105,103 research outputs found

    Linear Iterations on Ordered Semirings for Trust Metric Computation and Attack Resiliency Evaluation

    Get PDF
    Within the realm of network security, we interpret the concept of trust as a relation among entities that participate in various protocols. Trust relations are based on evidence created by the previous interactions of entities within a protocol. In this work, we are focusing on the evaluation of trust evidence in Ad Hoc Networks. Because of the dynamic nature of Ad Hoc Networks, trust evidence may be uncertain and incomplete. Also, no pre-established infrastructure can be assumed. The evaluation process is modelled as a path problem on a directed graph, where nodes represent entities, and edges represent trust relations. We develop a novel formulation of trust computation as linear iterations on ordered semirings. Using the theory of semirings, we analyze several key problems on the performance of trust algorithms. We also analyze the resilience to attacks of the resulting schemes

    A Trust Evaluation Framework in Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-Hoc Networks (VANET) is a novel cutting-edge technology which provides connectivity to millions of vehicles around the world. It is the future of Intelligent Transportation System (ITS) and plays a significant role in the success of emerging smart cities and Internet of Things (IoT). VANET provides a unique platform for vehicles to intelligently exchange critical information, such as collision avoidance or steep-curve warnings. It is, therefore, paramount that this information remains reliable and authentic, i.e., originated from a legitimate and trusted vehicle. Due to sensitive nature of the messages in VANET, a secure, attack-free and trusted network is imperative for the propagation of reliable, accurate and authentic information. In case of VANET, ensuring such network is extremely difficult due to its large-scale and open nature, making it susceptible to diverse range of attacks including man-in-the-middle (MITM), replay, jamming and eavesdropping. Trust establishment among vehicles can increase network security by identifying dishonest vehicles and revoking messages with malicious content. For this purpose, several trust models (TMs) have been proposed but, currently, there is no effective way to compare how they would behave in practice under adversary conditions. Further, the proposed TMs are mostly context-dependent. Due to randomly distributed and highly mobile vehicles, context changes very frequently in VANET. Ideally the TMs should perform in every context of VANET. Therefore, it is important to have a common framework for the validation and evaluation of TMs. In this thesis, we proposed a novel Trust Evaluation And Management (TEAM) framework, which serves as a unique paradigm for the design, management and evaluation of TMs in various contexts and in presence of malicious vehicles. Our framework incorporates an asset-based threat model and ISO-based risk assessment for the identification of attacks against critical risks. TEAM has been built using VEINS, an open source simulation environment which incorporates SUMO traffic simulator and OMNET++ discrete event simulator. The framework created has been tested with the implementation of three types of TM (data-oriented, entity-oriented and hybrid) under four different contexts of VANET based on the mobility of both honest and malicious vehicles. Results indicate that TEAM is effective to simulate a wide range of TMs, where the efficiency is evaluated against different Quality of Service (QoS) and security-related criteria. Such framework may be instrumental for planning smart cities and for car manufacturers.University of Derb

    A trust framework for peer-to-peer interaction in ad hoc networks

    Get PDF
    PhDAs a wider public is increasingly adopting mobile devices with diverse applications, the idea of who to trust while on the move becomes a crucial one. The need to find dependable partners to interact is further exacerbated in situations where one finds oneself out of the range of backbone structures such as wireless base stations or cellular networks. One solution is to generate self-started networks, a variant of which is the ad hoc network that promotes peer-to-peer networking. The work in this thesis is aimed at defining a framework for such an ad hoc network that provides ways for participants to distinguish and collaborate with their most trustworthy neighbours. In this framework, entities create the ability to generate trust information by directly observing the behaviour of their peers. Such trust information is also shared in order to assist those entities in situations where prior interactions with their target peers may not have existed. The key novelty points of the framework focus on aggregating the trust evaluation process around the most trustworthy nodes thereby creating a hierarchy of nodes that are distinguished by the class, defined by cluster heads, to which they belong. Furthermore, the impact of such a framework in generating additional overheads for the network is minimised through the use of clusters. By design, the framework also houses a rule-based mechanism to thwart misbehaving behaviour or non-cooperation. Key performance indicators are also defined within this work that allow a framework to be quickly analysed through snapshot data, a concept analogous to those used within financial circles when assessing companies. This is also a novel point that may provide the basis for directly comparing models with different underlying technologies. The end result is a trust framework that fully meets the basic requirements for a sustainable model of trust that can be developed onto an ad hoc network and that provides enhancements in efficiency (using clustering) and trust performance

    UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication

    Full text link
    [EN] Ensuring the desired level of security is an important issue in all communicating systems, and it becomes more challenging in wireless environments. Flying Ad Hoc Networks (FANETs) are an emerging type of mobile network that is built using energy-restricted devices. Hence, the communications interface used and that computation complexity are additional factors to consider when designing secure protocols for these networks. In the literature, various solutions have been proposed to ensure secure and reliable internode communications, and these FANET nodes are known as Unmanned Aerial Vehicles (UAVs). In general, these UAVs are often detected as malicious due to an unintentional misbehavior related to the physical features of the UAVs, the communication mediums, or the network interface. In this paper, we propose a new context-aware trust-based solution to distinguish between intentional and unintentional UAV misbehavior. The main goal is to minimize the generated error ratio while meeting the desired security levels. Our proposal simultaneously establishes the inter-UAV trust and estimates the current context in terms of UAV energy, mobility pattern, and enqueued packets, in order to ensure full context awareness in the overall honesty evaluation. In addition, based on computed trust and context metrics, we also propose a new inter-UAV packet delivery strategy. Simulations conducted using NS2.35 evidence the efficiency of our proposal, called UNION., at ensuring high detection ratios > 87% and high accuracy with reduced end-to-end delay, clearly outperforming previous proposals known as RPM, T-CLAIDS, and CATrust.This research is partially supported by the United Arab Emirates University (UAEU) under Grant no. 31T065.Barka, E.; Kerrache, CA.; Lagraa, N.; Lakas, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J. (2018). UNION: A Trust Model Distinguishing Intentional and Unintentional Misbehavior in Inter-UAV Communication. Journal of Advanced Transportation. 1-12. https://doi.org/10.1155/2018/7475357S112Ghazzai, H., Ben Ghorbel, M., Kadri, A., Hossain, M. J., & Menouar, H. (2017). Energy-Efficient Management of Unmanned Aerial Vehicles for Underlay Cognitive Radio Systems. IEEE Transactions on Green Communications and Networking, 1(4), 434-443. doi:10.1109/tgcn.2017.2750721Sharma, V., & Kumar, R. (2016). Cooperative frameworks and network models for flying ad hoc networks: a survey. Concurrency and Computation: Practice and Experience, 29(4), e3931. doi:10.1002/cpe.3931Sun, J., Wang, W., Kou, L., Lin, Y., Zhang, L., Da, Q., & Chen, L. (2017). A data authentication scheme for UAV ad hoc network communication. The Journal of Supercomputing, 76(6), 4041-4056. doi:10.1007/s11227-017-2179-3He, D., Chan, S., & Guizani, M. (2017). Drone-Assisted Public Safety Networks: The Security Aspect. IEEE Communications Magazine, 55(8), 218-223. doi:10.1109/mcom.2017.1600799cmSeong-Woo Kim, & Seung-Woo Seo. (2012). Cooperative Unmanned Autonomous Vehicle Control for Spatially Secure Group Communications. IEEE Journal on Selected Areas in Communications, 30(5), 870-882. doi:10.1109/jsac.2012.120604Singh, A., Maheshwari, M., Nikhil, & Kumar, N. (2011). Security and Trust Management in MANET. Communications in Computer and Information Science, 384-387. doi:10.1007/978-3-642-20573-6_67Kerrache, C. A., Calafate, C. T., Cano, J.-C., Lagraa, N., & Manzoni, P. (2016). Trust Management for Vehicular Networks: An Adversary-Oriented Overview. IEEE Access, 4, 9293-9307. doi:10.1109/access.2016.2645452Li, W., & Song, H. (2016). ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 17(4), 960-969. doi:10.1109/tits.2015.2494017Raghunathan, V., Schurgers, C., Sung Park, & Srivastava, M. B. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40-50. doi:10.1109/79.985679Feeney, L. M. (2001). Mobile Networks and Applications, 6(3), 239-249. doi:10.1023/a:1011474616255De Rango, F., Guerriero, F., & Fazio, P. (2012). Link-Stability and Energy Aware Routing Protocol in Distributed Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 23(4), 713-726. doi:10.1109/tpds.2010.160Hyytia, E., Lassila, P., & Virtamo, J. (2006). Spatial node distribution of the random waypoint mobility model with applications. IEEE Transactions on Mobile Computing, 5(6), 680-694. doi:10.1109/tmc.2006.86Wang, Y., Chen, I.-R., Cho, J.-H., Swami, A., Lu, Y.-C., Lu, C.-T., & Tsai, J. J. P. (2018). CATrust: Context-Aware Trust Management for Service-Oriented Ad Hoc Networks. IEEE Transactions on Services Computing, 11(6), 908-921. doi:10.1109/tsc.2016.2587259Kumar, N., & Chilamkurti, N. (2014). Collaborative trust aware intelligent intrusion detection in VANETs. Computers & Electrical Engineering, 40(6), 1981-1996. doi:10.1016/j.compeleceng.2014.01.00

    A Robust Dirichlet Reputation and Trust Evaluation of Nodes in Mobile Ad Hoc Networks

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)The distributed nature of mobile ad hoc networks (MANETs) presents security challenges and vulnerabilities which sometimes lead to several forms of attacks. To improve the security in MANETs, reputation and trust management systems (RTMS) have been developed to mitigate some attacks and threats arising from abnormal behaviours of nodes in networks. Generally, most reputation and trust systems in MANETs focus mainly on penalising uncooperative network nodes. It is a known fact that nodes in MANETs have limited energy resources and as such, the continuous collaboration of cooperative nodes will lead to energy exhaustion. This paper develops and evaluates a robust Dirichlet reputation and trust management system which measures and models the reputation and trust of nodes in the network, and it incorporates candour into the mode of operations of the RTMS without undermining network security. The proposed RTMS employs Dirichlet probability distribution in modelling the individual reputation of nodes and the trust of each node is computed based on the node’s actual network performance and the accuracy of the second-hand reputations it gives about other nodes. The paper also presents a novel candour two-dimensional trustworthiness evaluation technique that categorises the behaviours of nodes based on their evaluated total reputation and trust values. The evaluation and analyses of some of the simulated behaviours of nodes in the deployed MANETs show that the candour two-dimensional trustworthiness evaluation technique is an effective technique that encourages and caters to nodes that continuously contribute to the network despite the reduction in their energy levels.Peer reviewedFinal Published versio

    Internet of things: where to be is to trust

    Get PDF
    [EN] Networks' creation is getting more and more required, anytime, anywhere. Devices that can participate on these networks can be quite different among them. Sensors, mobiles, home appliances, or other type of devices will have to collaborate to increase and improve the services provided to clients. In the same way, network configuration, security mechanisms establishment, and optimal performance control must be done by them. Some of these devices could have limited resources to work, sometimes even resources restriction not existing, they must work to optimize network traffic. In this article, we center our researching on spontaneous networks. We propose a secure spontaneous ad-hoc network, based on direct peer-to-peer interaction and communities' creation to grant a quick, easy, and secure access to users to surf the Web. Each device will have an identity in the network. Each community will also have an identity and will act as a unity on a world based on Internet connection. Security will be established in the moment they access to the network through the use of the trust chain generated by nodes. Trust is modified by each node on the basis of nodes behaviorLacuesta, R.; Palacios-Navarro, G.; Cetina Englada, C.; Peñalver Herrero, ML.; Lloret, J. (2012). Internet of things: where to be is to trust. EURASIP Journal on Wireless Communications and Networking. (203):1-16. doi:10.1186/1687-1499-2012-203S116203Lipnack J, Stamps J: Virtual Teams: Researching Across Space, Time, and Organizations with Technology. New York: John Wiley and Sons; 1997.Ahuja MK, Carley KN: Network structure in virtual organizations, organization science, Vol. 10, No. 6, Special Issue: Communication Processes for Virtual Organizations, November–December. 1999, 741-757.Mowshowitz A: Virtual organization. Commun ACM 1997, 40(9):30-37. 10.1145/260750.260759Preuß S: CH Cap, Overview of spontaneous networking-evolving concepts and technologies, in Rostocker Informatik-Berichte. Rostock: Fachbereich Informatik der Universit; 2000:113-123.Feeney LM, Ahlgren B, Westerlund A: Spontaneous networking: an application-oriented approach to ad hoc networking. IEEE Commun Mag 2001, 39(6):176-181. 10.1109/35.925687Latvakoski J, Pakkala D, Pääkkönen P: A communication architecture for spontaneous systems. IEEE Wirel Commun 2004, 11(3):36-42. 10.1109/MWC.2004.1308947Mani M, Nguyen A-M, Crespi N: SCOPE: a prototype for spontaneous P2P social networking. Proceedings of 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops) 2010, 220-225.Legendre F, de Amorim MD, Fdida S: Implicit merging of overlapping spontaneous networks. Proceedings of Vehicular Technology Conference 2004, 3050-3054.Zarate Silva VH, De Cruz Salgado EI, Ramos Quintana F: AWISPA: an awareness framework for collaborative spontaneous networks. 36th Annual Frontiers in Education Conference 2006, 27-31.Perkins CE, Bhagwat P: Highly dynamic destination sequenced distance-vector routing (DSDV) for mobile computers. Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM’94 1994, 234-244.Johnson DB, Maltz DA, Broch J: DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks. Boston, MA: Ad Hoc Networking (Addison-Wesley Longman Publishing; 2001.Perkins C, Belding-Royer E, Das S: Ad hoc on-demand distance vector (AODV) routing, RFC 3561. 2003.Park V, Corson MS: IETF MANET Internet Draft “draft-ietf-MANET-tora-spe03.txt”, November 2000. 2012. Accessed March http://tools.ietf.org/html/draft-ietf-manet-tora-spec-03Viana AC, De Amorim MD, Fdida S, de Rezende JF: Self-organization in spontaneous networks: the approach of DHT-based routing protocols. Ad Hoc Networks 2005, 3(5):589-606. 10.1016/j.adhoc.2004.08.006Lacuesta R, Peñalver L: IP addresses configuration in spontaneous networks. In Proceedings of the 9th WSEAS International Conference on Computers. Athens, Greece; 2005:1-6.Alvarez-Hamelin JI, Viana AC, de Amorim M Dias: Architectural considerations for a self-configuring routing scheme for spontaneous networks, Technical Report 1. 2005.Lacuesta R, Peñalver L: Automatic configuration of ad-hoc networks: establishing unique IP link-local addresses. In Proceedings of the International Conference on Emerging Security Information, Systems and Technologies (SECURWARE’07). Valencia, Spain; 2007:157-162.Foulks EF: Social network therapies and society: an overview. Contemp Fam Therapy 1985, 3(4):316-320.IBM: A Smarter Planet. 2012. http://www.ibm.com/smarterplanetMontenegro G, Kushalnagar N, Hui J, Culler D: RFC 4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. 2007.Alcaraz C, Najera P, Lopez J, Roman R: Wireless Sensor Networks and the Internet of Things: Do We Need a Complete Integration?, 1st International workshop on the security of The internet of Things (SecIoT). tokyo (Japan); 2010. . Accessed January 2012 1er International Workshop on the Security of The Internet of Things (SecIoT 2010) http://www.nics.uma.es/seciot10/files/pdf/alcaraz_seciot10_paper.pdfFerscha A, Davies N, Schmidt A, Streitz N: Pervasive Socio-Technical Fabric. Procedia Computer Science 2011, 7: 88-91.Hubaux JP, Buttyán L, Capkun S: The quest for security in mobile ad-hoc networks, in Proceedings of the ACM Symposium on Mobile Ad-hoc Networking and Computing. 2001, 146-155.Wang Y, Varadharajan V: Interaction trust evaluation in decentralized environments, e-commerce and web technologies. In Proceedings of 5th International Conference on Electronic Commerce and Web Technologies, vol LNCS 3182. Springer; 2004:144-153.Jimin L, Junbao L, Aiguo A, Zhenpeng L: Two-way trust evaluation based on feedback. in Conference on Logistics Systems and Intelligent Management 2010, 3: 1910-1914.Daskapan S, Nurtanti I, Van den Berg J: Trust algorithms in P2P file sharing networks. Int J Internet Technol Secured Trans 2010, 2(1–2):174-200.Maña A, Koshutanski H, Pérez EJ: A trust negotiation based security framework for service provisioning in load-balancing clusters. Comput Secur 2012, 31(1):4-25. 10.1016/j.cose.2011.11.006Stajano F, Anderson R: The resurrecting duckling security issues for ad-hoc wireless networks. Security Protocols, 7th International Workshop Proceedings, Lecture notes in Computer Science, LNCS 1296 1999, 172-194.Balfanz D, Smetters DK, Stewart P, ChiWong H: Talking to strangers: authentication in ad-hoc wireless networks, in Symposium on Network and Distributed Systems Security (NDSS’02). San Diego, CA; 2002.Capkun S, Hubaux JP, Buttyán L: Mobility helps security in ad-hoc networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing. MD, USA: Annapolis; 2003:46-56.Metzger MJ: Privacy, trust, and disclosure: exploring barriers to electronic commerce. J Comput-Mediat Commun 2004, 9(4). http://jcmc.indiana.edu/vol9/issue4/metzger.html 2004, 9(4)

    Trust based flooding attack detection and response mechanisms for ad hoc on-demand distance vector routing protocol

    Get PDF
    Mobile Ad hoc Networks provide a structure-less environment, enabling participants in the coverage mobile nodes to communicate each other without using any centralized authentication agent. Thus, it is compromised in face to various sorts of attacks. Unfortunately, none of the presented secured routing protocols can detect internal Denial of Service (DoS) attacks by itself naturally. One of the most important and effective internal misbehaviors which has dramatic side effects on the network’s throughput is Flooding Attack. This project aims at proposing an alternative solution to detect and respond Flooding Attack in MANET which is based on cooperative trust evaluation mechanisms. Actually, this approach is matched to basic principles of distributed networks in which the participating nodes are responsible for any needed creation, operation and maintenance of the network. Moreover, it seems useful for high mobility networks where the suspicious nodes move around the area repeatedly. Consequently, the gained results of the project prove that the proposed Trust-based Cooperation mechanisms decreases the side effects of Flooding Attack on Ad-hoc On-demand Distance Vector routing protocol
    corecore