10,040 research outputs found

    A Comprehensive Analysis of Proportional Intensity-based Software Reliability Models with Covariates (New Developments on Mathematical Decision Making Under Uncertainty)

    Get PDF
    The black-box approach based on stochastic software reliability models is a simple methodology with only software fault data in order to describe the temporal behavior of fault-detection processes, but fails to incorporate some significant development metrics data observed in the development process. In this paper we develop proportional intensity-based software reliability models with time-dependent metrics, and propose a statistical framework to assess the software reliability with the timedependent covariate as well as the software fault data. The resulting models are similar to the usual proportional hazard model, but possess somewhat different covariate structure from the existing one. We compare these metricsbased software reliability models with eleven well-known non-homogeneous Poisson process models, which are the special cases of our models, and evaluate quantitatively the goodness-of-fit and prediction. As an important result, the accuracy on reliability assessment strongly depends on the kind of software metrics used for analysis and can be improved by incorporating the time-dependent metrics data in modeling

    Cosmic Evolution of Stellar Disk Truncations: From z~1 to the Local Universe

    Full text link
    We have conducted the largest systematic search so far for stellar disk truncations in disk-like galaxies at intermediate redshift (z<1.1), using the Great Observatories Origins Deep Survey South (GOODS-S) data from the Hubble Space Telescope - ACS. Focusing on Type II galaxies (i.e. downbending profiles) we explore whether the position of the break in the rest-frame B-band radial surface brightness profile (a direct estimator of the extent of the disk where most of the massive star formation is taking place), evolves with time. The number of galaxies under analysis (238 of a total of 505) is an order of magnitude larger than in previous studies. For the first time, we probe the evolution of the break radius for a given stellar mass (a parameter well suited to address evolutionary studies). Our results suggest that, for a given stellar mass, the radial position of the break has increased with cosmic time by a factor 1.3+/-0.1 between z~1 and z~0. This is in agreement with a moderate inside-out growth of the disk galaxies in the last ~8 Gyr. In the same period of time, the surface brightness level in the rest-frame B-band at which the break takes place has increased by 3.3+/-0.2 mag/arcsec^2 (a decrease in brightness by a factor of 20.9+/-4.2). We have explored the distribution of the scale lengths of the disks in the region inside the break, and how this parameter relates to the break radius. We also present results of the statistical analysis of profiles of artificial galaxies, to assess the reliability of our results.Comment: 22 pages, 14 figures, accepted for publication in ApJ. Figures 1, 3 and 6 have somehow downgraded resolution to match uploading requirement

    Statistical procedures for certification of software systems

    Get PDF

    Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data

    Get PDF
    New transiting planet candidates are identified in sixteen months (May 2009 - September 2010) of data from the Kepler spacecraft. Nearly five thousand periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1,091 viable new planet candidates, bringing the total count up to over 2,300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multi-quarter photo-center offsets derived from difference image analysis which identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the new candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (197% for candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and those at longer orbital periods (123% for candidates outside of 50-day orbits versus 85% for candidates inside of 50-day orbits). The gains are larger than expected from increasing the observing window from thirteen months (Quarter 1-- Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the benefit of continued development of pipeline analysis software. The fraction of all host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the Habitable Zone are forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the NASA Exoplanet Archiv

    Using Simulation-Based Inference with Panel Data in Health Economics

    Get PDF
    Panel datasets provide a rich source of information for health economists, offering the scope to control for individual heterogeneity and to model the dynamics of individual behaviour. However the qualitative or categorical measures of outcome often used in health economics create special problems for estimating econometric models. Allowing a flexible specification of individual heterogeneity leads to models involving higher order integrals that cannot be handled by conventional numerical methods. The dramatic growth in computing power over recent years has been accompanied by the development of simulation estimators that solve this problem. This review uses binary choice models to show what can be done with conventional methods and how the range of models can be expanded by using simulation methods. Practical applications of the methods are illustrated using on health from the British Household Panel Survey (BHPS)Econometrics, panel data, simulation methods, determinants of health

    Modeling repairable system failure data using NHPP realiability growth mode.

    Get PDF
    Stochastic point processes have been widely used to describe the behaviour of repairable systems. The Crow nonhomogeneous Poisson process (NHPP) often known as the Power Law model is regarded as one of the best models for repairable systems. The goodness-of-fit test rejects the intensity function of the power law model, and so the log-linear model was fitted and tested for goodness-of-fit. The Weibull Time to Failure recurrent neural network (WTTE-RNN) framework, a probabilistic deep learning model for failure data, is also explored. However, we find that the WTTE-RNN framework is only appropriate failure data with independent and identically distributed interarrival times of successive failures, and so cannot be applied to nonhomogeneous Poisson process

    An X-ray survey of low-mass stars in Trumpler 16 with Chandra

    Full text link
    We identify and characterize low-mass stars in the ~3 Myr old Trumpler 16 (Tr16) region by means of a deep Chandra X-ray observation, and study their optical and near-IR properties. We compare X-ray activity of Tr16 stars with known characteristics of Orion and Cygnus OB2 stars. We analyzed a 88.4 ksec Chandra ACIS-I observation pointed at the center of Tr16. Because of diffuse X-ray emission, source detection was performed using the PWDetect code for two different energy ranges: 0.5-8.0 keV and 0.9-8.0 keV. Results were merged into a single final list. We positionally correlate X-ray sources with optical and 2MASS catalogues. Source events were extracted with the IDL-based routine ACIS-Extract. X-ray variability was characterized using the Kolmogorov-Smirnov test and spectra were fitted by using XSPEC. X-ray spectra of early-type, massive stars were analyzed individually. Our list of X-ray sources consists of 1035 entries, 660 of which have near-IR counterparts and are probably associated with Tr16 members. From near-IR color-color and color-magnitudes diagrams we compute individual masses of stars and their Av values. About 15% of the near-IR counterparts show disk-induced excesses. X-ray variability is found in 77 sources. X-ray emission from OB stars appear softer than the low-mass stars. The Tr16 region has a very rich population of low-mass X-ray emitting stars. An important fraction of its circumstellar disks survive the intense radiation field of its massive stars. Stars with masses 1.5-2.5 Mo display X-ray activity similar to that of stars in Cyg OB2 but much less intense than observed for Orion Nebula Cluster members.Comment: 19 pages, 3 ellectronic tables and 19 figures. Accepted for publication at the A&
    corecore