capa-
bilities but also with the trust degrees towards various, potentially unknown,

6https://problog.readthedocs.io/en/latest/cli.html#grounding-ground
7https://problog.readthedocs.io/en/latest/cli.html#

explanation-mode-explain
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Figure 5: Graphical ground program of the weatherApp example.

infrastructure operators. As aforementioned in Section 3, trust considera-
tions are also essential both to discredit unreliable (e.g., lazy or dishonest)
providers that declare unprecise, outdated or false data about their assets,
and to discourage others to do so. In this section, we show how it is possible
to smoothly extend the prototype SecFog described up to now so to include
a simple, yet powerful, probabilistic trust model. In Section 5, we will detail
how SecFog can be generalised to accommodate and leverage more complex
trust models.

The default trust model of SecFog considers direct trust relations between
two stakeholders A and B as the probability that A can trust B, e.g. based on
an aggregate of all previous interactions they had. The proposed trust model
combines such direct trust opinions from different stakeholders and completes
the (possibly partial) trust network input to SecFog with missing indirect
trust relations. Specifically, the default trust model considers trust relations
as transitive and explores network paths while aggregating the opinions (as
declared by application and infrastructure operators). Opinions along paths
are (unconditionally) combined via multiplication, opinions across paths are
(monotonically) combined via addition. Intuitively, this causes opinions to
deteriorate along paths and, when multiple opinions are available, to improve,
by weighting more those paths that are more trustworthy [25].

Figure 6 lists the ProbLog rules we used to define our default model which
is a (probabilistic) transitive closure of the trust network input to SecFog.
Trivially, we assume that each stakeholder fully trust herself (line 1). Then,
stakeholder A can trust B either directly (lines 3–4), or through a third party
C that directly or indirectly trusts B (lines 5–7).
Figure 7 shows how to include the trust model in the Generate and Test
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trusts(X,X). (1)

(2)

trusts2(A,B) :- (3)

trusts(A,B). (4)

trusts2(A,B) :- (5)

trusts(A,C), (6)

trusts2(C,B). (7)

Figure 6: Default trust model of SecFog.

strategy of Figure 4, namely by simply adding the condition trusts2(OpA,

OpN).

deployment(_,[],[]). (1)

deployment(OpA,[C|Cs],[d(C,N,OpN)|D]) :- (2)

node(N,OpN), (3)

securityRequirements(C,N), (4)

trusts2(OpA, OpN), (5)

deployment(OpA,Cs,D). (6)

Figure 7: The deployment/3 predicate with trust.

We first show an example of this trust model alone, then we apply it to the
example of Section 3.3 to illustrate its usage within SecFog.

Example. Consider the trust network of Figure 8 and suppose to be inter-
ested in the (indirect) trust relationship between srcOp and dstOp.

Figure 8: A trust network.

It can be simply computed with the SecFog trust model in ProbLog as:

%%% trust relations declared by srcOp

0.9::trusts(srcOp, aOp).
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0.2::trusts(srcOp, bOp).

%%% trust relations declared by aOp

0.1::trusts(aOp, dstOp).

%%% trust relations declared by bOp

0.8::trusts(bOp, dstOp).

query(trusts2(srcOp, dstOp)).

which returns

trusts2(srcOp,dstOp): 0.2356

as a result. Also in the case of the trust model, it is possible to get the
ground program which explains how the final result was computed (Figure
9).

Figure 9: Graphical ground program of the trusts2 example.

From this simple example it is clear that, in the default trust model, the
contribution of trust relations deteriorates along paths and that all possible
paths give their contribution to the output result. Indeed, the final result
corresponds to the likelihood that it is possible to establish a trust path from
srcOp to dstOp over the considered trust network. �

Example. We now retake the example of Section 3.3 and we solve it again
by also taking into account the trust network of Figure 10.
The network is defined by the direct trust relations, which are declared by
the different operators as:

16



Figure 10: Example trust network among Cloud-Edge operators.

%%% trust relations declared by appOp

.9::trusts(appOp, edgeOp).

.9::trusts(appOp, ispOp).

%%% trust relations declared by edgeOp

.7::trusts(edgeOp, cloudOp1).

.8::trusts(edgeOp, cloudOp2).

%%% trust relation declared by cloudOp1

.8::trusts(cloudOp1, cloudOp2).

%%% trust relation declared by cloudOp2

.2::trusts(cloudOp2, cloudOp).

%%% trust relations declared by ispOp

.8::trusts(ispOp, cloudOp).

.6::trusts(ispOp, edgeOp).

The same query of the previous example now leads to a different result:

secFog(appOp,weatherApp,[d(weatherMonitor,cloud,cloudOp)]): 0.76017935

secFog(appOp,weatherApp,[d(weatherMonitor,edge,edgeOp)]): 0.755568

When accounting for trust, output security levels are lower than those ob-
tained by considering only the effectiveness of security capabilities ((0.76 and
0.75 vs. 0.98 and 0.79), and the Cloud deployment does not outperform the
Edge deployment anymore. In situations like this one, the application oper-
ator might make her choice also considering other estimated non-functional
parameters (e.g., cost, response time, resource usage). �
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Before concluding this section, it is worth noting that probabilities related
to the effectiveness of security countermeasures as well as those defining trust
relations can also be derived from more complex models and input to SecFog.
Indeed, the effectiveness of security countermeasures can either be extracted
from the SLAs of each infrastructure provider or, alternatively, be obtained
from objective measurements and data collected by application operators
from previous interactions with infrastructure providers. On the other hand,
trust degrees – which represent a subjective piece of information – can be
either defined by the application operators or derived from more complex
trust models.

On this line, SecFog can naturally embed a simplified formulation of the
trust evaluation method by Tang et al. [26]. Namely, ProbLog facts repre-
senting the security capabilities featured by a node, like

0.9999::firewall(cloud1).

can be exploited to represent objective trust assessments of services (com-
puted in [26] as average conformance values between monitored and claimed
QoS of a service). Problog facts representing the trust relation between
stakeholders, like

0.9::trusts(appOp, edgeOp).

can be exploited to represent subjective trust assessments of service operators
(actually computed in [26] as measures of the trust of a user on a service). A
simple combination of objective and subjective trust assessment will be then
directly performed by ProbLog while evaluating the deployment/3 predicate8.

Other simple extensions to the described probabilistic trust model consist
of conditioning trust transitivity to the absence of direct trust relations, or
of allowing trust transitivity in the trust network only within a specified
distance (i.e. radius) from the application operator (as epitomised in Section
5.

8Please note that the purpose of the previous discussion is merely to illustrate how
a simplified formulation of (the results of) the trust evaluation method of [26] can be
embedded into our methodology. In fact, the trust evaluation method of [26] is more so-
phisticated than what we described, as it computes subjective trust assessments by taking
into account both the feedback ratings of an user and those from similar, trustworthy
users, and as it combines objective and subjective trust assessments by considering also
their confidence.
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In the next section, we exploit SecFog to analyse a lifelike example of IoT
application deployment to Cloud-Edge infrastructure. We also make use of
our FogTorchΠ prototype [27] to select deployments that also meet hardware
and software requirements of the example application.

4. Motivating Example

4.1. Infrastructure

Figure 11 shows the Cloud-Edge infrastructure – two Cloud data centres,
three Edge nodes – to which a smart building application is to be deployed.
For each node, the available security capabilities and their effectiveness against
attacks9(as declared by the infrastructure operator) are listed in terms of the
taxonomy of Figure 3.

Figure 11: Cloud-Edge infrastructure security capabilities.

Relying on such information, node descriptors can be easily expressed by each
infrastructure operator through listing ground facts, as discussed in Section
3.2.1. For instance, edge1 directly operated by the application operator appOp
is described as

9In Figure 11, when the effectiveness against attacks of a capability is not indicated we
assume it is considered to be 1 by the corresponding infrastructure provider.
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node(edge1,appOp).

0.9::authentication(edge1).

resource_monitoring(edge1).

iot_data_encryption(edge1).

0.95::firewall(edge1).

public_key_cryptography(edge1).

0.95::wireless_security(edge1).

obfuscated_storage(edge1).

All the Node Descriptors assembled following this template form the descrip-
tion of the security capabilities available in the infrastructure.

4.2. Application

We retake the application example of [27] and we extend it with security re-
quirements. Consider a simple multi-service IoT application (Figure 12) that
manages fire alarm, heating and A/C systems, interior lighting, and security
cameras of a smart building. The application consists of three microservices:

• IoTController, interacting with the connected cyber-physical systems,

• DataStorage, storing all sensed information for future use and employ-
ing machine learning techniques to update sense-act rules at the IoT-

Controller so to optimise heating and lighting management based on
previous experience and/or on people behaviour, and

• Dashboard, aggregating and visualising collected data and videos, as
well as allowing users to interact with the system.

Figure 12: Multi-service IoT application.
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Each microservice represents an independently deployable component of the
application [28] and has its own security requirements.
Particularly, application operators defined the following security require-
ments:

• IoTController requires physical security guarantees (i.e., access control

∨ anti tampering) so to avoid that temporarily stored data can be
physically stolen from the deployment node,

• DataStorage requires secure storage (viz., backup ∧ (obfuscated storage

∨ encrypted storage)), the availability of access logs, a network ids

in place to prevent distributed Denial of Service (dDoS) attacks, and

• Dashboard requires a host ids installed at the deployment node (e.g.,
an antivirus software) along with a resource monitoring to prevent in-
teractions with malicious software and to detect anomalous component
behaviour.

Furthermore, the application requires guaranteed end-to-end encryption among
all services (viz., all deployment nodes should feature public key cryptography)
and that deployment nodes should feature an authentication mechanism.

The described application and security policies translate one-to-one to the
following SecFog clauses, as discussed in Section 3.2.2:

%%% application

app(smartbuilding, [iot_controller, data_storage, dashboard]).

%%% security requirements

securityRequirements(iot_controller, N) :-

physical_security(N),

public_key_cryptography(N),

authentication(N).

securityRequirements(data_storage, N) :-

secure_storage(N),

access_logs(N),

network_ids(N),

public_key_cryptography(N),

authentication(N).

securityRequirements(dashboard, N) :-

host_ids(N),
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Figure 13: Trust network of the smartbuilding example.

resource_monitoring(N),

public_key_cryptography(N),

authentication(N).

%%% custom policies

physical_security(N) :-

anti_tampering(N); access_control(N).

secure_storage(N) :-

backup(N),

(encrypted_storage(N); obfuscated_storage(N)).

4.3. Trust Network

Finally, as discussed in Section 3.4, we consider the trust network of Figure
13, which can be defined as:

%%% trust relations declared by appOp

0.9::trusts(appOp, edgeOp).

0.8::trusts(appOp, cloudOp2).

%%% trust relations declared by edgeOp

0.9::trusts(edgeOp, cloudOp2).

0.7::trusts(edgeOp, cloudOp1).

%%% trust relations declared by cloudOp2

0.1::trusts(cloudOp1, cloudOp2).

%%% trust relations declared by cloudOp2

0.8::trusts(cloudOp2, edgeOp).

0.5::trusts(cloudOp2, cloudOp1).
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Accounting for trust propagation, such network results in the following value
of trust of appOp towards infrastructure providers:

trusts2(appOp,appOp): 1

trusts2(appOp,cloudOp1): 0.8247

trusts2(appOp,cloudOp2): 0.96326

trusts2(appOp,edgeOp): 0.964

4.4. Security Assessment

As discussed in Section 3.3, the SecFog prototype can be used to find all
deployments that satisfy the security requirements of the example application
to the given infrastructure, by simply issuing the query:

query(secFog(appOp, smartbuilding, D)).

As shown in Table 1, relying on ProbLog out-of-the-box algorithms, SecFog

prototype returns answers to the query along with a value in [0, 1] that rep-
resents the aggregate security level of the inferred facts, i.e. the probability
that a deployment can be considered secure according to the declared reliabil-
ity of the infrastructure capabilities and to the trust degree of the application
operator towards each exploited infrastructure operator.
If the application operator is only considering security as a parameter to
lead her search, she would try to maximise the obtained metric and, most
probably, select one among ∆11, ∆12, ∆23, ∆24. However, security might
need to be considered along with other parameters so to find a suitable trade-
off among them.

In this regards, it is interesting to see how SecFog prototype can be used
in synergy with other tools that perform multi-service application placement
in Cloud-Edge scenarios. For instance, our FogTorchΠ prototype [3] finds
eligible deployments that guarantee software, hardware and network QoS
requirements. For each deployment, it outputs the QoS-assurance (i.e., the
likelihood it will meet network QoS requirements), an aggregate measure
of Edge resource consumption, and an estimate of its monthly operational
cost. It then employs a simple multi-objective optimisation to rank the
deployments and to decide which are the better candidates.
For the smartbuilding example we are analysing, among the deployments of
Table 1, FogTorchΠ suggests only ∆13, ∆16 and ∆22 [27]. Naturally, with
the aim of maximising security whilst considering all other requirements, the
application operator would likely choose ∆22.
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Dep. ID IoTController DataStorage Dashboard Security
∆1 Cloud 1 Cloud 1 Cloud 1 0.82
∆2 Cloud 1 Cloud 1 Cloud 2 0.81
∆3 Cloud 1 Cloud 1 Edge 3 0.78
∆4 Cloud 1 Edge 3 Cloud 1 0.77
∆5 Cloud 1 Edge 3 Cloud 2 0.75
∆6 Cloud 1 Edge 3 Edge 3 0.75
∆7 Cloud 2 Cloud 1 Cloud 1 0.81
∆8 Cloud 2 Cloud 1 Cloud 2 0.81
∆9 Cloud 2 Cloud 1 Edge 3 0.77
∆10 Cloud 2 Edge 3 Cloud 1 0.75
∆11 Cloud 2 Edge 3 Cloud 2 0.89
∆12 Cloud 2 Edge 3 Edge 3 0.87
∆13 Edge 2 Cloud 1 Cloud 1 0.66
∆14 Edge 2 Cloud 1 Cloud 2 0.65
∆15 Edge 2 Cloud 1 Edge 3 0.63
∆16 Edge 2 Edge 3 Cloud 1 0.62
∆17 Edge 2 Edge 3 Cloud 2 0.72
∆18 Edge 2 Edge 3 Edge 3 0.72
∆19 Edge 3 Cloud 1 Cloud 1 0.80
∆20 Edge 3 Cloud 1 Cloud 2 0.78
∆21 Edge 3 Cloud 1 Edge 3 0.78
∆22 Edge 3 Edge 3 Cloud 1 0.77
∆23 Edge 3 Edge 3 Cloud 2 0.89
∆24 Edge 3 Edge 3 Edge 3 0.89

Table 1: Eligible deployments of the example application.

5. Algebraic Extensions of SecFog

The default probabilistic trust model of SecFog shows two main limitations.
Namely, it is unconditionally transitive (i.e., if A trusts B and B trusts
C then A trusts C) and monotonic (all paths towards a certain provider P
contribute increasing the trust degree towards it).

More often, trust has been considered only conditionally transferable and
– being a subjective phenomenon – usually non-monotonically increasing
[29]. As we will show in this section, the default trust model of SecFog can
be easily generalised so to accommodate semiring-based trust models such as
those proposed by Theodorakopoulos and Baras [25], Bistarelli et al. [30, 31]
or Gao et al. [32], in fields other than multi-service application deployment.

After briefly reviewing the mathematical definition of semirings and de-
scribing the algebraic extension of ProbLog by Kimmig et al. [33] we show
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how SecFog can be generalised into an algebraic αSecFog and embed different
semiring-based trust models. We then exploit two among those models to
solve again the motivating example of Section 4.

A (commutative) semiring is an algebraic structure consisting of a 5-tuple:

〈S,⊕,⊗,0,1〉

where S is a set of elements, and ⊕ and ⊗ are two binary operators defined
over such elements such that:

– ⊕ is commutative and associative, and 0 is its neutral element,

– ⊗ is associative, distributes over ⊕, and 1 and 0 are its neutral and
absorbing elements, respectively.

For instance, the embedded model of ProbLog corresponds to the probability
semiring

〈R ∩ [0, 1],+,×, 0, 1〉

where + and × denote classical addition and multiplication over real num-
bers.

Intuitively, a ProbLog program leverages input probability distributions
to analyse all possible Prolog programs (i.e., worlds) that could be generated
according to them. Assuming that Ω(q) is the set of possible worlds W that
entail a valid proof for a certain query q (i.e., Ω(q) = {W | W |= q}), the
ProbLog engine computes the probability p(q) that q holds as

p(q) =
∑

W∈Ω(q)

∏
f∈W

p(f)

where f are facts within a certain possible world, and p(f) is the prob-
ability they are labelled with. More generally, the algebraic extension of
SecFog allows programmers to rely on arbitrary semirings and labelling func-
tions for computing output results. Intuitively, given an arbitrary semiring
〈S,⊕,⊗,0,1〉 as defined above and a labelling function α(f) over the pro-
gram literals, then the labelling for query q is obtained as

A(q) =
⊗

W∈Ω(q)

⊗
f∈W

α(f)
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where worlds in Ω represent the set of interpretations where q is true. For
all details on the algebraic extension of ProbLog we refer the reader to [33].

In what follows, we exploit such feature of ProbLog to rely on different trust
models and solve the motivating example of Section 4.

Example. We start by embedding in αSecFog the trust model proposed in
[25] and [30]. Still relying on the transitive closure of the trust network, their
model exploits a semiring where trust is represented by couples 〈t, c〉 in the
set S = (R ∩ [0, 1]) × (R ∩ [0, 1]) where t represents a trust value and c the
confidence in such trust value assignment, i.e. the quality of the declared
opinion. Then, ⊗ (with neutral element 〈1, 1〉) is defined as

〈t, c〉 ⊗ 〈t′, c′〉 = 〈t× t′, c× c′〉

and ⊕ (with neutral element 〈0, 0〉) is defined as

〈t, c〉 ⊕ 〈t′, c′〉 =


〈t, c〉 if c > c′

〈t′, c′〉 if c′ > c

〈max{t, t′}, c〉, if c = c′

This model overcomes the limitations of the default trust model as it condi-
tions trust transitivity to the confidence values and avoids monotonicity by
bounding the trust value to the maximum declared one.

When embedding this trust model in αSecFog, we obtain that effectiveness
of security countermeasures can be declared by infrastructure providers as in

(0.9999,1)::firewall(cloud1).

and that trust relations take the form

(0.9,0.8)::trusts(appOp, edgeOp).

We run αSecFog with this trust model over the motivating example of Section
4, assuming that declared trust opinions are associated with confidence values
as follows:

%%% trust relations declared by appOp

(0.9,0.9)::trusts(appOp, edgeOp).

(0.8,0.9)::trusts(appOp, cloudOp2).

%%% trust relations declared by edgeOp

(0.9,0.9)::trusts(edgeOp, cloudOp2).
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(0.7,0.5)::trusts(edgeOp, cloudOp1).

%%% trust relations declared by cloudOp2

(0.1,0.9)::trusts(cloudOp1, cloudOp2).

%%% trust relations declared by cloudOp2

(0.8,0.7)::trusts(cloudOp2, edgeOp).

(0.5,0.7)::trusts(cloudOp2, cloudOp1).

Querying deployment/3 results in ∆13 having an overall security level of
〈0.116, 0.357〉, ∆16 having an overall security level of 〈0.247, 0.510〉 and ∆22
having an overall security level of 〈0.296, 0.510〉.

∆22 is the most likely deployment to be chosen by the application oper-
ators as it is ranked first also with the introduction of the new model. Akin
results are obtained when substituting the max with the min operator in the
semiring, which makes the computation of the security level less optimistic
when confidence values coincide. �

Example. Building on the previous model, Gao et al. [32] recently proposed
a more sophisticated one, capable of considering both trust (i.e., positive
preference) and distrust (i.e., negative preference) relations. Their model
also relies on a semiring where (dis)trust is represented by couples 〈t, c〉 in
the set T = (R ∩ [−1, 1])× (R ∩ [0, 1]), where t represents a (dis)trust value
and c the confidence in such value assignment. Distrust ranges in [−1, 0)
and trust in (0, 1], having 0 represent an indifferent opinion. Then, ⊗ (with
neutral element 〈1, 1〉) is defined as

〈t, c〉 ⊗ 〈t′, c′〉 =

{
〈0, c× c′〉 if t < 0 and t′ < 0

〈t× t′, c× c′〉 otherwise

and ⊕ (with neutral element 〈0, 0〉) is defined as

〈t, c〉 ⊕ 〈t′, c′〉 =


〈t, c〉 if c > c′

〈t′, c′〉 if c′ > c

〈sign(t+ t′) ·max{t, t′}, c〉, if c = c′

where sign(x) returns 1 if x > 0 and −1 otherwise.
This trust model therefore permits to express both trust and distrust

opinions. It is worth mentioning that the ⊗ operator sets trust to 0 when
both considered opinions represent distrust along a path, what stops trust
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transitivity. Also, the authors of [32] propose to impose a maximum radius
D for propagating (dis)trust relations, which can be easily obtained in SecFog

by revising the trust2 predicate as listed in Fig. 14.

trusts2(A,B) :- trusts2(A,B,3). (1)

trusts2(A,B,D) :- (2)

D > 0, (3)

trusts(A,B). (4)

trusts2(A,B,D) :- (5)

D > 0, (6)

trusts(A,C), (7)

NewD is D - 1, (8)

trusts2(C,B,NewD). (9)

Figure 14: The trust2/3 predicate with maximum propagation radius D= 3.

We now run the motivating example with the new trust model and D set to 3,
assuming that Cloud providers decide to declare the following distrust opin-
ions towards each other (instead of the trust opinions previously specified):

(-0.1,0.9)::trusts(cloudOp1, cloudOp2).

(-0.1,0.7)::trusts(cloudOp2, cloudOp1).

As a result, the three eligible deployments ∆13, ∆16 and ∆22 obtain security
levels of 〈0.005, 0.357〉, 〈0.05, 0.510〉 and 〈0.06, 0.510〉 respectively. Despite
∆22 ranks first, such results, very close to 0 (i.e. to an indifferent opinion),
might induce the application operators to consider upgrading part of the
infrastructure they manage so to permit deployment to their assets, or to
include other providers in their analysis. �

6. Related Work

Among the studies focussing on the placement of multi-service applications
to Cloud nodes, very few approaches considered security aspects when de-
termining eligible application deployments, mainly focussing on improving
performance, resource usage and deployment cost [34, 22], or on identifying
potential data integrity violations based on pre-defined risk patterns [35].
Other existing research considered security mainly when treating the deploy-
ment of business processes to (federated) multi-Clouds (e.g., [36, 37, 38]).
Similar to our work, Luna et al. [39] were among the first to propose a
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quantitative reasoning methodology to rank single Cloud providers based on
their security SLAs, and with respect to a specific set of (user-weighted) se-
curity requirements. Recently, swarm intelligence techniques [22] have been
exploited to determine eligible deployments of composite Cloud applications,
considering a risk assessment score based on node vulnerabilities. However,
none of these works embedded trust models to consider the trust relations
and the opinions of the involved stakeholders when determining secure de-
ployments.

Cloud-Edge computing introduces new challenges, mainly due to its perva-
sive geo-distribution and heterogeneity, need for QoS-awareness, dynamicity
and support to interactions with the IoT, that were not thoroughly stud-
ied in previous works addressing the problem of application deployment to
the Cloud [40, 41]. Among the first proposals investigating these new lines,
[5] proposed a Cloud-Edge search algorithm as a first way to determine an
eligible deployment of (multi-component) DAG applications to tree-like in-
frastructures. Their placement algorithm attempts the placement of services
Edge-to-Cloud by considering hardware capacity only. An open-source sim-
ulator – iFogSim – has been released to test the proposed policy against
Cloud-only deployments. Building on top of iFogSim, [42] triedto guarantee
the application service delivery deadlines and to optimise computational re-
source exploitation. Also [43] used iFogSim to implement an algorithm for
optimal online placement of application components, with respect to load
balancing. Recently, exploiting iFogSim, [6] proposed a distributed search
strategy to find the best service placement in Cloud-Edge infrastructures,
which minimises the distance between the clients and the most requested
services, based on request rates and available free resources. In our previ-
ous work, we also proposed a model and algorithms to determine eligible
deployments of IoT applications to Fog infrastructures [8] based on hard-
ware, software and network QoS requirements. Our prototype – FogTorchΠ

– implements those algorithms and permits to estimate the QoS-assurance,
the resource consumption in the Fog layer [9] and the monthly deployment
cost [44] of the output eligible deployments. [45, 46] proposed (linearith-
mic) heuristic algorithms that attempt deployments prioritising placement
of applications to devices that feature with less free resources.

From an alternative viewpoint, [47] gave a Mixed-Integer Non-Linear Pro-
gramming (MINLP) formulation of the problem of placing application ser-
vices aiming at satisfying end-to-end delay constraints. The problem is then
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solved by linearisation into a Mixed-Integer Linear Programming (MILP),
showing potential improvements in latency, energy consumption and costs
for routing and storage that the Cloud-Edge interplay might bring. Also
[7] adopted an ILP formulation of the problem of allocating computation
to Cloud and Edge nodes so to optimise time deadlines on application ex-
ecution. A simple linear model for Cloud costs is also taken into account.
Similar solutions were proposed, attempting to optimise various metrics such
as access latency, resource usage, energy consumption or data migrations
cost [48, 49, 50, 51, 52, 53]. [54] described instead a fuzzy QoE exten-
sion of iFogSim – based on an ILP modelling of users expectation – which
achieved improvements in network conditions and service QoS. Regrettably,
none of the discussed ILP/MILP approaches came with the code to run the
experiments. Conversely, [55] proposed a software platform to support opti-
mal application placement in Cloud-Edge landscapes. Envisioning resource,
bandwidth and response time constraints, they compare a Cloud-only, an
Edge-only or a Cloud-to-Edge deployment policy. Additionally, the authors
of [56] released an open-source extension of Apache Storm that performs ser-
vice placement while improving the end-to-end application latency and the
availability of deployed applications. Dynamic programming (e.g., [57]), ge-
netic algorithms (e.g., [7, 58]) and deep learning (e.g., [59]) were exploited
promisingly in some recent works. Overall, to the best of our knowledge,
none of the previous work in the field of application placement included the
possibility to look for secure deployments in Cloud-Edge scenarios, based on
application requirements and infrastructure capabilities.

When it comes to trust models and trust management [60], other works
such as [31, 30] employ (weighted) logic programming and consider networks
of trust (and their closures) with values in the range [0, 1] to express trust
relations. Also [61] relies on logic programming to define a trust framework
for role-based access policies. As in SecFog, such relations describe the belief
of one stakeholder to trust another, based of the interactions they previously
had. In line with other trust models [62, 63, 25], we aggregate multiple trust
paths. In the context of ad-hoc networks, much work was done to devise
certification based trust models and protocols to spread trust opinions at
runtime [64]. Recently, certification-based schemes were proposed also for
the Cloud scenario as in the works by Anisetti et al. [65, 66].

Trust and customer feedback have been employed in the definition of some
cloud service selection approaches. For instance, Ding et al. [67] proposed
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a ranking prediction method for personalized cloud service selection, which
takes into account the customer’s attitude and expectation towards quality
of service, and exploits collaborative filtering techinques by calculating sim-
ilarities between customers. Qu et al. [68] proposed a context-aware and
credible cloud service selection mechanism based on aggregating subjective
assessments extracted from ordinary cloud consumers and objective assess-
ments from quantitative performance testing parties. Tang et al. [26] later
proposed a sophisticated trust evaluation method for cloud service selection,
where objective trust assessments (based on QoS monitoring) and subjec-
tive trust assessments (based on user feedback ratings) of cloud services are
suitably combined.

7. Concluding Remarks

In this paper, we proposed a declarative methodology, SecFog, which can be
used to quantitatively assess the security level of multi-service application
deployments to Cloud-Edge infrastructures. With a prototype implementa-
tion in ProbLog, we have shown how SecFog helps application operators in
determining secure deployments based on specific application requirements,
available infrastructure capabilities, and considering trust degrees in different
Edge and Cloud providers.

To the best of our knowledge, SecFog constitutes a first well-founded, efficient
and explainable effort towards such direction. The well-foundedness and effi-
ciency of SecFog are guaranteed by the state-of-the-art resolution algorithms
implemented within the ProbLog engine. The possibility of explaining the
obtained security assessment also derives from ProbLog functionalities that
allow the users to obtain graphical ground programs and proofs for the re-
sults of their queries. The SecFog prototype can be fruitfully used with other
tools for application deployment so to identify suitable trade-offs among the
estimated security level and other deployment performance indicators (e.g.,
QoS-assurance, resource usage, monthly cost, energy consumption), as we
have shown with our prototype FogTorchΠ.

As future work, we plan to:

- prototype a language-based approach (as in [69]) and a GUI to ease
the declaration of application security requirements and to provide a
user-friendly view of the recommended deployment(s), by suitably high-
lighting how the application security requirements are satisfied,
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- extend such GUI with a visual explanation of the reasons why a given
deployment is not recommended by SecFog, and

- engineer and integrate SecFog with FogTorchΠ and show their applica-
bility to actual use cases.

We also intend to enrich the current application model of SecFog so to be
able to analyse the security of (probabilistic) information flows among the
constituent services, by also defining pre-defined patterns (along the lines of
[70]).
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