84,765 research outputs found

    DIAMOnDS - DIstributed Agents for MObile & Dynamic Services

    Full text link
    Distributed Services Architecture with support for mobile agents between services, offer significantly improved communication and computational flexibility. The uses of agents allow execution of complex operations that involve large amounts of data to be processed effectively using distributed resources. The prototype system Distributed Agents for Mobile and Dynamic Services (DIAMOnDS), allows a service to send agents on its behalf, to other services, to perform data manipulation and processing. Agents have been implemented as mobile services that are discovered using the Jini Lookup mechanism and used by other services for task management and communication. Agents provide proxies for interaction with other services as well as specific GUI to monitor and control the agent activity. Thus agents acting on behalf of one service cooperate with other services to carry out a job, providing inter-operation of loosely coupled services in a semi-autonomous way. Remote file system access functionality has been incorporated by the agent framework and allows services to dynamically share and browse the file system resources of hosts, running the services. Generic database access functionality has been implemented in the mobile agent framework that allows performing complex data mining and processing operations efficiently in distributed system. A basic data searching agent is also implemented that performs a query based search in a file system. The testing of the framework was carried out on WAN by moving Connectivity Test agents between AgentStations in CERN, Switzerland and NUST, Pakistan.Comment: 7 pages, 4 figures, CHEP03, La Jolla, California, March 24-28, 200

    Security models for trusting network appliances

    Get PDF
    A significant characteristic of pervasive computing is the need for secure interactions between highly mobile entities and the services in their environment. Moreover,these decentralised systems are also characterised by partial views over the state of the global environment, implying that we cannot guarantee verification of the properties of the mobile entity entering an unfamiliar domain. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. cryptographic measures do not ensure transmission of correct information). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two devices during ad-hoc interactions

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability

    Migration control for mobile agents based on passport and visa

    Get PDF
    Research on mobile agents has attracted much attention as this paradigm has demonstrated great potential for the next-generation e-commerce. Proper solutions to security-related problems become key factors in the successful deployment of mobile agents in e-commerce systems. We propose the use of passport and visa (P/V) for securing mobile agent migration across communities based on the SAFER e-commerce framework. P/V not only serves as up-to-date digital credentials for agent-host authentication, but also provides effective security mechanisms for online communities to control mobile agent migration. Protection for mobile agents, network hosts, and online communities is enhanced using P/V. We discuss the design issues in details and evaluate the implementation of the proposed system

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page

    Mobile phone and e-government in Turkey: practices and technological choices at the cross-road

    Get PDF
    Enhanced data services through mobile phones are expected to be soon fully transactional and embedded within future mobile consumption practices. While private services will surely continue to take the lead, others such as government and NGOs will become more prominent m-players. It is not yet sure which form of technological standards will take the lead including enhance SMS based operations or Internet based specifically developed mobile phone applications. With the introduction of interactive transactions via mobile phones, currently untapped segment of the populations (without computers) have the potential to be accessed. Our research, as a reflection of the current market situation in an emerging country context, in the case of mobile phones analyzes the current needs or emergence of dependencies regarding the use of m/e-government services from the perspective of municipality officers. We contend that more research is needed to understand current preparatory bottlenecks and front loading activities to be able to encourage future intention to use e-government services through mobile phone technologies. This study highlights and interprets the current emerging practices and praxis for consuming m-government services within government

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    A Framework for M-Commerce Implementation in Nigeria

    Get PDF
    The Internet has brought about the concept of grobalilation, which has revolutionized the way business is transacted all over the world. The E-comnterce is of particular interest, though widely used but still has some security challenges in terms of transparency and confidentiality of transactiorts. This papei focuses on M-contnrcrce as an extensiott to E-commerce hnplementatiott with the Bankiltg industry proposed as core implementation consideration in ortler to guarantee high level security. We have reviewed some cqses of onlilrc frauds and eliscussed tlte emerging critical issues afficting software development of M-cornmerce applicatiotts. Afranrcworkfor M-commerce implementationis therefore,proposed for countries such as Nigeria, Romania and Indonesia where cases of online scam are alanning

    Dynamic trust models for ubiquitous computing environments

    Get PDF
    A significant characteristic of ubiquitous computing is the need for interactions of highly mobile entities to be secure: secure both for the entity and the environment in which the entity operates. Moreover, ubiquitous computing is also characterised by partial views over the state of the global environment, implying that we cannot guarantee that an environment can always verify the properties of the mobile entity that it has just received. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. an entity might encrypt a deliberately incorrect answer to a legitimate request). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two entities during an interaction in a ubiquitous environment
    corecore