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Chapter 1

Introduction

In this chapter we first give a brief overview of software testing theory. We emphasize
on the different approaches to software testing found in the literature and in common
problems being studied during the past four decades. Afterwards, we introduce the
main goals of our research and the outline of this thesis.

1.1 Motivation

The main goal of this section is to provide a clear motivation to our work. We first
discuss the importance of software testing in Section 1.1.1. A common problem in
software testing theory is that the terminology used is often confusing. For that
reason, we introduce in Section 1.1.2 consistent terminology that will be used in
this thesis. In Section 1.1.3 we present the two main approaches to software testing
(called black-box and model-based testing). Finally, in Section 1.1.4 we consider the
decision problem when to stop testing and the role of statistical models in order to
answer this question.

1.1.1 The importance of software testing

Our first goal is to answer the question why software testing is important? If a
software user is asked about this, the answer would likely to be because software
often fails. The study of software systems during the past decades has revealed
that practically all software systems contain faults even after they have passed an
acceptance test and are in operational use. Software faults are of a special nature
since they are due to human design or implementation mistakes. Since humans
are fallible (so are software developers), software systems will have faults. Software
systems are becoming so complex that, even if the number of possible test cases is
theoretically finite, which is not always the case (for example, if unbounded input
strings are allowed, then the number of test cases is infinite), their execution takes
unacceptable much time in practice. Hence, it is impossible from a practical, or
even theoretical, point of view to test them exhaustively. Therefore, there it is most
likely that complex software systems have faults. We can improve upon this situation
by designing rigorous test procedures. A test can be defined as the act of executing
software with test cases with the purpose of finding faults or showing correct software
execution (cf. Jorgensen (2002)[Chapter 1]). A test case is associated with the
software behaviour since after its execution testers are able to determine whether
a software system has met the corresponding specifications or not. Testing the
software against specific acceptance criteria or requirements is a way to determine
whether the software meets the quality demands. In that sense, testing can be
regarded as a procedure to measure the quality of the software. Testing also helps
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2 Introduction

to detect (and repair) faults in the system. As long as faults are found and repaired,
the number of remaining faults should decrease (although during the repair phase
new faults may be introduced), resulting in a more reliable system. Here testing can
be regarded as a procedure to improve software quality. Sound test designs should
include list of inputs and expected outputs and documentation of the performed
tests. Tests must be checked in order to avoid test cases to be executed without
prior analysis of the requirements or mistake test faults for real software faults.
There is a vast literature on software testing starting in the 1970’s, Myers (1979)
being one of the first monographs on the field. For more recent ones we refer to
Beizer (1990), Jorgensen (2002) or Patton (2005).

1.1.2 Software failure vs. fault

The definition of a software fault is a delicate matter since vague or confusing
definitions are often found in the software testing literature. In this thesis, we
adopt the following terminology: when a deviation of software behaviour from user
requirements is observed we say that a failure has occurred. On the other hand, a
fault (error, bug, etc.) in the software is defined as an erroneous piece of code that
causes failure occurrence. For us, a software fault occurs when at least one of the
following rules (cf. Patton (2005)[Chapter 1]) is true:

1. The software does not do something that its specifications says it should do.

2. The software does something that its specifications says it should not do.

3. The software is difficult to understand, hard to use, slow or (in the software
tester’s eyes) will be viewed by the end user as just plain “not right”.

There are many types of software faults, each of them with their own impact on
the use of software systems. Classifications of software faults provide insight into
the factors that lead to programming mistakes and help to prevent these faults in
the future. Faults can be classified in several ways according to different criteria:
impact in the system (severity), difficulty and cost of repairing, frequency at which
they occurred, etc. Taxonomies of software faults have been widely studied in the
software testing literature (see e.g. Basili and Perricone (1984), Beizer (1990)[Chap-
ter 2], Du and Mathur (1998), Sullivan and Chillarege (1991) and Tsipenyuk et al.
(2005)). One of the main problems with this kind of classifications is that they
are ambiguous. Most of the authors agree on that their classification schemes may
not avoid this ambiguity since the interpretation of the categories is subjected to
the point of view of the corresponding fault analyst. The following two classifica-
tion schemes give a good overview about software fault taxonomies. One of the
first classifications of software faults can be found in Myers (1979)[Chapter 3] where
faults are classified into seven different categories: data reference (uninitialized vari-
ables, array references out of bounds, etc.), data-declaration (variables not declared,
attributes of a variable not stated, etc.), computation (division by zero, computa-
tions on non-arithmetic variables, etc.), comparison (incorrect Boolean expressions,
comparisons between variables of different type, etc.), control-flow (infinite loops,
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module does not terminate, etc.), interface (number of input parameters differs from
number of arguments, parameter and argument attributes do not match, etc.) and
input/output (buffer size does not match record size, files do not open before use,
etc.) faults. The second one is due to Basili and Perricone (1984) where soft-
ware faults are classified into five categories: initialization (fail to initialize a data
structure properly), control structure (incorrect path in the program flow), interface
(associated with structures outside a module environment), data (incorrect use of a
data structure) and computation (erroneous evaluation of the value of a variable).
For an overview on different software fault classification schemes we refer to Jor-
gensen (2002)[Chapter 1]. In this thesis we abstract from the type of fault. We
only distinguish whether there is a fault or not, where we consider a fault as the
deviation from user requirements mentioned above.

1.1.3 Black-box vs. model-based testing

Two main approaches to software testing are found in the literature, functional
and structural testing. Functional testing considers software systems as a, possibly
stateful, function. The function is stateless if repeated application to the same input
results in the same output. By stateful functions the result depends on the input and
the history. In this case it is said that the system is treated as a black-box since no
knowledge is assumed about the internal structure of the system. Thus, test cases
are generated using only the specifications of the software system. The software is
subjected to a set of inputs that generates their corresponding outputs which are
verified for conformance to the specified behaviour. Note that black-box testing is a
user-oriented concept since it concerns functionalities and not the implementation.
One of the main advantages of black-box testing is precisely that test cases are
independent of the implementation procedure. Thus, if the implementation changes,
the test cases already generated are still valid. On the other hand, structural testing
assumes that some details of the implementation (like programming style, control
flow, database design or program code) are known to the tester and these may be
used to generate test cases. Depending on the degree of knowledge about internal
details of the system, different terms like white-box , clear-box or model-based are
used for structural testing. The first two terms are usually used indistinctly to
denote the situation where the tester has access to the program code. On the other
hand, in model-based testing, test cases are generated based on models that describe
part of the behaviour of the system. We are interested in model-based testing, in
particular in models describing the control flow over the system components. The
models used to describe the software are usually a certain type of graphs. Thus,
model-based testing has a theoretical background in graph theory. Both black-box
and model-based testing are useful but have limitations. For that reason, one should
not look at them as two alternative strategies but as complementary.

1.1.4 When to stop testing

A major problem with software testing is to decide when to stop testing and release
the software. Even for small software applications, the number of possible test cases
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is often so large that, even if they are theoretically finite, which is not always the
case, their execution takes unacceptable much time in practice. Since performing
exhaustive testing is seldom feasible, statistical procedures to support the decision
of stop testing and release the software (with certain statistical confidence) must
be considered. Such statistical procedures are mainly based on stochastic models
describing the failure detection process experienced during testing. These models
are built upon certain assumptions about the failure detection process and usually
depend on some parameters. Based on the failure information collected during test-
ing, statistical models are used to estimate quantities like the remaining number of
faults in the system, the future detection rate or the additional test effort needed
to find a certain number of faults (see e.g. Grottke (2003), Ohba (1984) and van
Pul (1992a)). Statistical procedures to support software release decisions are usu-
ally based on the optimization of a certain loss function that in general considers
the trade-off between the cost of extra testing and the cost of undetected faults.
Such procedures are developed from the software producer point of view. On the
other hand, release decisions may be based on a certification criterion. Certification
of certain properties of a system like fault-free system or probability of no failure
in a given time period are certified with high probability. Note that unlike the
first approach (optimization of loss function), certification procedures are developed
from the point of view of software users. Producers must certify that their software
performs according to certain reliability requirements. Statistical approaches to soft-
ware reliability certification can be found in Currit et al. (1986) and Di Bucchianico
et al. (2008). However, in these papers certification procedures are developed from
a black-box approach. In this thesis we focus on statistical certification procedures
for both black-box and model-based testing.

1.2 Goal and outline of the thesis

With this thesis we hope to contribute to the development of new statistical proce-
dures for certification of software systems for both black-box and model-based test-
ing. We have developed sequential test procedures to certify, with high confidence,
that software systems do not have certain undesirable properties. In particular we
focus on: fault-free period after last failure observation and number of remaining
faults in the system. The procedures developed in the black-box context consider
a large family of software reliability growth models: semi-Markov models with in-
dependent times between failures. In model-based testing we use a special class of
Petri nets and finite state automata as the model of software. Practical application
of our approach is supported with software tools. The main results of this thesis
can be found in chapters 5 and 6 for black-box testing, and in chapters 7 and 8 for
model-based testing. The remainder of this thesis is organized as follows.

In Chapter 2 we introduce the notation, basic definitions and properties to be
used in this thesis, adopting the terminology from Thompson (1981). We emphasize
the important role of stochastic processes in black-box testing. Based on their basic
properties, we propose a classification scheme for software reliability growth models.
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We also describe two popular families of models known as General Order Statistics
(GOS) and Non-homogeneous Poisson Process (NHPP) models. We explain how
these classes are related in a Bayesian way. Besides this, we introduce some of the
most widely used models.

In Chapter 3 we present a step-by-step procedure to statistically analyze software
failure data. For us statistical analysis of software reliability data should consist
of data description, trend tests, initial model type selection, estimation of model
parameters, model validation and model interpretation. This approach is similar to
the one proposed in Goel (1985) but we provide more insight on each of the steps
and give some examples of application. In particular, the problem of initial model
selection is just mentioned as a necessary step in Goel (1985) but no explanation
about how this should be done is given. In fact, this problem has not been studied
in details in the software reliability literature, being Kharchenko et al. (2002) an
exception. Moreover, an important step like trend analysis is not considered in Goel
(1985). We also focus on model estimation and illustrate some common problems
related to Maximum Likelihood (ML) estimation. In general, to obtain the ML
estimators of model parameters numerical optimization is required. This is often
a very difficult problem as shown in Yin and Trivedi (1999). Finally, we point out
that further research is needed in this area, especially in problems regarding analysis
of interval-time data and computation of confidence intervals for the parameters of
the models.

In Chapter 4 we report on the status of a new software reliability tool to per-
form statistical analyses of software failure data based on the approach described
in chapters 2 and 3. The new tool is a joint project of the Laboratory for Quality
Software (LaQuSo) of the Eindhoven University of Technology (www.laquso.com),
Refis (www.refis.nl) and the Probability and Statistics group of the Eindhoven
University of Technology. This work has been partially presented in Boon et al.
(2007), Brandt et al. (2007a) and Brandt et al. (2007b).

Statistical approaches to black-box certification of software systems have not
been widely developed in the software reliability literature, Currit et al. (1986) and
Di Bucchianico et al. (2008) being exceptions to this. We study their approaches
and limitations in detail in Chapter 5. Moreover, in that chapter we present a se-
quential software release procedure where the certification criterion can be defined
as the next software failure is not observed in a certain time interval. Our proce-
dure is developed assuming that the failure detection process can be modelled as a
semi-Markov software reliability growth model with independent times between fail-
ures. In particular, we consider one NHPP model (Goel-Okumoto), one GOS model
(Jelinski-Moranda) and the software reliability model described in Di Bucchianico
et al. (2008). In this way, we extend the work presented there with further results.
Our procedure also certifies that under certain conditions the global risk taken in
the whole procedure (defined as the probability to stop testing too early) can be
controlled.

In Chapter 6 we study, via simulation, the performance of our certification proce-
dure for the models considered in Chapter 5. Some of the results shown in chapters 5
and 6 have already been presented in Corro Ramos et al. (2009).
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In Chapter 7 we introduce a general framework for model-based testing. Unlike
black-box (functional) testing, we now exploit the structure of the system. We
consider a model of software systems consisting of a set of components. However, we
abstract from the testing of the components themselves (can be done by functional
testing) but we concentrate on the control flow over the components. In particular,
we use a model of labelled transition systems (a special class of Petri nets) where
each transition in a labelled transition system represents a software component. We
assume that the transitions can either have a correct or an erroneous behaviour.
This erroneous behaviour represents the deviation from the requirements defined in
Section 1.1.2. However, we do not specify what a fault is (in the sense that we do
not classify it). For us a fault is a symbolic labelling of a transition. Transitions
labelled as erroneous are called error-marked. We assume that the number of error-
marked transitions is unknown and a fault can only be discovered by executing
the corresponding error-marked transition. In this context a test is defined as the
execution of a run through the system. A run is a path that either ends without
discovering an erroneous transition (successful run), or it ends in an error-marked
transition (failure run). Our main assumption is to consider testing to be non-
anticipative, i.e., it does not depend on future observed transitions but it may depend
on the past (test history). Under this assumption, we prove in Section 7.4 that the
error-marking of transitions at the beginning (caused by the programmers) gives the
same distribution as error-marking on the fly (when a transition is tested) and that
this holds for all possible testing strategies. A testing strategy for labelled transition
systems based on reduction techniques is described in Section 7.5. The main idea
is that after each successful run (no failure is observed), we increase the probability
of visiting unseen transitions. For that reason, we discard for the next run some
already visited parts of the system. We show that after a finite number of updates
all the transitions are visited, so that the updating procedure is exhaustive.

In Chapter 8 we describe two statistical certification procedures for the testing
framework developed in Chapter 7. We consider the process where only the transi-
tions observed for the first time are taken into account. We will refer to this as the
embedded process. We provide two statistical stopping rules, that are independent
of the underlying way of walking through the system, which allows us to stop earlier
with a certain statistical reliability. The first rule is based on the probability of
having a certain number of remaining error-marked transitions when we decide to
stop testing and the second one is based on the survival probability of the system.
Like in Chapter 5, we also prove that the global risk can be controlled. Finally,
we illustrate our whole approach with an example. Some of the results shown in
chapters 7 and 8 have been presented in Corro Ramos et al. (2008).

In chapters 7 and 8 we develop a test procedure for software systems assuming
that these can be modelled as a special kind of labelled transition systems. We are
interested in two parameters of our procedure: the testing strategy and the stopping
rule. In Chapter 9 we discuss how these two parameters may influence the result of
the whole test procedure and how to measure their quality. Since testing strategies
and stopping rules can be very complex, we have no analytical methods to determine
their quality in general. Therefore, we have to resort to empirical methods. In order
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to do so, we need a population of labelled transitions systems that could be used as
benchmark. Instead of fixing some finite set of labelled transition systems, we define
a mechanism to generate an infinite population of labelled transition systems, each
element having a certain probability of being generated. Based on this approach,
we describe a procedure to test the quality of different test procedures. Finally, we
present a software tool that can be used to study in an experimental way different
test procedures for software systems that can be modelled as labelled transition
systems.





Chapter 2

Probability Models in Software
Reliability and Testing

In this chapter we introduce the notation and basic definitions and properties to
be used in this thesis. Software reliability is defined as the probability of software’s
successful operation during a certain period of time under specified conditions (see
e.g. Lyu (1996)[Chapter 1]). Unlike in hardware reliability, where most of the faults
are physical, software does not wear-out during its lifetime. Thus, software reli-
ability will not change over time unless the code or the environmental conditions
(for example, user behavior) change. Note that the concept of software reliability is
user-oriented since it concerns the user expectations about the performance of the
software. Since users must be satisfied, the system should be of high quality and
thus highly reliable. In that sense, we can regard software reliability as an indicator
of quality. Software reliability is hard to achieve in practice due to the complexity of
software systems. Such complexity often makes it unfeasible to perform exhaustive
testing in practice. Therefore, statistical procedures must be considered in order to
support the decision to stop testing and release the software. It was already ob-
served in the early 1970’s that reports of failures observed during testing show that
the failure detection process follows some patterns (cf. Ohba (1984)). To describe
such patterns we use black-box software reliability growth models. As mentioned in
Chapter 1, when a software system is considered as a black-box it means that we
have no knowledge about the internal structure of the system. We discuss software
reliability growth models in more detail in Section 2.3. Software reliability growth
models are used in order to infer something (statistically) about the future behavior
of the system. Inference on software reliability growth models is discussed in Chap-
ter 3. Standard approaches include parameter estimation (allows the estimation of
quantities like the expected time until next failure or the expected number of faults
left), optimization of a certain loss function (usually based on the trade-off between
the cost of future testing effort and the number of remaining faults in the system)
and certification of certain properties of the system with high probability (like fault-
freeness or probability of no failure in a given time period). Our research is mainly
focused on the development of certification procedures for software systems.

This chapter is organized as follows. Basic terminology used in probability the-
ory is established in Section 2.1. We are interested in the process of recording
the number of observed failures in a software system during testing. We describe
how this can modelled as a stochastic process in Section 2.2. We also introduce
some basic properties of stochastic processes in that section. In fact, we only con-
sider those properties which are relevant for software reliability. The connection
between stochastic processes and software reliability is made in Section 2.3. Some
popular classification schemes of software reliability models are presented in Sec-
tion 2.4. Moreover, we propose a classification scheme based on the basic properties

9
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of stochastic processes studied in Section 2.2. We describe two of the most impor-
tant families of software reliability models in sections 2.5 and 2.6. These classes
are known as the class of General Order Statistics and Non-homogeneous Poisson
process models, respectively. We explain how these classes are related in Section 2.7.
A Bayesian approach to our problem is introduced in Section 2.8. Finally, in Sec-
tion 2.9 we comment on software reliability models that have not been discussed in
previous sections.

2.1 Preliminaries

Following the guidelines established in Thompson (1981), we introduce some nota-
tion and basic terminology to be used in this thesis. Basic concepts in probability
theory will be related to software reliability throughout this chapter. We would like
to emphasize that there is often confusion in the literature with certain notions of
reliability theory. In particular, the concept of failure rate seems to be especially
delicate. For example, in well-known software reliability books like Lyu (1996) or
Xie et al. (2004), the term failure rate is used in a vague way, which may yield to
confusion to the reader. For that reason, we introduce the following concepts with
extra care.

We consider a probability space, denoted by (Ω,F ,P), where Ω is the sample
space, usually considered here as R+, F is a σ−field of subsets of Ω and P is a
probability measure on (Ω,F). Any subset B of Ω such that B ∈ F is called an event .
A random variable T is a function T : Ω→ R such that {ω ∈ Ω : T (ω) ≤ t} ∈ F , for
all t ∈ R. We often use the abbreviation {T ≤ t} for the corresponding event. All
the definitions introduced in the remainder of this section are referred to a single
non-negative random variable. The probability that T does not exceed t ≥ 0 is
given by the cumulative distribution function of T , denoted by F (t) and defined as

F (t) = P [T ≤ t] =
∫ t

0

dF (x) , (2.1)

where the above integral is considered in the sense of Riemann-Stieltjes (see e.g.
Pitt (1985)[Chapter 6]). The cumulative distribution function of T has the following
elementary properties: F (t) is non-decreasing and continuous from the right with
F (∞) = 1 and F (t) = 0, for all t < 0. For details see e.g. Ross (2007)[p. 26]. When
F (t) is a step function on R+ we say that T is discrete and we define the probability
mass function of T , denoted by p(t), as follows:

p(t) = P [T = t] , (2.2)

for all t = 0, 1, 2, . . . In this case, we can write the cumulative distribution function
of T as

F (t) =
t∑

u=0

p(u) . (2.3)
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When F (t) is absolutely continuous we say that T is continuous. In this case, the
derivative of F (t), denoted by f(t), exists (almost everywhere) for all t ≥ 0 and it is
called the density function of T . Note that we can write the cumulative distribution
function of T as

F (t) =
∫ t

0

f(u) du . (2.4)

The reliability function or survival function of T , denoted by S(t), gives the proba-
bility of surviving time t ≥ 0, i.e.,

S(t) = P [T > t] = 1− F (t) . (2.5)

The study of reliability functions is the core of reliability theory. The residual
lifetime of T at time t, denoted by R(t, x), is given by

R(t, x) = P [T > t+ x | T > t] =
S(t+ x)
S(t)

, (2.6)

for all x ≥ 0 and we take t ≥ 0 such that S(t) > 0. This concept is of special
interest for us since it allows us to develop a certification procedure in Chapter 5.
The hazard rate (also called force of mortality) of T is defined as follows:

h(t) = lim
∆→0

P [t < T ≤ t+ ∆ | T ≥ t]
∆

. (2.7)

Note that the hazard rate is well-defined: since F (t) is continuous from the right,
the limit in (2.7) always exists. Moreover, when F (t) is absolutely continuous, the
hazard rate of T (cf. Rigdon and Basu (2000)[Theorem 1]) is given by

h(t) =
f(t)
S(t)

, (2.8)

for all t ≥ 0, provided that S(t) > 0. It is also possible to express the cumulative
distribution function of T in terms of the hazard rate (see e.g. Rigdon and Basu
(2000)[Theorem 2]) as follows:

F (t) = 1− e(−
∫ t
0 h(u) du) . (2.9)

The hazard rate is often called failure rate (of the random variable T ) in the litera-
ture. However, this term can be confusing since for stochastic processes the failure
rate of the process can also be defined, as we will see in Section 2.2. In any case,
we will avoid to use the term “failure rate” as much as possible. Depending on the
monotonicity of h(t) the random variable T is said to have increasing or decreasing
hazard rate. This is often also confusing in the literature since this kind of random
variables have been usually called increasing (IFR) or decreasing failure rate (DFR),
when increasing or decreasing hazard rate should be used. All the notation intro-
duced in this section is gathered in Table 2.1. We may use a subindex, for example
by writing FT (t), when we want to emphasize that any of the previous functions
refer to a specific random variable, otherwise we simply drop the subindex.
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Notation Definition

T non-negative random variable

F (t) cumulative distribution function

p(t) probability mass function

f(t) density function

S(t) reliability or survival function

R(t, x) residual lifetime at time t

h(t) hazard rate

Table 2.1: Common notation in probability theory.

2.2 Stochastic processes

Stochastic processes can be used to model the evolution in time of some process
whose outcome is random. For example, think of recording the number of observed
failures in a software system as a function of time. Formally, a stochastic process,
denoted by (Y (s))s∈S , is a collection of random variables indexed by the ordered set
S, i.e., for a fixed s ∈ S, Y (s) is a random variable. The set S is called the index set.
When the index set S is an interval in R+, the process is said to be a continuous-
time process. In this case, the index set is often interpreted as time. If the index
set S is a countable set (usually considered as the set of non-negative integers Z+),
then the process is said to be a discrete-time process and the random variable Y (s)
is usually denoted by Ys. The state space of the process is the set of all possible
outcomes of the random variable Y (s). The Kolmogorov existence theorem (see e.g.
Grimmett and Stirzaker (1988)[p. 229]) states that under certain consistency condi-
tions a stochastic process (Y (s))s∈S can be uniquely characterized by the set of all
finite dimensional distributions, i.e., for any n ≥ 1 and 0 < s1 < . . . < sn, the distri-
bution of the process (Y (s))s∈S is uniquely characterized by the joint distribution
of Y (s1), . . . , Y (sn). Further details and a proof of the theorem can be found in Rao
(1995)[Section 1.2]. Repeated application of Bayes rule provides an alternative way
to specify the joint distribution of Y (s1), . . . , Y (sn) in terms of all the first order
conditional distributions, i.e., the distribution of Y (sn) given Y (s1), . . . , Y (sn−1),
for all n ≥ 1, and Y (s0) = Y (0) = 0. This way of characterizing the process is of
special interest for Markov processes, as we will see in Section 2.2.2. Stochastic pro-
cesses have been widely studied in probability theory, being Cox and Miller (1984),
Karlin and Taylor (1975), Rao (1995) and Ross (1996) well-known monographs on
this subject. Although there exist many types of stochastic processes, we consider
in this thesis a special type of process known as counting process.
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2.2.1 Counting processes

A counting process is a continuous-time stochastic process (N(t))t≥0, with state
space Z+, where t 7→ N(t) is a non-negative and non-decreasing function of t. In
this case N(t) represents the number of occurrences that took place until time t. As
a consequence, we can define an occurrence time of the process as the random point
in R+ where N(t) changes its state. For example, successive failure occurrences
of a software system can be modelled as a stochastic counting process where the
random variable N(t), for t fixed, represents the total number of observed failures
at time t. Although it is possible to consider counting processes where the initial
state is different from zero, we always assume here that N(0) = 0. Moreover, we
will assume that two (or more) occurrences do not take place simultaneously, thus
every change of the state of N(t) is of magnitude 1, and that in intervals of finite
length only a finite number of occurrences may take place with probability 1. Since
N(t) is a non-decreasing function of t, we can define the ith occurrence time of the
process as the random variable

Ti = inf {t ≥ 0 | N(t) = i} , (2.10)

for all i ≥ 1. With the convention that T0 = 0, we can also define the times between
occurrences as Xi = Ti − Ti−1, for all i ≥ 1. The collections of random variables
(Tn)n≥0 and (Xn)n≥0 are discrete-time stochastic (but not counting) processes with
state space R+. It is clear that for any n ≥ 1 the probability distribution of Tn
determines the probability distribution of Xn and vice versa. Moreover, if we know
the process (Tn)n≥0, then we can define N(t) as follows:

N(t) = max {i ∈ N | Ti ≤ t} . (2.11)

Therefore, the three processes (N(t))t≥0, (Tn)n≥0 and (Xn)n≥0 are equivalent. Since
t 7→ N(t) is right continuous, it follows that for any 0 < `1 < `2 and i ≥ 1, the
events {N(`1) < i ≤ N(`2)} and {`1 < Ti ≤ `2} are equivalent. Thus, for arbitrary
n ≥ 1, k ≥ 1 and 0 < `1 < . . . < `k, the process modelled by (N(t))t≥0, (Tn)n≥0

or (Xn)n≥0 can be characterized in an equivalent way by one of these probability
distributions:

• the joint distribution of N(`1), . . . , N(`k),

• the joint distribution of T1, . . . , Tn,

• the joint distribution of X1, . . . , Xn.

Counting processes can also be classified in terms of the mean-value function of the
process, denoted by Λ(t), that is defined as the expected number of occurrences at
time t, i.e.,

Λ(t) = E[N(t)] . (2.12)

Its derivative with respect to time is called the intensity function and it is denoted
by λ(t), i.e.,

λ(t) = Λ′(t) . (2.13)
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Conditions for the existence of λ(t) are given in Thompson (1981). Since λ(t) is the
instantaneous rate of change of the expected number of occurrences with respect
to time, it also represents the occurrence rate of the system. Another function of
interest for the counting process is the following:

µ(t) = lim
∆→0

P [N(t+ ∆)−N(t) ≥ 1]
∆

. (2.14)

Note that, if µ(t) exists, then ∆µ(t) is the probability of having at least one oc-
currence in the interval (t, t+ ∆] when ∆ → 0. Conditions of the existence of µ(t)
are given in Thompson (1981). Only when it is assumed that simultaneous occur-
rences do not take place and provided that the limit in (2.14) exists, it follows that
µ(t) = λ(t). For a proof we also refer to Thompson (1981).

2.2.2 Basic properties

In this section we introduce some basic properties of stochastic processes (cf. Karlin
and Taylor (1975)[Section 1.3]). Although the properties presented here are valid
for general stochastic processes, we define them in terms of the processes (N(t))t≥0,
(Tn)n≥0 and (Xn)n≥0 introduced in Section 2.2.1. Stochastic processes can be classi-
fied into different types according to certain properties. In particular, we interested
in processes having the Markov property or some other properties related to it.

Semi-Markov process. Let us consider a discrete-time stochastic process (Yn)n≥0

with state space S. Suppose that the times where the process changes its state are
given by the random variables T1 < T2 < . . .. The time spent in state Yj is given by
Xj = Tj − Tj−1, for all j = 0, 1, 2, . . .. The bivariate stochastic process (Yn, Xn)n≥0

is a Markov renewal sequence if and only if for any n ≥ 1 it follows that

P [Yn = yn, Xn ≤ xn | Y1 = y1, . . . , Yn−1 = yn−1, X1 = x1, . . . , Xn−1 = xn−1]
= P [Yn = yn, Xn ≤ xn | Yn−1 = yn−1] .

(2.15)

The process (Yn, Xn)n≥0 has the Markov property. Its definition is introduced after
this one. The points Tn are called Markov renewal moments and Xn are often
called sojourn times. Note that the sojourn times are conditionally independent
given Y1, . . . , Yn−1. Since

N(t) = sup {i | Ti ≤ t} , (2.16)

the stochastic process (Zt)t≥0 defined by

Zt = YN(t) , (2.17)

for all t ≥ 0, is said to be a Semi-Markov process. Note that (Zt)t≥0 is a continuous-
time stochastic process with state space S. Moreover, it is clear that Zt is equal
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to Yj for all t ∈ [Tj , Tj+1). The successive states of (Zt)t≥0 forms a discrete-time
Markov process (see e.g. Kulkarni (1995)[Theorem 9.1]). Note also that the process
(Zt)t≥0 only changes its state at the Markov renewal moments and that a change
in the state may imply that the process returns to previous states. The time spent
in state Yj is given by the random variable Xj . Its distribution may depend on the
states Yj−1 and Yj but not on all previous ones. In general, we will always consider
T0 = 0 and Y0 = 0. Suppose now that we are interested in a counting process
(N(t))t≥0, as defined in Section 2.2.1. In this particular case, the process (Yn)n≥0

can be defined as
Yn = n , (2.18)

for all n ∈ Z+. The times where the process changes its state are given by T0 = 0 <
T1 < T2 < . . . and the time spent in state Yj = j is given by Xj+1 = Tj+1 − Tj , for
all j = 0, 1, 2, . . .. Therefore, the Semi-Markov process (Zt)t≥0 is now defined as

Zt = YN(t) = N(t) , (2.19)

for all t ≥ 0, where the random variableN(t) represents the total number of observed
failures at time t. A realization of a semi-Markov process (N(t))t≥0 can be observed
in Figure 2.1. Note that the process depicted in Figure 2.1 represents a counting

N(t)

t

1T 2T 3T 4T

1X 2X 3X 4X

1N(T )=1

2N(T )=2

3N(T )=3

4N(T )=4

Figure 2.1: Realization of a semi-Markov process (N(t))t≥0.

process since N(t) is non-decreasing and every change on the state of N(t) is positive
and of magnitude 1. For that reason, and unlike for general semi-Markov processes,
the process can never return to previous states. Further details on semi-Markov
processes can be found in Pyke (1961).

Markov process. A stochastic process (Y (s))s∈S has the Markov property if and
only if, for any n ≥ 1 and 0 < s1 < . . . < sn, it holds that

P [Y (sn) ∈ B | Y (s1), . . . , Y (sn−1)] = P [Y (sn) ∈ B | Y (sn−1)] . (2.20)
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In this case, the processes (Y (s))s∈S is said to be a Markov process. In particular,
the discrete-time stochastic process (Tn)n≥0 has the Markov property if and only if
the probability distribution of Tn depends only on Tn−1. Note that, if Tn−1 is given,
then the distribution of Xn also depends only on Tn−1. The process (N(t))t≥0 has
the Markov property if and only if, for any 0 < `1 < . . . < `n and n ≥ 1, the
probability distribution of N(`n) conditional on N(`1), . . ., N(`n−1) depends only
on N(`n−1), i.e.,

P [N(`n) = kn | N(`1) = k1, . . . , N(`n−1) = kn−1]
= P [N(`n) = kn | N(`n−1) = kn−1] .

(2.21)

As a consequence we can write,

P [N(`n)−N(`n−1) = k | N(`1) = k1, . . . , N(`n−1) = kn−1]
= P [N(`n)−N(`n−1) = k | N(`n−1) = kn−1] .

(2.22)

Note that in this case it is more convenient to characterize the process in terms of all
the first order conditional distributions since, by the Markov property, these ones de-
pend only on the current state. If the process (N(t))t≥0 is Markov, then the sojourn
times of the process, given byXn, for all n ≥ 1, are exponentially distributed (see e.g.
Thompson (1988)[p. 73]) although not necessarily identically distributed. Moreover,
the converse is also true: if the sojourn times are exponentially distributed, then the
process (N(t))t≥0 is Markov (see e.g. Kulkarni (1995)[Theorem 6.1]). Therefore, a
continuous time Markov process is a special case of semi-Markov process where the
distributions of the sojourn times are exponentially distributed. Examples of Markov
processes are Birth/Death processes (see e.g. Karlin and Taylor (1975)[p. 131]) and
the General Order Statistics process (cf. Thompson (1988)[Chapter 10]).

Independent increments. A stochastic process (Y (s))s∈S has independent in-
crements if and only if for any 0 ≤ s1 < s2 < s3 < s4, the random variables
Y (s2)− Y (s1) and Y (s4)− Y (s3) are independent. In particular, the discrete-time
stochastic process (Tn)n≥0 has independent increments if and only if the times be-
tween failures are independent. The process (N(t))t≥0 has independent increments
if and only if for any 0 < `1 < . . . < `n and n ≥ 1, it follows that

P [N(`n)−N(`n−1) = k | N(`1) = k1, . . . , N(`n−1) = kn−1]
= P [N(`n)−N(`n−1) = k] .

(2.23)

Note that the Markov property is a weaker requirement than the independent incre-
ments property. This can be observed by comparing (2.23) and (2.22). An example
of a counting process (N(t))t≥0 with independent increments is the Poisson pro-
cess (see e.g. Thompson (1988)[Chapter 6]). In fact, the only counting process
that has independent increments are the Poisson processes (see e.g. Rigdon and
Basu (2000)[Theorem 15]). In particular, non-homogeneous Poisson processes will
be studied in details in Section 2.6.
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Stationary increments. The discrete-time stochastic process (Tn)n≥0 has sta-
tionary increments if and only if the distribution of Tn+k − Tn is the same as the
distribution of Tm+k − Tm for any non-negative integer numbers n, m and k. In
particular, for k = 1, this means that the times between failures are identically dis-
tributed. The counting process (N(t))t≥0 has stationary increments if and only if
the distribution of N(t+∆)−N(t) is the same as the distribution of N(s+∆)−N(s),
for any non-negative real numbers t, s and ∆, i.e.,

P [N(t+ ∆)−N(t) = k] = P [N(s+ ∆)−N(s) = k] , (2.24)

for all k = 0, 1, 2, . . . This means that all the increments of the same length (de-
noted by ∆) has the same distribution. Examples of counting processes with sta-
tionary (and independent) increments are the Binomial process (see e.g. Larson
and Shubert (1979)[p. 11]), the homogeneous Poisson process (see e.g. Thompson
(1988)[Chapter 3]) and the renewal process (see e.g. Thompson (1988)[Chapter 5]).
The stationary increments property characterizes homogeneous processes since the
probability distribution of the increments of the process does not change in time.

2.2.3 Property implications

In this section we briefly summarize possible relationships between the properties of
stochastic processes previously described. In fact, the stationary increments prop-
erty is not included since the processes we are interested in do not have it, as we
will see in Section 2.3.2. Based on those properties and on the relationships among
them, we develop a classification scheme for software reliability growth models in
Section 2.4.2. Table 2.2 summarizes all possible relationships. Arguments (or refer-

(N(t))t≥0 (Tn)n≥0

Semi-Markov

⇑(1) 6⇓(2)

Markov ⇒(3) Markov

⇑(4) 6⇓(5) ⇑(6) 6⇓(7)

Independent Increments ;(8)

:(9)
Independent Increments

Table 2.2: Property implications for (N(t))t≥0 and (Tn)n≥0.

ences) to prove all these implications are given in the previous section. The following
list just contains a brief list of arguments that can be used to prove all the implica-
tions.
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(1) Semi-Markov processes are a generalization of Markov processes.

(2) This is true only when the sojourn times are exponentially distributed (memo-
ryless).

(3) The distribution of the sojourn times depends on the previous state of the
process, thus on Tn−1.

(4) The Markov property generalizes the independent increments property.

(5) This is true only when the process is Poisson, as we will see in Section 2.6.

(6) The Markov property generalizes the independent increments property.

(7) This is true only when the sojourn times are exponentially distributed (memo-
ryless).

(8) We will see in Section 2.6 that the Poisson process does not have independent
sojourn times in general.

(9) We will see in Section 2.5.1 that for the Jelinski-Moranda model the sojourn
times of the process are independent but the process (N(t))t≥0 is not Poisson.

2.3 Software testing framework

All the concepts for general stochastic processes introduced in Section 2.2 are now
put into a software testing framework. We first comment on the notation and then
we discuss common assumptions in software reliability theory.

2.3.1 Common notation

After a software system has been developed it may contain a certain number of faults
that will not change unless some of them are repaired or new ones are introduced.
We denote by N the unknown initial number of faults in a software system. It can
be assumed to be a random variable or deterministic. For example, for the class of
models known as General Order Statistics, it is assumed to be unknown but fixed
while for the class of models known as non-homogeneous Poisson processes it is
considered as a random variable following a Poisson distribution. These two classes
of models are studied in detail in sections 2.5 and 2.6, respectively. As mentioned
in Section 2.2.1, the process of recording the number of observed software failures
during testing as a function of time can be modelled as a counting stochastic process
(N(t))t≥0, where the random variable N(t) represents the total number of observed
failures at time t. The random variable Ti, representing the random time where
the ith software failure is observed, can be interpreted as the ith occurrence time of
the process (N(t))t≥0. In this case, the random variables T1 < T2 < . . . are called
failure times while X1, X2, . . . are called times between failures. Both failure times
and time between failures are usually not identically distributed and may not be
independent, as we saw in Section 2.2.2. The mean-value function of the process,
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denoted by Λ(t), and the failure intensity of the process, denoted by λ(t), are also
considered here. All this notation will be used in this thesis and it is summarized
in Table 2.3 so that the reader may refer back to this table should confusion about
notation arise. In general, we use capital Latin letters to denote random variables

Notation Definition

N initial number of faults in a software system

n0 realization of N (when considered random)

N(t) number of failures on (0, t]

n realization of N(t)

Ti failure times

Xi time between failures

`i points on R+

Λ(t) mean-value function of a process

λ(t) intensity function of a process

Table 2.3: Common notation in black-box software reliability.

and the corresponding lower case to denote the realization of the random variable.
An exception to this is N which can be random or deterministic depending on the
model used. When N is considered to be random we will denote by n0 the realization
of N since n usually denotes the realization of the random variable N(t).

2.3.2 Reliability growth models

Throughout Section 2.2.1 we have emphasized that certain processes, like the num-
ber of successive software failures observed during testing (as a function of time),
can be modelled as a stochastic counting process. In fact, the choice of the type of
stochastic process should depend on the characteristics of the real process that we
want to include in our probabilistic model. Since in reality those characteristics are
too many or simply too difficult to model, what is often done is that we first select
an easy-to-study probabilistic model and then check what kind of assumptions make
sense for this process. Our choice for counting processes is mainly justified for three
reasons:

• it is a simple class within stochastic processes (and thus well-studied in prob-
ability theory),

• it incorporates a considerable number of assumptions,

• a large variety of models can be modelled as counting processes.
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First note that independently of the probabilistic model used to describe the real
process we must consider assumptions that apply to software testing in general.
Assuming that the software is tested under operational conditions is considered as
universal in the software testing community. Although software systems can reach
an enormous level of complexity and can have millions of lines of code, they are
finite. So is the number of faults in it. Therefore, N must be either a fixed finite
positive number or a random variable which is almost surely finite. If we consider
that the process of recording the number of observed software failures during testing
can be modelled as a counting process (N(t))t≥0, then all the assumptions consid-
ered for counting processes in Section 2.2.1 are also required in this context. Note
that this choice of the counting process as stochastic model implies immediate repair
of faults, i.e, the time spent repairing faults is not taken into account. If we want
to include repairing times in our probabilistic model we need to consider a special
type of stochastic process known as alternating renewal process (see e.g. Ansell and
Phillips (1994)[Section 5.4.4]). However, we do not consider this kind of processes
in this thesis. Note that immediate repair can be justified if time is measured as
testing effort rather than as calendar time. We assume that failure observations oc-
cur independently from each other. However, practical experience shows that some
failures may cover some other ones (cf. Ohba (1984)) so that failure observations are
correlated. The probabilistic model described in Dai et al. (2005) incorporates fail-
ure correlation. Depending on the impact that faults have to the system, these can
be classified into different severity levels. A special type of stochastic process known
as superimposed process (see e.g. Thompson (1988)[Chapter 7]) considers different
types of occurrences. Thus, it can be used to model different severity levels. How-
ever, we do not consider this kind of processes in this thesis. It is often assumed
that after each failure observation at least one fault in the software is corrected,
decreasing in that way the number of remaining faults in the system. This is often
called perfect repair . If it is possible that the fault remains after reparation, then we
speak of imperfect repair . Although perfect repair assumption reflects a desirable
behaviour during the repairing process it seems to be little realistic since the same
failure can be observed several times due to a wrong correction. Moreover, counting
processes can incorporate imperfect repair as shown in Goel (1985). It is also often
assumed that faults are repaired without introducing new ones. This assumption
is even less realistic than perfect repair since practical experience also shows that
reparation of software faults is in general a complicate process. Therefore, it is very
likely that new faults are introduced during such a process. However, as we will see
in Section 2.5, the whole class of General Order Statistics models is built upon this
assumption. In general, for models like non-homogeneous Poisson process models,
it is simply impossible to distinguish between original faults and faults introduced
during reparation. Nevertheless, according to Goel (1985), the additional number
of faults introduced during the repair process is very small compare with the total
number of faults in the system. Thus, the consideration of this assumption has
almost no practical effect. We could relax these two assumptions by considering
that the repairing process is effective in the sense that the reliability of the system
increases with time. For that reason, the models used to describe the failure detec-
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tion process of a software system are usually called reliability growth models. Under
the assumption of reliability growth it is clear that the counting process (N(t))t≥0

will be non-homogeneous. For that reason, the stochastic processes considered here
should not have the stationary-increments property introduced in Section 2.2.2 since
they cannot model reliability growth. All the assumptions related to software testing
and counting processes that we consider are shown in Table 2.4.

Assumptions

Software is tested under operational conditions

The unknown initial number of faults in the system, denoted by N , is

fixed and finite or a random variable (almost surely finite)

The number of failures observed at time t, denoted by N(t), is

non-decreasing and non-negative

N(0) = 0

Simultaneous failures do not occur

In finite length intervals only a finite number of failures may occur

Immediate repair

Independent failure observations

All faults of the same severity

Perfect or imperfect repair

New faults may be introduced during reparation

Effective repair process (reliability growth)

Table 2.4: Software reliability assumptions for counting processes.

After selecting an appropriate stochastic process to describe the real process, the
next step consists of studying whether the stochastic process has some properties
like those introduced in Section 2.2.2. Based on those properties we can classify the
process into different categories. For example, for the counting process (N(t))t≥0

we can consider the whole class of Markov processes and, within this class, different
software reliability growth models arise when different functional forms for N(t) are
assumed. This is studied in details in the next section.

2.3.3 Stochastic ordering and reliability growth

The concept of stochastic order is of special interest in reliability theory since it can
be used to illustrate the idea of reliability growth. A random variable U is said to be
stochastically less than V if SU (u) ≤ SV (u), for all u ≥ 0, where SU (u) and SV (u)
denote the reliability function of U and V , respectively. The following lemma gives
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a characterization of stochastic ordering of the times between failures of a Markov
counting process in terms of its mean-value function.

Lemma 2.1. Let X(n) = (X1, . . . , Xn) be the times between failures of a Markov
counting process with mean-value function Λ(t) and intensity function λ(t). Let
SXn|X(n−1)=x(n−1)(z | x(n−1)) denote the reliability function of Xn given X1, . . . , Xn−1,
for all n ≥ 1. If Λ(t) is concave for all t ≥ 0, then

SXn|X(n−1)=x(n−1)(z | x(n−1)) ≤ SXn+1|X(n)=x(n)(z | x(n)) ,

for all z ≥ 0.

Proof. First note that for any Markov counting process the times between fail-
ures are exponentially distributed, as mentioned in Section 2.2.2. Thus, if tn−1 =∑n−1
i=1 xi, then we can write the reliability function of Xn given X1, . . . , Xn−1 (cf.

Thompson (1988)[p. 74]) as follows:

SXn|X(n−1)(z | x(n−1)) = P
[
Xn ≥ z | X(n−1) = x(n−1)

]
= e−(Λ(tn−1+z)−Λ(tn−1)) .

Therefore, Xn−1 will be (conditionally) stochastically less than Xn if and only if

Λ(tn + z)− Λ(tn−1 + z) ≤ Λ(tn)− Λ(tn−1) . (2.25)

Note that if Λ(t) is concave for all t ≥ 0, then λ(t) is monotone decreasing. There-
fore, we may write (2.25) as∫ tn+z

tn−1+z

λ(u) du ≤
∫ tn

tn−1

λ(u) du .

Noting that the left-hand side of the above inequality can be written as∫ tn

tn−1

λ(z + u) du ,

and using that λ(t) is monotone decreasing, condition (2.25) holds and therefore the
desired stochastic order follows.

Note that, in general, not all software reliability growth models have concave mean-
value function for all t ≥ 0. However, if we assume that the software is improved
due to the effect of testing and fault reparation, then we can also assume that at
some point in time the mean-value function will be concave. This is the case of the
S-shaped mean-value function (cf. Section 2.6.2) as can be observed in Figure 2.2.
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Figure 2.2: Typical shapes of mean-value functions of software reliability growth
models. Concave shapes indicate reliability growth.

2.4 Classification of software reliability growth models

The abundance of software reliability models (more than 200 known models accord-
ing to Singpurwalla and Wilson (1994)) often makes it difficult to select appropriate
models for specific problems (this will be studied in more detail in Section 3.3).
Studying differences among models and their relationships may help with this task.
The development of model classification schemes provides a general overview of exist-
ing software reliability models. Moreover, it facilitates the study of the relationships
between different models and establishes a good basis for model comparisons.

2.4.1 Previous work on model classification

One of the first classification schemes found in the literature is due to Ramamoorthy
and Bastani (1982). In that paper, software reliability models are classified into four
different types according to the phase of software development as follows:

• Testing and debugging phase: faults are repaired without introducing new
ones, increasing in that way the reliability of the system (reliability growth
models).

• Validation phase: faults are not corrected and may lead to the rejection of the
software. This types of models describe systems for critical applications that
must be highly reliable.

• Operational phase: system inputs are selected using a certain probability dis-
tribution for a certain (random) period of time.

• Maintenance phase: during this phase activities like fault correction or im-
provement of implemented features may take place and may modify the re-
liability of the system. The updated reliability can be estimated using the
models for the validation phase.



24 Probability Models in Software Reliability and Testing

The models discussed in this thesis belong to the class of testing and debugging
phase models, therefore software reliability growth models. In general we will assume
that software reliability growth models are related to a stochastic counting process
(N(t))t≥0, as mentioned in the previous section. Software reliability growth models
arise when (implicitly of explicitly) different functional forms for N(t) are assumed.

In Musa and Okumoto (1983) software reliability growth models are classified
according to the following attributes:

• Time domain: calendar versus execution time.

• Category: the number of failures that may be experienced in infinite time is
finite or infinite.

• Type: probability distribution of N(t) (Poisson, binomial, etc.).

• Class (finite number of failures only): functional form of the failure intensity
in terms of time (Exponential, Weibull, etc.).

• Family (infinite number of failures only): functional form of the failure inten-
sity in terms of expected number of failures (geometric, power-law, etc.).

For example, the attributes of the Jelinski-Moranda model (cf. Jelinski and Moranda
(1972)) are finite category, binomial type and exponential class. This model will be
described in details in Section 2.5.1. Note that from a probabilistic point of view
“time domain” is not of special interest since the process (N(t))t≥0 is defined inde-
pendently from the way that time is measured. The attribute “category” discrimi-
nates between two types of counting processes depending on whether E [N(t)]→∞,
as t → ∞, or not. In particular, we are interested in models for which the above
limit is finite. The preference for this type of models is explained in Section 2.7. In
any case, we also discuss models with a possibly infinite number of observed fail-
ures in Section 2.7.1. Note also that this attribute has further implications. If we
assume that software systems always contain a finite number of faults, as explained
in Section 2.3.2, then for those models where E [N(t)] → ∞, as t → ∞, holds, the
only possibility is that either repair is imperfect or new faults are introduced during
reparation. The attribute “type” is often difficult to characterize. Some models are
described in terms of the distribution of the failure times or the corresponding times
between failures. In that case, the probability distribution of N(t) is not easy to
compute in general. Most of the known models consider a binomial or a Poisson
distribution for N(t). We will study a class of models of each type in sections 2.5 and
2.6, respectively. Attributes “class” and “family” distinguish between different types
of models depending on the functional form of the mean-value function of the pro-
cess or the probability distribution of the failure times. This classification scheme,
although it is quite complete, is criticized in Kharchenko et al. (2002) mainly due
to a lack of systematization and connection between the sets of attributes.

A different approach is considered in Goel (1985). As mentioned in Section 2.2,
if a software reliability growth model can be characterized in terms of a counting
process (N(t))t≥0, then it can also be described in an equivalent way in terms
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of the stochastic process defined by the failures times (Tn)n≥0 or by the times
between failures (Xn)n≥0. Depending on which of these stochastic processes is
chosen for the probabilistic model we speak of time between failure and failure count
models. In fact, strictly speaking, time between failure implies that the process
(Tn)n≥0 is not considered at all, although it is equivalent to (Xn)n≥0. Thus, this
classification scheme is wrong in nature since it does not represent two different
types of models but two different types of characterization because the processes
(N(t))t≥0 and (Tn)n≥0 are also equivalent. For example, if the times between failures
are exponentially distributed, then, in general, it may be more convenient to describe
the process in terms of the process (Xn)n≥0. However, this does not mean that it
can only be described in this way. This is already discussed in Singpurwalla and
Wilson (1994) where software reliability growth models are “classified” according
to the modelling strategy employed to define the model into type I models (models
described in terms of the failure times of the process) and type II models (models
described in terms of the number of observed failures). The most popular class of
type I models is the class of the General Order Statistics (GOS) models and the
most popular class of type II models is the class of non-homogeneous Poisson process
(NHPP) models. These two classes will be studied in details in sections 2.5 and 2.6,
respectively. Moreover, according to Singpurwalla and Wilson (1994), most of the
existing software reliability models can be included into these two classes.

The last classification scheme we discuss here is due to Gokhale et al. (1996).
Software reliability models are classified into four different types as follows:

• Semi-Markov models: the total number of faults in the system is unknown but
finite and fixed. The number of remaining faults in the system at time t > 0
is a semi-Markov chain.

• Homogeneous Markov models: the total number of faults in the system is
unknown but finite and fixed. The number of remaining faults in the system
at time t > 0 is a homogeneous Markov chain.

• Non-homogeneous Markov models: the total number of faults in the system
is assumed to be a random variable. The number of discovered faults in the
system at time t > 0 is a non-homogeneous Markov chain.

• Other models: those models that cannot be classified into the previous types.

As mentioned in Section 2.2.2, semi-Markov processes are a generalization of Markov
processes. Thus, the second type of models described here is a subclass of the
first one. In fact, we can consider here two main groups of models depending on
the nature of N : fixed or random. We should emphasize again that the process
(N(t))t≥0 is defined independently from the fact that N is considered to be fixed
or a random variable. For that reason, we consider that software reliability growth
models should not be classified attending by the nature of N as a primary criterion.
Note also that the first two types of models are described in terms of the number of
remaining faults in the system. In this case, the process considered is denoted by
(R(t))t≥0, where R(t) = N −N(t). Note that this approach is only valid when N is
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fixed, finite and N(t) → N , as t → ∞. However, as mentioned in Section 2.3, this
is not always the case. For that reason, we find it more convenient to classify the
models in terms of the “original” process (N(t))t≥0 as it is done for the third type
of models described here.

2.4.2 Classification based on properties of stochastic processes

In Section 2.2.2 we described some basic properties of stochastic processes. After-
wards, in Section 2.3, we explained how the number of observed failures of a software
system at time t can be modelled as a counting process (N(t))t≥0 or, equivalently,
as a stochastic process (Tn)n≥0, representing the failure times of the software during
testing. For that reason, we propose to classify software reliability growth models
according to the properties of the stochastic processes (N(t))t≥0 and (Tn)n≥0 in-
dependently on the way that the process is characterized. Therefore, we consider
models where (N(t))t≥0 may have the semi-Markov, Markov or independent incre-
ments properties, and (Tn)n≥0 may have the Markov or independent increments
properties. Some of the most well-known models are classified according to these
properties in Table 2.5. In order to interpret Table 2.5 properly we should keep in

XXXXXXXXXXX(N(t))t≥0

(Tn)n≥0 Markov ind. incr.

semi-
Markov

Schick and Wolverton (1978)
Shanthikumar (1981)

etc.

Markov

GOS models Jelinski and Moranda (1972)
(cf. Section 2.5) Moranda (1979)

Goel and Okumoto (1979)
Musa (1979)
Goel (1985)

Abdel-Ghaly et al. (1986)
Xie (1990)

etc.

ind. incr.

NHPP models HPP (no growth)
(cf. Section 2.5)
Duane (1964)

Goel and Okumoto (1978)
Musa and Okumoto (1984)

Yamada et al. (1984)
Xie and Zhao (1993)

etc.

Table 2.5: Software reliability growth models classification.

mind the property implications explained in Section 2.2.3. For example, the semi-
Markov property generalizes the Markov property, which, in turn, generalizes the
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independent increments property. Thus, the models in Table 2.5 are classified into
the most restrictive class they belong to since, in this case, they are all semi-Markov.
Different software reliability growth models of the same type (same cell in Table 2.5)
are considered depending on the functional form adopted for the process (N(t))t≥0

or (Tn)n≥0. In particular, these are classified based on the functions Λ(t), or λ(t)
or the probability distribution of N(t), for the process (N(t))t≥0, and the functions
FTi(t), fTi(t) or hTi(t) (or the corresponding function for Xi), for all i ≥ 1, for the
process (Tn)n≥0.

As mentioned throughout this chapter, we are considering a simple class of soft-
ware reliability models based on the assumption that they can be modelled as count-
ing processes. However, it should be noted that our classification scheme is also
valid independently of the type of stochastic process considered. Thus, in general,
software reliability growth models can be classified according to the following char-
acteristics:

• type of stochastic process (counting process, alternating renewal process (cf.
Ansell and Phillips (1994)[Section 5.4.4]), superimposed process (cf. Thomp-
son (1988)[Chapter 7]), . . .),

• properties of the process (semi-Markov process, Markov process, . . .),

• functional form of the process (exponential times between failures, power-law
mean-value function, . . .).

Model classification establishes a good basis for model selection, as we will see in
Section 3.3. Systematic approaches to use model assumptions and data requirements
for initial model selection facilitates this task although they are not easy to find in
the literature (see e.g. Kharchenko et al. (2002)). In the remainder of this chapter
we study general features of some of the most widely used software reliability growth
models paying special attention to GOS and NHPP models.

2.5 General order statistics models

In this section we describe an important class of software reliability growth models
known as General Order Statistics (GOS). The main assumption for this class of
models is that the times between failures of a software system can be defined as the
differences between two consecutive order statistics.

Definition 2.1 (Order statistics). Suppose that Z1, . . . , Zm are m independent and
identically distributed (i.i.d.) random variables. Then, the random variable

Z(1) = min {Z1, . . . , Zm}

is called the first order statistic, the random variable

Z(m) = max {Z1, . . . , Zm}
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is called the mth order statistic and the random variable

Z(i) = min
{
{Z1, . . . , Zm} \

{
Z(1), . . . , Z(i−1)

}}
,

for all i = 2, . . . ,m− 1, is called the ith order statistic.

In case of GOS models, we assume that the initial number of faults in a software
system, denoted by N , is unknown but fixed and finite. Thus, for any n ≤ N , we can
interpret the first n failure times T1 < T2 < . . . < Tn as the first n order statistics of
a random sample Z1, Z2, . . . , ZN . If we assume that software is tested until a failure
is observed, then the random variable Zi represents the time at which the ith fault
occurs and Ti = Z(i) represents the time at which one among the N initial faults
is the ith to be observed. The times between failures are defined in this case as the
difference of two order statistics, i.e.,

Xi = Ti − Ti−1 = Z(i) − Z(i−1) ,

for all i ≥ 1. In general, the times between failures of GOS models are not inde-
pendent nor identically distributed, as shown in Pyke (1965)[Section 2.2]. In Sec-
tion 2.5.1 we will see that in the particular case of the Exponential order statistics
the times between failures are independent although not identically distributed. The
next results show basic properties about the distribution of the order statistics that
are needed in order to properly define specific GOS models. Since these results are
well-known in probability theory we skip the proofs here. For further details we
refer to David and Nagaraja (2003)[Chapter 2].

Theorem 2.1 (Distribution of the order statistics). Let Z1, . . . , Zn be i.i.d. contin-
uous random variables with common distribution function F (z) and density function
f(z). The density function of Z(i) is given by

f(i)(z) =
n!

(i− 1)!(n− i)!
f(z)(F (z))i−1(1− F (z))n−i .

From Theorem 2.1 one can easily deduce that the cumulative distribution function
of the ith order statistic Z(i) is given by

F(i)(z) = P
[
Z(i) ≤ z

]
=

n∑
k=i

(
n

k

)
(F (z))k(1− F (z))n−k . (2.26)

Note that (2.26) represents the cumulative distribution function of a binomial dis-
tribution with parameters n and F (z). As mentioned in Section 2.2, the events
{N(z) ≥ i} and {Z(i) ≤ z} are equivalent. Therefore, for t > 0 fixed, the random
variable N(t) follows a binomial distribution. For that reason, in the software relia-
bility literature, the class of GOS models is often called the class of binomial models
(see the classification in Musa and Okumoto (1983) discussed in the previous sec-
tion). The next two results characterize the joint distribution of order statistics. We
skip the proofs here and refer to David and Nagaraja (2003)[Chapter 2] for further
details.
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Theorem 2.2 (Joint distribution of two order statistics). Let Z1, . . . , Zn be i.i.d.
continuous random variables with common distribution function F (z) and density
function f(z). The joint density function of Z(i) and Z(j), i < j, is given by

f(i,j)(z1, z2) =
n!f(z1)f(z2)(F (z1))i−1(F (z2)− F (z1))j−i−1(1− F (z2))n−j

(i− 1)!(j − i− 1)!(n− j)!
.

Corollary 2.3 (Joint distribution of all order statistics). Let Z1, . . . , Zn be i.i.d.
continuous random variables with common density function f(z). Then, the joint
density function of Z(1), Z(2), . . . , Z(n) is given by

f(1,...,n)(z1, . . . , zn) = n!f(z1) . . . f(zn) .

GOS models are usually characterize in terms of the probability distribution of the
failure times. However, as observed in (2.26), it is also possible to describe them in
terms of the probability distribution of N(t). The next result shows that, indepen-
dently on the way that the process is characterized, for the class of GOS models the
stochastic processes (N(t))t≥0 and (Tn)n≥0 have both the Markov property.

Lemma 2.2 (GOS classification). The stochastic processes (N(t))t≥0 and (Tn)n≥0

defined by the general order statistics are both Markov processes.

Proof. Let us first show that (N(t))t≥0 is a Markov process. If F (z) denotes the
common cumulative distribution function of Z1, . . . , ZN , then for any n ≥ 1 and
0 < `1 < . . . < `n, it follows that

P [N(`n) = kn | N(`1) = k1, . . . , N(`n−1) = kn−1]

=
(
N − kn−1

kn − kn−1

)(
F (`n)− F (`n−1)

1− F (`n−1)

)kn−kn−1
(

1− F (`n)
1− F (`n−1)

)N−kn
= P [N(`n) = kn | N(`n−1) = kn−1] .

(2.27)

Note that (2.27) is precisely the Markov property for (N(t))t≥0. We prove now that
(Tn)n≥0 is also a Markov process. As a generalization of Theorem 2.2 (cf. David
and Nagaraja (2003)[p. 12]), we can write the joint density function of the first n
order statistics as

fT1,...,Tn(t1, . . . , tn) =
N !

(N − n)!
f(t1) . . . f(tn) (1− F (tn))N−n , (2.28)

for all ti ≥ 0. Therefore, the conditional density function of Tn given T1 = t1, . . .,
Tn−1 = tn−1 can be written as

fTn|T1,...,Tn−1(tn) =
fT1,...,Tn(t1, . . . , tn)

fT1,...,Tn−1(t1, . . . , tn−1)

= (N − n+ 1)f(tn)
(1− F (tn))N−n

(1− F (tn−1))N−n+1

= fTn|Tn−1(tn) ,

(2.29)
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for all ti ≥ 0 such that fT1,...,Tn−1(t1, . . . , tn−1) > 0 (in fact, it only depends on
tn−1). Since the Jacobian determinant for the change of variables Xi = Ti−Ti−1 is
equal to 1, it follows that

fX1,...,Xn(x1, . . . , xn) = fT1,...,Tn(x1, . . . , x1 + . . .+ xn) . (2.30)

Hence, we can write (2.29) as

fXn|T1...,Tn−1(xn) = fXn|Tn−1(xn) . (2.31)

Finally, note that (2.31) is precisely the Markov property for (Tn)n≥0.

Different GOS models arise when one considers different distributions for the failure
times. The most well-known GOS model is based on the Exponential distribution
and it is due to Jelinski and Moranda (1972). For a detailed study of this model
we refer to Miller (1986). Another two popular GOS models consider the Weibull
and Pareto distribution for the order statistics. These two models are studied in
Abdel-Ghaly et al. (1986) and Raftery (1987) among others. In the remainder of this
section we describe in details the Jelinski-Moranda model and comment its discrete
version when the geometric distribution is considered.

2.5.1 Jelinski-Moranda model

The Jelinski-Moranda model was first introduced as a software reliability growth
model in Jelinski and Moranda (1972). The distribution of the order statistics
is the Exponential distribution. The assumptions for this model can be found in
Lyu (1996)[Chapter 3] and Xie et al. (2004)[Chapter 4]. However, as explained in
Section 2.1, these assumptions are often presented in the literature in an unclear
way. The main assumptions for the Jelinski-Moranda model are the following:

(1) The number of initial faults in the system is unknown but finite and fixed.

(2) All faults are of the same type.

(3) Immediate and perfect repair of faults.

(4) Faults are detected independently of each other.

(5) The times between failures are exponentially distributed with parameter pro-
portional to the number of remaining faults.

(6) The hazard rate remains constant over the interval between fault occurrences.

One of the most widely discussed assumptions of the Jelinski-Moranda model is (2)
since it implies that each repaired fault reduces the hazard rate of the new time
between failure by a constant λ > 0. This idea is depicted in Figure 2.3. However,
practical experience shows that some faults are easier to detect than others (cf. Ohba
(1984), Yamada and Osaki (1984)). The Jelinski-Moranda model is usually charac-
terized in terms of the distribution of the times between failures as follows. Suppose
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Figure 2.3: Jelinski-Moranda model hazard rate. It remains constant between failure
observations and decreases by a factor λ after a fault is repaired.

that Z1, . . . , ZN are N i.i.d. random variables having an Exponential distribution
with parameter λ > 0. Thus,

fi(zi) = λe−λzi

is the density function of Zi for all zi ≥ 0 and i = 1, . . . , N . Let Z(i) be the ith order
statistic and define Z(0) = 0. Note that Ti = Z(i), for all i = 1, . . . , N . According
to Corollary 2.3 we have in this case that

f(1,...,N)(z1, . . . , zN ) = N !λNe−λ
∑N
i=1 zi . (2.32)

The times between failures are given by Xi = Z(i)−Z(i−1), for all i = 1, . . . , N , and
Z(0) = 0. Note that the Jacobian determinant for this change of variables is equal
to 1. Note also that

N∑
i=1

Zi =
N∑
i=1

Z(i) =
N∑
i=1

(N − i+ 1)Xi .

Since f(1,...,N)(z1, . . . , zN ) in (2.32) only depends on
∑N
i=1 zi, it follows that

f(1,...,N)(z1, . . . , zN ) = f(x1, . . . , xN ) = N !λNe−λ
∑N
i=1(N−i+1)xi .

Note also that f(x1, . . . , xN ) is the joint density function of X1, . . . , XN , since the
marginal density function of Xi can be obtained by integrating f(x1, . . . , xN ) with
respect to Xj , for all j 6= i, and it is given by

fi(xi) = (N − i+ 1)λe−(N−i+1)λxi . (2.33)
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Moreover, we may write

f(x1, . . . , xN ) = N !λNe−λ
∑N
i=1(N−i+1)xi

=
N∏
i=1

(N − i+ 1)λe−(N−i+1)λxi

=
N∏
i=1

fi(xi) .

Thus, the times between failures are independent exponentially distributed random
variables with parameter (N − i+ 1)λ for all i = 1, . . . , N . Since the times between
failures are exponentially distributed, the hazard rate after the ith failure detection
is constant and equal to the parameter of the distribution, i.e.,

hi(x) = (N − i+ 1)λ ,

for all i = 1, . . . , N and x > 0. We proved in Lemma 2.2 that for all GOS models
the processes (N(t))t≥0 and (Tn)n≥0 are Markov. In particular, for the Jelinski-
Moranda model, the times between failures are independent. Therefore, the process
(Tn)n≥0 has also independent increments. However, this does not imply that the
process (N(t))t≥0 also has independent increments (see Section 2.2.3). In fact, we
can write (2.27) as follows:

P [N(`n) = kn | N(`n−1) = kn−1]

=
(
N − kn−1

kn − kn−1

)(
1− e−(`n−`n−1)λ

)kn−kn−1

×

× e−(N−kn)(kn−kn−1)(`n−`n−1)λ .

(2.34)

As a consequence of Theorem 2.1, we know that the random variable N(t) follows
a binomial distribution with parameters N and F (t) = 1− e−λt. Thus,

P [N(`n) = kn] =
(

N

kn−1

)(
1− e−λ`n

)kn
e−(N−kn)λ`n . (2.35)

Since (2.34) and (2.35) are not equal, it follows that the process (N(t))t≥0 does not
have independent increments.

2.5.2 Geometric order statistics model

Discrete-time software reliability growth models have not received as much attention
as continuous-time models, Di Bucchianico et al. (2008), Fries and Sen (1996), Oka-
mura et al. (2004) and Yamada et al. (1986) being some of the exceptions. For this
kind of models time can be considered as the number of runs or test cases needed to
observe a failure. A natural discrete version of the Jelinski-Moranda model appears
when one considers Geometric order statistics instead of Exponential ones. Since
the Geometric distribution is also memoryless, it can be seen as the discrete version
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of the Exponential distribution. For that reason, all the assumptions and remarks
for the Jelinski-Moranda model are also valid here. If p > 0 denotes the parameter
of the Geometric distribution, then, following the same as steps as for the Jelinski-
Moranda model, we can characterized the Geometric order statistics model by the
probability mass function of the times between failures as follows:

qi(xi) = p(N − i+ 1)(1− p)(N−i+1)xi−1 , (2.36)

for all i = 1, . . . , N . For more details on this model we refer to Okamura et al.
(2004).

2.6 Non-homogenous Poisson process models

In this section we describe the class of software reliability growth models known as
non-homogeneous Poisson processes (NHPP). The main assumption for this class
of models is that the counting process (N(t))t≥0 is a Poisson process.

Definition 2.2. A counting process (N(t))t≥0 is said to be a non-homogeneous
Poisson process (NHPP) with intensity function λ(t), for all t ≥ 0, if the following
properties hold:

(1) N(0) = 0 .

(2) (N(t))t≥0 has independent increments: for any 0 ≤ t1 < t2 < t3 < t4 the
random variables N(t2)−N(t1) and N(t4)−N(t3) are independent.

(3) The random variable N(t2)−N(t1) has a Poisson distribution with mean Λ(t2)−
Λ(t1), for all 0 ≤ t1 < t2, i.e.,

P [N(t2)−N(t1) = k] = e−(Λ(t2)−Λ(t1)) (Λ(t2)− Λ(t1))k

k!
,

for all k = 0, 1, 2, . . ., where Λ(t) =
∫ t

0

λ(x) dx is the mean-value function of

the process.

Note that Λ(t) and λ(t) are the mean-value function and the intensity function of
the process, respectively, as defined in Section 2.2.1. When the intensity function is
constant, then the Poisson process is said to be homogeneous and it is denoted by
HPP. Note that unlike the HPP, the times between failures of an NHPP are neither
independent nor identically distributed (see e.g. Thompson (1988)[p. 57]). Only the
increments are independent although not identically distributed. In fact, the only
counting process that has independent increments is the Poisson process (cf. Rigdon
and Basu (2000)[Theorem 15]). The next result shows an important property of the
Poisson process. This result is used for example in the construction of trend tests
as we will see in Section 3.2 and relates NHPP models with GOS models. Since
this result is well-known in probability theory, we skip the proof here. For further
details, we refer to Rigdon and Basu (2000)[Theorem 25].
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Theorem 2.4. Conditional on the event {Tn = tn}, the failure times of an NHPP
T1 < T2 < . . . < Tn−1 are distributed as n − 1 order statistics from a distribution
with cumulative distribution function

F (y) =


0, y ≤ 0

Λ(y)/Λ(tn), 0 < y ≤ tn

1, y > tn

Note that when the process is homogeneous it follows that Λ(t) = t. Therefore, in
that case T1 < T2 < . . . < Tn−1 are distributed as n− 1 order statistics from a Uni-
form distribution on (0, tn) (cf. Rigdon and Basu (2000)[Theorem 21]). Note that we
obtain a similar result when the failure times of an NHPP are T1 < T2 < . . . < TN(t),
where N(t) is the number of failures at time t > 0. In this case, conditional on the
event {N(t) = n}, the failure times T1 < T2 < . . . < Tn are distributed as n order
statistics from a distribution with cumulative distribution function Λ(y)/Λ(t), on
the interval (0, t) (cf. Rigdon and Basu (2000)[Theorem 26]). As done for GOS
models in Lemma 2.2, we now classify the whole class of NHPP models according
to the properties introduced in Section 2.2.2. Note that, by Definition 2.2, the pro-
cess (N(t))t≥0 has independent increments, therefore it is Markov. The next lemma
shows that the process (Tn)n≥0 is also Markov. Note that (Tn)n≥0 does not have
independent increments since this would imply that Xi are independent for all i ≥ 1.
The times between failures are not independent in general for NHPP as shown in
Thompson (1988)[p. 57].

Lemma 2.3 (NHPP classification). The stochastic process (Tn)n≥0 defined by an
NHPP has the Markov property.

Proof. The joint density function of T1, . . . , Tn (see e.g. Thompson (1988)[p. 56]) is
given by

fT1,...,Tn(t1, . . . , tn) = λ(t1) . . . λ(tn)e−Λ(tn) , (2.37)

for all ti ≥ 0. Therefore, the conditional density function of Tn given T1 = t1, . . .,
Tn−1 = tn−1 can be written as

fTn|T1,...,Tn−1(tn) =
fT1,...,Tn(t1, . . . , tn)

fT1,...,Tn−1(t1, . . . , tn−1)

= λ(tn)e−(Λ(tn)−Λ(tn−1))

= fTn|Tn−1(tn) ,

(2.38)

for all ti ≥ 0 such that fT1,...,Tn−1(t1, . . . , tn−1) > 0 (in fact, it only depends on
tn−1). Since the Jacobian determinant for the change of variables Xi = Ti−Ti−1 is
equal to 1, it follows that

fX1,...,Xn(x1, . . . , xn) = fT1,...,Tn(x1, . . . , x1 + . . .+ xn) . (2.39)
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Hence, we can write (2.29) as

fXn|T1,...,Tn−1(xn) = fXn|Tn−1(xn) . (2.40)

Finally, note that (2.40) is precisely the Markov property for (Tn)n≥0.

Different NHPP models arise when one considers different mean-value or failure
intensity functions. NHPP models can be further classified depending on whether
Λ(t) converges to a finite value or to infinite when t→∞ (see attribute “category”
in the classification scheme by Musa and Okumoto (1983)). We will refer to these
subclasses as NHPP-finite and NHPP-infinite, respectively. A relationship between
NHPP-finite and GOS models is presented in Langberg and Singpurwalla (1985).
It is shown that when N in GOS models is considered to be a Poisson random
variable, an equivalent NHPP model is obtained. We study this relationship in
details in Section 2.7. Some properties of NHPP-infinite models are discussed in
Section 2.7.1. The asymptotic behaviour for both types of NHPP models is given
by the following result. For a proof we refer to Thompson (1988)[p. 57].

Theorem 2.5 (Asymptotic behaviour of the NHPP). Let (N(t))t≥0 be an NHPP
with mean-value function Λ(t), for all t ≥ 0.

1. If lim
t→∞

Λ(t) = Λ0 <∞, then, in distribution,

N(t) −→ Y ,

where Y is a Poisson distributed random variable with mean Λ0.

2. If lim
t→∞

Λ(t) =∞, then, in distribution,

N(t)/Λ(t) −→ 1

and
(N(t)− Λ(t))/

√
Λ(t) −→ Z ,

where Z is a standard normal distributed random variable.

There exist many NHPP models in the literature. For a description of some of
them we refer to Musa et al. (1987)[Chapter 11], Lyu (1996)[Chapter 3] and Xie
et al. (2004)[Section 4.5]. In the remainder of this section we describe in details two
NHPP-finite models (Goel-Okumoto and Yamada S-shaped) and one NHPP-infinite
model (Duane).

2.6.1 Goel-Okumoto model

Presented in Goel and Okumoto (1978), this is the most well-known NHPP model.
Due to the important role that this model has played on the software reliability
modelling history, it is often called “the” NHPP model. Assumptions (2), (3) and
(4) for the Jelinski-Moranda model are also valid for the Goel-Okumoto model.
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Assumption (1) is not valid here since N is considered as a Poisson random variable.
The mean-value function and the intensity function are given by

Λ(t) = a
(
1− e−bt

)
,

and
λ(t) = abe−bt ,

respectively, for all t ≥ 0, where a > 0 and b > 0 are the parameters of the model.
The parameter a is the expected number of faults to be eventually detected while b
is the rate at which each individual fault will be detected during testing. In fact, it
follows that

lim
t→∞

Λ(t) = a .

A typical plot of Λ(t) for the Goel-Okumoto model can be observed in Figure 2.4
where Λ(t) is plotted when a = 11 and b = 0.14. Note that a determines the
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Figure 2.4: Goel-Okumoto model mean-value function when a = 11 and b = 0.14.

scale and b the shape of the mean-value function. We will see in Section 2.7 that
assuming a Poisson distribution for N in the Jelinski-Moranda model one obtains
the Goel-Okumoto model.

2.6.2 Yamada S-shaped model

The so-called S-shaped model was presented in Yamada and Osaki (1984). It re-
ceives the name S-shaped because the curve of the mean-value function is often
S-shaped (in comparison with the exponential-shaped mean-value function of the
Goel-Okumoto model). This can be observed in Figure 2.5 where Λ(t) is plotted
when a = 11 and b = 0.14. The S-shaped NHPP model has mean-value function

Λ (t) = a
(
1− (1 + bt) e−bt

)
,

and intensity function

λ (t) = ab2te−bt ,
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Figure 2.5: Yamada S-shaped model mean-value function when a = 11 and b = 0.14.

respectively, for all t ≥ 0, where a > 0 and b > 0 are the parameters of the model.
The parameters of the model have the same interpretation as in the Goel-Okumoto
model. Note that also in this case it follows that

lim
t→∞

Λ(t) = a .

Therefore, this is also an NHPP-finite model.

2.6.3 Duane (power-law) model

This NHPP model was first introduced for hardware reliability in Duane (1964).
It is also known as the power-law or the Crow model after Crow (1974). The
assumptions for this model (cf. Lyu (1996)[Chapter 3]) are the same as those for
the Goel-Okumoto model but an infinite number of failures in infinite time is allowed.
The mean-value function and the intensity function are given by

Λ(t) =
(
t

a

)b
,

and

λ(t) =
b

a

(
t

a

)b−1

,

respectively, for all t ≥ 0, where a > 0 and b > 0 are the parameters of the model.
The parameter a is the scale parameter, while b is the shape parameter. A typical
plot of Λ(t) for the Duane model can be observed in Figure 2.6 where Λ(t) is plotted
when a = 100 and b = 0.5, b = 1 and b = 2. Note that if b = 1, then the failure
intensity of the process is constant. Thus, in that case the process is an HPP. On
the other hand, if b < 1, then λ(t) decreases, meaning that the failures tend to
occur more infrequently. Therefore, the system shows reliability growth. Finally, if
b > 1, then the reliability of the system decreases with time. Note that in this case
it follows that

lim
t→∞

Λ(t) = +∞ .

Therefore, this is an NHPP-infinite model.
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Figure 2.6: Duane model mean-value function for b = 0.5, b = 1 and b = 2.

2.7 Linking GOS and NHPP models

As mentioned in Section 2.5, the main assumption for the class of GOS models is
that the times between failures of a software system are defined as the differences
between two consecutive order statistics from a random sample of fixed and finite
length N . Theorem 2.4 already provides a way of connecting NHPP models with
GOS models. In this section we show that if N is considered to follow a Poisson
distribution with finite mean, then the counting process (N(t))t≥0 is an NHPP. In
particular, by Lemma 2.5, we will have that

lim
t→∞

N(t) = N .

Let us consider that the first n ≥ 1 observed failure times of a software system,
denoted by T1 < T2 < . . . < Tn and defined as in (2.10), are the first n order statistics
of a random sample Z1, . . . , ZN with common cumulative distribution function F (t),
for all t ≥ 0. Suppose now that N is a Poisson random variable with finite mean
θ > 0. Then,

P [N = n0] =
θn0e−θ

n0!
, (2.41)

for all n0 = 0, 1, 2, . . .. For t ≥ 0 fixed, the random variable N(t) given N = n0 is
binomially distributed with parameters n0 and F (t), as shown in (2.26). Therefore,

P [N(t) = n] =
∞∑

n0=0

P [N(t) = n | N = n0] P [N = n0]

=
∞∑

n0=0

(
n0

n

)
(F (t))n(1− F (t))n0−n θ

n0e−θ

n0!
.

(2.42)

Note that for n0 < n it follows that

P [N(t) = n | N = n0] = 0 . (2.43)
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Thus, we can write (2.42) as

P [N(t) = n] =
(θF (t))n

n!
e−θ

∞∑
n0=n

(θ(1− F (t)))n0−n

(n0 − n)!

=
(θF (t))n

n!
e−θF (t) ,

(2.44)

where the last equality comes from the Taylor expansion of x 7→ ex in the form
∞∑

n0=n

(θ(1− F (t)))n0−n

(n0 − n)!
= eθ(1−F (t)) . (2.45)

Hence, N(t) follows a Poisson distribution with mean

Λ(t) = E [N(t)] = θF (t) . (2.46)

Thus, the process (N(t))t≥0 is Poisson with mean-value function t 7→ Λ(t). For
further details we refer to Langberg and Singpurwalla (1985). Moreover, by Theo-
rem 2.5, if N(t) is Poisson distributed and such that

lim
t→∞

Λ(t) = Λ0 <∞ , (2.47)

then N(t) converges in distribution to a Poisson random variable with mean Λ0. In
this case, we have that

lim
t→∞

Λ(t) = lim
t→∞

θF (t) = θ <∞ . (2.48)

Therefore, as t→∞, it follows that N(t) converges in distribution to N . Moreover,
since N is assumed to follow a Poisson distribution, we can also make predictions
about the initial number of faults in the system given that we have already observed
n of them. This can be done by computing the conditional probability mass function
of N given T1, . . . , Tn. Note first that the joint density function of T1, . . . , Tn given
N = n0 (see e.g. Kuo and Yang (1996)) is given by

L(t1, . . . , tn;n0) =

(
n∏
i=1

f(ti)

)
n0!

(n0 − n)!
(1− F (tn))n0−n . (2.49)

Thus, application of Bayes formula, (2.43) and (2.49) yields

P [N = n0 | T1 = t1, . . . , Tn = tn] =
L(t1, . . . , tn;n0) P [N = n0]
∞∑
k=n

L(t1, . . . , tn; k) P [N = k]

=

θn0e−θ

(n0 − n)!

(
n∏
i=1

f(ti)

)
(1− F(tn))n0−n

∞∑
k=n

θke−θ

(k − n)!

(
n∏
i=1

f(ti)

)
(1− F(tn))k−n

.

(2.50)
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Note that the factors e−θ and
∏n
i=1 f(ti) cancel out. Therefore, the conditional

probability mass function of N depends only on Tn. We can use (2.45) in the
denominator of (2.50) to write

P [N = n0 | T1 = t1, . . . , Tn = tn] = P [N = n0 | Tn = tn]

=
θn0−n

(n0 − n)!
e−θ(1−F (tn))(1− F (tn))n0−n .

(2.51)

In particular, we are interested in the case where the distribution of the order
statistics is the Exponential, i.e.,

F (t) = 1− e−λt ,

for all t ≥ 0 and λ > 0 fixed. In this case, the corresponding GOS model is the
Jelinski-Moranda, as we saw in Section 2.5.1. Since N follows a Poisson distribution
with mean θ, then by (2.46) we have that

E [N(t)] = θ(1− e−λt) ,

which corresponds to the mean-value function of the Goel-Okumoto model, as de-
scribed in Section 2.6.1. Moreover, we can write the the conditional probability
mass function of N given T1 = t1, . . . , Tn = tn, as defined in (2.51), as follows:

P [N = n0 | Tn = tn] =
θn0−n

(n0 − n)!
e−(θe−λtn+(n0−n)λtn) . (2.52)

The above relationship between the Jelinski-Moranda and Goel-Okumoto models
will be used later in chapters 5 and 6.

2.7.1 A note on NHPP-infinite models

When the assumption that the repairing process is not perfect or that new faults can
be introduced are considered, it may be possible to experience an infinite number
of failures in infinite time. Such a behaviour can be modelled as an NHPP-infinite
model (cf. Kuo and Yang (1996)). The Duane model described in Section 2.6.3
and the model presented in Musa and Okumoto (1984) are two examples of NHPP-
infinite models. Although NHPP-infinite models cannot be described in terms of
General Order Statistics, it is possible to define the stochastic process (Tn)n≥0 in
terms of Record Value Statistics (RVS). Suppose that Z1, Z2, Z3, . . . is a sequence of
i.i.d. random variables with common distribution function F (t), for all t ≥ 0. If we
define

R1 = min {i | Zi > 0}

and
Rk+1 = min {i | Zi > ZRk} ,

for all k = 1, 2, . . ., then the random variables ZR1 < ZR2 < . . . define a sequence of
record values where ZRi is called the ith record value statistic for all i ≥ 1. Unlike
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order statistics, the sequence of record values can be infinite as shown in Glick
(1978). In this case, assuming immediate repair and that simultaneous failures do
not occur, we can interpret Ti = ZRi as the ith failure time of an NHPP where

Λ(t) = − log (1− F (t)) ,

and
λ(t) =

f(t)
1− F (t)

,

as it is shown in Dwass (1964) and Resnick (2007)[Section 4.1]. Therefore, it follows
that Λ(t) → ∞, as t → ∞. Thus, when the process (N(t))t≥0 is NHPP-infinite,
GOS cannot be used to describe the process (Tn)n≥0, but this can be described in
terms of RVS. Note that in this case N (the initial number of faults in the system)
does not play a role like in case of GOS models. In fact, it can be thought as if N
would be infinite.

2.8 Bayesian approach

We have seen in Section 2.2.1 that the failure detection process of a software system
can be modelled in an equivalent way as one of the following stochastic processes:
(N(t))t≥0, (Tn)n≥0 and (Xn)n≥0. Such processes usually depend on some parameter
ϕ that is unknown. For example, we can write

Pϕ [(X1, . . . , Xn) ∈ Bn] = fϕ (Bn) .

Often this parameter is N but it could be any other parameter or a vector of
parameters. In the Bayesian approach we construct another process such that the
parameter ϕ is considered as a random variable Φ with a given prior distribution
function G(ϕ). More precisely, we assume that

Pϕ [(X1, . . . , Xn) ∈ Bn | Φ = ϕ] = fϕ (Bn) ,

so that
P [(X1, . . . , Xn) ∈ Bn] =

∫
fϕ (Bn) dG (ϕ) .

We have already seen such a case in Section 2.7 as we explain in more detail now.
We have shown that given a GOS process (N(t))t≥0, if N is considered to be a
Poisson random variable, then conditional on {N = n0} the random variable N(t)
is binomially distributed and the process (N(t))t≥0 is also an NHPP. Thus, we can
interpret (2.41) as a prior distribution on N . All concepts and properties introduced
so far can be generalized in a Bayesian sense. For example, the Markov property
can be expressed as follows:

P [Xn ∈ B | X1, . . . , Xn−1,Φ] = P [Xn ∈ B | Xn−1,Φ] .

Therefore, we can consider the Bayesian models as another class of software re-
liability models. They can be classified as semi-Markov, Markov or independent
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increments in a Bayesian sense which means that they are semi-Markov, Markov or
have independent increments conditionally on Φ. Examples of Bayesian models can
be found in Langberg and Singpurwalla (1985) and Littlewood and Verrall (1973).
The Bayesian approach is crucial for our certification procedure as we will see in
Chapter 5.

2.9 Some other models

In Section 2.4.2 we have presented a classification scheme for software reliability
growth models based on some properties of stochastic processes. A sample with
some of the most well-known models is shown in Table 2.5. Most of them are
Markov models and in particular two large classes like GOS and NHPP models are
Markov. We finish this chapter by describing the model introduced in Schick and
Wolverton (1978). This model is semi-Markov but not Markov and it is neither
GOS nor NHPP.

2.9.1 Schick-Wolverton model

One of the first extensions of the Jelinski-Moranda model is due to Schick and
Wolverton (1978). The distribution of the times between failures is derived assuming
that the hazard rate after the ith failure detection (unlike for the Jelinski-Moranda
model for which it is constant) is a linear function of time, i.e.,

hi(xi) = (N − i+ 1)λxi , (2.53)

for all i = 1, . . . , N and xi > 0. This is depicted in Figure 2.7. The reliability
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Figure 2.7: Schick-Wolverton model hazard rate. It is a linear function of the time
between failure observations.

function of Xi can be computed using (2.9) and it is given by

Si(xi) = e−
(N−i+1)λx2

i
2 , (2.54)



2.9 Some other models 43

which is of the form of a Rayleigh distribution with parameter ((N − i+ 1)λ)−1/2.
This model is usually characterized by the density function of the times between
failures (cf. Schick and Wolverton (1978)) as follows:

fi(xi) = (N − i+ 1)λxie−
(N−i+1)λx2

i
2 . (2.55)

Therefore, since the distribution of the times between failures is not the Exponential,
the process (N(t))t≥0 is not Markov (see Section 2.2.2). Note that the assumptions
for this model (cf. Xie et al. (2004)[Chapter 4]) are the same as those for the Jelinski-
Moranda with the exception that the hazard rate is a linear function of time over the
interval between fault occurrences. Thus, this model is also criticized for considering
all faults being of the same type. Like the Jelinski-Moranda model, the distribution
of the times between failures depends on N , which is considered to be unknown but
fixed. Thus, the Schick-Wolverton model is not an NHPP model. Moreover, it is
not a GOS model either as we will see now. Suppose that Z1, . . . , ZN are N i.i.d.
random variables having a common Rayleigh distribution with parameter λ > 0.
Thus,

f(z) = λze−
λz2

2 ,

is the density function of Zi for all z ≥ 0 and i = 1, . . . , N . The distribution of the
first order statistic can be computed using Theorem 2.1 and it is given by

f(1)(z) = Nf(z) (1− F (z))N−1

= λNze−
λNz2

2 ,

which is the same as the distribution of X1 = T1 as given in (2.55). Thus, the
distribution of X1 in the Schick-Wolverton model corresponds to the first order
statistic of a Rayleigh distribution. However, this does not hold for X2, . . . , Xn. As
shown in Pyke (1965)[Section 2.2], the distribution function of Di = Z(i) − Z(i−1),
for all 2 ≤ i ≤ n, is given by

fDi(z) =
N !

(i− 2)!(N − i)!

∫ ∞
0

(F (x))i−2 (1− F (x+ z))N−i f(x)f(x+ z) dx .

(2.56)
In case of the Rayleigh distribution, we can write (2.56) as

fDi(z) =
λ2N !

(i− 2)!(N − i)!

∫ ∞
0

x(x+ z)
(

1− e−λx
2

2

)i−2

×

× e−
((N−i+1)x2+(x+z)2)λ

2 dx .

(2.57)

It follows that the density function of Di given in (2.57) is not the same as the
density function of Xi given in (2.55), for all 2 ≤ i ≤ n. This final step is left to
the reader. Take for example i = 2 or i = N , which simplifies the right-hand side
of (2.57), and check that the obtained density is not the same as the one defined
by the Schick-Wolverton model. A generalization of the Schick-Wolverton model is
studied in Shanthikumar (1981), where the proportionality factor λ is considered to
be also a function of time.





Chapter 3

Statistical Inference for Software
Reliability Growth Models

In this chapter we provide a general overview on statistical features used in analysis
of software failure data based on reliability growth models. Most of the concepts
introduced here are well-known in the software reliability literature. Nevertheless,
there are certain issues that are not trivial and require special attention, in particular
Maximum Likelihood procedures and convergence issues discussed in Section 3.4.
In spite of the rich literature on software reliability (see e.g. monographs like Lyu
(1996), Musa (2006), Musa et al. (1987), Pham (2006) and Xie and Hong (2001)) it
is not always easy to find correct or sufficiently detailed information on these models.
Common problems found in the literature include vague mathematical descriptions,
incorrect use of asymptotic results from mathematical statistics, lack of universal
agreement on assumptions behind these models and lack of attention for numerical
instabilities in parameter estimation algorithms. Most of the techniques presented
in this chapter are implemented in a software tool for reliability analyses that will
be presented in Chapter 4. Thus, this chapter also provides a statistical background
for the features implemented in the tool.

In the line of Goel (1985), we present in the remainder of this chapter a step-
by-step procedure to (statistically) analyze software failure data. For us statistical
analysis of software failure data should include data description, trend tests, initial
model selection, estimation of model parameters, model validation and model inter-
pretation. The main difference with Goel (1985) approach is that we provide more
insight on each of the steps and give some examples of application. In particular,
the problem of initial model selection is just mentioned as a necessary step in Goel
(1985) but no explanation about how this should be done is given. In fact, this
problem has not been studied in details in the software reliability literature, being
Kharchenko et al. (2002) an exception. We discuss the problem of initial model se-
lection in Section 3.3. Moreover, an important step like the analysis of trend of data
(see Section 3.2) is not considered in Goel (1985). The following sections provide a
description of these steps.

3.1 Data description

As mentioned in Section 2.4, we assume that the fault detection process of a soft-
ware system can be modelled as a stochastic counting process (N(t))t≥0, where
N(t) represents the number of failures observed at time t ≥ 0. For any n ≥ 1, we
can define the failure times T1, . . . , Tn as in (2.10). According to the Kolmogorov
existence theorem introduced in Section 2.2, the process (N(t))t≥0 can be uniquely
characterized by any finite dimensional distribution. Thus, in particular, it may be
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specified by the joint distribution of T1, . . . , Tn. However, failure times are often
not observable in practice and, in this case, the process (N(t))t≥0 may be speci-
fied by the joint distribution of N(`1), . . . , N(`k), for any 0 < `1 < . . . < `k and
k ≥ 1. Therefore, software failure data may appear in the form of either point-time
or interval-time observations as we will explain now. When failures are reported
individually at the random times when they occur we speak of point-time observa-
tions. In this case, data represents either the failure times T1 < T2 < . . . < Tn or the
corresponding times between failures X1 = T1, X2 = T2 − T1, . . . , Xn = Tn − Tn−1.
Note that in this case n is the total number of observed failures. In practice, the
system is often observed up to certain time t such that Tn < t and N(t) = n. In
this case, we speak of time truncated data. Otherwise, when Tn = t, we speak of
failure truncated data. Point-time observations are also called ungrouped or exact
data in the software reliability literature. When failures are reported in intervals
of a certain length we speak of interval-time observations. The interval bounds do
not correspond to failure times. Therefore, they are not random variables but fixed
points in R+. Moreover, all the intervals do not have to be necessarily of the same
length. In this case, data is collected in pairs consisting of the observation intervals
(`i−1, `i], for all i = 1, . . . , k, where Mi = N(`i) − N(`i−1) is the random number
of failures reported in each interval and M =

∑k
i=1Mi is the total number of faults

detected at time `k, with `0 = 0 and N(`0) = 0. Note that in this case, data is
always time truncated. Interval-time observations are also called grouped or interval
data in the software reliability literature. It is highly recommendable to carefully
look at the data before starting any kind of statistical analysis. For example, it is
possible to gain some understanding about the nature of the process being studied
simply by plotting the data as a function of time. Figure 3.1 shows a plot of the
failure times against the cumulative number of observed failures. The data set used
in Figure 3.1 is in the form of interval-time observations (where the interval length
is measured in seconds) and it can be found in Joe (1989). This data set will be
used throughout this chapter to illustrate different concepts. Note that a concave
plot indicates that software becomes more reliable during testing, due to the fact
that faults are repaired, so that more effort is required to find future faults. With
this simple step we may detect that failure times follow certain patterns that may
reveal some trend associated to a growth or a decrease in reliability.

3.2 Trend analysis

All software reliability models described in Chapter 2 have been developed based on
the assumption that the reliability of the system grows as long as faults are found
and repaired. Thus, before trying to fit any model to data we should verify whether
data indicates reliability growth or not. This can be done by the application of trend
tests. We distinguish between graphical and statistical trend tests (see e.g. Ascher
and Feingold (1984)). In this section we present some of the most popular (graphical
and statistical) trend tests and provide some references for further information.

A simple way to check whether software failure data exhibits a trend is to study
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Figure 3.1: Failure times vs. the cumulative number of observed failures. A concave
plot indicates reliability growth.

running averages plots like in Figure 3.2. For interval-time observations this plot is
produced by computing the running arithmetic averages of the number of failures
per interval, i.e., we plotMi/(`i− `i−1), for all i = 1, . . . , n, where we recall thatMi

denotes the number of faults detected in the ith interval, and `i − `i−1 denotes the
length of the ith interval. If the running averages decrease with i, then the number
of failures observed per interval also decreases. Therefore, the data shows reliability
growth. For point-time observations we compute the running arithmetic averages
of the successive failure times, i.e., we plot Ti/i, for all i = 1, . . . , n. If the running
averages increase with i, then the time between failures also increases. Therefore,
the data shows reliability growth. Figure 3.2 shows the running averages plot for
the data set in Joe (1989), which is in the form of interval-time observations. Since
the running averages decrease, the plot indicates a positive trend.

Another well-known trend plot is the total time on test (TTT) plot (see e.g.
Klefsjo and Kumar (1992)). Initially developed by Barlow and Campo (1975) for
non-repairable systems, TTT plots may be used to decide whether a certain (un-
known) distribution exhibits reliability growth. The main idea behind this plot is
the following. Suppose that n identical components are tested simultaneously up to
a certain time t > 0. The random variables T1, . . . , Tn, with common cumulative
distribution function F (t), denote the lifetimes of the n components. Therefore, the
order statistics T(1) ≤ T(2) ≤ . . . ≤ T(n) represent the failure times of the compo-
nents in the order that they occurred (note that this interpretation of the failure
times is similar to the one for GOS models described in Section 2.5). Suppose now
that i of the components have failed in the interval (0, t]. Thus, the total lifetime
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Figure 3.2: Running averages plot for interval-time observations. A decreasing plot
indicates reliability growth.

of these i components is given by
∑i
j=1 T(j). Since the remaining n− i components

have survived the interval (0, t], the total lifetime of these components is given by
(n − i)t. Therefore, the total time on test at time t, denoted by τ(t), is defined as
the total observed lifetime of the n components at time t, i.e.,

τ(t) =
i∑

j=1

T(j) + (n− i)t ,

where i is such that T(i) ≤ t ≤ T(i+1), with the convention that T(0) = 0 and
T(n+1) =∞. Therefore, the total time on test at the ith failure time is given by

τ(T(i)) =
i∑

j=1

T(j) + (n− i)T(i) ,

for all i = 1, . . . , n. Then, the TTT plot is a plot of the ordered pairs(
i

n
,
τ(T(i))
τ(T(n))

)
, (3.1)

for all i = 1, . . . , n. The statistic τ(T(i))/τ(T(n)) is often called the scaled TTT
statistic. In Høyland and Rausand (1994)[Section 9.2] and Langberg et al. (1980)
it is shown that, for any 0 ≤ u ≤ 1, as n→∞, it follows that

τ(T(dnue))
τ(T(n))

−→ ψ(u) a.s. ,
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where d·e denotes the ceiling function and

ψ(u) =
1
µ

∫ F−1(u)

0

(1− F (t)) dt ,

where µ denotes the mean of the distribution F (t). In particular, if the distribution
F (t) of the components lifetimes is the Exponential, then ψ(u) = u (cf. Høyland and
Rausand (1994)[Example 9.2, p. 362]). Thus, in case of exponential failure times
the TTT plot converges to the diagonal of the unit square. A convex plot indicates
reliability growth and a concave one indicates reliability decrease. Figure 3.3 shows
a TTT plot for the data set in Joe (1989). Since the TTT plot is slightly convex,
reliability growth may be expected. For a detailed description and properties of
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Figure 3.3: Total time on test (TTT) plot for interval-time observations. A convex
plot indicates reliability growth.

TTT plots we refer to Høyland and Rausand (1994)[Chapter 9] and Klefsjo and
Kumar (1992). The above-described methods for analyzing trend of software failure
data, and several other graphical methods, are studied and compared in Kunitz and
Pamme (1991).

We now discuss two statistical trend tests: the Laplace and the Military Hand-
book (MIL-HDBK-189) tests (see e.g. Rigdon and Basu (2000)[Section 4.3] for an
overview on both tests). The null hypothesis of the test is that the fault detection
process is an homogeneous Poisson process (HPP) while the alternative depends on
the kind of trend (reliability growth or decrease) to be detected. The Laplace test
is a conditional statistical test that can be derived as follows. Suppose first that the
data is failure truncated, i.e., as explained in Section 3.1, we observe the system up
to a certain failure time, say Tn (in contrast to time truncated where we look at
an arbitrary fixed time t). Therefore, the failure times of the system are given by
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T1 < . . . < Tn. Under the null hypothesis of an HPP, Theorem 2.4 says that, condi-
tional on the event {Tn = tn}, it follows that T1 < T2 < . . . < Tn−1 are distributed
as n − 1 order statistics from a Uniform distribution on the interval (0, tn). Thus,
the random variable S =

∑n−1
i=1 Ti has mean (n− 1)tn/2 and variance (n− 1)t2n/12.

Therefore, if N (0, 1) denotes the standard normal distribution, then under the null
hypothesis of HPP and by the Central Limit Theorem it follows that

UL =

n−1∑
i=1

Ti − (n− 1)tn/2√
(n− 1)t2n/12

−→ Z ∼ N (0, 1) .

The null hypothesis of an HPP process for the Laplace trend test will be rejected
if UL < zα/2 or UL > z1−α/2, where zγ denotes the γ− percentile of the standard
normal distribution. Note that for small values of UL the null hypothesis is rejected
in favor of reliability growth (failure times are small, therefore, faults occur in the
beginning of the interval (0, tn)). Suppose now that the data is time truncated, i.e.,
as explained in Section 3.1, we observe the system up to an arbitrary fixed time t
with no fault such that T1 < . . . < Tn < t and N(t) = n. In this case, under the
null hypothesis of an HPP and conditional on the event {N(t) = n}, it follows that
T1 < T2 < . . . < Tn are distributed as n order statistics from a Uniform distribution
on the interval (0, t) (cf. Rigdon and Basu (2000)[Theorem 22]). Thus, the random
variable S =

∑n
i=1 Ti has mean nt/2 and variance nt2/12. Therefore, by the Central

Limit Theorem it follows that

UL =

n∑
i=1

Ti − nt/2√
nt2/12

−→ Z ∼ N (0, 1) .

The interpretation of the test statistic is the following: for small values of the test
statistic the null hypothesis of HPP is rejected in favor of reliability growth. The
Laplace test for interval-time observations is studied in Kanoun et al. (1991). In
this case, the Laplace test is developed under the restriction that all test intervals
must have the same length. Thus, the observation intervals are given by (`i−1, `i] =
((i− 1)`, i`], for all i = 1, . . . , k, where Mi = N(i`) − N((i − 1)`) is the random
number of failures reported in each interval and M =

∑k
i=1Mi is the total number

of faults detected at time k`. In this case, under the null hypothesis of an HPP and
conditional on the event {

∑n
i=1Mi = m} it follows that

UL =

k∑
i=1

(i− 1)Mi −m(k − 1)/2√
m(k2 − 1)/12

−→ Z ∼ N (0, 1) .

The interpretation of the test is the same as in the point-time case: for small values
of the test statistic, the null hypothesis is rejected in favor of reliability growth. For
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details on the derivation of the Laplace test statistic in this case, we refer to Kanoun
et al. (1991)[Appendix A].

The MIL-HDBK-189 trend test is also a conditional statistical test but based
on the power-law process (see Section 2.6.3). The rationale behind this test is the
following. The intensity function of the power-law process is given by

λ(t) =
b

a

(
t

a

)b−1

,

where a > 0 and b > 0 are the parameters of the model, for all t ≥ 0. Note that if
b < 1, then λ(t) decreases, meaning that the failures tend to occur less frequently.
Therefore, the system shows reliability growth. If b > 1, then the system shows
reliability decrease. Finally, if b = 1, then the process is an HPP. Conditional on
the event {Tn = tn}, the Maximum Likelihood (ML) estimator of b of a failure
truncated power-law process (see e.g. Rigdon and Basu (2000)[p. 118]) is given by

b̂ =
n

n−1∑
i=1

log(tn/Ti)

.

Thus, if χ2(n) denotes the chi-squared distribution with n degrees of freedom, then
under the null hypothesis of b = 1 (cf. Military Handbook[p. 68]) it follows that

2n/b̂ ∼ χ2(2(n− 1)) .

Unlike the Laplace test, the distribution of the MIL-HDBK-189 test statistic is
exact and not asymptotic. If the alternative hypothesis is two-sided, then the null
hypothesis is rejected if

b̂ >
2n

χ2
1−α/2(2(n− 1))

or
b̂ <

2n
χ2
α/2(2(n− 1))

,

where χ2
γ(ν) denotes the γ-percentile of the chi-squared distribution with ν degrees

of freedom. For large values of b̂ the null hypothesis is rejected in favor of reliabil-
ity growth. For a time truncated power-law process and conditional on the event
{N(t) = n}, the ML estimator of b (see e.g. Rigdon and Basu (2000)[p. 137]) is
given by

b̂ =
n

n∑
i=1

log(t/Ti)

.

Also in this case, under the null hypothesis of b = 1 (cf. Military Handbook[p. 68])
it follows that

2n/b̂ ∼ χ2(2n) .
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The interpretation of the test statistic is the same as for the failure truncated case:
for large values of b̂, the null hypothesis is rejected in favor of reliability growth.
Unlike the Laplace trend test, for interval-time observations the MIL-HDBK-189
test does not require equal length of test intervals. Thus, the observation intervals
are given by (`i−1, `i], for all i = 1, . . . , k, where di = `i−`i−1,Mi = N(`i)−N(`i−1)
andM =

∑k
i=1Mi. Nevertheless, the conditionMdi/lk > 5 must be satisfied for all

i = 1, . . . , k (see Military Handbook[p. 69]). In this case, under the null hypothesis
of an HPP and conditional on the event {

∑n
i=1Mi = m} it follows that, as k →∞,

k∑
i=1

(Mi −mdi/lk)2

mdi/lk
−→W ∼ χ2(k − 1) .

Note that the distribution of the test statistic is asymptotic for interval-time obser-
vations (cf. Military Handbook[p. 69]). The interpretation of the test statistic is the
following: for large values of the test statistic the null hypothesis of b = 1 (HPP) is
rejected in favor of reliability growth.

For a comparison between these and some other trend tests (for which the null
hypothesis is that the process is HPP against the alternative of reliability growth) we
refer to Bain et al. (1985), Cohen and Sackrowitz (1993) and Wang and Coit (2005).
Variations on these tests can be found in Kvaløy and Linqvist (1998). Similar tests
for interval data seem not to have been studied in the software reliability literature
(cf. Weller and Ryan (1998)).

3.3 Model type selection

The main problem that we find when trying to select a suitable model for a specific
problem is that there are no general rules to select a model. This is stressed by
the abundance of software reliability models since there are over 200 known models
according to Singpurwalla and Wilson (1994). Although it is possible to find a large
variety of lists of assumptions and data requirements for software reliability models
in the literature (see e.g. Goel (1985), Lyu (1996)[Chapter 3], Musa and Okumoto
(1984), Ohba (1984), Pham (2006)[Chapter 6] and Xie et al. (2004)[Chapter 4]),
this is often far from facilitating model selection. For example, there is no universal
agreement in the literature on the list of assumptions for certain well-known models.
Moreover, some assumptions or data requirements are not valid. An example of
erroneous data requirements can be found in existing tools for software reliability
analyses like Casre and Smerfs3 where it is mentioned that certain GOS or NHPP
models work only for interval-time observations or only for point-time observations.
This is false since likelihood equations exist for all GOS and NHPP models for both
types of data as we will see in Section 3.4.

Systematic approaches to use model assumptions and data requirements for ini-
tial model selection are hard to find in the software reliability literature. An excep-
tion to this is Kharchenko et al. (2002). They propose a layer structure for model
assumptions depending on the effect of the assumption on specific models. On the
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first layer they consider assumptions that apply to all models without exception. We
consider this statement too strong in general. For example, some of the assumptions
that they consider in the first layer are the following:

(1) software is tested under operational conditions,

(2) immediate repair,

(3) new faults are not introduced during reparation.

For us, only the first one should be considered as universal. For the same reason,
universal assumptions should not be used in model selection because they do not
discriminate between models at all. For the other two assumptions listed above
we already provided some discussion in Section 2.3.2. For example, immediate
repair can be modelled as an alternating renewal process (cf. Ansell and Phillips
(1994)[Section 5.4.4]) and for NHPP-infinite models it is not possible to distinguish
between original faults and faults introduced during reparation. Therefore, we find
it more convenient to consider a first layer of assumptions that will determine the
type of stochastic process to be used. For example, assumption (2) above is valid
for counting processes, as defined in Section 2.2. However, for us assumption (3)
should be in a lower layer since, for example, it is valid for GOS models but not for
NHPP-infinite models. In correspondence with the classification scheme described
in Section 2.4.2, we propose the following three main layers of assumptions:

(i) Type layer: modelling phenomena to random variables. These assumptions
will determine the stochastic process to be used (counting process, alternating
renewal process (see e.g. Ansell and Phillips (1994)[Section 5.4.4]), superim-
posed process (see e.g. Thompson (1988)[Chapter 7]), etc.).

(ii) Class layer: properties of the probability distributions of the random variables
chosen in the layer “Type”. These assumptions will determine whether the
stochastic process is semi-Markov, Markov, has independent increments, etc.

(iii) Functional form layer: parameters of the probability distributions chosen in
the layer “Class”. These assumptions will determine a distribution function, a
mean-value function, an intensity function, etc.

To support the choice of suitable models we also adopt a heuristic matrix-based
procedure proposed by Refis (www.refis.nl). A simple version of this matrix,
with a selection of some of the most well-known models and basic assumptions,
can be found in Table 3.1. The selection matrix is a soft tool providing help to
practitioners that do not know the assumptions behind existing models. To select
models, one first has to select the assumptions which are relevant to the testing
project at hand. Each assumption is related to each model with a weight defining
the relative importance of the assumption for the model. In case of the selection
matrix the weights vary from 1 (lowest relative importance) to 3 (highest relative
importance). After selecting all the relevant assumptions every model receives a
final score. If all requirements and selected assumptions of a model are satisfied,
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(1) (N(t))t≥0 has ind. incr. 3 x x x x x

(2) (N(t))t≥0 not necessarily Markov 3 x x

(3) (Tn)n≥0 has ind. incr. 3 x x x x x x x x x

(4) Imperfect repair 2 x x x

(5) Infinite number of failures 2 x x

(6) Fixed number of faults 3 x x x x x

Table 3.1: Selection matrix. An “x” indicates whether an assumption is allowed for
the corresponding model.

then the score for this model is 100%. In all other cases the score of the model is
defined using the relative importance (weight) of the applicable characteristics of
the model. Thus, the higher score a model has, the better the model fulfills the
assumptions. Consequently, as initial model choice we may use the models with
higher scores. Note that the weights in the selection matrix are subjective choices
and further research is needed to obtain objective criteria. For example, if we choose
assumptions (3), (4) and (6) in Table 3.1, then the model given by Goel (1985) gets
a score of 100%. For all the other models their final score depends on the number
of selected assumptions (and their relative importance) for each model. Further
details can be found in Boon et al. (2007), Brandt et al. (2007a) and Brandt et al.
(2007b). This approach has been implemented in a new software reliability tool that
is described in Chapter 4.

3.4 Model estimation

As mentioned in Chapter 2, we can assume that the failure detection process of a
software system can be described as a counting process (N(t))t≥0. Software reliabil-
ity growth models arise when different functional forms for (N(t))t≥0 are considered.
These models are characterized by certain parametric functions like the mean-value
function of the process or the probability distribution of the failure times. Thus,
after an initial selection of possible candidate models has been accomplished, we
can use observed failure data to estimate the parameters of the models in order
to predict the future behaviour of the system. The Maximum Likelihood (ML)
procedure is the preferred point estimation procedure in statistics. ML estimators
possess optimal asymptotic properties (asymptotically minimal variance unbiased



3.4 Model estimation 55

estimators). However, as we will explain now, asymptotic properties of ML esti-
mators must be studied with extra care in the context of software reliability. In
general, asymptotic properties of the ML estimators are obtained under certain reg-
ularity conditions. These conditions require certain differentiability properties of
the density function of the random observations and that the parameter space is
open. They can be found, for example, in Serfling (1980)[Section 4.2] and van der
Vaart (2000)[Section 5.6]. The assumption of open parameter space is usually bro-
ken here. For example, for GOS models the ML estimator of the initial number
of faults in the system is often in the boundary of the parameter space (see e.g.
Joe and Reid (1985)). A generalization of standard asymptotic results for NHPP
and GOS models is studied in Joe (1989). Asymptotics in Joe (1989) are defined
for time fixed and letting the number of faults in GOS models, and the number of
expected faults in NHPP models, tend to infinity. Regularity conditions in this case
are defined for the density function of the order statistics in GOS models and for
a conditional density function (in a similar way as it is done in Theorem 2.4) for
NHPP models. Similar results in a general setting for counting processes can be
found in van Pul (1993)[Section 3.3]. In particular, results for the Jelinski-Moranda
(cf. Jelinski and Moranda (1972)) and Littlewood (cf. Littlewood (1980)) models
are worked out in details.

As far as confidence intervals computation is concerned, similar remarks as those
mentioned for ML estimation apply here. Confidence intervals can be derived from
asymptotic normality of the ML estimators. However, as shown in Joe (1989), con-
vergence is slow and frequently the ML estimators take their values in the boundary
of the parameter space. For example, for GOS models the normal approximation
does not work very well since the log-likelihood is a skewed function of N and often
N̂ is in the boundary of the parameter space, i.e., N̂ = n or N̂ = ∞. Moreover,
the true value of N must be sufficiently large. As shown in Joe (1989) and van Pul
(1993), these problems can be solved by using an alternative procedure to derive
confidence intervals based on the Wilks likelihood ratio statistic. For a definition
and properties of the Wilks statistic we refer to Deshpande and Purohit (2005)[Sec-
tion 4.2, p. 53]. Although results based on the Wilks statistic are shown to perform
better, asymptotic normality can also be used to derive confidence intervals (usu-
ally in terms of the Fisher information matrix). However, this is often done in an
imprecise way, as in Xie and Hong (2001), without looking at regularity conditions.

In general, ML estimators may not be unique or may not exist. When they do
exist, their computation often requires numerical optimization. Since the parameters
of the models are usually of a different order of magnitude, numerical problems like
non-convergence or large flat areas around the maximum may appear (see Yin and
Trivedi (1999)). Figure 3.4 illustrates this problem with a data set from Currit
et al. (1986) consisting of 25 observed times between failures. This figure shows
the log-likelihood function for the given data set for the Goel-Okumoto model (cf.
Goel and Okumoto (1978)). As mentioned in Section 2.6.1, the Goel-Okumoto
model is an NHPP model with two parameters, denoted by a and b, which are of a
different order of magnitude: a represents the total expected number of faults to be
experienced in infinite time and b represents the rate at which failures are observed.
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Figure 3.4: Log-likelihood function for a data set from Currit et al. (1986) assuming
the Goel-Okumoto model. As b tends to zero, the ML estimator of a goes to infinity.

It is clear from Figure 3.4 that as b tends to zero, the value of a that maximizes
the log-likelihood function goes to infinity. For that reason, direct maximization
of the likelihood function may cause numerical problems like slow convergence or
non-convergence at all. Thus, in order to develop efficient estimation procedures,
it is important to pay attention to such convergence issues and apply algorithms
that avoid these standard numerical problems. Next we discuss some properties
and related problems concerning ML estimation for GOS and NHPP models.

3.4.1 ML estimation for GOS models

As described in Section 2.5, the main assumption for the class of GOS models is
that the failure times can be interpreted as the order statistics of a certain random
sample of fixed length N (the unknown total number of faults in the system) with
common distribution function F(N,θ)(t), for all t ≥ 0, where θ denote some other
possible parameters of the distribution. In case of point-time observations, suppose
that, for any n ≥ 1, the failure times are given by T1, . . . , Tn. Thus, n is the number
of failures observed at time Tn. Then the likelihood function of T1, . . . , Tn (see e.g.
Kuo and Yang (1996)) is given by

L(t1, . . . , tn;N, θ) =

(
n∏
i=1

f(N,θ)(ti)

)
N !

(N − n)!
(
1− F(N,θ)(tn)

)N−n
. (3.2)

In case of interval-time observations, suppose that the observation intervals are given
by (`i−1, `i], for all i = 1, . . . , k, where Mi = N(`i) − N(`i−1) and M =

∑k
i=1Mi.
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Then the likelihood function of M1, . . . ,Mk (see e.g. Joe (1989)) is given by

L(m1, . . . ,mk;N, θ) =

(
k∏
i=1

(
F(N,θ)(`i)− F(N,θ)(`i−1)

)mi
mi!

)
×

× N !
(N −m)!

(
1− F(N,θ)(`k)

)N−m
.

(3.3)

Since likelihood functions exist for both point-time and interval-time observations,
ML estimators of N and θ, denoted by N̂ and θ̂, respectively, can be computed
in principle in both cases. Next we describe a concrete example of ML estimation
corresponding to the Jelinski-Moranda model.

Jelinski-Moranda model

As mentioned in Section 2.5.1, the distribution of the order statistics for the Jelinski-
Moranda model is the Exponential distribution. If λ denote the parameter of the
Exponential distribution, then the likelihood function of T1, . . . , Tn as defined in
(3.2) is given by

L(t1, . . . , tn;N,λ) =

(
n∏
i=1

λe−λti

)
N !

(N − n)!
(
1− e−λtn

)N−n
. (3.4)

ML estimators of N and λ can be computing by solving

∂L(t1, . . . , tn;N,λ)
∂N

= 0 ,

and
∂L(t1, . . . , tn;N,λ)

∂λ
= 0 .

We will refer to these equations as theML equations. In this case, if xi = ti−ti−1, for
all i = 1, . . . , n, then the ML estimators of λ and N (see e.g. Xie et al. (2004)[p. 74])
are the solutions of

λ̂ =
n∑n

i=1

(
N̂ − i+ 1

)
xi
, (3.5)

and

n∑
i=1

1
N̂ − i+ 1

−
n

n∑
i=1

xi

n∑
i=1

(N̂ − i+ 1)xi

= 0 , (3.6)

respectively. Whereas λ̂ is given in an explicit form as a function of N̂ , the com-
putation of N̂ requires that (3.6) has to be solved numerically. Existence criteria
for N̂ and λ̂ can be found in Finkelstein et al. (1999), Moek (1984) and Osborne
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and Severini (2000). Non-existence or degeneracy in this case is related to software
deterioration as shown in Littlewood and Verrall (1981). Improving on an earlier
attempt in Joe and Reid (1985), a stable algorithm for computing N̂ can be found in
Finkelstein et al. (1999). An approximate way to compute exact confidence intervals
can also be found in Finkelstein et al. (1999). Unfortunately, these results are only
for point-time observations. As mentioned in the introduction of this section, Joe
(1989) and van Pul (1992b) contain correct asymptotics for N →∞ and Tn →∞,
respectively. They show that asymptotic confidence intervals based on the Wilks
likelihood ratio statistic are preferred to those obtained from asymptotic normality.
Note that the likelihood function for interval-time observations exists and it is given
by (3.3). Therefore, similar expressions to (3.5) and (3.6) can be obtained for λ̂ and
N̂ when data is of the form of interval-time observations. In this case, the results
in Joe (1989) are also valid, however no stable algorithm for computing estimators
(nor confidence intervals) is known.

3.4.2 ML estimation for NHPP models

As described in Section 2.6, the main assumption for the class of NHPP models is
that the failure times can be interpreted as the event times of a Poisson process
(N(t))t≥0 where N(t) is the number of failures observed at time t. NHPP models
are usually described in terms of its mean-value function Λθ(t) = Eθ [N(t)], for
all t ≥ 0, where θ denote the parameters of the model. Unlike GOS models, the
unknown total number of faults in the system N is considered to be a Poisson
random variable. In case of point-time observations, the likelihood function of the
failure times T1, . . . , Tn (see e.g. Thompson (1988)[p. 56]) is given by

L(t1, . . . , tn; θ) =

(
n∏
i=1

λθ(ti)

)
e−Λθ(tn) . (3.7)

In case of interval-time observations, the likelihood function of M1, . . . ,Mk (see e.g.
Xie and Hong (2001)[p. 710]) is given by

L(m1, . . . ,mk; θ) =

(
k∏
i=1

(Λθ(`i)− Λθ(`i−1))mi

mi!

)
e−Λθ(`k) . (3.8)

Since likelihood functions exist for both point-time and interval-time observations,
the ML estimator of θ, denoted by θ̂, can be computed in principle in both cases.
Next we describe two concrete examples of ML estimation corresponding to the
Goel-Okumoto and Duane (power-law) models.

Goel-Okumoto model

As mentioned in Section 2.6.1, the Goel-Okumoto model can be described by the
mean value function Λ(t) = a

(
1− e−bt

)
, for all t ≥ 0, where a > 0 and b > 0 are

the parameters of the model. In this case, the likelihood function of T1, . . . , Tn as
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defined in (3.7) is given by

L(t1, . . . , tn; a, b) =

(
n∏
i=1

abe−bti

)
e−a(1−e−btn ) . (3.9)

ML estimators of a and b can be computed by solving the corresponding ML equa-
tions. In this case, â and b̂ (see e.g. Xie et al. (2004)[p. 103]) are the solutions
of

â =
n

1− e−b̂tn
, (3.10)

and
n

b̂
− ntne

−b̂tn

1− e−b̂tn
−

n∑
i=1

ti = 0 , (3.11)

respectively. Note that â is given in an explicit form as a function of b̂. However,
the computation of b̂ requires that (3.11) has to be solved numerically. Existence
conditions for the ML estimators for point-time observations can be found in Hossain
and Dahiya (1993) and Knafl and Morgan (1996). The method used in Knafl and
Morgan (1996) to obtain ML estimators consists of solving the ML equations in
terms of a single equation in one unknown. Usually â can be expressed in terms of
b̂. Therefore, it is just necessary to solve the ML equation for b̂, where the value of
â has been substituted in. Existence and uniqueness conditions for the solution to
this equation is given in terms of a simple monotonicity criterion. Note also that
the likelihood function for interval-time observations exists and it is given by (3.8).
Thus, similar expressions to (3.10) and (3.11) can be obtained for â and b̂ when
data is of the form of interval-time observations. In this case, existence criteria
for â and b̂, and a stable algorithm to compute b̂, can be found in Hossain and
Dahiya (1993) and Knafl (1992). Joe (1989) provides a correct theoretical way of
obtaining asymptotic confidence intervals for â and b̂ based on the Wilks likelihood
ratio statistic and on asymptotic normality for both point-time and interval-time
observations. Confidence intervals based on the Wilks statistic are preferred as
explained in the introduction of this section. Unfortunately, no stable algorithms
for computing confidence intervals based on the Wilks statistic are known.

Duane (power-law) model

As introduced in Section 2.6.3, the Duane model can be described by the mean value
function Λ(t) = (t/a)b, for all t ≥ 0, where a > 0 and b > 0 are the parameters of
the model. In this case, the likelihood function of T1, . . . , Tn as defined in (3.7) is
given by

L(t1, . . . , tn; a, b) =

(
n∏
i=1

b

a

(
ti
a

)b−1
)
e−(tn/a)b . (3.12)

ML estimators of a and b can be computed by solving the corresponding ML equa-
tions. In this case both â and b̂ have explicit form (cf. Duane (1964)) and they are
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given by

â =
tn

n1/b̂
, (3.13)

and
b̂ =

n
n−1∑
i=1

log (tn/ti)

, (3.14)

respectively. Duane (1964) and Gaudoin et al. (2006)) provide algorithms to com-
pute exact confidence intervals for b̂ and asymptotic confidence intervals for â, re-
spectively. However, these results are only valid for point-time observations. Note
that the likelihood function for interval-time observations exists and it is given by
(3.8). Thus, similar expressions to (3.13) and (3.14) can be obtained for â and b̂
when data is of the form of interval-time observations. In this case, existence cri-
teria for â and b̂, and a stable algorithm to compute them, can be found in Knafl
(1992). Unfortunately, only algorithms based on asymptotic normality are known
for computing confidence intervals.

3.5 Model validation

In Section 3.3 we have presented a heuristic procedure to select software reliability
growth models based on the assumptions which are relevant to our testing project.
After the initial model selection has been done, we use observed failure data to
estimate the parameters of the models in order to predict future behaviour of the
system. However, before computing any predicted quantity of interest we should
determine to what extent a selected model fits the data. This can be done by the
application of goodness-of-fit tests. We present in this section some of the most
popular graphical and statistical goodness-of-fit tests and provide some references
for further information.

A simple way to check initial adequacy of the models chosen beforehand is by
plotting the fitted models (obtained by substituting the estimated values of the
parameters) together with data like in Figure 3.5. The closer the data points lie to
the fitted model, the better the model explains the data. Figure 3.5 shows a fitted
model based on the data set in Joe (1989) and the specific choice of the Jelinski-
Moranda model. As mentioned in Section 2.5.1, the Jelinski-Moranda model is a
GOS model with two parameters, denoted by N and λ, where N represents the
total number of faults in the system and λ the rate at which failures are observed.
The fitted model has been obtained based on the estimates N̂ = 107 and λ̂ = 0.035.
According to Figure 3.5, the Jelinski-Moranda model may seem to be adequate for
the chosen data set, however this is a subjective appreciation. For objective criteria
we need to validate the model via statistical goodness-of-fit tests.

For certain types of models, graphical methods like the u-plot (see e.g. Lyu
(1996)[Section 4.3.3]) or the TTT plot (see Section 3.2) can be used to assess
goodness-of-fit. The u-plot is based on the property known as probability inte-
gral transform. This property states that if X is a continuous random variable with
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Figure 3.5: Fitted Jelinski-Moranda model (solid line) for interval-time observations
(circles).

absolutely continuous cumulative distribution function F (x), then the random vari-
able Y = F (X) is uniformly distributed on (0, 1) (see e.g. DeGroot (1986)). As
described in Section 2.5, the failure times of GOS models, denoted by T1, . . . , Tn,
are interpreted as the first n order statistics of N (unknown but fixed) i.i.d. random
variables with a common distribution function F (t). Thus, the probability integral
transform can be directly applied to GOS models, where the transformed data is
F (T1), . . . , F (Tn). For NHPP models this cannot be applied directly since, as we
explained in Section 2.6, N is considered as a Poisson random variable. However,
it is also possible to define the u-plot for NHPP models by using Theorem 2.4.
Thus, the transformed data is given by Λ(T1)/Λ(t),Λ(T2)/Λ(t), . . . ,Λ(Tn)/Λ(t),
where T1 < . . . < Tn < t. In both cases (GOS and NHPP), when the plot of
the transformed data lies close to the diagonal unit square, the selected model may
correctly describe the failure process of the system.

The TTT plot introduced in Section 3.2 can also be used to assess goodness-of-fit
but only for the power-law model, as shown in Klefsjo and Kumar (1992). Suppose
that T1 < . . . < Tn are the first n failure times of a certain process that is described
by the power-law model with parameters a and b. If we consider the transformed
data

wi = − log
(
Tn−i
Tn

)
,

for all i = 1, . . . , n−1, then wi are distributed as the first n−1 order statistics from
an Exponential distribution with parameter b (cf. Rigdon and Basu (2000)[p. 97]).
Thus, if we consider the TTT plot in (3.1) with wi replacing T(i), then we have
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a graphical method to assess goodness-of-fit for the power-law process. When the
TTT plot lies close to the diagonal unit square, the power-law process may correctly
describe the failure process of the system.

We now introduce some statistical tests for goodness-of-fit for both GOS and
NHPP models here. In case of GOS models, the failure times are considered as
the order statistics from a random sample of size N . Thus, the application of the
well-known Kolmogorov goodness-of-fit test (see e.g Sheskin (2004)[Chapter 7]) is
possible. In case of NHPP models, failures times do not admit the order statistics
interpretation. Moreover, they are not independent random variables in general.
For that reason, most of the goodness-of-fit tests for NHPP models found in the
literature are conditional tests based on Theorem 2.4. Some of them are studied
in Rigdon and Basu (2000)[Section 4.6]. Moreover, like in the case of u-plots, an
additional step to transform the original observations is usually needed. For diverse
subclasses of NHPP models, new unconditional goodness-of-fit tests are becoming
available. In Zhao and Wang (2005) a goodness-of-fit test for a subclass of NHPP
models with intensity function of the form λ(t) = aλ̃(t, b) is developed. According to
that paper, most of the known NHPP models have an intensity function of this form.
For example, this subclass includes the Goel-Okumoto (see Section 2.6.1), Yamada
S-shaped (see Section 2.6.2) and Duane (power-law) (see Section 2.6.3) models.

If the result of the application of goodness-of-fit techniques is satisfactory for
certain models, then we may assume that the failure detection process of the system
can be properly described by such models. We would like to emphasize that a pos-
itive goodness-of-fit does not necessarily implies that the model predicts well since
the concept of goodness-of-fit concerns the past behaviour of the system whereas
prediction concerns the future performance of it. We can compare predictive perfor-
mance of different models using prequential likelihoods. This is a general approach in
statistics introduced in Dawid (1984). Its main purpose is to make predictions in a
sequential fashion based on previous history. We now introduce some concepts in or-
der to briefly explain this approach. Suppose that G = {Fθ | θ ∈ Θ} is a parametric
family of probability distributions for the sequence of random variables X1, X2, . . .
(for example, a sequence of times between failures of a software system). Any dis-
tribution F ∈ G determines a statistical forecasting system for G. Thus, for any
n ≥ 1 fixed, the goal of the prequential approach is to specify a prequential probabil-
ity distribution of Xn+1 given X1, . . . , Xn. Suppose now that fXn+1|X1,...,Xn(x) and
gXn+1|X1,...,Xn(x) are two prequential density functions for Xn+1. We can compare
them for a realization of the random sequence X1, . . . , Xn, denoted by x1, . . . , xn,
using the prequential likelihood ratio as follows:

Lp,n (x1, . . . , xn) =
n∏
i=1

gXi|X1,...,Xi−1(xi)
fXi|X1,...,Xi−1(xi)

.

According to Dawid (1984)[Section 7], we can conclude the following:

(1) If lim
n→∞

Lp,n (x1, . . . , xn) =∞ , then we may assume that the probability distri-
bution defined by g will predict the future behaviour of Xn+1 better than the
probability distribution defined by f .
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(2) If lim
n→∞

Lp,n (x1, . . . , xn) = 0 , then f is preferred to g, in the sense described in
(1).

(3) If 0 < lim
n→∞

Lp,n (x1, . . . , xn) <∞ , then we cannot assume that one distribution
will predict the future behaviour of Xn+1 better than the other one. In this case,
it is said that f and g are equivalent from a predictive point of view.

The prequential approach has already been used in a software reliability context
in Littlewood and Mayne (1989). The results obtained there support the use of
prequential techniques to judge and compare the predictive performance of different
software reliability growth models.

In case of satisfactory results in both model fitting and prediction, we can move
one step forward. Otherwise, additional data collection or better model choice are
required.

3.6 Model interpretation

The main reason for developing software reliability models is to use them to support
some decisions to be made about the software system, for example to release it or
continue testing. Based on the information collected during testing, we can estimate
quantities like the number of remaining faults, the future reliability of the system
or the time to next failure. All these quantities can be used to support the decision
to release a software system after a certain period of testing. For example, in Currit
et al. (1986) the decision to release the software is based on a targeted value of the
estimated mean time to failure of the system. An example showing how to interpret
the results of the analysis of software failure data and how to use them for making
some decisions about the software system is presented in Section 4.3 where we revisit
the two case studies in software testing introduced in Brandt et al. (2007b).





Chapter 4

A New Statistical Software Reliability
Tool

In this chapter, we report on the status of a new software reliability tool to per-
form statistical analyses of software failure data based on the approach described
in chapters 2 and 3. This work was partially presented in Boon et al. (2007) and
Brandt et al. (2007a). Existing tools for software reliability analysis like Casre and
Smerfs3 do not make full use of state-of-the-art statistical methodology or do not
conform to best practices in statistics. Thus, these tools cannot fully support sound
software reliability analyses. For that reason, we decided to build a new tool that
uses specific algorithms for the models (paying special attention to convergence is-
sues), that is platform independent and that encourages applying best practices
from statistics and can easily be extended to incorporate new models. To help the
user with problems like data type identification or model selection, this tool has
a user-friendly interface that indicates the correctness of the initial data or model
user choices. The tool’s interface is programmed in Java (platform independent)
and the statistical computations are programmed in R (see www.r-project.org).
R is an open-source free software maintained by a group of top-level statisticians
and is rapidly becoming the standard programming language within the statistical
community.

The remainder of this chapter is organized as follows. In Section 4.1 we com-
ment on some general problems found during the implementation of the tool and
the proposed solutions. We describe the functionalities implemented in the tool in
Section 4.2, paying special attention to the statistical features. Finally, as an ex-
ample of a real application of the tool, we revisit the two case studies presented in
Brandt et al. (2007b) in Section 4.3.

4.1 General remarks about the implementation

The tool is built upon the step-by-step approach presented in Chapter 3 and there-
fore, it meets the requirements described there. Despite the large number of models
known in the literature, the tool is in an early stage of development, in the sense that
it has only three models implemented so far: Jelinski-Moranda (see Section 2.5.1),
Goel-Okumoto (see Section 2.6.1) and Duane (see Section 2.6.3).

One of the main problems we found during the implementation phase is that,
as mentioned in Chapter 3, for many models (also for the most well-known ones)
the procedures to analyze interval-time data are not worked out in detail or sim-
ply do not exist. A provisional solution to this problem consists of approximating
the interval-time data by point-time data distributing the corresponding number of
faults at random on each interval obtaining in that way new data points that are

65
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considered as point-time data. This approach has been implemented in the tool to
study those cases where no algorithms are known.

The software reliability literature is also lacking results regarding confidence in-
tervals for parameters of the models and goodness-of-fit tests. As discussed in Sec-
tion 3.4, asymptotic confidence intervals for parameters are usually computed based
on the asymptotic normality of ML estimators (in terms of Fisher information) and
based on the Wilks statistic. Joe (1989) and van Pul (1992b) show that asymptotic
confidence intervals based on the Wilks statistic are preferred to those obtained
from asymptotic normality. However, no stable algorithm to derive confidence in-
tervals based on the Wilks statistic has been developed yet. Since the literature
does not provide us a better alternative, algorithms using Fisher information have
been implemented for those cases where no algorithms are known. Similar remarks
can be made for goodness-of-fit tests. For the Goel-Okumoto and Duane models
we have implemented the goodness-of-fit test for general NHPP models developed
in Zhao and Wang (2005) (see Section 3.5). Conditional on the last observation,
the Kolmogorov test can also be used for NHPP models. For the Jelinski-Moranda
model (as for GOS models in general) the Kolmogorov test can be used as we dis-
cussed in Section 3.5. Unfortunately, these tests are developed for point-time data
only. Thus, for interval-time data we use the approximation to the point-time case
described before.

The two graphical and the two statistical trend tests described in Section 3.2 have
been implemented in the tool. Running averages and TTT plots are implemented
for both point-time and interval-time data (although the interval-time version of the
TTT plot is again an approximation to the point-time case). The Laplace trend test
is implemented for both point-time and interval-time data. However, for interval-
time data it is required equal length of intervals (cf. Kanoun et al. (1991)) otherwise
it should not be applied. To overcome this restriction the MIL-HDBK-189 trend
test has also been implemented.

4.2 Main functionalities

In this section we describe the main functionalities of the tool. Initially, the tool
GUI displays four menu items as we can see in Figure 4.1. In the beginning only
the Data and Help menus are enabled. To have access to the working environment
we have to select the option Import from the Data menu in order to have a data
set to work with. An open dialog like in Figure 4.2 pops-up. We look for the data
file containing the desired data set and then we click on Open. After the data set
has been loaded in the tool, the menus Graphics and Analysis are enabled. We can
now select the type of data we are working with. We will explain this option in
detail in Section 4.2.3 as part of the Data Type menu. Moreover, we distinguish two
more windows that will remain visible all the time: one displaying data points and
another one producing graphical outputs. The data window is shown in Figure 4.3.
Three different tabs can be identified at the bottom of the window. The first one,
called Data, contains the imported data, and the third one, called Model Analysis
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Figure 4.1: Software reliability tool GUI. In the beginning only the Data and Help
menus are enabled.

Figure 4.2: Browsing the data file. A data set is needed to access the working
environment of the tool.



68 A New Statistical Software Reliability Tool

Figure 4.3: The data window displays the original data, filtered data and the data
produced after model analysis.

Results, will show the data originated after model analysis (fitted values, estimated
intensity, ...). The tool gives the user the possibility of filtering the initial data set (as
an option item of the Data menu as we will see in Section 4.2.1). In case we use this
option, the resulting filtered data is displayed in the Filtered Data tab of the data
window. On the other hand, the Graphical Output window will display the last plot
produced while the tool is being used. An example of this can be seen in Figure 4.4
where a data set in the form of point-time data taken from Joe (1989) has been
plotted against time. Typical options like Copy to Clipboard, Export (supporting

Figure 4.4: Graphical Output window. Cumulative failure times vs. cumulative
number of detected faults for point-time data.

encapsulating postscript (eps), jpg and png formats) or Print are included in this
window. We can also change some characteristics of the plot (like the title, the
colour and the type of line) using the button Graphics Options. In the remainder
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of this section we explain the tool’s menu options in detail, paying special attention
to the Analysis menu.

4.2.1 Data menu

Import Imports data files in txt, xls, dat (Casre files) and sd3 (Smerfs3 files)
formats. After loading the data set, the working environment is displayed.

Export Exports data files in txt and xls formats.

Filter Data This window (see Figure 4.5) allows us to refine the data set and
keep a subset of observations. This option is of special interest since we may work

Figure 4.5: Filter Data window (allows data set refinement).

with the subset of the original data set that showed reliability growth. The filtered
data set can also be exported and imported (in the formats already mentioned).

Remove Filter Removes the data filters created beforehand.

Transform Variable With this option we can create new variables applying basic
operations to the variables of the current data set. The available operations can be
observed in Figure 4.6.

Figure 4.6: Transform Variable window with available operations.
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Figure 4.7: Preferences window (allows changing user preferences).

Preferences User preferences can be set using this option. Font type and size
can be chosen for both program GUI and output (see Figure 4.7). The number of
significant digits for the calculations can be selected from 1 up to 8 (by default set
to 3). We can also decide the default colours and types of lines to be used in the
plots. These options can be saved (or loaded) to (from) a txt file.

Exit Closes the GUI and terminates the program execution.

4.2.2 Graphics menu

Create Scatter Plot As a general recommendation it is advisable to look at data
before starting any kind of statistical analysis (see Section 3.1). With this menu
option we can generate plots that will be shown in the Graphical Output window.
After clicking on this item, a window named Select Plot Variables pops-up (see
Figure 4.8). We can now select the variables we want to plot and assign them to
the X or Y axes or change some display options of the plot (like colour or type of
line) using the Plot Style button. The Draw Graph button will finally produce the
graph. On the lower part of the window we can set the main title and the labels of
the axes of the plot.

Copy Current Plot to Clipboard Copies the plot that is displayed on the
Graphical Output window to the clipboard. Thus, the plot is cached and can be
transferred between documents or applications, via copy and paste operations.

Export Current Plot Selecting this option a save dialog appears to export the
current plot to a graphic file. The formats supported are eps, jpg and png.
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Figure 4.8: Select Plot Variables window (allows generating scatter plots).

Print Current Plot With this option a print dialog pops-up allowing us to print
the current plot.

4.2.3 Analysis menu

Model Selection Wizard Due to the abundance of software reliability models,
the selection of appropriate ones is often a difficult task. To help the user to suc-
ceed with this, the tool has a special window called Model Selection Wizard (see
Figure 4.9). This wizard incorporates the matrix-based procedure to support the
initial choice of suitable models introduced in Section 3.3. In Figure 4.9 we can ob-
serve a list of common software reliability assumptions taken from the literature and
used in different software reliability models followed by a column showing some of
these models and another one called Score. Each assumption is related to each model
with a weight defining the relative importance of the assumption for the model. In
this case, the weights vary from 1 (lowest relative importance) to 3 (highest relative
importance). After selecting all the assumptions every model receives a final score
and the models are sorted by relevance. If all requirements and selected assumptions
of a model are satisfied, then the score for this model is 100%. In all other cases the
score of the model is defined using the relative importance (weight) of the applica-
ble characteristics of the model. Thus, the higher score a model has, the better the
model will fit the assumptions. Consequently, as initial model choice we may use
the models with the higher scores. As mentioned in Section 3.3, the weights used
here are subjective choices. Further research is needed to develop objective criteria.
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Figure 4.9: Model Selection Wizard window containing some of the most popular
software reliability assumptions and models.

Data Type As mentioned in Chapter 3, the first step in software reliability anal-
yses is to identify the kind of data we have. To help the user with this problem the
tool possesses a window called Select Data Type (see Figure 4.10) in which we have
the option to select the type of data of our data set. We assume that software fail-
ure data appears in the form of either point-time or interval-time observations (see
Section 3.1). Note that when we have point-time observations (Ungrouped (exact
data) option), the observed failures are reported individually either by the failure
times (Cumulative times option) or by the corresponding times between failures
(Time between errors option). In this case, we also have the possibility of choos-
ing when data is failure truncated (by selecting the option The last element of the
data set is an observed error.). When the data set is of the form of interval-time
observations (Grouped (interval data) option), the observed failures are reported in
intervals either by the exact number of failures observed in each interval (Interval
Counts option) or by the cumulative number of failures observed after each interval
(Cumulative Counts option). If the user does not have any information about the
type of data that is using, then the option Try to Autodetect Data Type results of
special interest. With this option the program estimates the type of data of the
selected data file. Checking the number of columns (interval-time or point-time) or
the growth of the data (time between failures or cumulative times) the tool may
find out what kind of data we are using.

Trend Tests Besides the graphical methods to study the trend of data discussed
in Section 3.2 (running averages and TTT plot), the tool has also the Laplace and
the MIL-HDBK-189 trend tests already implemented. The Trend Tests window is
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Figure 4.10: Select Data Type window.

Figure 4.11: Trend Tests window.

shown in Figure 4.11. We can now select the tests we would like to use and fix the
significance level at which the tests will be performed. After clicking on Perform
Test, the results are shown on the right-hand side of the window. Moreover, a
graphical interpretation of the test like in Figure 4.12 will also be displayed on
the Graphical Output window. The graphical interpretation consists of a plot of
the corresponding density function of the test statistic (normal or chi-square), the
critical region of the test (shaded area) and the value of the test statistic (denoted
by L for the Laplace test and by M for the MIL-HDBK-189 test). Figure 4.12 shows
the result of the application of the Laplace (top) and the MIL-HDBK-189 (bottom)
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Figure 4.12: Laplace (top) and MIL-HDBK-189 (bottom) trend tests graphical in-
terpretation. The Laplace statistic (L) is small and the MIL-HDBK-189 statistic
(M) is large. Reliability growth can be assumed.

trend tests for the data set in Joe (1989). Note that both tests can be applied here
since the data set in Joe (1989) in the form of point-time data (see Section 3.2).
Since the Laplace statistic is small and the MIL-HDBK-189 statistic is large, the
hypothesis of an HPP process is rejected in favour of reliability growth. General
remarks mentioned in Section 3.2 should be taken into account here. For example,
if our data set consists of interval-time data but the intervals do not have the same
length, then the Laplace test should not be selected. When the result of the trend
tests are positive, i.e., the data shows reliability growth, the next step is to perform
analysis of the data applying software reliability growth models.

Analyse Models The Model Analysis window is shown in Figure 4.13. The mod-
els initially selected, with the help of the Model Selection Wizard (see Figure 4.9),
can be seen now in this window. Our main purpose here is to estimate the param-
eters of the models, based on the observed failure data, in order to predict future
behaviour of the system. For that reason, we must select at least one of the models
that appear in this window. For the chosen models, we can compute both Maximum
Likelihood (ML) and Least Squares (LS) estimators of the parameters (but not at
the same time). Confidence intervals for the parameter estimates at any specified
confidence level (by default set to 95%) are also computed here. Note that this does



4.2 Main functionalities 75

Figure 4.13: Model Analysis window. Analysis for the Jelinski-Moranda model.

not imply that the selected models are appropriate to make predictions. Before
computing any predicted quantity of interest we should determine to what extent
the selected models fit data. This can be done by Validate Models as we will see
later in this section. For us model validation has to do with model fitting and can be
accomplished by the application of goodness-of-fit tests, as explained in Section 3.5.
Goodness-of-fit tests are statistical tests. Therefore, the significance level to perform
hypothesis testing (by default set to 1%) must be specified.

To end with this section we give some implementation details about the estima-
tion procedures. LS estimation is usually not problematic but numerical problems
often arise in ML estimation (see Section 3.4). Although both ML and LS proce-
dures are defined for both interval-time and point-time data, most of the algorithms
known in the literature are for point-time data only. For the available models of the
tool we have introduced the following implementations:

• Goel-Okumoto: The ML algorithm for point-time data is based on the results
in Hossain and Dahiya (1993) and Knafl and Morgan (1996) and for interval-
time data is based on Hossain and Dahiya (1993) and Knafl (1992). There
is no stable algorithm for confidence intervals known in the literature. Thus,
approximate results using Fisher information have been implemented.

• Duane: For point-time data the ML upper confidence limit for the shape
parameter b is due to Crow (1974) and for the scale parameter a is due to
Gaudoin et al. (2006). The ML algorithm for interval-time data uses the
results from Hossain and Dahiya (1993) and Knafl (1992). There is no stable
algorithm for confidence intervals known in the literature when the data is of
the form of interval-time observations. Thus, approximate results using Fisher
information have been implemented.
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• Jelinski-Moranda: The ML algorithm and the confidence intervals for point-
time data are taken from Finkelstein et al. (1999). For interval-time data no
stable algorithm is known. Therefore, we have implemented the approximation
by point-time data method explained in Section 4.1.

To compute parameter estimates (and confidence intervals) the Analyse Models but-
ton should be clicked. Figure 4.13 shows the result of the analysis for the data set in
Joe (1989) (point-time data). On the right-hand side of the window we observe the
estimates of the parameters of the Jelinski-Moranda model with their corresponding
upper confidence limits. The data window in Figure 4.14 shows the fitted values
for the Jelinski-Moranda and Goel-Okumoto models. Also the Graphical Output

Figure 4.14: Fitted values data for the Jelinski-Moranda and Goel-Okumoto models.

window displays the observed values and the fitted models (by default represented
by circles and a solid curve, respectively) like in Figure 3.5. Model validation and
predictions are available only after parameter estimation has been performed. This
can be done by clicking the buttons Validate Models and Model Predictions in the
analysis window (see Figure 4.13) or with the corresponding option buttons of the
Analysis menu.

Validate Models The Model Validation window is shown in Figure 4.15. We
must select the models we wish to validate and the corresponding goodness-of-fit
test to be performed. For GOS models only the Kolmogorov test is implemented. For
NHPP models a conditional version of the Kolmogorov test and the test presented
in Zhao and Wang (2005) are implemented. We refer to Section 3.5 for details on
these tests. Figure 4.15 shows the result of the Kolmogorov and Zhao-Wang tests
for the data set in Joe (1989) (point-time data) for the Goel-Okumoto model. The
results for all the other selected model are displayed in different tabs of the window.

Model Predictions Figure 4.16 shows the Model Predictions window. We must
select models in order to compute the failure intensity at any specified future time,
the expected time to next failure, the probability of no failure in a given interval
or the estimated number of remaining faults. Figure 4.16 shows all those quantities
for the data set in Joe (1989) (point-time data) and the Jelinski-Moranda model.
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Figure 4.15: Model Validation window. Kolmogorov and Zhao-Wang tests for the
Goel-Okumoto model.

Figure 4.16: Model Predictions window. Several predictions for the Jelinski-
Moranda model.

Plot Fitted Models This option is enabled only after the analysis has been
carried out. It allows us plotting the observed values and the fitted models that we
selected for the analysis producing a plot like in Figure 3.5.
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4.2.4 Help menu

Tool Help Help files of the tool.

SRE Help Glossary of terms and background on chosen algorithms.

About. . . Information about the developers, version of the tool, etc.

4.3 Two examples of applying reliability growth models in
software development

The goal of this section is to illustrate how the tool can be used to analyse real soft-
ware failure data. For that reason, we revisit the two case studies in software testing
presented in Brandt et al. (2007b). The first case study is about administrative soft-
ware of an insurance company and the second one is on safety of software control
of a closable dam as part of a sea flood protection system. For more details on the
problems presented here we refer to Brandt et al. (2007b). In order to statistically
analyze these data sets, we propose to follow the steps described in Chapter 3, i.e.,
data description, trend tests, model type selection, estimation of model parameters,
model validation and model interpretation.

4.3.1 Administrative software at an insurance company

The data set of this problem, reproduced in Table 4.1, is of the form of interval-time
observations. It consists of a number of failures reported in intervals (of different
length) of tested hours per week. The total number of faults detected by time

Week Failures reported Test hours
1 8 18
2 45 28
3 27 45
4 30 71
5 37 84
6 49 84
7 53 97
8 17 74
9 12 43
10 2 12

Total 280 556

Table 4.1: Failures counts and testing hours.

`10 = 556 is given by m = 280 and the length of the different observation inter-
vals is given in the column Test hours of Table 4.1. In order to study whether the
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data set presents any kind of trend, we first look at the running averages, i.e., we
plot mi/di, for all i = 1, . . . , 10, where mi denotes the number of faults detected in
the ith interval, and di denotes the length of the the ith interval, given by columns
Failures reported and Test hours in Table 4.1, respectively. Figure 4.17 shows that
the running averages decrease after the first week, thus a growth in reliability is
indicated. Since the test intervals have different lengths, the Laplace trend test
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Figure 4.17: Running averages (insurance company data). A decreasing plot indi-
cates reliability growth.

for interval-time data cannot be applied in this case. Nevertheless, for the MIL-
HDBK-189 trend test (cf. Military Handbook) this is not a restriction and it can
be applied. However, as explained in Section 3.2, the condition mdi/l10 > 5 must
be satisfied for all i = 1, . . . , 10. Since this condition holds for this data set, the test
has been performed for a 5% significance level. The (graphical) result can be seen
in Figure 4.18. The test statistic (denoted by M) is large (77.72) and the p-value al-
most zero. Thus, the null hypothesis of a homogeneous process is rejected in favour
of reliability growth. In Brandt et al. (2007b) it is shown that suitable reliability
models for our problem are the Goel-Okumoto and the Yamada S-shaped models.
Unfortunately, as we mention in Section 4.1, the Yamada S-shaped model is not
yet implemented in the tool. To exploit the maximum number of functionalities
of the tool we have decided to perform data analysis considering the three models
implemented so far in the tool (Goel-Okumoto, Duane (power-law) and Jelinski-
Moranda). Note that this can also be seen as if we adopt the point of view of a user
that has no previous knowledge about the adequacy of selecting specific models for
the problem at hand. The remaining steps of the analysis are estimation of the pa-
rameters, validation and interpretation of the selected models. For both parameter
estimation and model validation we do the following. We consider a subset of the
observations where the last 20% of the observations have been discarded. In this
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Figure 4.18: MIL-HDBK-189 trend test (insurance company data). The test statistic
(M) is large. The null hypothesis of an HPP is rejected in favour of reliability growth.

case, we keep the observations in Table 4.1 corresponding to the first 8 weeks. With
this filtered data set we do parameter estimation and model validation. In partic-
ular, we are interested in checking how the fitted expected number of failures for
weeks 9 and 10 are compared to the real observed values for those weeks. Finally, for
model interpretation we consider the original data set consisting of 10 weeks since
this corresponds to the whole observation interval and makes no sense to make pre-
dictions before this point. The filtered data set fulfills conditions for the existence of
ML estimators for the three models as explained in Knafl and Morgan (1996). The
corresponding ML estimates can be seen in Table 4.2. We have also plotted the fit-

Model Parameter Estimates
Goel-Okumoto â = 424.313

b̂ = 0.002
Duane â = 1.950

b̂ = 0.791
Jelinski-Moranda N̂ = 439.000

λ̂ = 0.001

Table 4.2: ML estimates for the Goel-Okumoto, Duane and Jelinski-Moranda mod-
els (insurance company data).

ted models in Figure 4.19. The expected number of failures in weeks 9 and 10 given
by the fitted models (together with the corresponding observed failures) are shown
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Figure 4.19: Fitted models (insurance company data).

in Table 4.3. In this case, we observe how the values fitted by the Goel-Okumoto

Week Defects reported Goel-Okumoto Duane Jelinski-Moranda
9 278 278.83 283.93 274.10
10 280 282.22 288.88 277.63

Table 4.3: Cumulative number of failures observed and predicted in weeks 9 and 10.

model are those which are closer to the observed values, especially in week 9 which
is almost a perfect fit. For week 10 the difference between the expected number of
failures fitted by the Goel-Okumoto and Jelinski-Moranda models and the observed
value is almost the same (in absolute value). However, the Goel-Okumoto model
fits in a pessimistic way (more expected failures than observed in reality) and the
Jelinski-Moranda in an optimistic way. The expected number of failures fitted by
the Duane model is the one that differs the most from the observed number of fail-
ures. However, we cannot conclude that this model does not properly fit the data
set. To come to such a conclusion goodness-of-fit tests must be applied. Goodness-
of-fit tests are hard to use here because of the limited number of observations, as
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it is often the case in software reliability data sets. However, we have performed
the unconditional goodness-of-fit test for NHPP models proposed in Zhao and Wang
(2005) (see also Section 3.5) for both the Goel-Okumoto and Duane models. The re-
sult of this test supports the idea that both models seems to be suitable for the data
(p-value> 0.01). The Kolmogorov test has been computed for the Jelinski-Moranda
model. The conclusion in this case is that the Jelinski-Moranda model does not
seem to fit the data very well (p-value< 0.01). This is not completely obvious if
one looks at Figure 4.19 since they all seem to have a similar behaviour. There-
fore, we may assume that only the Goel-Okumoto and Duane models are valid to
describe the failure detection process of the system under study. Finally, we would
like to say something statistically about the future behaviour of the system. This
can be accomplished by considering the whole data set in Table 4.1 and calculating
parameter estimates again. With these estimates we compute certain quantities of
interest like the failure intensity at a specified time in the future, the expected time
to the next failure, the probability of no failure in a given interval or the estimated
number of remaining faults. All these quantities and parameter estimates for both
the Goel-Okumoto and Duane models are shown in Table 4.4. We observe that the

Goel-Okumoto Duane

Parameter estimates â = 438.5508 â = 2.2051
b̂ = 0.0018 b̂ = 0.7663

Failure intensity t = 586 0.2746 0.3812
Expected time next fault 559.45 558.59
Prob. no fault in (556, 586] 0.0002 0.0000
Expected remaining faults 159 −

Table 4.4: ML estimates for the Goel-Okumoto and Duane models and some pre-
dictions (insurance company data).

expected time to next failure is almost the same for both models. However, the
failure intensity at t = 586 is larger for the Duane model. For that reason we should
expect a higher number of estimated failures by the Duane model. This can also
be observed in Figure 4.20 where the estimated reliability function is plotted for
both models. We can see that the reliability function for the Goel-Okumoto model
is higher than for the Duane model. Therefore, we can conclude that the Goel-
Okumoto model is more optimistic than the Duane model. Moreover, according to
Table 4.3 the Goel-Okumoto predicts better than the Duane model. Therefore, in
this case we may conclude that the Goel-Okumoto is the one that better describes
the behaviour of the failure observation process of the software system. However, as
mentioned in Section 3.5, prequential procedures should be used to compare the pre-
dictive performance of different models. Unfortunately, this is not yet implemented
in the tool.
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Figure 4.20: Reliability plot for the Goel-Okumoto and Duane models (insurance
company data).

4.3.2 A closable dam operating system

The data set of this problem is of the form of interval-time observations consisting of
a number of observed failures reported per week. A reduced version of it is shown in
Table 4.5. The total number of faults detected by time `14 = 14 is given by m = 38.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Defects 8 2 4 4 1 4 5 4 1 1 2 0 1 1

Table 4.5: Failures counts per test week.

Note that the length of the different observation intervals is the same for all the
intervals and is equal to 1 week. In order to study whether the data set shows any
kind of trend, we first look at the running averages (see Section 3.2). Figure 4.21
shows the running averages plot of reported failures per week. The running averages
decrease indicating thus a growth in reliability. In this case, the test intervals have
the same length, thus the Laplace trend test for interval-time data can be applied
(see Section 3.2). Note that in principle the MIL-HDBK-189 trend test could also
be used, however, the condition mdi/`14 > 5, for all i = 1, . . . , 14, does not hold
for this data set. Thus, only the Laplace trend test has been performed for a 5%
significance level. The (graphical) result can be seen in Figure 4.22. The test
statistic (denoted by L) is small (−3.26) and the p-value is 0.001. Thus, the null
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Figure 4.21: Running averages (dam operating system data).

hypothesis of a homogeneous process is rejected in favour of reliability growth. In
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Figure 4.22: Laplace trend test (dam operating system data). The test statistic (L)
is small. The null hypothesis of an HPP is rejected in favour of reliability growth.

Brandt et al. (2007b) it is shown that suitable reliability models for this problem are
the Goel-Okumoto, the Yamada S-shaped and the Generalized Poisson models. Like
in the case of the insurance company problem (see Section 4.3.1), we have decided
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to perform data analysis considering the three models implemented so far in the tool
(Goel-Okumoto, Duane (power-law) and Jelinski-Moranda). For the remaining steps
of the analysis (estimation of the parameters, validation and interpretation of the
selected models) we do like in the case of the insurance company. For both parameter
estimation and model validation we consider a subset of the observations consisting
of the first 11 weeks. With this filtered data set we do parameter estimation and
model validation. Again, we are interested in checking how the fitted expected
number of failures for weeks 12 to 14 are compared to the real observed values for
those weeks. Finally, for model interpretation we consider the original data set
consisting of 14 weeks. The filtered data set fulfills the conditions for the existence
of ML estimates for the three models as explained in Knafl and Morgan (1996). The
corresponding ML estimates can be seen in Table 4.6. We have also plotted the fitted

Model Parameter Estimates
Goel-Okumoto â = 55.693

b̂ = 0.094
Duane â = 7.323

b̂ = 0.664
Jelinski-Moranda N̂ = 47.000

λ̂ = 0.128

Table 4.6: ML estimates for the Goel-Okumoto, Duane and Jelinski-Moranda mod-
els (dam operating system data).

models in Figure 4.23. The expected number of failures in weeks 12, 13 and 14 given
by the fitted models (together with the corresponding observed failures) are shown
in Table 4.7. In this case, we observe how the values fitted by the Duane model

Week Defects reported Goel-Okumoto Duane Jelinski-Moranda
12 36 37.77 38.14 36.88
13 37 39.39 40.22 38.09
14 38 40.86 42.25 39.16

Table 4.7: Cumulative number of failures observed and predicted in weeks 12, 13
and 14.

are those which are further from the observed ones. The Jelinski-Moranda model
fits values closer to the observed ones but like in case of the Goel-Okumoto model
it is also pessimistic. We have performed the unconditional goodness-of-fit test for
NHPP models proposed in Zhao and Wang (2005) for both the Goel-Okumoto and
Duane models. The result of this test supports the idea that only the Duane model
seem to be suitable for the data (p-value > 0.01). The Kolmogorov test has been
computed for the Jelinski-Moranda model. The conclusion in this case is that we
reject the hypothesis that the failure process is described by the Jelinski-Moranda
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Figure 4.23: Fitted models (dam operating system data).

model. Therefore, we may assume that only the Duane model is valid to describe the
failure detection process of the system under study. Finally, we consider the whole
data set in Table 4.5 and calculate parameter estimates again in order to compute
the failure intensity at a specified time in the future, the expected time to the next
failure, the probability of no failure in a given interval or the estimated number
of remaining faults. All these quantities and parameter estimates for the Duane
model are shown in Table 4.8. We observe that the next failure is expected after the

Duane model

Parameter estimates â = 8.0409
b̂ = 0.5881

Failure intensity t = 20 1.3781
Expected time next fault 14.6322
Prob. no fault in (14, 20] 0.0001
Expected remaining faults −

Table 4.8: ML estimates for the Duane model and some predictions (dam operating
system data).
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middle of week 14. The failure intensity at t = 20 is large and the probability of no
failure in the 6 coming weeks is small. In Figure 4.24 we have plotted the estimated
reliability function for the Duane model. We can see that for example, after one
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Figure 4.24: Reliability plot for the Duane model (dam operating system data).

week, the reliability function has decreased at the level of 0.2 which supports the
result of expecting the next failure within one week with high probability.





Chapter 5

Statistical Approach to Software
Reliability Certification

Statistical procedures to support software release decisions are usually based on a
loss function that in general considers the trade-off between the cost of extra testing
and the cost of undetected faults. Such procedures are thus developed from the soft-
ware producer point of view. Generally, two main decision policies are considered:
policies based on observed failures (see e.g. Dalal and Mallows (1988), Morali and
Soyer (2003b), Özekici and Catkan (1993), Özekici and Soyer (2001) and van Dorp
et al. (1997)) and policies based on time, i.e., faults found in some time interval (see
e.g. McDaid and Wilson (2001), Singpurwalla (1991) and Singpurwalla and Wilson
(1994)). The first approach decides to stop or to continue testing after each fail-
ure observation while the second one stops always after testing for some fault-free
interval that is optimal for a certain criterion.

Unlike the previous approaches, we do not base our decisions on a loss function
but on a certification criterion. Certification is developed from the perspective of
software users. They expect software producers to certify that the software pro-
duced performs according to certain reliability requirements. Statistical approaches
to software reliability certification can be found in Currit et al. (1986) and more
recently in Di Bucchianico et al. (2008). We will discuss the procedures developed
there in more detail in the next section. Besides that, in this chapter we present
a sequential software release procedure that certifies with high confidence that the
next software failure is not observed in a certain time interval. Our procedure is
developed assuming that the fault detection process of software systems can be mod-
elled as a stochastic process with independent times between failures. The decision
to stop or continue testing is based on the fault-free interval since the last failure
observation. Such time intervals depend on the test history and, by choosing them
appropriately, we can certify that the software is released in an optimal (local) time
and the global risk in the procedure can be controlled. Thus, our procedure can
be seen as a special case of sequential testing policy, where at each stage of testing
we update our statistics with the information obtained from the test history and
we decide whether to stop or to continue testing. The main difference with other
policies is that we allow the software to be tested for the time interval that is opti-
mal for our certification criterion before stopping, which occurs only in case that no
faults are found during such an interval. Otherwise, we continue testing repeating
this procedure in a dynamic fashion.

The remainder of this chapter is organized as follows. Previous approaches
to software reliability certification are discussed in Section 5.1. In Section 5.2,
we establish a general framework for Bayesian inference. Finally, in Section 5.3
we describe a certification procedure for software reliability growth models having
independent times between failures. The main result of that section shows that if
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the residual lifetime probability for the next failure observation is large enough, then
the global risk in the procedure can be controlled.

5.1 Previous work on software reliability certification

Software producers must certify with high confidence that the software they produce
is performing according to user’s expectations. Statistical certification procedures
provide software users a formal indication about the quality of software systems after
their release. Although there exists a vast literature on software reliability it turns
out that the development of statistical certification procedures for software systems
has not received enough attention. Exceptions to this are Currit et al. (1986) and
Di Bucchianico et al. (2008). The first approach certifies that the mean time to next
failure is larger than a certain value, while the second approach certifies that the
software system is fault-free. In the next subsections we briefly describe these two
certification procedures and discuss the limitations we found in them.

5.1.1 Certification procedure based on expected time to next failure

A sequential certification procedure based on the predicted mean time to next failure
of consecutive incremented versions of software systems is developed in Currit et al.
(1986). The model used for the analysis is equivalent to the geometric Moranda
model introduced in Moranda (1979). This model is usually characterized in terms
of the probability distribution of the times between failures. These are assumed to
be independent and exponentially distributed with parameter λci−1, for all i ≥ 1,
where λ > 0 and 0 < c ≤ 1. In particular, the density function of the ith inter-failure
time is given by

fXi(x) = λci−1e−λc
i−1x .

Thus, as mentioned in Section 2.4.2, the process (Tn)n≥0 has independent incre-
ments (see Table 2.5 for a full classification of this model). Note that when c = 1,
the times between failures are all i.i.d. with parameter λ. Thus, the counting pro-
cess (N(t))t≥0 is an HPP. Note also that this model considers that successive hazard
rates, given by λci−1, decrease geometrically by a factor c. Thus, we can interpret
c as the effect of a fault removal. The release procedure developed in Currit et al.
(1986) can be briefly described as follows. When a new version of the system un-
der development has been tested, an estimate of the expected time to next failure
is computed. If this estimate exceeds a prefixed value, then the software can be
released. Therefore, the procedure is heuristic and does not provide statistical con-
fidence. The concept of expected time to next failure admits a similar discussion
as the one for the failure rate presented in Section 2.1 since it can be defined in
different ways (cf. Thompson (1981)). Thus, it is very important to specify which
expected time to next failure is being considered. In this case, the expected time to
next failure is defined as the expected value of the random variable Xi. Note that, if
n failures have been observed at times 0 < t1 < t2 < . . . < tn, then the conditional
residual lifetime of Tn+1 is the same as the conditional survival probability of Xn+1,
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i.e.,

RTn+1|Tn=tn(tn, x) = P [Tn+1 > tn + x | Tn+1 > tn, Tn = tn]

= P [Xn+1 > x | Tn = tn]
= SXn+1|Tn=tn(x) .

(5.1)

Therefore, the expected time to next failure can be expressed as

E[Xn+1 | Tn = tn] =
∫ ∞

0

SXn+1|Tn=tn(x) dx . (5.2)

For exponential times between failures, the expected time to next failure can be
easily computed due to the memoryless property of the Exponential distribution.
Moreover, the expected time to next failure is the reciprocal of the hazard rate of
Xn+1. For example, for the geometric Moranda model one has

E[Xn+1 | Tn = tn] = E[Xn+1] =
1
λcn

,

and for the Jelinski-Moranda model (see Section 2.5.1) it follows that

E[Xn+1 | Tn = tn] = E[Xn+1] =
1

(N − n)λ
.

However, this metric is not suited for all software reliability models in general as we
will see now. As explained in Section 2.6, for NHPP models the number of failures
to be observed between two consecutive failure times is a random variable having a
Poisson distribution. In this case, it follows that

SXn+1|Tn=tn(x) = P [Xn+1 > x | Tn = tn]

= P [N(tn + x)−N(tn) = 0 | Tn = tn]

= e(−(Λ(tn+x)−Λ(tn))) .

Thus, application of (5.2) yields

E[Xn+1 | Tn = tn] =
∫ ∞

0

e(−(Λ(tn+x)−Λ(tn))) dx .

Note that in this case the expected time to next failure depends on the last failure
observation Tn = tn. Assuming the Goel-Okumoto model (see Section 3.4.2) for the
failure process we have that

E[Xn+1 | Tn = tn] =
∫ ∞

0

e(−ae
−btn (1−e−bx)) dx . (5.3)

Since,
lim
x→∞

e(−ae
−btn (1−e−bx)) = e(−ae−btn ) > 0 ,
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the integral in (5.3) does not converge. Therefore, for the Goel-Okumoto model
the expected time to next failure is infinite. Thus, this approach is not applicable
in general. Another important limitation is that it does not take into account the
risk of making a wrong decision. The procedure developed by Currit et al. (1986)
is known in the literature as the Cleanroom Software Engineering process. Among
the papers inspired by this work we mention Cobb and Mills (1990), Linger (1993),
Mills et al. (1987), Poore et al. (1993) and Selby et al. (1987). However, none of
them overcome the limitations indicated above.

5.1.2 Certification procedure based on fault-free system

A different concept of statistical certification is introduced in Di Bucchianico et al.
(2008). The goal of this procedure is to certify with high confidence that software
systems are fault-free. The model used there will be referred later in this chapter
as the Run model and it can be described as follows. It is assumed that the initial
number of faults in the system, denoted by N , is unknown but fixed and finite (as
in GOS models). A test run is defined as a finite walk through the state space of
the system and it is such that at most one fault can be found in one test run. The
test strategy assumes also that faults are detected independently of each other and
that each undetected fault has a probability θ to be on a test run. Thus, when
there are m remaining faults in the system, the probability of not finding any error
in one test run is equal to (1 − θ)m. When a fault is found, it is repaired before
starting testing again without introducing new faults in the system. Therefore,
perfect and immediate repair is assumed. The random variable Xi, for all i =
1, . . . , N , is defined as the number of test runs needed to find the ith software fault
after repairing the (i − 1)st fault. Clearly, it follows a geometric distribution with
parameter pi = 1−(1−θ)N−i+1. In practice, testing until finding the next fault will
not be performed since there is no certainty about the existence of a next fault. For
that reason, it is assumed that there exist integer bounds ki > 0, for all 1 ≤ i ≤ N+1
such that Yi = min (Xi, ki). Therefore, when Yi = ki it means that the ith fault
has not been found after ki test runs after repairing the (i − 1)st fault. Note that
the definition of Yi corresponds to the usual definition of the times between failures
in a discrete-time context but truncated at time ki. Note also that, in fact, only
the last observation is truncated, i.e., the observations are the values of the random
variables X1 = x1, X2 = x2, . . ., Xi−1 = xi−1 and Yi = ki. The following statistical
tests are sequentially performed: if Yi+1 = ki+1, then the conclusion is that there
are no faults left in the system. On the other hand, if Yi+1 < ki+1, then testing
continues repeating the same procedure. Thus, the parameters for the procedure
are the thresholds ki that must be chosen in such a way that the conclusion of fault-
free system is given with the desired confidence. This procedure can be put into a
sequential statistical hypothesis testing framework using the following hypotheses:

H0,i : N > i vs. H1,i : N = i .

The test statistic is Yi and the critical region is given by Ci = {y | y ≥ ki}. Note
that the procedure always stops in finite time since it stops when no faults are found
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in ki tests. Thus, the probability of having a type II error (not rejecting H0,i when
H1,i is true) is equal to 0. The global risk in the procedure represents the probability
to stop testing when there are still faults left in the system. Thus, the global risk
can be defined as the type I error probability and can be controlled by properly
choosing the thresholds ki. In this way, the main limitation in Currit et al. (1986)
(the procedure was developed with no statistical confidence) is overcome.

5.2 Bayesian approach

In this section we first establish a general framework for Bayesian inference provid-
ing also the notation and some important concepts to be used later in our procedure.
Note that we have already briefly introduced the Bayesian approach in Section 2.8.
Suppose that Y (n) = (Y1, . . . , Yn) denotes a random vector whose probability dis-
tribution (discrete or continuous) depends on some parameter ϕ that is unknown.
Thus, we may write

Pϕ [(Y1, . . . , Yn) ∈ Bn] = fϕ (Bn) .

In Bayesian inference the parameter ϕ is considered as a random variable Φ with a
given distribution function FΦ(ϕ). More precisely, we assume that

Pϕ [(Y1, . . . , Yn) ∈ Bn | Φ = ϕ] = fϕ (Bn) ,

so that

P [(Y1, . . . , Yn) ∈ Bn] =
∫
fϕ (Bn) dFΦ (ϕ) .

The probability distribution defined by FΦ(ϕ) is called the prior distribution of
Φ. Without loss of generality we may assume that Y (n) and Φ are both continuous
random vectors. Therefore, Φ can also be characterized by a density function fΦ(ϕ).
The dependence of Y (n) on Φ can be expressed in terms of the conditional density
function of Y (n) given Φ = ϕ, denoted by fY (n)|Φ=ϕ(y(n) | ϕ), which it is often called
the likelihood function. Application of Bayes theorem yields

fΦ|Y (n)=y(n)(ϕ | y(n)) =
fΦ(ϕ) fY (n)|Φ=ϕ(y(n) | ϕ)∫
fΦ(ϕ) fY (n)|Φ=ϕ(y(n) | ϕ) dϕ

.

In this case, the probability distribution defined by fΦ|Y (n)=y(n)(ϕ | y(n)) is called the
posterior distribution of Φ. Suppose now that the prior distribution of Φ belongs
to a certain class of probability distributions G (Exponential, Normal, Binomial,
etc.). When the posterior distribution is also in G, the prior distribution is said to
be conjugate. There are many examples of conjugate families and some of them can
be found in Lee (1989)[Section 2.10].

Our main purpose is to develop a sequential certification procedure based on
the fault-free interval after the last observed failure. For that reason, the following
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concepts are needed. The conditional reliability function of Yn+1 given Y (n) = y(n)

is defined by

SYn+1|Y (n)=y(n)(z | y(n)) = P
[
Yn+1 ≥ z | Y (n) = y(n)

]
, (5.4)

for all n ≥ 0 and z ≥ 0. The conditional reliability function of Yn+1 given Φ = ϕ is
defined by

S̃Yn+1|Φ=ϕ(z | ϕ) = P [Yn+1 ≥ z | Φ = ϕ] , (5.5)

for all n ≥ 0 and z ≥ 0. In a similar way we define the conditional residual lifetime
of Yn+1 given Y (n) = y(n), for ∆ ≥ 0, as follows:

RYn+1|Y (n)=y(n)(z,∆ | y(n)) = P
[
Yn+1 ≥ z + ∆ | Yn+1 ≥ z, Y (n) = y(n)

]
. (5.6)

We also need to characterize when certain random variables are conditionally inde-
pendent.

Definition 5.1 (Conditional Independence). Let X, Y and Z be three continuous
random variables with density functions fX(x), fY (y) and fZ(z), respectively. As-
suming that the joint and the conditional density functions exist, we say that X and
Y are conditionally independent given Z if and only if

fX,Y |Z=z(x, y | z) = fX|Z=z(x | z) fY |Z=z(y | z) .

It is easy to see (cf. Lauritzen (1996)[p. 29]) that the above definition of conditional
independence is equivalent to the following one

fX|Y=y,Z=z(x | y, z) = fX|Z=z(x | z) . (5.7)

This characterization of conditional independence is used in the proof of the follow-
ing lemma.

Lemma 5.1. Let Y1, . . . , Yn+1 be continuous positive random variables whose dis-
tributions depend on the non-negative random parameter Φ, for all n ≥ 1. If
Y1, . . . , Yn+1 are independent given Φ = ϕ, then

SYn+1|Y (n)=y(n)(z | y(n)) =
∫ ∞

0

S̃Yn+1|Φ=ϕ(z | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ , (5.8)

for all z ≥ 0, ϕ ≥ 0 and y(n) ∈ Rn+.

Proof. We assume that all the density functions used in the proof exist. Suppose
that fYn+1|Y (n)=y(n)(u | y(n)) is the density function of Yn+1 given Y (n) = y(n), for
all u ≥ 0. Then, we may write

SYn+1|Y (n)=y(n)(z | y(n)) = P
[
Yn+1 ≥ z | Y (n) = y(n)

]
=
∫ ∞
z

fYn+1|Y (n)=y(n)(u | y(n)) du .
(5.9)
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If fYn+1,Y (n)(u, y(n)) is the joint density function of Yn+1 and Y (n), and fY (n)(y(n))
is the marginal density function of the random vector Y (n), then we may write

fYn+1|Y (n)=y(n)(u | y(n)) =
fYn+1,Y (n)(u, y(n))

fY (n)(y(n))
, (5.10)

for all u ≥ 0 and y(n) ∈ Rn+ such that fY (n)(y(n)) > 0. Let fYn+1,Y (n),Φ(u, y(n), ϕ) be
the joint density function of Yn+1, Y (n) and Φ, for all u ≥ 0, y(n) ∈ Rn+ and ϕ ≥ 0.
Then, application of the law of total probability yields

fYn+1,Y (n)(u, y(n)) =
∫ ∞

0

fYn+1,Y (n),Φ(u, y(n), ϕ) dϕ . (5.11)

Suppose now that the density function of Yn+1 given Y (n) = y(n) and Φ is given
by fYn+1|Y (n)=y(n),Φ=ϕ(u | y(n), ϕ), for all u ≥ 0. Since conditional independence of
Yn+1 and Y (n) given Φ = ϕ is assumed, we can apply (5.7) and write

fYn+1|Y (n)=y(n),Φ=ϕ(u | y(n), ϕ) = fYn+1|Φ=ϕ(u | ϕ) . (5.12)

Thus, if fY (n),Φ(y(n), ϕ) is the joint density function of Y (n) and Φ, for all y(n) ∈ Rn+
and ϕ ≥ 0, then we can write the joint density function of Yn+1, Y (n) and Φ as

fYn+1,Y (n),Φ(u, y(n), ϕ) = fYn+1|Y (n)=y(n),Φ=ϕ(u | y(n), ϕ) fY (n),Φ(y(n), ϕ)

= fYn+1|Φ=ϕ(u | ϕ) fY (n),Φ(y(n), ϕ) ,
(5.13)

where we recall that the last equality in (5.13) comes from the conditional indepen-
dence property. Therefore, we can write (5.11) as

fYn+1,Y (n)(u, y(n)) =
∫ ∞

0

fYn+1|Φ=ϕ(u | ϕ) fY (n),Φ(y(n), ϕ) dϕ .

Substitution into (5.10) yields

fYn+1|Y (n)=y(n)(u | y(n)) =
∫ ∞

0

fYn+1|Φ=ϕ(u | ϕ) fY (n),Φ(y(n), ϕ) dϕ
fY (n)(y(n))

, (5.14)

for all y(n) ∈ Rn+ such that fY (n)(y(n)) > 0. We can now write

fY (n),Φ(y(n), ϕ)
fY (n)(y(n))

= fΦ|Y (n)=y(n)(ϕ | y(n)) .

Substitution into (5.14) yields

fYn+1|Y (n)=y(n)(u | y(n)) =
∫ ∞

0

fYn+1|Φ=ϕ(u | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ . (5.15)
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Substitution into (5.9) and application of Fubini’s theorem (cf. Pitt (1985)[p. 32])
yields

SYn+1|Y (n)=y(n)(z | y(n)) =
∫ ∞
z

∫ ∞
0

fYn+1|Φ=ϕ(u | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ du

=
∫ ∞

0

∫ ∞
z

fYn+1|Φ=ϕ(u | ϕ) du fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ .

(5.16)

Note that fYn+1|Φ=ϕ(u | ϕ) is the density function of Yn+1 given Φ = ϕ. Therefore,
we can write

S̃Yn+1|Φ=ϕ(z | ϕ) = P [Yn+1 ≥ z | Φ = ϕ]

=
∫ ∞
z

fYn+1|Φ=ϕ(u | ϕ) du .

Thus, substitution into (5.16) yields

SYn+1|Y (n)=y(n)(z | y(n)) =
∫ ∞

0

S̃Yn+1|Φ=ϕ(z | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ . (5.17)

As a consequence of the previous lemma, the conditional residual lifetime of Yn+1

given Y (n) = y(n), as defined in (5.6), can be characterized as follows.

Corollary 5.1. In the conditions of Lemma 5.1, for a fixed ∆ ≥ 0, it follows that

RYn+1|Y (n)=y(n)(z,∆ | y(n)) =
SYn+1|Y (n)=y(n)(z + ∆ | y(n))
SYn+1|Y (n)=y(n)(z | y(n))

=

∫ ∞
0

S̃Yn+1|Φ=ϕ(z + ∆ | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ∫ ∞
0

S̃Yn+1|Φ=ϕ(z | ϕ) fΦ|Y (n)=y(n)(ϕ | y(n)) dϕ
,

(5.18)

for all z ≥ 0, ϕ ≥ 0 and y(n) ∈ Rn+ such that the denominator in (5.18) is strictly
positive.

Next we describe our release procedure assuming that the stochastic process used
to model the fault detection process of a software system has independent times
between failures.
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5.3 Bayesian release procedure for software reliability growth
models with independent times between failures

Let us assume that the fault detection process of a software system can be modelled
as a counting process (N(t))t≥0 depending on a non-negative random parameter Φ.
We also assume that the stochastic process defined by the failure times, denoted
by (Tn)n≥0, has independent increments, i.e., the times between failures X1, X2,
. . ., are independent random variables given Φ = ϕ. Our goal is to certify with
high confidence that the next software fault is not occurring within a certain time
interval. Thus, we can define the conditional reliability function of Xn+1 given
Φ = ϕ as follows:

S̃Xn+1|Φ=ϕ(z | ϕ) = P [Xn+1 ≥ z | Φ = ϕ] , (5.19)

for all z ≥ 0. Therefore, the conditional residual lifetime of Xn+1 given X(n) = x(n)

can be expressed by

RXn+1|X(n)=x(n)(z,∆ | x(n)) = P
[
Xn+1 ≥ z + ∆

∣∣∣ Xn+1 ≥ z,X(n) = x(n)
]
.

(5.20)
If we fix a reliability level , denoted by 1 − δ, for some δ ∈ (0, 1), then our release
procedure consists of finding zn ≥ 0, which depends on the test history x(n), such
that

RXn+1|X(n)=x(n)(zn,∆ | x(n)) ≥ 1− δ . (5.21)

In all decision-based procedures it is of special interest to study the risk taken
due to a wrong decision. In this case, it is defined as follows. Our procedure
certifies that if no failure has been observed in the interval (tn, tn+zn], for a certain
n ≥ 0, then, with probability at least 1 − δ, no failure is observed in the interval
(tn + zn, tn + zn + ∆], for some ∆ ≥ 0. In this case, we stop testing at time tn + zn.
Therefore, the risk at that time can be defined as the probability of finding the next
fault before time tn+zn+∆. Thus, the risk after n observed failures can be defined
as

Gn(∆, z(n)) = P

[
zn ≤ Xn+1 ≤ zn + ∆,

n⋂
i=1

{Xi ≤ zi−1}

]
. (5.22)

Taking the sum over all n ≥ 0, we define the global risk taken in the procedure as

G(∆) =
∑
n≥0

Gn(∆, z(n)) . (5.23)

The next theorem shows that if the residual lifetime of Xn+1 is larger than or equal
to 1− δ, then we can keep the global risk under control, i.e., the global risk always
smaller than or equal to δ.

Theorem 5.2 (Global risk bound). For any ∆ ≥ 0, δ ∈ (0, 1) and n ≥ 0 such that
RXn+1|X(n)=x(n)(zn,∆ | x(n)) ≥ 1− δ, it follows that G(∆) ≤ δ.
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Proof. The global risk is given by (5.23). Therefore,

G(∆) =
∑
n≥0

P

[
zn ≤ Xn+1 ≤ zn + ∆,

n⋂
i=1

{Xi ≤ zi−1}

]
. (5.24)

Application of the Law of Total Probability to (5.24) yields

G(∆) =
∑
n≥0

E

[
P

[
zn ≤ Xn+1 ≤ zn + ∆,

n⋂
i=1

{Xi ≤ zi−1}
∣∣∣ X(n)

]]

=
∑
n≥0

E
[
E
[
I{zn≤Xn+1≤zn+∆} · I{⋂ni=1{Xi≤zi−1}}

∣∣∣ X(n)
]]

.

(5.25)

Since only I{⋂ni=1{Xi≤zi−1}} belongs to the σ−algebra generated by X(n), we may
write (5.25) as

G(∆) =
∑
n≥0

E
[
I{
⋂n
i=1{Xi≤zi−1}} E

[
I{zn≤Xn+1≤zn+∆}

∣∣∣ X(n)
]]

=
∑
n≥0

E
[
I{
⋂n
i=1{Xi≤zi−1}} P

[
zn ≤ Xn+1 ≤ zn + ∆

∣∣∣ X(n)
]]

.
(5.26)

Note that P
[
zn ≤ Xn+1 ≤ zn + ∆ | X(n)

]
is a function on the σ−algebra generated

by X(n). Thus, it is a function on the sample space Ω. By the properties of
conditional expectations (cf. Grimmett and Stirzaker (1988)[Section 3.7, p.67]), the
above probability can be expressed as a function of X(n). Therefore, we can write

P
[
zn ≤ Xn+1 ≤ zn + ∆ | X(n)

]
= P

[
zn ≤ Xn+1 ≤ zn + ∆

∣∣∣ X(n) = x(n)
]

= P
[
Xn+1 ≤ zn + ∆

∣∣∣ X(n) = x(n), Xn+1 ≥ zn
]
×

× P
[
Xn+1 ≥ zn

∣∣∣ X(n) = x(n)
]
.

(5.27)

Note now that

P
[
Xn+1 ≤ zn + ∆

∣∣∣ X(n) = x(n), Xn+1 ≥ zn
]

= 1−RXn+1|X(n)=x(n)(zn,∆ | x(n))

≤ δ ,
(5.28)

and since P
[
Xn+1 ≥ zn | X(n) = x(n)

]
≤ 1, for all zn ≥ 0, we get that

G(∆) ≤ δ
∑
n≥0

E
[
I{
⋂n
i=1{Xi≤zi−1}}

]
= δ

∑
n≥0

P

[
n⋂
i=1

{Xi ≤ zi−1}

]

= δ P

⋃
n≥0

(
n⋂
i=1

{Xi ≤ zi−1}

) ,

(5.29)
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where the last equality comes from the independent times between failures property.
Hence, since the probability of any event is always smaller than or equal to 1, it
follows that G(∆) ≤ δ.

5.3.1 Jelinski-Moranda and Goel-Okumoto models

We now consider the cases where the fault detection process of a software system
can be described by the Jelinski-Moranda (see Section 2.5.1) and the Goel-Okumoto
(see Section 2.6.1) models. We treat the Goel-Okumoto model as a Bayesian case
of the Jelinski-Moranda model, i.e., we assume N to be Poisson distributed in the
Jelinski-Moranda model to obtain the Goel-Okumoto model (see Section 2.7 for
details). The following considerations are also useful for Chapter 6 where we study
the performance of our procedure via simulation.

Case 1: N and λ deterministic

Let us first consider the case where both N and λ are known and fixed. Due to
the memoryless property of the Exponential distribution, the conditional residual
lifetime of Xn+1, for all n = 0, 1, . . . , N , can be written as

RXn+1(z,∆) = e−(N−n)λ∆ . (5.30)

for all z ≥ 0 and ∆ ≥ 0. Since (5.30) is constant for every n, there is no critical value
zn to be computed. Note that only aspect of the test history taken into account
here is n, i.e., the number of faults discovered so far. Thus, if we fix a reliability
level 1 − δ, for some δ ∈ (0, 1), and ∆ ≥ 0, then our procedure stops as soon as
(5.30) is larger than or equal to 1 − δ. In this case, the number of failures to be
observed before we stop testing is given by

s = max {0, dN + (log(1− δ)/λ∆)e} , (5.31)

where d·e denotes the ceiling function. Therefore, for any n ∈ Z+ such that n < s,
it follows that (5.30) is smaller than 1 − δ. Since log(1 − δ) is negative, s can be
equal to 0 for small values of ∆. In fact, we have that s = 0 if and only if

∆ ≤ − log(1− δ)/λN = ∆min . (5.32)

Note also that in order to have e−(N−n)λ∆ ≥ 1− δ we must choose ∆ in such a way
that

∆ ≤ − log(1− δ)/(N − n)λ , (5.33)

for all n = 0, 1, . . . , N . In particular, since (5.33) is increasing as a function of n,
except for the case where n = N (all faults are discovered) for whichRXn+1(z,∆) = 1
for any ∆ ≥ 0, the situation with the highest possible ∆ corresponds to the case
where n = N − 1 (one fault left). Therefore, if we define

∆max = − log(1− δ)/λ , (5.34)
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then for any ∆ > ∆max, it follows that (5.30) is always smaller than 1 − δ, for all
n ≤ N − 1. Thus, the main conclusion we can extract from here is that the election
of ∆ must be done carefully, since for values of ∆ larger than ∆max, certification is
only possible when all faults have been discovered.

Case 2: N known and fixed, λ Gamma distributed

Suppose now that onlyN is known and fixed. In this case, N may represent an upper
bound for the total number of faults in the system. We assume that λ is a random
variable that has a prior Gamma distribution with parameters k > 0 and w > 0. We
have chosen this prior since it is a conjugate prior for exponential likelihoods, i.e.,
the posterior distribution of λ is also a Gamma distribution with parameters n+ k

and
(

1
w +

∑n
i=1(N − i+ 1)xi

)−1 (see e.g. Achcar et al. (1997)). In this case, the
conditional residual lifetime of Xn+1 given X(n) = x(n) (cf. Singpurwalla (1991))
has the following expression

RXn+1|X(n)=x(n)(z,∆ | x(n)) =
( ∑n

i=1(N − i+ 1)xi + 1
w + (N − n) z∑n

i=1(N − i+ 1)xi + 1
w + (N − n)(z + ∆)

)n+k

.

(5.35)
Note that, unlike Case 1, the residual lifetime depends now also on the test history
x(n) and not only on the number of discovered faults. Moreover, we saw in Case
1 that there exists a maximum value of ∆, denoted by ∆max, such that if we ask
for a ∆ larger than ∆max, then certification is only possible when all failures have
been observed. This is not the case now since (5.35) depends on z. The conditional
residual lifetime of Xn+1 given X(n) = x(n) has important monotonicity properties
as shown in the next lemma.

Lemma 5.2. The conditional residual lifetime of Xn+1 given X(n) = x(n), denoted
by RXn+1|X(n)=x(n)(z,∆ | x(n)), given in (5.35) is monotone increasing with respect
to z and monotone decreasing with respect to N .

Proof. Note that it suffices to study the quantity which is raised to the power n+ k
in (5.35). Its derivative with respect to z is given by

(N − n)2∆(∑n
i=1(N − i+ 1)xi + 1

w + (N − n)(z + ∆)
)2 (5.36)

and since all the factors in (5.36) are positive, the residual lifetime is increasing with
respect to z. In order to study the monotonicity with respect to N , we treat N as
a continuous variable and check whether the derivative with respect to N is larger
than 0. In this case, it is convenient to write

n∑
i=1

(N − i+ 1)xi = N

n∑
i=1

xi −
n∑
i=1

(i− 1)xi

= Ntn −
n∑
i=1

(i− 1)xi .

(5.37)
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Substitution into (5.35) yields

RXn+1|X(n)=x(n)(z,∆ | x(n)) =

=
(

(tn + z)N −
∑n
i=1(i− 1)xi + 1

w − nz
(tn + z + ∆)N −

∑n
i=1(i− 1)xi + 1

w − n (z + ∆)

)n+k

.

Note that also in this case it suffices to study the quantity which is raised to the
power n + k. The reader can check that the sign of the derivative with respect to
N depends only on the sign of the numerator and it is given by

w∆

(
w

n∑
i=1

(i− 1)xi − nwtn − 1

)
. (5.38)

Using (5.37) we can write (5.38) as

− w∆

(
w

n∑
i=1

(n− i+ 1)xi + 1

)
, (5.39)

which is always smaller than or equal to zero.

Therefore, since for any n ≥ 0 the conditional residual lifetime of Xn+1 given X(n) =
x(n) is monotone increasing with respect to z, there exists a unique optimal release
time for our procedure given by

zn = min
{
z ≥ 0 : RXn+1|X(n)=x(n)(z,∆ | x(n)) ≥ 1− δ

}
. (5.40)

Note that we decide to stop testing after the nth failure observation only if the next
failure is not observed before zn. Thus, the number of failures to be observed before
we stop testing can be defined as

s = min {n ≥ 0 : zn < Xn+1} . (5.41)

Although the existence of zn is proved in Lemma 5.2, it may occur that to wait
for it would not be feasible in practice. For example, we may fix a value of ∆ big
enough to make zn unrealistically large. This phenomenon will be explained later
in Section 6.1.2. On the other hand, decreasing monotonicity with respect to N
confirms what one may expect: a system with more faults is less reliable. In this
case, to consider a worst case scenario (smallest residual lifetime probability) means
to take N =∞. However, for such a case the Jelinski-Moranda model is not defined.
This supports the assumption of considering N as an upper bound for the initial
number of faults.
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Case 3: N Poisson distributed, λ known and fixed (Goel-Okumoto model)

Note that this case has already been described in Section 2.7 as we remind now.
Suppose that only λ is known and fixed. A common approach is to assume that
N follows a Poisson distribution with finite mean θ ≥ 0. Therefore, for all n0 =
0, 1, 2, . . ., we have that

P [N = n0] =
θn0e−θ

n0!
. (5.42)

As mentioned in Section 2.5.1, the Jelinski-Moranda model is a GOS model where
the failure times T1 < T2 < . . . < Tn are the first n order statistics from a random
sample Z1, . . . , ZN with common cumulative distribution function F (t) = 1− e−λt,
for all t ≥ 0. As given in (2.26), for GOS models the random variable N(t) con-
ditional on {N = n0} is binomially distributed with parameters n0 and F (t). As
shown in (2.44), the unconditional probability distribution of N(t) follows a Poisson
distribution with mean θF (t). Thus, we can write

P [N(t) = n] =
(θF (t))n

n!
e−θF (t) . (5.43)

As a consequence, the process (N(t))t≥0 is an NHPP with the following mean-value
function

Λ(t) = E [N(t)] = θ(1− e−λt) , (5.44)

for all t ≥ 0. Note that (5.44) is precisely the mean-value function of the Goel-
Okumoto model with parameters θ and λ, as described in Section 2.6.1. Moreover,
as given by (2.52), we can compute the posterior probability distribution of N given
T1 = t1, . . . , Tn = tn, as follows:

P [N = n0 | T1 = t1, . . . , Tn = tn] =
θn0−n

(n0 − n)!
e−(θe−λtn+(n0−n)λtn) . (5.45)

In this case, the conditional residual lifetime of Xn+1, given X(n) = x(n), is given
by

RXn+1|X(n)=x(n)(z,∆ | x(n)) = e−θ(e
−(tn+z)λ−e−(tn+z+∆)λ) . (5.46)

As shown in Lemma 5.2, the above function is monotone increasing with respect
to z. Thus, for some δ ∈ (0, 1) fixed, the optimal release time for our procedure is
given by

zn = min
{
z ≥ 0 : e−θ(e

−(tn+z)λ−e−(tn+z+∆)λ) ≥ 1− δ
}
.

Note that when zn is strictly positive, this is given by

zn =
−1
λ

log
(
− log(1− δ)
θ(1− e−λ∆)

)
− tn , (5.47)

which is increasing and concave as a function of ∆ (the first derivative with respect
to ∆ is positive and the second derivative is negative, for all ∆ ≥ 0). Moreover, it
follows that

lim
∆→0

zn = 0 , (5.48)
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and

lim
∆→∞

zn =
−1
λ

log
(
− log(1− δ)

θ

)
− tn . (5.49)

Thus, if we plot zn as a function of ∆, then we obtain a curve that has also expo-
nential shape with an upper bound given by (5.49), as can be seen in Figure 5.1.
This means that for small values of ∆, and provided that zn > 0, the quotient zn/∆

200 400 600 800 1000
D
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1000

1500

2000
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Figure 5.1: Optimal release time zn as a function of ∆ when θ = 424.31, λ = 0.002
and tn = 556 (results from data set in Section 4.3.1).

is large. Thus, to certify that ∆ is a fault-free period, the system has to be observed
without fault for a period of time that may be much larger than ∆ (as in the case
described in Figure 5.1). However, it follows that zn/∆ → 0 when ∆ → ∞. This
means that if the system has been observed for a long enough period with no fault,
then the system will eventually survive up to infinity with no failure with probability
at least 1− δ. Although zn exists, it may occur that the value needed to certify ∆
is too large to be considered as a realistic value. This will depend on the scale of
the data of the problem at hand (which is determined by the parameter θ). We will
study this in details in Section 6.1.3. Note finally that, for a fixed ∆ > 0, it follows
that zn is a decreasing function of n. This means that, as long as more faults are
discovered, zn/∆ → 0 more rapidly. Thus, less effort is required to certify ∆ as
fault-free interval.

Case 4: N Poisson and λ Gamma distributed (full Bayesian approach)

We finish the study of our certification procedure for the Jelinski-Moranda model
by considering that both N and λ are random variables. According to the notation
introduced in Section 2.3.1, we denote by n0 and λ0 the realization of the random
variables N and λ, respectively. We assume that N has a prior Poisson distribution
with parameter θ ≥ 0 and λ has a prior Gamma distribution with parameters k > 0
and w > 0. These are typical choices for prior distributions in this case (although
not unique). However, we are not interested in the Bayesian analysis itself. For that
reason, we do not study the performance of the procedure for different choices of
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prior distributions. For details on this we refer to Achcar (1997) and Kuo and Yang
(1996). Note that assuming prior independence, the joint posterior distribution of
N and λ, denoted by fN,λ(n0, λ0), is given by

fN,λ(n0, λ0) =

θn0

(n0 − n)!
λn+k−1

0 e−( 1
w+

∑n
i=1(n0−i+1)xi)λ0∫ ∞

0

∞∑
n0=n+1

θn0

(n0 − n)!
λn+k−1

0 e−( 1
w+

∑n
i=1(n0−i+1)xi)λ0 dλ0

. (5.50)

In this case, the residual lifetime probability of Xn+1 does not have a simple expres-
sion like in (5.35) where N was assumed to be known. However, it can be computed
as follows. First note that the conditional reliability function of Xn+1, given N = n0

and λ = λ0, is given by

S̃Xn+1|N=n0,λ=λ0 (z | n0, λ0) = e−(n0−n)λ0z . (5.51)

Thus, if we define

An(z,∆) =
n∑
i=1

xi + z + ∆ ,

and

Bn(z,∆) =
1
w
−

n∑
i=1

(i− 1)xi − (z + ∆)n ,

then the conditional reliability function of Xn+1 given X(n) = x(n), as given by
Lemma 5.1, can be written as

SXn+1|X(n)=x(n)(z | x(n)) =

=
∫ ∞

0

λn+k−1
0

∞∑
n0=n+1

θn0

(n0 − n)!
e−(An(z,0)n0+Bn(z,0))λ0 dλ0 .

(5.52)

First note that

∞∑
n0=n+1

θn0

(n0 − n)!
e−(An(z,0)n0+Bn(z,0))λ0 =

= θne−(An(z,0)n+Bn(z,0))λ0

(
eθe

−λ0An(z,0)
− 1
)
.

(5.53)

Moreover, it follows that

An(z, 0)n+Bn(z, 0) =
1
w

+
n∑
i=1

(n− i+ 1)xi ,

= An(z,∆)n+Bn(z,∆) .

(5.54)
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Since (5.54) does not depend on z, we will denote it by Cn. Substitution into (5.52)
yields

SXn+1|X(n)=x(n)(z | x(n)) = θn
∫ ∞

0

λn+k−1
0 e−λ0Cn

(
eθe

−λ0An(z,0)
− 1
)
dλ0 . (5.55)

Thus, we can use Lemma 5.1 to write the residual lifetime probability of Xn+1 given
X(n) = x(n) as follows:

RXn+1|X(n)=x(n)(z,∆ | x(n)) =

∫ ∞
0

λn+k−1
0 e−λ0Cn

(
eθe

−λ0An(z,∆)
− 1
)
dλ0∫ ∞

0

λn+k−1
0 e−λ0Cn

(
eθe

−λ0An(z,0)
− 1
)
dλ0

.

(5.56)
In order to define a local optimal release time we need to prove that the residual
lifetime probability is a monotone increasing function of z. The next lemma shows
the desired result.

Lemma 5.3. The conditional residual lifetime of Xn+1 given X(n) = x(n), denoted
by RXn+1|X(n)=x(n)(z,∆ | x(n)), given in (5.56) is monotone increasing with respect
to z.

Proof. Let us first define the following functions

g (λ0) = λn+k−1
0 e−λ0Cn , (5.57)

f (λ0, z) =
(
eθe

−λ0An(z,∆)
− 1
)
, (5.58)

and
h (λ0, z) =

(
eθe

−λ0An(z,0)
− 1
)
. (5.59)

In this case, we can write the conditional residual lifetime of Xn+1 given X(n) = x(n)

as

RXn+1|X(n)=x(n)(z,∆ | x(n)) =

∫ ∞
0

g (λ0) f (λ0, z) dλ0∫ ∞
0

g (λ0)h (λ0, z) dλ0

. (5.60)

Since (5.60) is a quotient, we only need to study the sign of the numerator of its
derivative with respect to z to determine its monotonicity. Thus, the condition we
need to check is∫ ∞

0

g (λ0) f ′ (λ0, z) dλ0

∫ ∞
0

g (λ0)h (λ0, z) dλ0

−
∫ ∞

0

g (λ0)h′ (λ0, z) dλ0

∫ ∞
0

g (λ0) f (λ0, z) dλ0 ≥ 0 .
(5.61)
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First note that (5.61) is equivalent to∫ ∞
0

g (λ0) f ′ (λ0, z) dλ0∫ ∞
0

g (λ0)h′ (λ0, z) dλ0

≥

∫ ∞
0

g (λ0) f (λ0, z) dλ0∫ ∞
0

g (λ0)h (λ0, z) dλ0

. (5.62)

Note also that the right-hand side of (5.62) is precisely the conditional residual
lifetime of Xn+1 given X(n) = x(n) as given in (5.60). Therefore, it takes values
between 0 and 1. Thus, if we prove that∫ ∞

0

g (λ0) f ′ (λ0, z) dλ0∫ ∞
0

g (λ0)h′ (λ0, z) dλ0

≥ 1 , (5.63)

then (5.62) is true. In this case, if f ′ (λ0, z) ≥ h′ (λ0, z), for all λ0 > 0, then (5.63)
holds. If we compute f ′ (λ0, z) and h′ (λ0, z), then we get that (5.63) is true if and
only if

θ
(
e−λ0An(z,0) − e−λ0An(z,∆)

)
+ λ0∆ ≥ 0 , (5.64)

for all λ0 > 0. Since An(z,∆) is increasing in ∆, and θ, λ0 and ∆ are all non-
negative, it follows that (5.64) is true. Hence, the conditional residual lifetime of
Xn+1 given X(n) = x(n) is monotone increasing with respect to z.

Therefore, there exists a unique zn ≥ 0 that is an optimal release time for our
procedure. Similar remarks about the scale of zn as the ones made in the previous
cases are also valid here. Therefore, we refer to them for details.

5.3.2 Run model

In this section we extend the work in Di Bucchianico et al. (2008) with some results
regarding the certification procedure previously introduced in this chapter. As done
with the Jelinski-Moranda model in the previous section, we now discuss some issues
that need to be considered when the fault detection process of a software system can
be described by the Run model, as we called it in Section 5.1.2. For this model it is
assumed that the initial number of faults in the system, denoted by N , is unknown.
As defined in Section 5.1.2, the random variable Xi, for all i = 1, . . . , N , represents
the number of test runs needed to find the ith software fault after repairing the
(i− 1)st fault and follows a geometric distribution with success parameter

pi = 1− (1− θ)N−i+1 . (5.65)

Thus, we have a model with two parameters, namely N and θ, where the probability
distribution of the times between failures is given by

P [Xi = xi] = (1− pi)xi−1 pi

= (1− θ)(xi−1)(N−i+1)
(
1− (1− θ)N−i+1

)
,

(5.66)
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and

P [Xi > xi] = (1− pi)xi

= (1− θ)(xi−1)(N−i+1) ,
(5.67)

for all xi ≥ 1. Note that, unlike in Section 5.1.2, we are not interested in truncated
testing but in the conditional residual lifetime of Xn+1 given X(n) = x(n), for some
∆ ≥ 0. This is given by

RXn+1|X(n)=x(n)(z,∆ | x(n)) = P
[
Xn+1 > z + ∆ | Xn+1 > z,X(n) = x(n)

]
=

P
[
Xn+1 > z + ∆ | X(n) = x(n)

]
P
[
Xn+1 > z | X(n) = x(n)

] .
(5.68)

Depending on the nature of the parameters of the model (deterministic or random)
we consider the following cases.

Case 1: N and θ deterministic

Let us first assume that both N and θ are known and fixed. Due to the memoryless
property of the geometric distribution, the conditional residual lifetime of Xn+1, for
all n = 0, . . . , N and ∆ ≥ 0, can be written as follows:

RXn+1(z,∆) = (1− θ)(N−n)∆ , (5.69)

for all z ≥ 0. Note that the above probability is the same as the one obtained for
the Jelinski-Moranda model in (5.31) if we take the parameter λ in the Jelinski-
Moranda model to be equal to − log(1− θ). Thus, the same considerations made in
Section 5.3.1 apply here.

Case 2: N Poisson distributed, θ known and fixed

Suppose now that only θ is known and fixed and N follows a Poisson distribution
with finite mean λ > 0. Therefore, the prior probability mass function of N is given
by

P [N = n0] =
λn0e−λ

n0!
, (5.70)

for all n0 = 0, 1, 2, . . .. In order to compute the conditional residual lifetime of
Xn+1, given X(n) = x(n), as defined in (5.68), we need to calculate the conditional
reliability function of Xn+1 as follows:

P
[
Xn+1 > z | X(n) = x(n)

]
=

∞∑
n0=n+1

P
[
Xn+1 > z | N = n0

]
P
[
N = n0 | X(n) = x(n)

]
.

(5.71)
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Note that, conditional on {N = n0}, the random variable Xn+1 is geometrically
distributed. Thus, we can use (5.67) to compute P [Xn+1 > z | N = n0]. Therefore,
we only need to compute the posterior distribution of N in order to calculate the
conditional reliability function of Xn+1 in (5.71). Since the random variables Xi are
independent, given N = n0, for all i = 1, . . . , N , we can use (5.66) to compute the
likelihood function of X1, . . ., Xn, as follows:

L(x1, . . . , xn;n0, θ) =
n∏
i=1

P [Xi = xi | N = n0]

=
n∏
i=1

(1− θ)(xi−1)(n0−i+1)
(
1− (1− θ)n0−i+1

)
= (1− θ)

∑n
i=1(xi−1)(n0−i+1)

n∏
i=1

(
1− (1− θ)n0−i+1

)
.

(5.72)

Products of the form of the one on the right-hand side of (5.72) can be expressed
in terms of q-Pochhammer symbols (see Koepf (1998)[p. 25] for details). In general,
the q-Pochhammer symbol, denoted by [a; q]k, for any integer k ≥ 1, is defined as

[a; q]k =
k−1∏
i=1

(
1− aqi

)
. (5.73)

In this case, it follows that
n∏
i=1

(
1− (1− θ)n0−i+1

)
=

[(1− θ)n0+1; (1− θ)−1]n+1

1− (1− θ)n0+1 . (5.74)

Moreover, if we define

Dn(n0) =
n∑
i=1

(xi − 1)(n0 − i+ 1) , (5.75)

then we can write (5.72) in a more compact way as follows:

L(x1, . . . , xn;n0, θ) =
(1− θ)Dn(n0)

1− (1− θ)n0+1 [(1− θ)n0+1; (1− θ)−1]n+1 . (5.76)

Therefore, we can use (5.70), (5.76) and Bayes theorem to compute the posterior
probability mass function of N . Note that the denominator in Bayes formula does
not depend on n0 nor on θ. Thus, for sake of brevity, in the remainder of this section
we will always denote it by C. In this case, we can write the posterior probability
mass function of N as follows:

P
[
N = n0 | X(n) = x(n)

]
=

1
C

λn0

n0!
(1− θ)Dn(n0)

1− (1− θ)n0+1 [(1− θ)n0+1; (1− θ)−1]n+1 .

(5.77)
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Note that, if m =
∑n
i=1 xi is the number of observed failures, then we can use

(5.77) to compute P
[
N > m | X(n) = x(n)

]
, i.e., the probability of having remaining

faults in the system. Moreover, using (5.67) and (5.77), we can write the conditional
reliability function of Xn+1 given X(n) = x(n), as defined in (5.71), as follows:

P
[
Xn+1 > z | X(n) = x(n)

]
=

1
C

∞∑
n0=n+1

λn0

n0!
(1− θ)Dn(n0)+(n0−n)z

1− (1− θ)n0+1 ×

× [(1− θ)n0+1; (1− θ)−1]n+1 .

(5.78)

Finally, the conditional residual lifetime of Xn+1, given X(n) = x(n), as defined in
(5.68), can be computed using (5.78). If we prove that this is monotone increasing
with respect to z, then there exists a local optimal release time for our procedure.
The proof in this case follows the same steps as the proof of Lemma 5.3. For that
reason we skip it here. The reader can check that the derivative of the conditional
residual lifetime of Xn+1 with respect to z is positive if and only if

− (n0 − n) log(1− θ)
(

(1− θ)(n0−n)z − (1− θ)(n0−n)(z+∆)
)
≥ 0 . (5.79)

Since θ ∈ (0, 1), the function (1 − θ)y is decreasing in y, for all y ≥ 0. Thus, it
follows that

(
(1− θ)(n0−n)z − (1− θ)(n0−n)(z+∆)

)
≥ 0. Moreover, since n0 ≥ n and

log(1− θ) ≤ 0, it follows that (5.79) always holds.

Case 3: N known and fixed, θ Beta distributed

We assume now that only N is known and fixed. Like in the Jelinski-Moranda case,
we can think of N as an upper bound for the total number of faults in the system.
We also assume that θ is a random variable that has a prior Beta distribution with
parameters α > 0 and β > 0. The choice of this prior distribution is well-known
in Bayesian statistics. Note that it is suitable for θ since the Beta distribution has
support on (0, 1). Moreover, its flexibility (two-parameter distribution) can describe
many different types of situations. Therefore, we can write the prior density function
of θ as follows:

fθ(θ0) =
(1− θ0)β−1θα−1

0

B(α, β)
, (5.80)

where B(α, β) =
∫ 1

0

(1 − θ0)β−1θα−1
0 dθ0, denotes the Euler Beta function. The

posterior distribution of θ can be computed by using the likelihood function of
X1, . . . , Xn given in (5.76), but replacing θ by θ0 and n0 by N . Thus, if C denotes
the denominator in Bayes formula, then the posterior density function of θ is given
by

fθ|X(n)=x(n)(θ0 | x(n)) =
1
C

θα−1
0 (1− θ0)β−1+Dn(N)

1− (1− θ0)N+1
[(1− θ0)N+1; (1− θ0)−1]n+1 .

(5.81)
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Thus, using (5.67), (5.75) and (5.81), we can write the conditional reliability function
of Xn+1 given X(n) = x(n), as follows:

P
[
Xn+1 > z | X(n) = x(n)

]
=

1
C

∫ 1

0

θα−1
0 (1− θ0)β−1+Dn(N)+(N−n)z

1− (1− θ0)N+1
×

× [(1− θ0)N+1; (1− θ0)−1]n+1 dθ0 .

(5.82)

Finally, the conditional residual lifetime of Xn+1, given X(n) = x(n), as defined in
(5.68), can be computed using (5.82). As done with previous cases, if we prove
that the residual lifetime probability of Xn+1 is monotone increasing with respect
to z, then there exists a local optimal release time for our procedure. Monotonicity
in this case can be proved in a similar way as it was done in Case 2. In fact, the
condition to be checked for the sign of the derivative is the same given in (5.79), but
replacing θ by θ0 and n0 by N . This is not surprising since in both cases the residual
lifetime probability of Xn+1 depends on z only through the survival probability of
a geometric random variable as given in (5.67).

Case 4: N Poisson and θ Beta distributed (full Bayesian approach)

We finish the study of our certification procedure for the Run model by considering
that both N and θ are random variables. We assume that N has a prior Poisson
distribution with parameter λ ≥ 0 and θ has a prior Beta distribution with param-
eters α > 0 and β > 0. Note that assuming prior independence, the joint posterior
distribution of N and θ is given by

fN,θ(n0, θ0) =
1
C

λn0

n0!
θα−1

0 (1− θ0)β−1+Dn(n0)

1− (1− θ0)n0+1 [(1− θ0)n0+1; (1− θ0)−1]n+1 , (5.83)

where C denotes, as above, the denominator in Bayes formula. Note that we can
use (5.67), (5.75) and (5.83) to write the conditional reliability function of Xn+1

given X(n) = x(n), as follows:

P
[
Xn+1 > z | X(n) = x(n)

]
=

1
C

∞∑
n0=n+1

∫ 1

0

λn0

n0!
θα−1

0 (1− θ0)β−1+Dn(n0)+(n0−n)z

1− (1− θ0)n0+1 ×

× [(1− θ0)n0+1; (1− θ0)−1]n+1 dθ0 .

(5.84)

Thus, the conditional residual lifetime of Xn+1, given X(n) = x(n), as defined in
(5.68), can be computed using (5.84). In a similar way as it was done in the previous
cases, we can prove that the residual lifetime probability of Xn+1 is monotone
increasing with respect to z. Therefore, also in this case there exists a local optimal
release time for our procedure. The proof of monotonicity here is left to the reader
since it follows the same steps as in the previous cases.



Chapter 6

Performance of the Certification
Procedure

In Section 5.3 we have presented a sequential software release procedure that certifies
(with some statistical confidence) that if we decide to stop testing, then the next
software fault is not occurring within a certain time interval. This decision is based
on the fault-free interval since the last failure observation and the test history. In this
chapter, we study the performance of our procedure via simulation. We consider the
same models used in Section 5.3, namely the Jelinski-Moranda and the Run model.
Different cases are studied depending on the nature (random or deterministic) of the
parameters of the models. Thus, as explained in Section 5.3.1, we also consider the
Goel-Okumoto model as a special case of the Jelinski-Moranda model, where the
total number of faults in the system is considered to be a Poisson random variable.

6.1 Jelinski-Moranda model

The Jelinski-Moranda model is usually characterized by the density function of the
times between failures given in (2.33). Following the steps of Section 5.3.1, we first
consider the case where both parameters of the model are assumed to be known
and fixed. Next we consider the cases where only one parameter is assumed to be a
random variable and finally we consider the case where both parameters are treated
as random variables.

6.1.1 Case 1: N and λ deterministic

In Section 5.3.1 (Case 1), we defined the number of failures to be observed before
we stop testing as

s = max {0, dN + (log(1− δ)/λ∆)e} , (6.1)

where d·e denotes the ceiling function, N and λ are the parameters of the Jelinski-
Moranda model, 1− δ is the reliability level of the procedure and ∆ is the time to
be certified as fault-free. We have computed s/N for different values of ∆, when
λ = 0.0005 and 1 − δ = 0.90. The results are shown in Table 6.1. As one may
expect, for a fixed value of ∆, the number of faults that has to be discovered to
certify, with probability at least 0.90, that the next software fault will not occurred
before ∆, increases with both N and ∆. We also defined in Section 5.3.1 (Case 1)
the quantities

∆min = − log(1− δ)/λN

and
∆max = − log(1− δ)/λ .

111
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∆ = 20 ∆ = 25 ∆ = 50 ∆ = 100 ∆ = 150
N = 10 0.00 0.20 0.60 0.80 0.90
N = 20 0.50 0.60 0.80 0.90 0.95
N = 50 0.80 0.84 0.92 0.96 0.98
N = 100 0.90 0.92 0.96 0.98 0.99

Table 6.1: Mean percentage of failures to be observed to reach a reliability level
larger than or equal to 0.90 for different values of N and ∆ when λ = 0.0005.

As shown there, for any ∆ < ∆min it follows that s = 0, and for any ∆ > ∆max cer-
tification is only possible when all faults are discovered, i.e., when s = N . Table 6.2
shows several values of ∆max and ∆min, for different values of λ, when N = 20 and
1− δ = 0.90. We can observe that the larger the value of λ, the smaller the value of

λ = 0.00025 λ = 0.0005 λ = 0.001 λ = 0.002 λ = 0.004
∆max 421.44 210.72 105.36 52.68 26.34
∆min 21.07 10.53 5.26 2.63 1.31

Table 6.2: Some values of ∆max and ∆min when N = 20 and 1−δ = 0.90 for different
values of λ.

both ∆max and ∆min. This is not surprising since for the Jelinski-Moranda model,
the hazard rate of the next failure occurrence is proportional to λ. Thus, if this is
large, then faults occur more frequently. This also means that the scale of failure
observations, and therefore of ∆max and ∆min, depends only on λ, independently
of the number of faults in the system. However, the more faults we have, the more
difficult it is to certify a certain value of ∆ (as it is shown in Table 6.1) since in this
case the times between failures are smaller.

6.1.2 Case 2: N known and fixed, λ Gamma distributed

We now consider the case where only N is fixed and λ is a random variable that
has a prior Gamma distribution with parameters k > 0 and w > 0. This case
was studied in Section 5.3.1 (Case 2). Conditional on {X(n) = x(n)}, the residual
lifetime of Xn+1 is given by

RXn+1|X(n)=x(n)(z,∆ | x(n)) =
( ∑n

i=1(N − i+ 1)xi + 1
w + (N − n) z∑n

i=1(N − i+ 1)xi + 1
w + (N − n)(z + ∆)

)n+k

,

(6.2)
for any ∆ ≥ 0. We saw in Section 6.1.1 that, for λ and N fixed, there exists a
maximum value of ∆, denoted by ∆max, such that if we ask for a ∆ larger than
∆max, then certification is only possible when all failures have been observed. This
is not the case now since (6.2) depends on z. Thus, in theory, any finite value of ∆
can be certified by letting z going to infinity. We proved in Lemma 5.2 that (6.2)
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is monotone increasing with respect to z. Therefore, there exists a unique optimal
release time zn ≥ 0 for our procedure given by

zn = min
{
z ≥ 0 : RXn+1|X(n)=x(n)(z,∆ | x(n)) ≥ 1− δ

}
. (6.3)

Moreover, the number of failures to be observed before we stop testing is given by

s = min {n ≥ 0 : zn < Xn+1} . (6.4)

Suppose now that we simulate N failure times from a Jelinski-Moranda model. If
we perform r ≥ 1 simulations, then we compute the following metrics. We know
that, for each simulation, the optimal release time for our procedure is given by
(6.3). We denote this by zj,n, for all j = 1, . . . , r and n = 0, 1, . . . , N . Thus, the
mean release time after the nth failure observation is given by

zn =
1
r

r∑
j=1

zj,n (6.5)

and the overall mean release time is

z =
1
N

N∑
n=0

zn . (6.6)

We also know that, for each simulation, the number of failures to be observed before
we stop testing is given by (6.4). We denote this by sj , for all j = 1, . . . , r. Note
that the true release time for each simulation is zsj . Thus, the mean number of
failures to be observed before we stop testing is given by

s =
1
r

r∑
j=1

sj (6.7)

and the mean true release time is

zs =
1
r

r∑
j=1

zsj . (6.8)

Finally, note that, for each simulation, the total time on test (TTT ) is given by
TTTj = Tsj + zsj . Thus, the mean total time on test is

TTT =
1
r

r∑
j=1

TTTj . (6.9)

Table 6.3 illustrates how these metrics are computed. Besides the above defined
metrics, we are also interested in the number of times that our procedure yields
a correct result. For us a correct result means that, if our procedure stops after
observing the nth failure, for some n > 0, then Xn+1 ≥ zn+ ∆. This (averaged over
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Simulation Release time Failures stop True release time Total time test
1 z1,0 z1,1 . . . z1,N s1 zs1 TTT1

2 z2,0 z2,1 . . . z2,N s2 zs2 TTT2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

r zr,0 zr,1 . . . zr,N sr zsr TTTr
Mean z0 z1 . . . zN s zs TTT

Table 6.3: Main metrics: release time, number of failures to stop, true release time
and total time on test.

Notation Definition

zn mean release time after the nth failure observation

z overall mean release time

s mean number of failures to stop testing

zs mean true release time

TTT mean total time on test

δ̃ observed reliability

Table 6.4: Notation used in this chapter.

the number of simulations r) is called the observed reliability and it is denoted by δ̃.
This notation will be used not only in this section but also in the remainder of this
chapter. For that reason, it is summarized in Table 6.4 so that the reader may refer
back to this table should confusion about notation arise. The default settings for
the simulations carried out in this section can be seen in Table 6.5. For the results

Number of failures: N = 20

Reliability level: 1− δ = 0.90

Prior distribution of λ: Gamma(5,0.0015)

Number of simulations: r = 100

Table 6.5: Default settings for simulations.

below we will specify only the values that differ from the default ones. First note
that the choice of the prior distribution determines the scale of the times between
failures in the problem (small values of λ produce large times between failures). In
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this case, the sample mean of the times between failures that have been simulated is
equal to x = 22.57. However, the choice of the prior distribution does not have great
effect in the posterior distribution as long as the posterior distribution is updated
with new failure observations. This can be seen in Figure 6.1 where we have plotted
the prior distribution (dashed) and the evolution of the posterior distribution of
λ after a few updates. Note how the posterior distribution becomes sharper near

0.000 0.005 0.010 0.015 0.020 0.025
Λ0

50

100

150

200

250

300

posterior distribution

Figure 6.1: Prior (dashed) and posterior distribution of λ.

0.0075 (the prior mean of λ) as long as new data is observed and a new posterior
distribution is calculated. Table 6.6 shows some results for several values of ∆. We

s/N zs/∆ δ̃ z TTT
∆ = 1 0.20 9.77 0.92 3.60 36.68
∆ = 3 0.74 2.92 0.93 130.36 188.39
∆ = 5 0.83 1.40 0.92 304.15 287.50
∆ = 10 0.93 0.79 0.94 887.70 391.76

Table 6.6: Mean percentage of failures to stop testing (s/N), mean true release time
as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time (z) and
mean total time of test (TTT ) for different values of ∆.

can conclude from Table 6.6 that choosing a large ∆ is expensive. Increasing ∆
produces an increase of the mean percentage of failures to be observed before we
stop testing (s/N) and on the mean total time of test (TTT ). This behaviour is not
surprising as we already explained in the deterministic case. For small values of ∆
we have that zs/∆ is large. Thus, to certify ∆ as fault-free, the system has to be
observed without fault for a period of time that is much larger than ∆. Therefore,
a relationship between zs and ∆ like in Figure 5.1 is expected. Note also that for
all the values of ∆, the procedure reaches the desired reliability (δ̃). The increase of
the value of z with ∆ has an important interpretation as we will see now. Although
it is possible to provide a theoretical solution for our problem, i.e., there always
exists a value of zn given by (6.3), this is may be useless in practice since the value
of zn is often extremely large with respect to the scale of the data to consider it as
realistic. This can be observed in Figure 6.2 where we have plotted the sample mean
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of the simulated times between failures, denoted by xn, and the sample mean of the
release times given by our stopping rule, denoted by zn, when ∆ = 10. Note that
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1400

z̄n
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Figure 6.2: Mean release times (dashed) and mean times between failures (solid) as
a function of n, when ∆ = 10.

the difference of magnitude between the release times and the times between failures
is very large, making thus almost any value of zn unfeasible in practice. Only when
a sufficiently large number of faults has been discovered (at later stages of testing)
the value of zn approaches the values of the times between failures. It is only at
this stage when we can use the release times in practice, i.e., when the curves in
Figure 6.2 intersect, testing can be stopped. Note that this corresponds to the value
of s/N in Table 6.6 for ∆ = 10. Figure 6.2 also shows the typical behaviour of zn.
In early stages of testing, where only a few faults have been discovered and repaired,
these are increasing and after a certain number of faults have been removed from
the system they start to decrease to eventually become 0. Note that if zn = 0, for
a certain n > 0, then our procedure decides to stop testing after the (n− 1)st fault
detection. The behaviour of zn described above is not completely intuitive since one
may expect that as long as the system is repaired and improved the time needed
to certify a fixed fault-free interval becomes smaller. Figure 6.3 can explain this.
On its left-hand side we observe the residual lifetime probability as a function of
z for n = 1, n = 5, n = 10 and n = 15. The reliability level has been fixed to
1 − δ = 0.90 (horizontal dashed line). Thus, for each n, the optimal release time
for the procedure corresponds to the intersection of the residual lifetime probability
and the reliability level. In this case we can see that z1 < z5 < z10 < z15. On
the right-hand side we observe the residual lifetime probability for n = 15, n = 16,
n = 17, and n = 18. In this case, we see that zn decreases for such values of n.

A system containing a large number of faults requires more effort to certify that
the next fault will not occurred before ∆. This will be reflected in an increase of
both the number of failures to be observed before we stop testing and the total
time of test. Note that the optimal release time should also increase in this case,
since the more faults the system has the longer we should wait without observing a
failure to decide that the next one is not occurring before ∆. This can be observed
in Table 6.7, where the usual metrics (see Table 6.4) for different values of N , when
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Figure 6.3: Left: residual lifetime probability for n = 1, n = 5, n = 10 and n = 15:
zn increases with respect to n. Right: residual lifetime probability for n = 15,
n = 16, n = 17, and n = 18: zn decreases with respect to n.

∆ = 10, are shown. We can observe that, in fact, s, z and TTT increase with N .

s/N zs/∆ δ̃ z TTT
N = 5 0.74 0.99 0.90 179.23 179.43
N = 10 0.66 2.73 0.96 430.07 287.81
N = 15 0.91 2.15 0.94 664.75 357.43
N = 20 0.93 0.79 0.94 887.70 391.76

Table 6.7: Mean percentage of failures to stop testing (s/N), mean true release time
as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time (z) and
mean total time of test (TTT ) for different values of N , when ∆ = 10.

Note also that for all the values of N , the procedure reaches the desired reliability
(δ̃). With respect to zs/∆ no real trend can be observed. Therefore, no conclusion
can be drawn in this case.

Finally, we study the effect of changing the reliability level of our procedure.
In Table 6.8 we show the mean number of failures to be observed before we stop
testing (s), the observed reliability (δ̃) and the mean total time of test (TTT ) for
different reliability levels, when ∆ = 5. For lower reliability levels release can be
done earlier since less failure observations are required to stop testing. However,
when the reliability level becomes higher, the procedure tends to be exhaustive. For
example, as shown in Table 6.8, for a reliability level of 1− δ = 0.99, the 99% of the
failures must be observed in order to stop testing.

6.1.3 Case 3: N Poisson distributed, λ known and fixed (Goel-Okumoto
model)

We now consider the case where only λ is fixed and N is a random variable that has
a prior Poisson distribution with parameter θ. This case was studied in Section 5.3.1
(Case 3) and, as shown there, it corresponds to the Goel-Okumoto model. In this
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s/N δ̃ TTT
1− δ = 0.99 0.99 1.00 580.93
1− δ = 0.95 0.94 0.98 368.52
1− δ = 0.90 0.93 0.94 391.76

Table 6.8: Mean percentage of failures to be observed before we stop testing (s/N),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 5.

case, the optimal release time for our procedure is given by

zn = min
{
z ≥ 0 : e−θ(e

−(tn+z)λ−e−(tn+z+∆)λ) ≥ 1− δ
}
.

When zn is strictly positive, it has the following form:

zn =
−1
λ

log
(
− log(1− δ)
θ(1− e−λ∆)

)
− tn . (6.10)

Note that our procedure stops as soon as there exists n ≥ 1 such that tn+zn < tn+1.
Since the failure times are always increasing (t1 < t2 < . . . < tn), it is clear that,
unlike the previous case, zn decreases with n. Thus, as long as the system is repaired,
the time needed to certify a fixed fault-free interval becomes smaller. Note also that
(6.10) provides an optimal total time on test for our procedure, which is given by

tn + zn = − 1
λ

log
(
− log(1− δ)
θ(1− e−λ∆)

)
, (6.11)

for all n ≥ 1. The default settings for the simulations carried out in this section can
be seen in Table 6.9. For the results below we will specify only the values that differ

Parameters Goel-Okumoto model: θ = 20, λ = 0.0075

Reliability level: 1− δ = 0.90

Prior distribution of N : Poisson(20)

Number of simulations: r = 100

Table 6.9: Default settings for simulations.

from the default ones. First note that the choice of θ and λ determines the scale
of the times between failures in the problem. In this case, the sample mean of the
times between failures that have been simulated is equal to x = 14.36.

Like in the previous case, we compute the usual metrics (see Table 6.4) for
different values of ∆. The results are shown in Table 6.10. The conclusions here are
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s/N zs/∆ δ̃ z TTT
∆ = 1 0.28 8.37 0.90 7.43 46.62
∆ = 3 0.74 9.00 0.91 87.45 192.08
∆ = 5 0.85 8.03 0.92 146.76 257.97
∆ = 10 0.93 5.51 0.96 226.93 336.90

Table 6.10: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of ∆.

similar to those obtained from Table 6.6. In fact, we can observe that increasing ∆
produces an increase in s/N , z and TTT . Note also that for all the values of ∆, the
procedure reaches the desired reliability (δ̃). With respect to zs/∆ no real trend
can be observed and no conclusion can be drawn in this case. The difference in scale
between zn and xn (the sample mean of the simulated times between failures) for
∆ = 3 is shown in Figure 6.4. We can also observe that zn is decreasing with n, as
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Figure 6.4: Mean release times (dashed) and mean times between failures (solid),
when ∆ = 3.

we already deduced from (6.10). Finally, note that the value of zs in Table 6.10 is
increasing with ∆. This is the expected behaviour since the larger the ∆ we wish
to certify, the longer we should wait to do that.

A system containing more faults requires more effort to certify that the next
fault will not occurred before ∆. This can be seen in Table 6.11 where the usual
metrics (see Table 6.4) are shown for different values of θ, when ∆ = 10. We can
observe that, s, z and TTT increase with θ while no trend is observed for zs/∆.
Note also that for all the values of θ considered here, the procedure reaches the
desired reliability level (δ̃).

The effect of changing the reliability level of our procedure is the same observed in
the previous case (see Table 6.8): for lower reliability levels less failure observations
are required to stop testing and when the reliability level tends to 1, the procedure
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s/N zs/∆ δ̃ z TTT
θ = 5 0.73 4.57 0.94 68.41 151.97
θ = 10 0.83 5.94 0.92 142.88 244.56
θ = 15 0.90 5.94 0.91 192.25 293.38
θ = 20 0.93 5.51 0.96 226.93 336.90

Table 6.11: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of N , when ∆ = 10.

tends to be exhaustive. This can be seen in Table 6.12 where we show s/N , δ̃ and
TTT for different reliability levels, when ∆ = 5. Note that also here the procedure

s/N δ̃ TTT
1− δ = 0.99 0.99 1.00 458.89
1− δ = 0.95 0.96 0.96 397.20
1− δ = 0.90 0.85 0.92 257.97

Table 6.12: Mean percentage of failures to be observed before we stop testing (s/N),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 5.

reaches the desired reliability (δ̃) in all cases.
Since we consider now that N follows a Poisson distribution, we can also compute

the posterior distribution of N given failure times T1 = t1, . . . , Tm = tm. As shown
in (5.45), this is given by

P [N = n0 | T1 = t1, . . . , Tm = tm] =
θn0−m

(n0 −m)!
e−(θe−λtm+(n0−m)λtm) . (6.12)

We can now determine the probability of having at most k ≥ 0 remaining faults in
the system given that we have already observed m. Note that such a probability is
simply

P [m ≤ N ≤ m+ k | T1 = t1, . . . , Tm = tm] =
m+k∑
j=m

P [N = j | T1 = t1, . . . , Tm = tm] .

(6.13)
We have computed the probability of having at most k ≥ 0 remaining faults for
different values of k and m assuming that N follows a Poisson distribution with
mean θ = 20. The results are shown in Table 6.13. It is remarkable that even in
the case where m = 20, i.e., the expected number of faults has been observed, the
probability of having at most 1 fault left is very small. Thus, if we define a stopping
rule based on the probability of having at most k remaining faults when we decide
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m = 5 m = 10 m = 15 m = 20
k = 1 0.0000004 0.00006 0.011 0.064
k = 5 0.0004 0.017 0.369 0.715
k = 10 0.039 0.319 0.933 0.994

Table 6.13: Probability of having at most k remaining faults given that m have
already been observed when N follows a Poisson distribution with mean θ = 20.

to stop testing, the choice of k is critical since it may be possible that for small
values of k the usual 0.90 or 0.95 reliability level is never reached. A stopping rule
based on this approach is considered in Chapter 8.

6.1.4 Case 4: N Poisson and λ Gamma distributed (full Bayesian ap-
proach)

We finish the study of our certification procedure for the Jelinski-Moranda model by
considering that both N and λ are random variables. We assume that N has a prior
Poisson distribution with parameter θ ≥ 0 and λ has a prior Gamma distribution
with parameters k > 0 and w > 0. As shown in Lemma 5.3, the conditional
residual lifetime of Xn+1 given X(n) = x(n) is monotone increasing with respect to
z. Therefore, there exists a unique optimal release time zn ≥ 0 for our procedure.
The default settings for the simulations carried out in this section can be seen in
Table 6.14. For the results below we will specify only the values that differ from the

Prior distribution of λ: Gamma(5,0.0015)

Prior distribution of N : Poisson(20)

Reliability level: 1− δ = 0.90

Number of simulations: r = 100

Table 6.14: Default settings for simulations.

default ones.
Like in previous sections, we compute the usual metrics (see Table 6.4) for differ-

ent values of ∆. The results are shown in Table 6.15. Most of the conclusions here
are similar to those obtained in previous sections. We can observe that choosing a
large ∆ increases s/N and TTT . The increase of the value of z with ∆ (and the
difference in scale with respect to the failure times) has the same interpretation as
in previous cases. This can be observed in Figure 6.5, where we have plotted zn
and xn (the sample mean of the simulated times between failures), when ∆ = 10.
Note that, as in Section 6.1.2, in early stages of testing the values of zn increase
and after a certain number of faults have been removed from the system they start
to decrease to eventually become 0. The explanation to this is the same as the one



122 Performance of the Certification Procedure

s/N zs/∆ δ̃ z TTT
∆ = 1 0.05 0.00 0.91 0.37 9.40
∆ = 3 0.69 8.65 0.90 62.48 175.30
∆ = 5 0.82 8.42 0.92 137.32 266.76
∆ = 10 0.91 13.82 0.95 351.09 415.07

Table 6.15: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of ∆.
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Figure 6.5: Mean release times (dashed) and mean times between failures (solid),
when ∆ = 10.

given in Section 6.1.2.
The system containing more faults requires more effort to certify that the next

fault will not occurred before ∆. In particular, this is reflected in an increase of
both s/N and TTT . The usual metrics (see Table 6.4) for different values of θ,
when ∆ = 10, are shown in Table 6.16. We can observe that, in fact, all s, TTT

s/N zs/∆ δ̃ z TTT
θ = 5 0.72 7.89 0.92 102.8 195.40
θ = 10 0.88 10.35 0.96 221.6 303.34
θ = 15 0.91 11.11 0.95 308.7 369.26
θ = 20 0.91 13.82 0.95 351.0 415.07

Table 6.16: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of θ, when ∆ = 10.

and z increase with θ. Note that, unlike in previous cases, zs/∆ (for which no trend
had been observed in previous cases) increases with θ. Finally, note that for all the
values of θ considered here, the procedure reaches the desired reliability (δ̃).
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The effect of changing the reliability level of our procedure is the same as above.
In Table 6.17 we show s/N , δ̃ and TTT for different reliability levels, when ∆ = 10.
As in previous cases, we have that s and TTT are smaller for small values of 1− δ.

s/N δ̃ TTT
1− δ = 0.99 1.00 1.00 555.63
1− δ = 0.95 0.98 1.00 553.32
1− δ = 0.90 0.91 0.95 415.07

Table 6.17: Mean percentage of failures to be observed before we stop testing (s/N),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 10.

For all the reliability levels considered, the observed reliability (δ̃) is larger than the
reliability level, however, in this example to reach 1 − δ = 0.99 requires that all
failures must be observed.

As done in Section 6.1.3, we can compute the posterior distribution of N , given
T1 = t1, . . . , Tm = tm, and use it to calculate the probability of having k remaining
faults. This can be observed in Table 6.18 for different values of k and m assuming
that N follows a Poisson distribution with mean θ = 20 and λ follows a Gamma
distribution with mean 0.0075. Also in this case, the probability of having at most

m = 5 m = 10 m = 15 m = 20
k = 1 0.00002 0.002 0.006 0.080
k = 5 0.006 0.098 0.201 0.606
k = 10 0.158 0.553 0.734 0.958

Table 6.18: Probability of having at most k remaining faults given that m have
already been observed when N follows a Poisson distribution with mean θ = 20 and
λ follows a Gamma distribution with mean 0.0075.

1 fault left is very small even if the expected number of faults has been observed
(m = 20). Thus, if we consider a stopping rule based on the probability of having
at most k remaining faults, then we must choose k carefully since it may happen
that the usual 0.90 or 0.95 reliability level is never reached.

6.2 Run model

The Run model is usually characterized by the probability mass function of the
random variableXi defined as the number of test runs needed to find the ith software
fault after repairing the (i − 1)st fault. As described in Section 5.1.2, it follows a
geometric distribution with success parameter

pi = 1− (1− θ)N−i+1 , (6.14)
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for all i = 1, . . . , N , where N > 0 and θ ∈ (0, 1) are the parameters of the model.
Since the geometric distribution can be seen as the discrete case of the Exponential
distribution, we may expect that, in general, the Run model behaves in a similar
way as the Jelinski-Moranda model. Following the steps of Section 5.3.2, we start
with the case where both parameters are assumed to be known and fixed.

6.2.1 Case 1: N and θ deterministic

In Section 5.3.2, we saw that the conditional residual lifetime of Xn+1, given by
(5.69), is the same as the one obtained for the Jelinski-Moranda model in (5.31) when
we take the parameter λ in the Jelinski-Moranda model to be equal to − log(1− θ).
Thus, the results given in Table 6.1 and in Table 6.2 are also valid here when
θ = 1− e−0.0005 and 1− δ = 0.90.

6.2.2 Case 2: N Poisson distributed, θ known and fixed

We now assume that θ is fixed and N is a random variable that has a prior Poisson
distribution with mean λ ≥ 0. As shown in Section 5.3.2, the conditional residual
lifetime of Xn+1 given X(n) = x(n), for ∆ ≥ 0, is monotone increasing with respect
to z. Therefore, there exists a unique optimal release time zn ≥ 0 for our procedure.
The default settings for the simulations carried out in this section can be seen in
Table 6.19. For the results below we will specify only the values that differ from

Parameters Run model: θ = 0.001, λ = 20

Reliability level: 1− δ = 0.90

Prior distribution of N : Poisson(20)

Number of simulations: r = 100

Table 6.19: Default settings for simulations.

the default ones. First note that the choice of θ and λ determines the scale of the
times between failures in the problem. In this case, the sample mean of the times
between failures that have been simulated is equal to x = 186.07.

We first compute the usual metrics (see Table 6.4) for different values of ∆. The
results are shown in Table 6.20. The conclusions here are similar to those obtained
from Table 6.10 in Section 6.1.3. We can observe that increasing ∆ produces an
increase in both s/N and TTT . Moreover, for all the values of ∆ considered above,
the procedure reaches the desired reliability (δ̃). The increase of the value of z with
∆ has the same interpretation as in the continuous case: although zn exists, for all
n ≥ 0, it is often useless in practice since its value is too large with respect to the
scale of the data.

The effect of increasing the number of faults in the system is illustrated in Ta-
ble 6.21 where the usual metrics (see Table 6.4) are shown for different values of λ,
when ∆ = 25. We can observe that all s, z and TTT increase with θ (thus, more
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s/N zs/∆ δ̃ z TTT
∆ = 25 0.78 5.13 0.92 771.76 1117.80
∆ = 50 0.91 7.85 0.92 1521.51 2345.99
∆ = 100 0.99 8.80 1.00 4241.87 3321.40

Table 6.20: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of ∆.

s/N zs/∆ δ̃ z TTT
λ = 5 0.25 4.31 0.91 11.56 348.99
λ = 10 0.57 7.93 0.90 279.12 861.36
λ = 15 0.73 8.26 0.91 567.02 1270.14
λ = 20 0.78 5.13 0.92 771.76 1117.80

Table 6.21: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of λ, when ∆ = 25.

effort is required to certify that the next fault will not occurred before ∆) and that
for all the values of θ considered here, the procedure reaches the desired reliability
(δ̃). For zs/∆ no trend is observed. Therefore, no conclusion can be drawn in this
case.

The effect of changing the reliability level in our procedure can be observed in
Table 6.22 where we show s/N , δ̃ and TTT for different reliability levels, when
∆ = 25. This is the same as in previous cases: for lower reliability levels release can

s/N δ̃ TTT
1− δ = 0.99 1.00 1.00 3411.24
1− δ = 0.95 0.92 0.99 2398.81
1− δ = 0.90 0.78 0.92 1117.80

Table 6.22: Mean number of failures to be observed before we stop testing (s),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 25.

be done earlier (s and TTT is smaller) and as 1 − δ increases to 1, the procedure
tends to be exhaustive (in fact, for 1− δ = 0.99 here, the procedure is exhaustive).

Since N follows a Poisson distribution, we can also compute the posterior dis-
tribution of N , given the times between failures X1 = x1, . . . , Xm = xm, and use
this to calculate the probability of having k remaining faults when we decide to
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stop testing. This is shown in Table 6.23, for different values of k and m, where we
assume that N follows a Poisson distribution with mean θ = 20. As observed in the

m = 5 m = 10 m = 15 m = 20
k = 1 0.00000008 0.0000008 0.0004 0.0369
k = 5 0.0001 0.0007 0.0636 0.5967
k = 10 0.0159 0.0521 0.5713 0.9842

Table 6.23: Probability of having at most k remaining faults given that m have
already been observed when N follows a Poisson distribution with mean θ = 20.

Jelinski-Moranda model, the probability of having at most 1 fault left is very small
even if m = 20, i.e., the expected number of faults has been observed. Therefore, if
we consider a stopping rule based on the probability of having at most k remaining
faults, we must carefully choose k since it may be possible that the usual 0.90 or
0.95 reliability level is never reached. A stopping rule based on this approach is
developed in Chapter 8.

6.2.3 Case 3: N known and fixed, θ Beta distributed

We now consider the case where N is supposed to be fixed and θ is a random variable
that has a prior Beta distribution with parameters α > 0 and β > 0. This case was
studied in Section 5.3.2. As shown there, the conditional residual lifetime of Xn+1

given X(n) = x(n) is monotone increasing with respect to z. Therefore, there exists
a unique optimal release time zn ≥ 0 for our procedure. The default settings for
the simulations carried out in this section can be seen in Table 6.24. First note

Number of simulated failures: N = 20

Reliability level: 1− δ = 0.90

Prior mean of θ:
α

α+ β
= 0.001

Number of simulations: r = 100

Table 6.24: Default settings for simulations.

that the choice of the prior distribution determines the scale of the times between
failures in the problem (small values of θ produce large times between failures). In
this case, the sample mean of the times between failures that have been simulated
is equal to x = 192.13. However, as mentioned in Section 6.1.2, the choice of the
prior distribution does not have great effect in the posterior distribution as long as
the posterior distribution is updated with new failure observations.

Like in the Jelinski-Moranda case, we compute the usual metrics (see Table 6.4)
for different values of ∆. Table 6.25 shows some results for different values of ∆.
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The conclusions are similar to those extracted from the corresponding case of the

s/N zs/∆ δ̃ z TTT
∆ = 25 0.81 0.45 0.92 3347.56 1584.21
∆ = 50 0.91 0.42 0.92 9899.14 2351.78
∆ = 100 0.96 2.47 0.90 24606.20 2934.71

Table 6.25: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of ∆.

Jelinski-Moranda model. Therefore, if we choose a large ∆ for our procedure, then
both s/N and TTT increase. Moreover, for all the values of ∆ considered here, the
procedure reaches the desired reliability (δ̃). The increase of the value of z with ∆
has the same interpretation given in the Jelinski-Moranda model. Thus, we refer to
Section 6.1.2 for details.

The system containing more faults requires more effort to certify that the next
fault will not occurred before ∆. Thus, an increase of both s and TTT with N is
expected. The usual metrics (see Table 6.4) for different values of N , when ∆ = 25,
are shown in Table 6.26. We can observe that, in fact, all s, z and TTT increase with

s/N zs/∆ δ̃ z TTT
N = 5 0.20 0.00 0.93 0.00 206.68
N = 10 0.48 1.31 0.95 340.08 647.88
N = 15 0.74 1.52 0.91 2382.41 1292.99
N = 20 0.81 0.45 0.92 3347.56 1584.21

Table 6.26: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of N , when ∆ = 25.

N , and that for all the values of N considered here the procedure reaches the desired
reliability (δ̃). With respect to zs/∆ no real trend can be observed. Therefore, no
conclusion can be drawn in this case.

In Table 6.27 we can observe the effect of increasing the reliability level in our
procedure. We show s/N , δ̃ and TTT for different reliability levels when ∆ = 25. As
in previous cases, lower reliability levels require less fault discoveries to stop testing
(and thus less testing effort) and as long as 1− δ increases to 1, the procedure tends
to be exhaustive.

6.2.4 Case 4: N Poisson and θ Beta distributed (full Bayesian approach)

We finish the study of our certification procedure for the Run model by considering
that both N and θ are random variables. We assume that N has prior Poisson
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s/N δ̃ TTT
1− δ = 0.99 1.00 1.00 3580.49
1− δ = 0.95 0.91 0.99 2375.35
1− δ = 0.90 0.81 0.92 1584.21

Table 6.27: Mean number of failures to be observed before we stop testing (s/N),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 25.

distribution with parameter λ ≥ 0 and θ has prior Beta distribution with parameters
α > 0 and β > 0. As shown in Section 5.3.2, the the conditional residual lifetime of
Xn+1 given X(n) = x(n) is monotone increasing with respect to z. Therefore, there
exists a unique optimal release time zn ≥ 0 for our procedure. The default settings
for the simulations carried out in this section can be seen in Table 6.28. For the

Prior mean of θ:
α

α+ β
= 0.001

Prior distribution of N : Poisson(20)

Reliability level: 1− δ = 0.90

Number of simulations: r = 100

Table 6.28: Default settings for simulations.

results below we will specify only the values that differ from the default ones.
We first compute the usual metrics (see Table 6.4) for different values of ∆. The

results are shown in Table 6.29. We can observe that choosing a large ∆ produces

s/N zs/∆ δ̃ z TTT
∆ = 25 0.78 7.60 0.87 767.72 1536.25
∆ = 50 0.90 7.99 0.94 1549.20 2386.17
∆ = 100 0.97 8.39 0.95 4550.24 3497.89

Table 6.29: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of ∆.

an increase in both s/N and TTT . The increase of the value of z with ∆ and the
difference in scale with respect to the failure times has the same interpretation as
in previous cases. Note also that when ∆ = 25 the procedure does not reach the
desired reliability (δ̃). This suggests that a larger number of simulations should be
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performed. However, simulations of this particular case are very time-consuming.
For that reason we have decided to stick to the current number of simulations.

In Table 6.30 we illustrate the effect of increasing the number of faults in the
system. We show the usual metrics (see Table 6.4) for different values of λ, when
∆ = 25. The conclusions are the same as in previous cases: for a system having

s/N zs/∆ δ̃ z TTT
λ = 5 0.28 2.57 0.95 20.47 279.45
λ = 10 0.50 7.51 0.88 267.59 837.30
λ = 15 0.67 9.11 0.90 520.24 1245.47
λ = 20 0.78 7.60 0.87 767.72 1536.25

Table 6.30: Mean percentage of failures to stop testing (s/N), mean true release
time as a fraction of ∆ (zs/∆), observed reliability (δ̃), overall mean release time
(z) and mean total time of test (TTT ) for different values of λ, when ∆ = 25.

more faults more effort is required to certify that the next fault will not occurred
before ∆. This can be observed in an increase in s and TTT with θ. Note that
when λ = 10 and λ = 20 the procedure does not reach the desired reliability (δ̃).
Thus, also in this case a larger number of simulations should be performed.

The effect of changing the reliability level of our procedure can be observed in
Table 6.31. As in above cases for lower reliability levels release can be done earlier

s/N δ̃ TTT
1− δ = 0.99 1.00 1.00 3747.03
1− δ = 0.95 0.90 0.99 2470.83
1− δ = 0.90 0.78 0.87 1536.25

Table 6.31: Mean percentage of failures to be observed before we stop testing (s/N),
observed reliability (δ̃) and mean total time of test (TTT ) for different reliability
levels, when ∆ = 25.

(TTT and s/N are smaller) and as 1− δ increases to 1, the procedure tends to be
exhaustive. In this case, the procedure is in fact exhaustive when 1− δ = 0.99.

Since N follows a Poisson distribution, we can also compute the posterior dis-
tribution of N given the times between failures X1 = x1, . . . , Xm = xm and use
it to calculate the probability of having k remaining faults when we decide to stop
testing. This can be observed in Table 6.32 for different values of k and m when
N is assumed to have a prior Poisson distribution with mean λ = 20 and θ has a
prior Beta distribution with mean 0.001. Also in this case, the probability of having
at most 1 remaining fault is very small even if m = 20 (the expected number of
faults has been observed). Therefore, if we consider a stopping rule based on the
probability of having at most k remaining faults, then we must choose k carefully
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m = 5 m = 10 m = 15 m = 20
k = 1 0.000008 0.0001 0.0054 0.1109
k = 5 0.00402 0.0309 0.2599 0.8216
k = 10 0.1465 0.4224 0.8759 0.9982

Table 6.32: Probability of having at most k remaining faults given that m have
already been observed when N has a prior Poisson distribution with mean λ = 20
and θ has a prior Beta distribution with mean 0.001.

since it may happen that the usual 0.90 or 0.95 reliability level is never reached.



Chapter 7

Model-Based Testing Framework

Model-based testing is a software testing method consisting of automatic genera-
tion of efficient tests using models of the system (see e.g. Andrews et al. (2005),
Brinksma and Tretmans (2001), El-Far and Whittaker (2001) and Lee and Yan-
nakakis (1996)). Formalization of testing theory was first presented in De Nicola
and Hennessy (1983). A few years later in Bernot et al. (1991) a formal theory
based on abstract data type specifications was introduced, establishing the foun-
dations of functional testing. As mentioned in Section 1.1.3, functional testing
focuses on black-box testing since only the input-output relation is tested. There
it is assumed that the tester has no knowledge about the internal structure (im-
plementation) of the system under test and test cases are generated using software
specifications only. We now focus on structural (model-based) testing. Here we as-
sume that some details about the software implementation are known to the tester.
We use this knowledge to execute test cases which are generated based on models
describing part of the behaviour of the system. Thus, the software can be tested
in a more efficient way. In particular, we are interested in models that describe the
control flow over the system components. However, we abstract from the testing of
the components themselves (which can be done by functional testing). Both test
strategies (black-box and model-based) consider that the software is subjected to
a set of inputs that produces a corresponding set of outputs from which software
failures can be identified. Besides this, in model-based testing we have the notion
of software component. Thus, we can also identify the components of the system
that behave according to the software specifications which is not possible in the
black-box approach.

We model software systems as labelled transition systems (a special class of Petri
nets) where each transition in a labelled transition system represents a software
component. Among the rich literature on labelled transition systems based testing
we mention Brinksma (1989), Chow (1978), Howden (1975), Huang (1975) and
Tretmans (1992). We assume that the software components either have correct
or erroneous behaviour. A component can be started if we follow a path leading
to the component. If the component behaves correctly, it ends after a certain time
producing an output result. We assume that there is a way to determine whether the
execution of a component is according to the specifications, for example by functional
testing, and a fault in a component can be detected e.g. by generating an exception
or by a time out. Therefore, we only discover a fault if we start the corresponding
component. Thus, in this context, testing means executing software components
and observing whether they behave correctly or not. We model a software fault as
a symbolic labelling of a Petri net transition which can only be discovered when the
transition is fired. Our approach can be seen as a stepping stone for more realistic
models with several parallel threads (cf. Bowman and Gomez (2005), Milner (1980),
Plotkin (1983) and Schneider (1999)).
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In the model-based testing literature all kind of test strategies have been consid-
ered in order to avoid exhaustive testing which is not always feasible in practice (see
e.g. Zhu et al. (1997)). These strategies are usually expressed in terms of coverage
where a certain amount of components are covered during testing. The difference
with existing approaches (cf. Andrews et al. (2005), Belli et al. (2006), Denise et al.
(2004)) is that we provide a statistical stopping rule, that may depend on the un-
derlying way of walking through the system, which allows us to stop earlier with
a certain statistical reliability. Hence, our statistical procedure can also be consid-
ered as a coverage method (over the components) but with a statistical measure
of quality. Moreover, our procedure becomes exhaustive when 100% reliability is
required. Despite the extensive literature on statistical stopping criteria for func-
tional (black-box) testing (Chen et al. (1999), Di Bucchianico et al. (2008), Lee et al.
(2001) and Morali and Soyer (2003a) to mention some of them), there do not seem
to be similar criteria for structural testing. Our statistical procedure should not
be confused with the common statistical testing techniques developed in Thevenod-
Fosse et al. (1995). The term statistical testing is normally used for the probability
of coverage (components, branches, etc.) while we are using it for metrics like the
remaining number of faults in the system. For example, our procedure stops if the
probability of having a predetermined number of remaining faults is smaller than a
certain confidence limit. Our underlying test strategy is also statistically based, in
the sense that the selection of the next transition to be tested is chosen at random.
Moreover, we have a reduction algorithm to reduce the model based on observed
(and repaired) components. As we will see in Chapter 8, the reduction algorithm
is efficient since the mean number of runs to reach exhaustiveness is significantly
reduced when the algorithm is applied for the testing strategy.

In the remainder of this chapter we introduce the assumptions and basic con-
cepts that we consider for model-based testing. The model we use for describing
the behaviour of software systems (labelled transition systems) is introduced in Sec-
tion 7.1. In Section 7.2 we illustrate with an example how we can map the abstract
model to a real application. In Section 7.3 we define what a software fault is for
us and comment on different choices for the probability distribution of the total
number of faults in the system. In Section 7.4 we define how the system is tested.
In Section 7.5 we introduce the concepts of a walking function and the walking
function update. Finally, in Section 7.6 we summarize the new notation introduced
in this chapter since it is used in the following ones. Some of the results shown in
this chapter are also presented in Corro Ramos et al. (2008).

7.1 Labelled transition systems and a diagram technique for
representation

As mentioned in the introduction of this chapter, our main goal is to develop statis-
tical software release procedures based on the architecture of software systems. We
assume that software systems can be considered as a set of components running as
one sequential process. We use a special kind of labelled transition systems to model
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such system, i.e., a graph model with labelled arcs. Labelled transition systems are
widely studied in computer science and can be defined as follows.

Definition 7.1 (Labelled transition system). A labelled transition system (LTS)
is a triple L = (S, T ,R), where

(1) S is a non-empty finite set whose elements are called states,

(2) T is a non-empty finite set whose elements are called transitions,

(3) R ⊆ S ×T ×S is a non-empty finite set whose elements are defined as follows:
for all t ∈ T there exist a unique pair of states (s, s′) ∈ S × S such that
(s, t, s′) ∈ R,

(4) there is exactly one state i ∈ S (called the initial state) such that there is no
triple (s, t, i) ∈ R,

(5) there is at least one state f ∈ S (called final state) such that there is no triple
(f, t, s) ∈ R,

(6) for any non-initial state s ∈ S\{i} there is a sequence (s1, t1, s2, . . . , sn, tn, sn+1)
such that (sk, tk, sk+1) ∈ R, for all 1 ≤ k ≤ n, s1 = i, and sn+1 = s, i.e., any
non-initial state is reachable from the initial one.

When we do not wish to specify the name of a transition we say that there is an arc
from s to s′. Given an LTS, for all s ∈ S, we define the preset and the postset of
s as

•s = {u ∈ S | ∃t ∈ T : (u, t, s) ∈ R}

and
s• = {v ∈ S | ∃t ∈ T : (s, t, v) ∈ R} ,

respectively.

We assume that a software component can be started if we follow a path leading to
the component. A path in an LTS can be defined in the following way.

Definition 7.2 (Path in an LTS). A path in an LTS is either the empty sequence,
denoted by ε, or a sequence p = (s1, t1, . . . , sn, tn, sn+1) such that, for all 1 ≤ k ≤ n,
(sk, tk, sk+1) ∈ R. We may use first(p) and last(p) to denote the first and the last
states of p, i.e., the states s1 and sn+1, respectively. A subpath of a path p is a
subsequence p′ of p such that p′ is also a path and it starts and ends with a state. A
path is said to be linear if for all sk, 1 < k < n+1, it follows that | •sk |=| sk• |= 1.
We say that a path p = (s1, t1, . . . , sn, tn, sn+1) is a cycle if s1 = sn+1. An LTS
is acyclic if it does not contain cycles. An LTS is said to be a one-path LTS if
| s• |= 1 for all non-final states s ∈ S.

In fact, the LTS defined above has the properties of an S-net, which is a special
structured Petri net (cf. Desel and Esparza (1995)), and it is simultaneously a
workflow net, another type of Petri net used to model business processes (cf. van der
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Aalst and van Hee (2002)). Labelled transition systems can be seen as a subclass
of Petri nets (see e.g. Desel and Esparza (1995) and Reisig (1985)) where each
transition has exactly one incoming and one outgoing arc. Petri nets are known
as abstract models of concurrent systems. The interest for Petri nets is caused by
their multiple applications in very different areas, including workflow management,
data analysis, logistics, diagnosis, reliability engineering, concurrent programming
and software design. Since we do not use concurrency here, we do not need the
full functionality of Petri nets. For that reason we have chosen the above class of
labelled transition systems as a model for software. We use a diagram technique for
our LTS that is derived from Petri nets (see Reisig (1985)). The LTS is displayed
as a graph with two types of nodes: circles for states and rectangles for state-
transitions (or simply transitions). Transitions are connected by directed arcs to
two states: an input state and an output state. Further, we introduce an extra
node, called or-construct and represented by a diamond, as a shortcut for a pattern
like in Figure 7.1. Note that it is easy to replace the or-construct by standard

Figure 7.1: Replacement of the or-construct (diamond) by standard constructs.

constructs: the or-construct is replaced by one new place, and a new transition is
added for each input or output place of the or-transition - connecting that place
with the newly added one.

7.2 Example of modelling software as a labelled transition
system

This example represents a simplified generic medical workflow of a hospital. The
business processes of the hospital are supported by an information system that is
mainly used for updating the electronic patient records, the planning of activities
and the application of medical protocols. In this process the patient is central and
each new illness of a patient is a new case that flows through the process. Each
activity in the process is associated with a software service performed by a software
component. We now describe the process in more detail. It starts with the intake
activity. Then a doctor observes the patient and makes a diagnosis. According to
this diagnosis the patient is released (no illness or not treatable) or a plan is made
for further investigations (testing) or a therapy is chosen. Each test or therapy has
its own specific activities and according to the outcomes and the plan, it is decided
to continue with testing or a therapy, or the patient goes back to the doctor for a
new diagnosis, in which case the whole process may be repeated. This process is
displayed in Figure 7.2. In fact, the model is made in Yasper, a Petri net tool (see
van Hee et al. (2006) for details). Since each activity is associated with a software
function embodied in a component, a trace through this process model is at the
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Figure 7.2: Generic medical workflow of a hospital.

same time a test run. We assume that when we call a software service associated
with an action we are able to see whether the function is correct or not. We will
return to this example in Section 8.3 to illustrate a real application of our whole
approach.

7.3 Error distribution

As explained in the previous section, we use a special type of labelled transition
systems for modelling software behaviour. Our main assumption is to represent
software components as transitions that either behave correctly or have an error.
We do not specify what an error is, in the sense that we do not classify it (see
Section 1.1.2). Note that we abstract from the real world by assuming that there is
a way to determine (perfectly without mistake) whether the execution of a transition
is conforming to the specifications (for example, by functional testing). Therefore,
for us an error is a symbolic labelling of a transition. Thus, the population of
interest here is a finite set of transitions, denoted by T , where two different types
of transitions are considered: error-marked and error-free.

Definition 7.3 (Error). A symbolic marking of transitions in an LTS is a function
M : T −→ {0, 1} such that

M(t) =

 1 if t is error-marked,

0 if t is error-free.
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The set N = {t ∈ T |M(t) = 1} is called the error set and the total number of
error-marked transitions is denoted by N .

We assume that the error-marking is the result of a random process done (by ac-
cident) by the programmers and that it is unknown to the tester. We define the
error-marking process as a Bernoulli process consisting of repeatedly performing
independent and identical Bernoulli trials. In this case, a Bernoulli trial consists of
selecting without replacement a transition t ∈ T and labelling it as an error with
unknown probability θ ∈ (0, 1). If T > 0 denotes the total number of transitions in
T and tj is the jth transition sampled from T , then the random variable

Yj =

 1 if tj is error-marked,

0 if tj is error-free,
(7.1)

for all j = 1, . . . , T , represents the marking of the corresponding transition. Note
that the random variables Y1, . . . , YT defined in this way are independent and iden-
tically distributed Bernoulli random variables with parameter θ. Therefore,

P [Yj = yj ] = θyj (1− θ)1−yj , (7.2)

for yj = 0, 1 and j = 1, . . . , T . In this way, after T trials, the Bernoulli error-marking
process finishes providing us a set of T transitions divided into error-marked and
error-free. We also adopt here the Bayesian approach introduced in Section 5.2.
Thus, we consider the marking probability as a random variable, denoted by Θ. In
particular, we assume that Θ follows a Beta distribution with parameters a > 0 and
b > 0. Therefore, the prior density function of Θ is given by

f(θ) =
θa−1(1− θ)b−1

β(a, b)
, (7.3)

for all θ ∈ (0, 1), where β(a, b) is the Euler Beta function. It is well-known that
the choice of this prior distribution is suitable for Θ since it has support on (0, 1)
and its flexibility (two-parameter distribution) can describe many different types of
situations. Moreover, the Beta distribution is a conjugate prior (see Section 5.2)
for Bernoulli likelihoods as we will see now. Conditional on {Θ = θ}, the random
variables Yj , for all j = 1, . . . , T , are i.i.d. from a Bernoulli distribution with
success parameter θ. Thus, we can write the joint probability mass function of
Y1 = y1, . . . , Yn = yn (denoted as in previous chapters by Y (n) = y(n)) given Θ = θ,
as follows:

P
[
Y (n) = y(n) | Θ = θ

]
=

n∏
j=1

P [Yj = yj | Θ = θ]

=
n∏
j=1

θyj (1− θ)1−yj

= θ
∑n
j=1 yj (1− θ)n−

∑n
j=1 yj .

(7.4)



7.3 Error distribution 137

Therefore, the posterior density function of Θ, denoted by g(θ | y(n)), can be com-
puted using (7.3), (7.4) and Bayes formula and it is given by

g(θ | y(n)) =
θã−1(1− θ)b̃−1∫ 1

0

ϑã−1(1− ϑ)b̃−1dϑ

, (7.5)

where ã =
∑n
j=1 yj+a and b̃ = n−

∑n
j=1 yj+b. Therefore, the posterior distribution

of Θ is also a Beta distribution with parameters ã and b̃. Next we study the cases
where the probability distribution of N (the total number of faults in the system)
is Binomial and Poisson, respectively.

7.3.1 Binomial distribution of error-marked transitions

With the definition of the marking of a transition given in (7.1), the total number
of error-marked transitions in T can be expressed as N =

∑T
j=1 Yj , where T =| T |.

We are interested in predicting the number of remaining error-marked transitions in
the system given that we have already seen n transitions in total and mn =

∑n
j=1 yj

are error-marked. This can be done by computing the probability mass function of
N given Y (n) = y(n). Application of the Bayes rule and the Law of Total Probability
yields

P
[
N = j | Y (n) = y(n)

]
= P

[
Y (n) = y(n) | N = j

]
×

×

∫ 1

0

P [N = j | Θ = θ] f(θ) dθ∫ 1

0

P
[
Y (n) = y(n) | Θ = θ

]
f(θ) dθ

,
(7.6)

where j ≥
∑n
j=1 yj . We now calculate all the probabilities in (7.6). First note that,

conditional on {Θ = θ}, the random variables Y1, . . . , YT are i.i.d. Bernoulli random
variables with parameter θ. Thus, given Θ = θ, the random variable N is binomially
distributed with parameters T and θ. Therefore,

P [N = j | Θ = θ] =
(
T

j

)
θj(1− θ)T−j . (7.7)

Note that also that P
[
Y (n) = y(n) | Θ = θ

]
is the result of a binomial experiment

where the order is taken into account. Thus,

P
[
Y (n) = y(n) | Θ = θ

]
= θmn(1− θ)n−mn . (7.8)

Finally, P
[
Y (n) = y(n) | N = j

]
can be computed as follows. First note that this

is the probability of having a sequence (y1, . . . , yn) of zeros and ones, given that
there are j error-marked transitions in a population of transitions of size T . We
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know that these j errors are randomly distributed (without replacement) over the T
transitions. Therefore, it is the same derivation as for a hypergeometric experiment
but we take the order in sequences into consideration. Thus, if we assume that there
are mn error-marked transitions in a sample of size n, then we can write

P
[
Y (n) = y(n) | N = j

]
=

(
T − j
n−mn

)
(n−mn)!

(
j

mn

)
mn!(

T

n

)
n!

=

(
T − j
n−mn

)(
j

mn

)
(
T

n

)(
n

mn

) .

(7.9)

Hence, substitution into (7.6) yields

P
[
N = j | Y (n) = y(n)

]
=
(
T − n
j −mn

) ∫ 1

0

θj(1− θ)T−jf(θ) dθ∫ 1

0

θmn(1− θ)n−mnf(θ) dθ
. (7.10)

Note that, in fact, the random sequence Y (n) is exchangeable, i.e., any permutation
of Y (n) has the same joint probability distribution as any other permutation (see
e.g. Schervish (1995)[p.28]). Therefore, we have that P

[
N = j | Y (n) = y(n)

]
=

P
[
N = j |

∑n
j=1 Yj = mn

]
, as we will see now. Conditional on {Θ = θ} the random

variable
∑n
j=1 Yj is binomially distributed with parameters n and θ. Therefore,

P
[ n∑
j=1

Yj = mn

∣∣∣ Θ = θ
]

=
(
n

mn

)
θmn(1− θ)n−mn . (7.11)

Moreover, in P
[∑n

j=1 Yj = mn | N = j
]
the order in the sequence Y (n) does not

play a role anymore. Thus,

P
[ n∑
j=1

Yj = mn

∣∣∣ N = j
]

=

(
T − j
n−mn

)(
j

mn

)
(
T

n

) . (7.12)

Therefore, if we compute P
[
N = j |

∑n
j=1 Yj = mn

]
, then we obtain exactly the

same result as in (7.10). In this way we show that, in order to predict the distribution
of N , we only require

∑n
j=1 Yj and not the whole sequence Y (n). Note also that

if new data is collected, then the posterior distribution of Θ can be computed as
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shown in (7.5). Therefore, we can use the posterior distribution of Θ as a new prior
in order to compute (7.10) again. This procedure of collecting data and updating
the distribution of Θ can be done in several stages. This idea is used in Chapter 8
to define fully sequential certification procedures. In particular, if we assume a prior
Beta distribution for Θ, then its density function is given by (7.3) and we can write
(7.10) as follows:

P
[
N = j | Y (n) = y(n)

]
=
(
T − n
j −mn

) ∫ 1

0

θj+a−1(1− θ)T−j+b−1 dθ∫ 1

0

θmn+a−1(1− θ)n−mn+b−1 dθ

. (7.13)

Note that when a = b = 1, the Beta distribution is in fact the Uniform distribution
on (0, 1) and (7.13) can be written as follows:

P
[
N = j | Y (n) = y(n)

]
=
(
T − n
j −mn

)
j!(T − j)!(n+ 1)!

mn!(n−mn)!(T + 1)!

=

(
T − n
j −mn

) (
n

mn

)
(
T

j

) n+ 1
T + 1

.

(7.14)

The choice of a prior Uniform distribution on the interval (0, 1) for Θ is often consid-
ered since it represents total ignorance about possible outcomes of Θ. In case that we
have some prior knowledge about the value of Θ, this should be reflected in the prior
distribution. Note that we can use (7.14) to compute P

[
N > mn | Y (n) = y(n)

]
, i.e.,

the probability of having remaining error-marked transitions in the system. A certi-
fication procedure based on the remaining number of error-marked transitions when
we decide to stop testing is presented in Section 8.1.

7.3.2 Poisson distribution of error-marked transitions

Let us consider an LTS where the total number of transitions, denoted by T , is
very large. Suppose also that from some past experience it is known that the error-
marking probability θ is very small. In fact, we may assume that when T →∞ and
θ → 0, the product Tθ tends to a non-zero constant λ. Under these conditions, a
Binomial random variable converges in distribution to a Poisson random variable
(see e.g. Ross (2007)[Section 2.2.4] for details). Therefore, we may assume that N
(the total number of error-marked transitions) follows a Poisson distribution with
parameter λ. Like in the binomial case we adopt a Bayesian approach (see Sec-
tion 5.2). Thus, we consider the parameter of the Poisson distribution as a random
variable, denoted by Λ. We assume here that Λ follows a Gamma distribution with
parameters a > 0 and b > 0. Therefore, the prior density function of Λ is given by

f(λ) =
λa−1e−λ/b

baΓ(a)
, (7.15)
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for all λ > 0, where Γ(a) is the Gamma function of a. It is well-known that the
choice of this prior distribution is suitable for Λ since it has support on (0,∞)
and its flexibility (two-parameter distribution) can describe many different types
of situations. Moreover, the Gamma distribution is a conjugate prior for Poisson
likelihoods (see e.g. DeGroot (2004)[Theorem 1, p.164]). We now compute the
probability mass function of N given Y (n) = y(n). Application of the Bayes rule
and the Law of Total Probability yields

P
[
N = j | Y (n) = y(n)

]
=

=
P
[
Y (n) = y(n) | N = j

] ∫ ∞
0

P [N = j | Λ = λ] f(λ) dλ

T∑
`=0

P
[
Y (n) = y(n) | N = `

] ∫ ∞
0

P [N = ` | Λ = λ] f(λ) dλ

.
(7.16)

Note that P
[
Y (n) = y(n) | N = j

]
is given in (7.9) and

P [N = j | Λ = λ] =
λje−λ

j!
, (7.17)

for all j ≥ 0. Note now that

∫ ∞
0

P [N = j | Λ = λ] f(λ) dλ =
∫ ∞

0

λj+a−1e−λ(1+ 1
b )

ba Γ(a) j!
dλ

=
Γ(j + a)

Γ(a) j! ba (1 + 1
b )−(j+a)

.

(7.18)

Substitution into (7.16) yields

P
[
N = j | Y (n) = y(n)

]
=

(
T − j
n−mn

)(
j

mn

)
Γ(j + a)

j! (1 + 1
b )−(j+a)

T∑
`=0

(
T − `
n−mn

)(
`

mn

)
Γ(`+ a)

`! (1 + 1
b )−(`+a)

. (7.19)

As mentioned in the case of the Binomial distribution of the error-marked transi-
tions, we can use (7.19) to compute the probability of having remaining error-marked
transitions in the system when we decide to stop testing. A certification procedure
based on this probability is presented in Section 8.1.

7.4 Testing process

In this section we describe our testing process introducing the assumptions and basic
concepts considered for this and the following chapters. We define a run as a path
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in an LTS. If a path ends without discovering an error-marked transition, then it is
said to be a successful run, and if it ends in an error-marked transition, then it is
said to be a failure run. Thus, at most one software fault can be found in one run.
The definition of run is as follows:

Definition 7.4 (Run in an LTS). Let L = (S, T,R) be an LTS with a unique initial
state, denoted by i. A run in L, denoted by σ, is a path σ = (i, t1, . . . , sn, tn, sn+1)
such that sk 6= sj, for all k 6= j, where 1 ≤ k ≤ n, 1 ≤ j ≤ n and s1 = i. A run
is said to be a successful run if and only if all transitions in σ are error-free, (i.e.,
M(t`) = 0, for all 1 ≤ ` ≤ n) and either sn+1 is a final state in L (i.e., | sn+1• |= ∅)
or σ is a cycle (i.e., there exists exactly one 1 ≤ k ≤ n such that sk = sn+1). A run
is said to be a failure run if and only if tn is the only error-marked transition in σ,
i.e., M(t`) = 0, for all 1 ≤ ` < n, and M(tn) = 1. We denote by Σ the set of all
runs in L.

The fault finding process consists of executing runs (which are either successful or
failure) in labelled transitions systems. As soon as a fault is discovered, it is repaired
before we continue testing. That means that the labelling of the transition at hand is
changed from 1 to 0. Thus, in this case, we can speak of perfect repair. Moreover, we
also assume that we do not introduce new faults during the reparation. Therefore,
the number of error-marked transitions in the system decreases as long as the system
is being tested. The time spent repairing faults is not considered here either. Thus,
we can speak of immediate repair of faults in this case. All the assumptions related
to software testing that we consider now are shown in Table 7.1.

Assumptions

Perfect fault detection

At most one fault can be found in one run

Simultaneous faults do not occur

As soon as a run ends (successful or failure) we start a new run

Immediate repair

Perfect repair

New faults are not introduced during reparation

Table 7.1: Software reliability assumptions for model-based testing.

We now define a special test procedure that specifies a probability distribution
on each branching point of an LTS. We called this procedure a walking function.

Definition 7.5 (Walking function). Let L = (S, T ,R) be an LTS. A walking func-
tion for L is a function w : T −→ [0, 1] such that for all non-final states s ∈ S, it
follows that

∑
t∈s•

w(t) = 1. We denote by W the set of all walking functions.
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Note that, according to Definition 7.1, each transition t in an LTS has exactly one
incoming state s. Thus, for t fixed, there do not exist two states s1, s2 ∈ S such that
t ∈ s1• and t ∈ s2•. Note also that if s is a final state, then s• = ∅ and a run stops
when it arrives at s (see Definition 7.4). For that reason the walking function is not
defined for final states. The walking function can be interpreted as follows. All the
transitions connected to the current state are weighted with nonzero probabilities
and therefore, all of them are reachable. When the system is in a certain state, the
next transition to be executed is chosen by a weighted random drawing based on the
walking function. After each successful run, the walking function may be updated in
order to produce a new one. This new walking function assigns probability zero to
some already executed transitions so that for the next execution those transitions
will not fire. Note that a zero probability transition can also be considered as a
non-existing transition. The update of the walking function is done by the following
procedure:

Definition 7.6 (Walking function update). Let L = (S, T ,R) be an LTS and Σ
the set of all runs in L. A Walking Function Update (WFU) function is a function
U :W × Σ −→ W such that for all w ∈ W and σ ∈ Σ, if w(t) = 0 for some t ∈ T ,
then U(w, σ)(t) = 0.

Thus, an update means that no transitions are added but transitions may get
blocked. A detailed description of a walking function and WFU function, as well as
a proof of exhaustiveness for the test procedure, are given in Section 7.5. However,
as mentioned in Section 1.1.4, software systems are becoming so complex that it is
often unfeasible to perform exhaustive testing in practice. In such a situation, sta-
tistical procedures must be considered in order to avoid exhaustiveness. Statistical
certification procedures are studied in detail in Chapter 8.

Let us now consider the random variable Xj representing the label (error-free or
error-marked) of the jth tested transition. Thus, we can define the testing process
as the random sequence X(T ) = (X1, . . . , XT ). In fact, X(T ) is a permutation of
the elements in {1, 2, . . . , T}. Note that the testing process is executed by the tester
and depends on the walking strategy. Note also that, besides the testing process,
we defined in (7.1) a different process, namely the error-marking process, as the
random sequence Y (T ) = (Y1, . . . , YT ) of i.i.d. Bernoulli random variables (with
success parameter θ). The error-marking process is executed by the programmers
and, as we will see below, it does not depend on the walking strategy. In this context,
x(n) = (x1, . . . , xn), for all n = 1, . . . , T , is the test history and mn =

∑n
j=1 yxj is

the number of observed error-marked transitions. Our main assumption here is
to consider the testing process to be non-anticipative, i.e., it does not depend on
future observed transitions but it may depend on the past (test history). Thus, if
U = {1, 2, . . . , T} \ {x1, . . . , xn} is the set of non-tested transitions, then for any
k ∈ U , we assume that

P
[
Xn+1 = k | X(n) = x(n), Y1 = y1, . . . , YT = yT

]
= P

[
Xn+1 = k | X(n) = X(n), Yx1 = yx1 , . . . , Yxn = yxn

]
.

(7.20)
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Therefore, the next transition to be observed, given by Xn+1, is independent of the
unseen transition marks. Although it is intuitively obvious, we will prove now that
the error-marking of transitions at the beginning (caused by the programmers) gives
the same distribution as error-marking on the fly (when a transition is tested). We
first need the following result.

Lemma 7.1. Let L = (S, T ,R) be an LTS with |T | = T ≥ 1. For any test history
x(n) = (x1, . . . , xn), n = 1, . . . , T , error-marking process y(T ) = (y1, . . . , yT ) and
k ∈ U (transition k is not tested), define the random vector Ỹ = (Y`1 , . . . , Y`T−1)
such that k 6∈ {`1, . . . , `T−1}. Then, with the convention that X(0) = 0, for any
y ∈ {0, 1} it follows that

P
[
Yk = y | X(n) = x(n), Ỹ = ỹ

]
= P

[
Yk = y | X(n−1) = x(n−1), Ỹ = ỹ

]
.

Proof. First note that

P
[
Yk = y | X(n) = x(n), Ỹ = ỹ

]
=

P
[
Yk = y,X(n) = x(n), Ỹ = ỹ

]
P
[
X(n) = x(n), Ỹ = ỹ

]
=

P
[
Xn = xn | X(n−1) = x(n−1), Yk = y, Ỹ = ỹ

]
P
[
Xn = xn | X(n−1) = x(n−1), Ỹ = ỹ

] ×

×
P
[
X(n−1) = x(n−1), Yk = y, Ỹ = ỹ

]
P
[
X(n−1) = x(n−1), Ỹ = ỹ

] .

(7.21)

By (7.20) we have that

P
[
Xn = xn | X(n−1) = x(n−1), Yk = y, Ỹ = ỹ

]
= P

[
Xn = xn | X(n−1) = x(n−1), Yx1 = yx1 , . . . , Yxn = yxn

]
,

and similarly

P
[
Xn = xn | X(n−1) = x(n−1), Ỹ = ỹ

]
= P

[
Xn = xn | X(n−1) = x(n−1), Yx1 = yx1 , . . . , Yxn = yxn

]
.

Substitution into (7.21) yields

P
[
Yk = y | X(n) = x(n), Ỹ = ỹ

]
=

P
[
X(n−1) = x(n−1), Yk = y, Ỹ = ỹ

]
P
[
X(n−1) = x(n−1), Ỹ = ỹ

]
= P

[
Yk = y | X(n−1) = x(n−1), Ỹ = ỹ

]
.
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Application of Lemma 7.1 and the independence property of Y1, . . . , YT (given the
success parameter θ) yields the following corollary.

Corollary 7.1. Under the conditions of Lemma 7.1, it follows that

P[Yk = y | X(n) = x(n), Ỹ = ỹ] = P [Yk = y] = θy(1− θ)1−y .

Therefore, the error labelling of the next transition to be observed is independent
of the transitions tested and the error labelling of the rest of transitions. With the
above corollary we can now prove the following.

Theorem 7.2. Let L = (S, T ,R) be an LTS with |T | = T . For any x(n) =
(x1, . . . , xn), y(n) = (y1, . . . , yn) and y ∈ {0, 1}, it follows that

P
[
YXn+1 = y | X(n) = x(n), Yx1 = y1, . . . , Yxn = yn

]
= θy(1− θ)1−y ,

where θ ∈ (0, 1) is the error-marking probability of Yj, for all j = 1, . . . , T , as defined
in (7.1).

Proof. Let us now consider Ỹ = (Yx1 , . . . , Yxn) and U = {1, 2, . . . , T}\{x1, . . . , xn}.
Then, by application of the Law of Total Probability we have that

P
[
YXn+1 = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

P
[
Yk = y,Xn+1 = k | X(n) = x(n), Ỹ = ỹ

]
.

(7.22)

We define now Y as the complement sequence of Ỹ , i.e., dom(Ỹ )∩dom(Y ) = ∅ and
dom(Ỹ ) ∪ dom(Y ) = T . Note that, in particular, Yk is an element of Y . Thus, we
can apply the Law of Total Probability and write (7.22) as follows:

P
[
YXn+1 = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

∑
y

P
[
Yk = y,Xn+1 = k | X(n) = x(n), Ỹ = ỹ, Y = y

]
×

× P
[
Y = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

∑
y:yk=y

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ, Y = y

]
×

× P
[
Y = y | X(n) = x(n), Ỹ = ỹ

]
.

(7.23)



7.4 Testing process 145

By (7.20) we have thatXn+1 is independent of the marking of the unseen transitions.
Therefore,

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ, Y = y

]
= P

[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ

]
.

(7.24)
Since (7.24) does not depend on y we can write (7.23) as follows:

P
[
YXn+1 = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ

] ∑
y:yk=y

P
[
Y = y | X(n) = x(n), Ỹ = ỹ

]
.

(7.25)

Note that for the second sum in (7.25) only the sum in the component yk is fixed
(which is equal to y). Therefore, we have that

∑
y:yk=y

P
[
Y = y | X(n) = x(n), Ỹ = ỹ

]
= P

[
Yk = y | X(n) = x(n), Ỹ = ỹ

]
. (7.26)

Substitution into (7.25) yields

P
[
YXn+1 = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ

]
P
[
Yk = y | X(n) = x(n), Ỹ = ỹ

]
.

(7.27)

Finally, by Corollary 7.1 and by (7.2), we can write (7.27) as

P
[
YXn+1 = y | X(n) = x(n), Ỹ = ỹ

]
=
∑
k∈U

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ

]
P [Yk = y]

= θy(1− θ)1−y
∑
k∈U

P
[
Xn+1 = k | X(n) = x(n), Ỹ = ỹ

]
= θy(1− θ)1−y .

(7.28)

Direct application of the Law of Total Probability in Theorem 7.2 yields the following
result.

Corollary 7.3. Under the conditions of Theorem 7.2, it follows that

P
[
YXn+1 = y

]
= θy(1− θ)1−y .
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Note that by assuming only that Xn+1 may depend on all known information from
the past, Theorem 7.2 holds for all possible walking strategies. Moreover, we have
also proved that marking the transitions in advance (by the programmer) is equiv-
alent to marking them on the spot, i.e., when you reach them. This property relies
crucially on the assumption that all transitions are i.i.d. error-marked with equal
probability.

7.5 Walking Strategies

In this section we introduce two executable examples of walking function updates for
labelled transition systems. A walking function update for general labelled transition
systems is presented in Section 7.5.1. The main idea is that after each successful
run we want to increase the probability of visiting new transitions. For that reason,
for the next run we may discard some already visited parts of the labelled transition
system in such a way that the reduced system remains a labelled transition systems.
We show that after a finite number of updates all the transitions are visited, so that
the updating procedure is exhaustive. We develop a similar walking function update
for a special subclass of labelled transition systems (acyclic workflow transition
systems) in Section 7.5.2.

7.5.1 Walking function update for labelled transition systems

We first give an informal description of a WFU function for LTS and successful
runs. Let L = (S, T ,R) be an LTS with walking function w. If L is a one-
path LTS, then we stop after the first successful run since we reach the final state.
Therefore, we assume that our system is not one-path. Given a successful run
σ = (i, t1, . . . , sn, tn, sn+1) in L we look for the last state, say sk, in the sequence σ
with at least two outgoing arcs. Since L is not a one-path LTS such a state always
exists. We update w to a new walking function w′ by setting w′(tk) = 0. By setting
w′(tk) = 0 we avoid to run tk the next time we reach sk. We do the same for tran-
sitions after tk until we reach either a state with more than one incoming transition
(if any) or sn+1 (in this situation it is a final state). An example of the application
of the WFU function is described in Figure 7.3. Suppose that (s0, t0, s1, t1, s2, t2, s1)
is a subpath of a successful run σ in L. We update w by setting w′(t2) = 0 since
s2 is the last state in the run with more than one outgoing arc. Note that this is
equivalent to removing t2 from L. The formal description of the WFU function is

s0 s1t0 t1

t2

s2

Figure 7.3: Sample of an LTS with a cycle p = (s1, t1, s2, t2, s1). Transition t2 can
be removed.
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given in Algorithm 1. We now study the validity of the walking function update

Algorithm 1: WFU function for an LTS and a successful run
input : L = (S, T ,R), σ = (s0, t0, s1, t1, . . . , tn, sn+1), w
output: w′ = U(w, σ)

var tail : Int1

var s : Int→ S
var w′ : T → [0, 1]
begin

s0 := i; tail := n; w′ := w2

while (tail ≥ 0) ∧ (| stail• |≤ 1) do
tail := tail − 13

end4

while (tail ≤ n∧ | •stail |≤ 1) do5

w′(ttail) := 0, tail := tail + 16

end7

end8

procedure. Note that the WFU function described in Algorithm 1 assigns, when
possible, probability zero to some already visited parts of the corresponding LTS.
We refer to the system after the update of the WFU as the reduced system.

Definition 7.7. (Reduced system) Let L = (S, T ,R) be an LTS with WFU function
U , w a walking function for L and σ a successful run. The reduced system L′ with
respect to w′ = U(w, σ) is the triple (S ′, T ′,R′) such that T ′ = {t ∈ T | w′(t) > 0},
S ′ = S \ {s ∈ S | •s ⊂ T̃ ∧ s• ⊂ T̃ }, where T̃ = {t ∈ T | w′(t) = 0}, and
R′ = R ∩ (S ′ × T ′ × S ′).

The next result shows that the reduced system after updating w remains an LTS.
The main issue is to prove that any state is reachable from the initial one (condition
(6) in Definition 7.1).

Theorem 7.4. Let L = (S, T ,R) be an LTS with WFU function U as defined by
Algorithm 1. If w is a walking function for L, then for any successful run σ in L
there exists at least one transition t in σ such that U (w, σ) (t) = 0. Moreover, the
reduced system L′ with respect to U and w remains an LTS and after a finite number
of iterations we test all transitions.

Proof. If L is a one-path LTS (see Definition 7.1), then there is nothing to prove
since after a successful run we stop our procedure and we do not update w. Assume
that L is not one-path and denote by σ = (i, t0, s1, . . . , tn, sn+1) a successful run in
L. Since L is not a one-path LTS, there exists a state sk in σ, with 0 ≤ k ≤ n, where
s0 = i, such that | sk• |> 1. According to Algorithm 1 we choose the last state in
the sequence σ with more than one outgoing arc and let it be sk. We consider the
path p = (sk, tk, sk+1, . . . , tn, sn+1). We update w by setting w′(tk) = w′(tk+1) =
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. . . = w′(tn) = 0. We now prove that the reduced system, denoted by L′, remains
an LTS. It suffices to verify that every state x ∈ L′ and not in p is reachable from
the initial one. Note that there always exists a path v from i to x in L. We consider
the following cases:

1. If p and v have no states in common, then v is also a path in L′ and we are
done.

2. Now assume that p and v have at least one state in common.

(a) Suppose first that sn+1 is a final state, i.e., | sn+1• |= 0. Obviously x
is not reachable from sn+1 and since sk is the only state in p with two
outgoing arcs in σ, sk is the only common state of p and v. Therefore, v
is a path from i to x via sk but not via tk. Thus, v is also a path in L′.

(b) Cycle case: suppose now that σ contains a cycle, i.e, sn+1 is observed
twice in σ and | sn+1• |> 0.

i. If sk is also in v, then two cases are possible. Either v is a path from
i to x via sk but not via tk, in which case v is also a path in L′, or
v is a path from i to x via tk which means (since sk is the last state
in σ with two outgoing arcs) that v passes through sn+1. Therefore,
there exists a path v′ from i to x via sn+1 (which does not include
the cycle) that is also a path in L′.

ii. If sk is not in v, then we have the following situation. Since p and v
have some nodes in common and since sk is the only state in p with
at least two outgoing arcs, the intersection of p and v must start in
a state, say s`, with more than one incoming arc (i.e., | •s` |≥ 2)
that occurs in the sequence of p after sk (i.e., k + 1 ≤ ` ≤ n + 1).
Moreover, (s`, t`, . . . , tn, sn+1) is a subsequence of both p and v. In
any case, sn+1 is also a state in v. Hence, there exists a path v′ in
L′ from i to x via sn+1.

For the last statement in the theorem recall that we discard at least one transition
after a successful run. Failure runs may not reduce L, but since the number of error
marked transitions is finite, after a finite number of runs we visit all the transitions
and thus an exhaustive procedure is defined.

Note that σ must be a successful run, otherwise Theorem 7.4 is not true. This
condition is illustrated in Figure 7.4. Suppose that (s0, t0, s1, t1, s2) is a subpath of a
failure run σ in L, where t2 is an error marked transition. According to Algorithm 1,
we would update the walking function w by setting w′(t1) = 0. However, the reduced
system is no longer an LTS because s2, s3, . . . would be unreachable.

7.5.2 Walking function update for acyclic workflow transition systems

We now present a WFU function update for a special type of LTS. Since this subclass
is in fact a special class of workflow nets, we call it workflow transition systems.
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s0 s1t0 t1

t3

s2 t2 s3

s4

Figure 7.4: Sample of an LTS where p = (s0, t0, s1, t1, s2) is a subpath of a failure
run. The WFU function given by Algorithm 1 cannot be applied.

Definition 7.8 (Workflow transition system). A workflow transition system (WTS)
is an LTS with the additional requirements that there is a unique final state f and
that for every state s 6= f there is a path from s to f .

We first give an informal description of the WFU function for acyclic (see Defini-
tion 7.1) workflow transition systems. Let W = (S, T ,R) be an acyclic WTS with
walking function w. We assume that W is not one-path since testing a one-path
WTS is trivial. Given a successful run σ in W we look for the first state, say s, in σ
with at least two outgoing arcs. Since W is not one-path such a state always exists.
Setting s as a marker, called “head”, we move forward through σ. If the next state
has exactly one incoming and one outgoing arc, then we move to the following state.
If we reach a state, say s′, with at least two outgoing arcs but only one incoming,
then we set s′ as “head”. We continue the same procedure until we find a state,
say s̃, with at least two incoming arcs. Such a state always exists because there is
exactly one final state, there are no cycles and the final state can be reached from
any other state. We update w to a new walking function w′ by setting w′(t) = 0, for
all t in σ between s′ and s̃. When this update has been done we continue moving
forward through σ looking for a new “head” and applying the same procedure until
we reach the final state f . Note that the workflow property is guaranteed because
of acyclicity. An example of the application of the WFU function is shown in Fig-
ure 7.5. Suppose that σ̃ = (b, t0, s1, t1, s2, t2, e) is a subpath of a successful run σ in
W . We update w by setting w′(t0) = 0. Note that this is equivalent to removing t0
from W . Similarly, in the situation illustrated in Figure 7.6, we update w by setting

bb t0 s1t0t0 t1 s2t1 t2 et3 s3 t4
Figure 7.5: Sample of an acyclic WTS where σ̃ = (b, t0, s1, t1, s2, t2, e) is a subpath
of a successful run. Since s1 and s2 have only one outgoing arc, transition t0 can be
removed.

w′(t0) = 0 and w′(t2) = 0. If in both cases (b, t3, s3, t4, e) was a subpath of σ, then
we would update w by setting w′(t3) = 0 and w′(t4) = 0. Note that the update
procedure is valid only for an acyclic WTS. Suppose that (b, t0, s1, . . . , s4, t4, b) is a
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bb t0 s1t0t0 t1 s2t1 t2 et3 s3 t4
Figure 7.6: Sample of an acyclic WTS where σ̃ = (b, t0, s1, t1, s2, t2, e) is a subpath
of a successful run. Since s1 has only one outgoing arc and s2 has two outgoing
arcs, transitions t0 and t2 can be removed.

cycle as it is shown in Figure 7.7, and suppose it is also a subpath of σ. According to
Algorithm 2 we would update w by setting w′(t0) = 0. However, the reduced system
is no longer a WTS because t5 could not be executed. The formal description of

bb

t0 s1t0t0 t1 s2t1 t2

s3

t4 s4 t3

t5

Figure 7.7: Sample of a WTS where p = (b, t0, s1, . . . , s4, t4, b) is a cycle. The WFU
function given by Algorithm 2 cannot be applied.

this WFU function is given in Algorithm 2. Similarly to the general case, we now
study the validity of the procedure for an acyclic WTS. Reduced WTS are defined
in a similar way as in Definition 7.7, therefore we skip a formal definition here.

Theorem 7.5. Let W = (S, T ,R) be an acyclic WTS with WFU function U as
defined by Algorithm 2. If w is a walking function for W , then for a successful run σ
in W there exists at least one transition t in σ such that U (w, σ) (t) = 0. Moreover,
the reduced system W ′ with respect to U and w remains a WTS and after a finite
number of updates we visit all transitions.

Note that the update procedure may be applied several times moving forward
through a successful run until the final state is reached. However we present a
proof for the case where the system is reduced only once. Given this proof, the
proof for multiple reductions is straightforward.

Proof. IfW is a one-path WTS, then there is nothing to prove since after a successful
run we stop our procedure and we do not update w. Assume that W is not a one-
path WTS and denote by σ = (i, t0, s1, . . . , tn, f) a successful run in W . Since W
is not a one-path WTS, there exists a state sk in σ, with 0 ≤ k ≤ n, where s0 = i,
such that | sk• |> 1. We can assume without loss of generality that sk is the “head”
marker in Algorithm 2 and let s`, with k < ` ≤ n, be the first state in σ after sk with
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Algorithm 2: WFU function for an acyclic WTS and a successful run
input : L = (S, T ,R), σ = (s0, t0, s1, t1, . . . , tn, sn+1), w
output: w′ = U(w, σ)

var head; current : Int1

var s : Int→ S
var w′ : T → [0, 1]
begin

s0 := i; sn+1 := f ; head := 0; current := 0; w′ := w2

while (current ≤ (n+ 1)) do
if (| •scurrent |> 1) then3

for (x = head to current− 1) do w(tx) := 04

endif5

if (| scurrent• |> 1) then6

head := current7

endif8

current := current+ 19

end10

end11

more than one incoming arc. We consider the path p = (sk, tk, sk+1, . . . , t`−1, s`).
Note that p is a linear subpath of σ. Therefore, we update w by setting w′(tk) =
. . . = w′(t`−1) = 0. We now prove that the reduced system, denoted byW ′, remains
a WTS. Consider an arbitrary state x in W that is not in p. Therefore, x is also a
state in W ′ and there exists a path v from i to f via x in W . If p is not a subpath
of v, then v is also a path in W ′ and we are done. Suppose now that p is a subpath
of v. Either p is a subpath from i to x or from x to f . Suppose that it is a subpath
from i to x. Since p is a linear path and passes via s` to x and | •s` |> 1, there
exists at least one other path from i to s` such that p is not a subpath of it (due
to acyclicity). Assume now that p is a subpath from x to f . Since | sk• |> 1 there
exists at least another path from sk to f such that p is not a subpath of it (again
due to acyclicity). Therefore, W ′ is a WTS. The final statement follows as in the
proof of Theorem 7.4.

To end this section, we now illustrate with a simple example the advantage of using
Algorithm 2 for acyclic WTS. We have shown in Section 7.5.1 that Algorithm 1 is
valid for general LTS. Therefore, if we do not have any information about whether
the system is an acyclic WTS or not, then we apply Algorithm 1. However, if we
know that the system is an acyclic WTS it is more efficient to use Algorithm 2 since
after a successful run it reduces at least the same number of transitions as Algo-
rithm 1. This is depicted in Figure 7.8. Suppose the path σ = (i, t0, s1, t1, s2, t2, f)
is a successful run. According to Algorithm 1 we update the walking function w
by setting w′(t2) = 0, i.e., the system is reduced by one transition. Nevertheless,
if we apply Algorithm 2, then we update w by setting w′(t1) = 0 and w′(t2) = 0,
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s0 s1t0 t1

t3

s2 t2

t4

f

Figure 7.8: Sample of an acyclic WTS where σ = (i, t0, s1, t1, s2, t2, f) is a successful
run. Transitions t1 and t2 can be removed by Algorithm 2. Only t2 can be removed
by Algorithm 1.

reducing thus the system by two transitions.

7.6 Common notation

All the concepts introduced throughout this chapter will be used in the following
chapters. For that reason the most common notation is summarized in Table 7.2 so
that the reader may refer back to this table should confusion about notation arise.
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Notation Definition

L = (S, T ,R) Labelled Transition System (LTS)

s state: element of S
i initial state of L

f final state of L

t transition: element of T
T total number of transitions in T
N initial number of error-marked transitions

θ error-marking probability

M(·) error-marking function

Yj marking of transition j

Xj tested transition in jth step (given by the walking strategy)

n number of observed transitions

mn number of observed error-marked transitions

σ run in an LTS

Σ set of all runs in an LTS

w(·) walking function

U(·, ·) Walking Function Update (WFU) function

Table 7.2: Common notation in model-based testing.





Chapter 8

Statistical Certification Procedures

In this chapter we present two certification procedures for the testing framework in-
troduced in Chapter 7. In that chapter we defined two random processes of interest,
namely the marking process and the testing process. In this chapter we consider the
process where only the transitions observed for the first time are taken into account.
We will refer to this as the embedded process. As shown in Corollary 7.1, the output
(error-free or error-marked) of the next transition to be observed is independent of
the output of the transitions already observed. Therefore, the embedded process
is independent from the way that the system is tested. Thus, we have reduced
model-based testing to black-box testing, although in this case we can keep track
of error-free and error-marked transitions which is impossible in black-box testing.
We also provide two statistical stopping rules, that are independent of the under-
lying way of walking through the system, which allows us to stop earlier with a
certain statistical reliability. In Section 8.1 we present our first stopping rule, which
is based on the probability of having a certain number of remaining error-marked
transitions when we decide to stop testing. Like in Chapter 5, we also define the
risk of taking a wrong decision and prove that when we stop testing the global risk
can be controlled. Our second stopping rule is based on the survival probability
of the system and it is presented in Section 8.2. Since we now have the notion of
transition (see Definition 7.1), we can define the survival probability as the proba-
bility of consecutively observing a certain number of error-free transitions. In this
case, we also prove that the global risk can be controlled. Finally, in Section 8.3 we
illustrate our whole approach with an example based on the model of the generic
medical workflow of a hospital presented in Section 7.2.

8.1 Certification procedure based on the number of remain-
ing error-marked transitions

Let L = (S, T ,R) be an LTS, as in Definition 7.1, with | T |= T . Consider the error-
marking process Y (n) = (Y1, . . . , Yn) and the testing process X(n) = (X1, . . . , Xn), as
defined in Section 7.3 and Section 7.4, respectively. The process Z(n) = (Z1, . . . , Zn),
where Zj = YXj , for all j = 1, . . . , n, is called the embedded process. Note that the
embedded process only considers the transitions observed for the first time. With the
above notation x(n) = (x1, . . . , xn) is the test history and

∑n
j=1 zj is the number

of observed error-marked transitions. We have shown in Corollary 7.3 that the
random variable Zj is a Bernoulli random variable with success parameter θ (the
marking probability). We now compute a statistical stopping rule that certifies with
high confidence that at most k ≥ 0 error-marked transitions are left in the system
when we decide to stop testing. If we fix a reliability level, denoted by 1 − δ, for
some δ ∈ (0, 1), and N denotes the random variable representing the total number

155
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of error-marked transitions in the system, then our release procedure consists of
observing the minimal number of new transitions, denoted by n, such that

Rn,k(z) = P

 n∑
j=1

zj ≤ N ≤ k +
n∑
j=1

zj

∣∣∣ Z(n) = z

 ≥ 1− δ . (8.1)

The above stopping rule defines a stopping time for the embedded process as we ex-
plain now. In general, a stopping time for a sequence of random variables Z1, Z2, . . .
is an integer-valued random variable, denoted by S, such that the event {S = s}
belongs to the σ−algebra generated by Z1, . . . , Zs, for all s = 1, 2, . . . (cf. Grimmett
and Stirzaker (1988)[p.487]). In this case

S = min
{
s | Rs,k(Z(s)) ≥ 1− δ, ∀1 ≤ j ≤ s− 1 : Rj,k(Z(j)) < 1− δ

}
,

is a stopping time for the embedded process. Note that in order to compute (8.1)
we only need the posterior probability distribution of N . In case of a Binomial or
a Poisson prior distribution for N , this can be computed using (7.10) and (7.19),
respectively. Like in Chapter 5, we are also interested in the risk due to a wrong
decision. In this case, it can be defined as follows. Our procedure certifies that if∑n
j=1 zj error-marked transitions have been observed in a sample of n transitions,

then, with probability at least 1 − δ, there are at most k error-marked transitions
left in the system. Therefore, the risk after observing n transitions is the probability
of having more than k remaining error-marked transitions in the system and can be
defined as

Gn,k = P
[
N > k +

n∑
j=1

Zi,∀1 ≤ j ≤ n− 1 : Rj,k(Z(j)) < 1− δ,Rn,k(Z(n)) ≥ 1− δ
]
.

(8.2)

Note that the risk Gn,k is the probability that N exceeds the limit that the stopping
rule prescribes when stopping after observing n transitions. Taking the sum over
all n, we define the global risk

Gk =
∑
n>0

Gn,k . (8.3)

As done with the procedures described in Chapter 5, we are interested in finding
a condition on the local risk that guarantees that the global risk is bounded. The
next theorem shows the desired result.

Theorem 8.1. For any k ≥ 0, δ ∈ (0, 1) and n ≥ 0 such that the stopping criterion
is Rn,k(z) ≥ 1− δ, it follows that Gk ≤ δ.

Proof. We can apply the Law of Total Probability and write the risk after observing
n transitions in (8.3) as follows:
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Gn,k =
∑
z

P
[
N > k +

n∑
j=1

zi,∀1 ≤ j ≤ n− 1 : Rj,k(z(j)) < 1− δ,

Rn,k(z(n)) ≥ 1− δ
∣∣∣ Z(n) = z

]
P
[
Z(n) = z

]
=
∑
z∈An

P
[
N > k +

n∑
j=1

zi

∣∣∣ Z(n) = z
]
P
[
Z(n) = z

]
,

(8.4)

where

An = {z | Rn,k(z) ≥ 1− δ, ∀1 ≤ j ≤ n− 1 : Rj,k(z) < 1− δ} ,

for any n ≥ 0. Since we assume that

P
[ n∑
j=1

zi ≤ N ≤ k +
n∑
j=1

zi

∣∣∣ Z(n) = z
]
≥ 1− δ ,

then also

P
[
N ≤ k +

n∑
j=1

zi

∣∣∣ Z(n) = z
]
≥ 1− δ .

Therefore, we get
Gn,k ≤ δ

∑
z∈An

P
[
Z(n) = z

]
. (8.5)

Thus, for the global risk in (8.3) we have that

Gk ≤ δ
∑
n≥1

∑
z∈An

P
[
Z(n) = z

]
= δ

∑
n≥1

P
[
Z(n) ∈ An

]
= δ P

[ ⋃
n≥1

Z(n) ∈ An
]

= δ ,
(8.6)

where the last equality holds since An are disjoint for all n ≥ 1 and testing is always
stopped (the probability on the right-hand side of (8.6) is equal to 1 since it is the
sum over all n ≥ 1).

8.2 Certification procedure based on the survival probability

In the line of the certification procedure presented in Section 5.3, we present in this
section a certification procedure based on the survival probability of the system. As
mentioned in the previous section, we consider the embedded process. With the
notation used in Section 8.1, we define the k-step conditional survival probability
(for the embedded process) as follows:

Sn,k(z) = P

[
k⋂
`=1

{Zn+` = 0}
∣∣∣ Z(n) = z

]
, (8.7)
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for all 0 ≤ k ≤ T − n. Note that the above probability is the probability of
observing k new consecutive error-free transitions given that we already know the
output (error-free or error-marked) of n transitions. Note also that the embedded
process is independent from the way the system is tested since it only considers
the new transitions but not when they are discovered (it is defined for one or more
runs since just the next new transition counts). Therefore, we may observe many
transitions before we will encounter a new error-marked transition. If we fix a
reliability level 1 − δ, then our release procedure consists of finding the minimal
number of new transitions such that Sn,k(z) ≥ 1− δ. In this case, we can define the
stopping time

S = min
{
s | Ss,k(Z(s)) ≥ 1− δ, ∀1 ≤ j ≤ s− 1 : Sj,k(Z(j)) < 1− δ

}
,

and the risk after observing n transitions

Hn,k = P
[min{k,T−n}⋃

`=1

{Zn+` = 1}, ∀1 ≤ j ≤ n− 1 : Sj,k(Z(j)) < 1− δ,

Sn,k(Z(n)) ≥ 1− δ
]
.

(8.8)

Taking the sum over all n ≥ 0, we define the global risk

Hk =
∑
n>0

Hn,k . (8.9)

As in the previous section, the next theorem shows that if the k-step conditional
survival probability is bounded, then the global risk is also kept under control. The
proof is very similar to the one of Theorem 8.1.

Theorem 8.2. For any k ≥ 0, δ ∈ (0, 1) and n ≥ 0 such that the stop criterion is
Sn,k(z) ≥ 1− δ, it follows that Hk ≤ δ.

Proof. We can apply the Law of Total Probability and write the risk after observing
n transitions in (8.8) as follows:

Hn,k =
∑
z

P
[min{k,T−n}⋃

`=1

{Zn+` = 1}, ∀1 ≤ j ≤ n− 1 : Sj,k(z(j)) < 1− δ,

Sn,k(z(n)) ≥ 1− δ
∣∣∣ Z(n) = z

]
P
[
Z(n) = z

]
=
∑
z∈Bn

P
[min{k,T−n}⋃

`=1

{Zn+` = 1}
∣∣∣ Z(n) = z

]
P
[
Z(n) = z

]
,

(8.10)

where

Bn = {z | Sn,k(z) ≥ 1− δ, ∀1 ≤ j ≤ n− 1 : Sj,k(z) < 1− δ} ,
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for any n ≥ 0. Note that, for all z ∈ Bn, it follows that

P
[min{k,T−n}⋃

`=1

{Zn+` = 1}
∣∣∣ Z(n) = z

]
= 1− Sn,k(z) .

Since we assume that Sn,k(z) ≥ 1− δ, we get

Hn,k ≤ δ
∑
z∈Bn

P
[
Z(n) = z

]
. (8.11)

Therefore, for the global risk in (8.9) we have that

Hk ≤ δ
∑
n≥1

∑
z∈Bn

P
[
Z(n) = z

]
= δ

∑
n≥1

P
[
Z(n) ∈ Bn

]

= δ P

⋃
n≥1

Z(n) ∈ Bn

 = δ ,

(8.12)

where the last equality holds since Bn are disjoint for all n ≥ 1 and testing is always
stopped (the probability on the right-hand side of (8.12) is equal to 1 since it is the
sum over all n ≥ 1).

We are interested in obtaining an expression for the k-step conditional survival
probability depending on the posterior distribution of the number of error-marked
transitions in the system. The following lemma gives the desired result.

Lemma 8.1. Let Z(n) = (Z1, . . . , Zn) be the random variables representing the
error-marking of the transitions given by the test history of the process. If mn =∑n
j=1 zj, then the k-step conditional survival probability after observing n transitions

is given by

Sn,k(z) =
T−(n−mn+k)∑

j=mn

(
T − n− j +mn

k

)
(
T − n
k

) P[N = j | Z(n) = z] .

Proof. First note that if we have observed n − mn error-free transitions and we
require also that the next k new transitions to be observed are error-free, then the
maximum number of possible error-marked transitions in the system is given by
T − (n−mn + k). Thus, application of the definition of conditional probability and
the Law of Total Probability to (8.7) yields

Sn,k(z) =
T−(n−mn+k)∑

j=mn

P
[ k⋂
`=1

{Zn+` = 0}
∣∣∣ Z(n) = z,N = j

]
P
[
N = j | Z(n) = z

]
.

(8.13)
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Finally, P
[⋂k

`=1{Zn+` = 0} | Z(n) = z,N = j
]
can be computed as follows. First

note that this is the probability of observing k consecutive error-free transitions,
given the sequence Z(n) = z and that there are N = j error-marked transitions
in a population of transitions of size T . Thus, there are T − n unknown transi-
tions from which j −mn are error-marked. Therefore, a similar derivation as for a
hypergeometric experiment yields

P

[
k⋂
`=1

{Zn+` = 0}
∣∣∣ Z(n) = z,N = j

]
=

(
T − n− j +mn

k

)
(
T − n
k

) . (8.14)

Substitution into (8.13) yields the desired result.

Note that it is possible that before observing a new transition we observe many old
ones and to observe a new one may take a long time. Thus, the stopping rule does
not mean to survive k steps but k new transitions which may be much more than
k steps. Note now that if we know the posterior distribution of N , then we can
compute the k-step conditional survival probability of the system according to the
above lemma. For example, if we consider that N follows a Binomial distribution
(with random marking probability Θ and density function f), like in Section 7.3.1,
then we can use (7.10) to write

Sn,k(z) =
T−n−k+mn∑

j=mn

(
T − n− k
j −mn

) ∫ 1

0

θj(1− θ)T−jf(θ) dθ∫ 1

0

θmn(1− θ)n−mnf(θ) dθ
. (8.15)

If we do not want to assume any prior knowledge about Θ, we can consider that it
has the Uniform distribution on (0, 1) as prior distribution, and thus f(θ) = 1, for
all θ ∈ (0, 1). In this case, the k-step conditional survival probability is given by

Sn,k(z) =
n+ 1
T + 1

(
n

mn

) T−n−k+mn∑
j=mn

(
T − n− k
j −mn

)
(
T

j

) . (8.16)

Note that the embedded process with Binomial distribution for the number of error-
marked transitions is very easy to simulate. A simulation here consists of generating
an array of length T where each element can have two possible values, representing
an error-free or an error-marked transition. The distribution of the number of errors
in the array follows a Binomial distribution with parameters T and θ. After the
array is generated, we can compute the stopping rule for different values of k. In
Table 8.1 we show the mean number of transitions and the mean number of error-
marked transitions left (and the corresponding standard deviations) as a result of
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the the application of the survival probability stopping rule (for 1 − δ = 0.90) for
several values of k considering an array of length T = 500 when Θ is sampled from
an Uniform distribution on the interval (0, 0.1) over 100 replications. As one may

Number of Transitions Errors Left
Number of survivals Mean Std. Dev. Mean Std. Dev.

k = 1 42.94 71.94 18.09 3.38
k = 2 180.54 215.55 12.96 8.63
k = 3 293.16 219.17 8.66 9.00
k = 4 354.20 204.86 6.21 8.59
k = 5 393.44 186.81 4.59 7.96

Table 8.1: Mean and and standard deviation of number of new transitions and
number of error-marked transitions left as a result of the the application of the
survival probability stopping rule with reliability 1− δ = 0.90 for several values of k
when T = 500 and Θ is sampled from an Uniform distribution on (0, 0.1) over 100
replications.

expect, the number of observed transitions needed to stop testing increases with the
value of k while the number of remaining error-marked transitions after stopping
decreases.

8.3 Practical application

In this section we illustrate our whole approach with a real example using the model
of the generic medical workflow of a hospital presented in Section 7.2. Although the
model used in this example is small, it is enough to illustrate the whole procedure
and to show how the approach will work in large cases. We have two main goals in
this section:

(i) Study the effect of the reduction algorithm described in Section 7.5 in the test
procedure.

(ii) Study the performance of the stopping rules described in sections 8.1 and 8.2.

For comparison purposes we introduce two other stopping rules: the exhaustive rule
and the error-free rule. The exhaustive stopping rule says that when all transitions
are observed, testing can be stopped and it is used for (i) above. The error-free
stopping rule is used for (ii) above and it says that testing can be stopped when all
error-marked transitions are found. Note that this is only possible in the experiment
but not in reality since the number of faults in the system is unknown.

8.3.1 General setup

We have uniformly distributed 5 errors over the system described in Figure 7.2, i.e.,
we have given a special label to 5 transitions where all the transitions had the same
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probability of having this label. Note that this is a fairly high number of error-
marked transitions considering that the total number of transitions in this example
is 22. We have performed 20 paired experiments using the reduction procedure
described in Section 7.5 (further denoted by R) and non-reduction (denoted by
NR). Paired means here that the distribution of the error-marked transitions is fixed
beforehand and two experiments, one using reduction and one without reduction,
are performed for the same configuration of error-marked transitions. We consider
the following stopping rules

• R1(k, δ): remaining error-marked transitions rule. This denotes the stopping
rule described in Section 8.1.

• R2(k, δ): survival probability. This denotes the stopping rule described in
Section 8.2.

• R3: error-free rule.

• R4: exhaustive rule.

Note that R1 and R2 are practical stopping rules while R3 and R4 are theoretical
stopping rules for comparison as explained in the introduction of this section. We
have recorded the number of runs provided by each stopping rule and we display
the mean and the standard deviation. We have also computed the number of error-
marked transitions left due to an early stop. Due to the small number of transitions
in the example, the Poisson distribution for the total number of error-marked tran-
sitions in the system is not considered (see Section 7.3.2 for details). Therefore, we
only consider a Binomial distribution for the number of error-marked transitions. In
particular we assume that the prior distribution for the error-marking probability,
denoted by Θ in Section 8.1, is Uniform on (0, 1). In this case, the survival proba-
bility is given by (8.16). The reliability level is fixed to 1 − δ = 0.90. However, for
this reliability level, the R1(k, 0.10) stopping rule can only be computed for k = 1,
since for any k > 1, it follows that Rn,k(z) < 0.90, for all n < T . Thus, the stopping
condition (8.1) holds only for n = T , which means exhaustiveness. Therefore, using
(8.1), we have calculated the probability of having at most one remaining error-
marked transition. The same remark applies to the R2(k, 0.10) stopping rule (it can
only be computed for k = 1).

8.3.2 Performance of the stopping rules

We now study the performance of the stopping rules mentioned in Section 8.3.1. All
the results, using reduction (R) and non-reduction (NR), are shown in Table 8.2.
The main conclusions we can extract are the following:

1. The reduction algorithm is efficient (see row R4): the algorithm is reducing
exhaustive search from 52.75 to 15.60 mean number of runs.

2. The R1(1, 0.10) stopping rule is efficient: it is almost at the same level of error-
freeness (R3). However, it has a small error, namely the remaining number
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Number of Runs Errors Left
Mean Std. Dev. Mean

R NR R NR R NR
R1(1, 0.10) 12.75 32.25 1.33 12.00 0.60 0.45
R2(1, 0.10) 13.50 38.30 4.84 25.03 0.75 1.25
R3 13.25 35.40 1.75 20.25 - -
R4 15.60 52.75 1.24 22.02 - -

Table 8.2: Mean number of runs, standard deviation of runs and mean number of
error-marked transitions left, comparing our reduction procedure and the general
procedure, for several stopping rules.

of error-marked transitions, on average 0.60 (R) and 0.45 (NR). In any case,
it is on average smaller than the fixed bound (the rule says at most k = 1
error-marked transition left). Moreover, the R1(1, 0.10) stopping rule reduces
exhaustive search in about 40%.

3. The R2(1, 0.10) stopping rule is efficient: it is also almost at the same level
of error-freeness (R3) but with an average number of remaining error-marked
transitions of 0.75 (R) and 1.25 (NR). It was observed during testing the sys-
tem for a fixed configuration of error-marked transitions that the stopping rule
performed in the following way: either all the error-marked transitions were
discovered (exhaustive) or none of them were discovered. This is because the
number of transitions in the system is small. Thus, as soon as the first error-
marked transition is discovered, the procedure never stops before observing all
transitions. If in the beginning of testing we observe 8 consecutive error-free
transitions, then the procedure stops, leaving all the error-marked transitions
undetected.

The efficiency of the reduction algorithm described in Section 7.5 can be statisti-
cally quantified via hypothesis testing as follows. Let us first consider the random
variables WR and WNR representing the number of runs to stop testing using the
R4 stopping rule (exhaustive) when testing is performed with and without reduction,
respectively. If µR and µNR denote the corresponding mean of WR and WNR, then
we are interested in testing

H0 : µR − µNR = 0

against the alternative
H1 : µR − µNR < 0 .

In case we do not reject H0, we can conclude that the reduction algorithm does not
have any influence on exhaustive testing in terms of the expected number of runs
to reach exhaustiveness. Since the observations are collected in pairs, we can think
of performing the usual paired-sample t-test (see e.g. Ross (2005)[Section 10.5])
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for the hypothesis that the two population means compared are equal. This test
requires a normal distribution for the data. The Kolmogorov test and the Shapiro-
Wilk test (see e.g Sheskin (2004)[Chapter 7] for details on both tests) have been
performed to test the normality of the data and in case where testing is performed
using reduction the conclusion was that we reject the hypothesis that the data came
from a normally distributed population. In this situation, when we cannot assume
a normal distribution for the data, we can use the Wilcoxon signed-rank test (cf.
Ross (2005)[Section 14.3] and Sheskin (2004)[Chapter 6]). The Wilcoxon signed-
rank test is a non-parametric test that does not require any assumptions about the
distribution of the data and can be used to test the hypothesis of equal means. The
test has been performed for a significance level α = 0.05 and its result yields to
rejection of the null hypothesis (p-value � α). This confirms what we observed in
Table 8.2 (row R4): the reduction algorithm is efficient since it reduces exhaustive
searching in terms of mean number of runs.

In a similar way we can statistically test the efficiency of the R1 and R2 stopping
rules. Let us now consider the random variable Wj representing the number of
runs to stop testing using the Rj stopping rule and our reduction algorithm, for
j = 1, 2, 3. Note also that, besides the above random variables, we could also define
the analogous random variables without using the reduction algorithm. However,
we do not consider them here. In a similar way, if µj denotes the mean of Wj , then
we are interested in testing

H0 : µ` − µj = 0 ,

for all `, j = 1, 2, 3, ` 6= j, against a two-sided alternative in this case. If we do
not reject H0, then we can conclude that the expected performance of the two
stopping rules being compared is the same. Also in this case the non-normality of
the observations does not allow to perform the paired-sample t-test. Therefore, the
Wilcoxon signed-rank test has also been used here. The tests have been performed
for a significance level α = 0.05 and their results, given by the corresponding p-value,
are shown in Table 8.3. We observe that in all cases the result of the test yields to

Stopping rules comparison
H0 Test Statistic p−value Conclusion

µ1 = µ3 −0.97 0.32 Do not reject
µ2 = µ3 −0.84 0.39 Do not reject
µ1 = µ2 −1.81 0.07 Do not reject

Table 8.3: Comparison of several stopping rules.

non-rejection of the null hypothesis (p−value larger than 0.05). The first two tests
confirm what we expected from Table 8.2: the R1(1, 0.10) and R2(1, 0.10) rules are
efficient since their expected performance is equal to the expected performance of
the R3 rule (error-freeness). From the third test we can conclude that the mean
number of runs to stop testing using the R1(1, 0.10) stopping rule is the same for
the R2(1, 0.10) rule. However, the p−value is very small (almost 0.05). Moreover,
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as observed in Table 8.2, the R1(1, 0.10) rule seems to perform better in this case
since the number of runs, the standard deviation and the number of error-marked
transitions left are smaller than for the R2(1, 0.10) rule.





Chapter 9

Testing the Test Procedure

In the last two chapters we have developed a test procedure for software systems
assuming that these can be modelled as a special kind of labelled transition systems.
We can distinguish two main parameters in our test procedure, namely the walking
strategy and the stopping rule. Different walking strategies and stopping rules are
described in Section 7.5 and Chapter 8, respectively. In this chapter we discuss
how these two parameters may influence the result of the whole test procedure and
how to measure their quality. Because walking strategies and stopping rules can be
very complex, we have no analytical methods to determine their quality in general.
Therefore, we have to resort to empirical methods. In order to do so, we need a
population of labelled transitions systems that could be used as benchmark. Instead
of fixing some finite set of labelled transition systems, we define a mechanism to
generate an infinite population of labelled transition systems, each element having
a certain probability of being generated. We will see in Section 9.1 that the whole
class of labelled transition systems can be synthesized by repeated application of
the so-called M-operator. Based on this approach, we describe in Section 9.2 a
procedure to test the quality of different test procedures. Finally, in Section 9.3 we
report on the status of a software tool that can be used to study in an experimental
way different test procedures for software systems that can be modelled as labelled
transition systems.

9.1 Generating random models

Labelled transition systems can be synthesized out of smaller labelled transition
systems by applying certain rules. We focus on the generation of labelled transition
systems by a synthesis rule defined by the so-calledM-operator (see Definition 9.1).
Similar rules can be found in Berthelot (1978), Desel and Esparza (1995), Murata
(1989), Suzuki and Murata (1983) and Valette (1979) for Petri nets. The difference
with these papers is that we are not interested in preservation of properties like
boundedness and liveness, but we wish to preserve correctness, i.e., conditions (1)
to (6) in Definition 7.1. Such rules are proved to be sound and complete for labelled
transition systems, which means that:

(i) all generated labelled transition systems are correct (soundness),

(ii) any LTS can be generated (completeness).

Thus, the set of all labelled transition systems can be synthesized by repeated ap-
plication of such rules. We first introduce a synthesis rule for labelled transition
systems called theM-operator.

167
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Definition 9.1 (M-operator). Let S̃ be a set of state labels and T̃ a set of transition
labels such that T̃ ∩ S̃ = ∅. If L = (S, T ,R) is an LTS, then S ⊆ S̃ and T ⊆ T̃ .
We denote by L the set of all labelled transition systems and by P = (S̃ × T̃ × S̃)∗

the set of all linear paths. Let p = (b, t1, s1, . . . , sn−1, tn, e) be a linear path such
that {b, e} ⊆ S, {s1, . . . , sn−1} ∩ S = ∅ and {t1, . . . , tn} ∩ T = ∅. We define the
M-operator as a functionM : L×P −→ L such thatM(L, p) = (S ′, T ′,R′), where

(1) S ′ = S ∪ {s1, . . . , sn−1},

(2) T ′ = T ∪ {t1, . . . , tn},

(3) R′ = R∪ {(b, t1, s1), (s1, t2, s2), . . . , (sn−1, tn, e)} .

Thus, theM-operator extends a given LTS with a linear path of finite length. This
leads us to define the following relationship between two labelled transition systems.

Definition 9.2. Let L1 = (S1, T1,R1) and L2 = (S2, T2,R2) be two labelled transi-
tion systems. We say that L1 is a sub-LTS of L2, or equivalently L2 is a super-LTS
of L1, if and only if S1 ⊆ S2, T1 ⊆ T2 and R1 ⊆ R2. We denote this situation by
L1 ⊆ L2.

Note that, in fact, theM-operator creates a super-LTS of a given LTS. This can be
seen as gluing a linear path to an LTS and can be defined as follows:

Definition 9.3. Let p1 = (s1, t1, . . . , tn−1, sn) and p̃ = (s̃1, t̃1, . . . , t̃m−1, s̃m) be two
paths (not necessarily linear) in an LTS such that sn = s̃1. We define the glued path
of s and s̃ by s ◦ s̃ = (s1, t1, . . . , sn, t̃1, . . . , s̃m). We called ◦ the gluing operator.

Note that the glued path s ◦ s̃ is also a path in an LTS according to Definition 7.1.
The definition of theM-operator also implies that we add a path that does not have
cycles. This is important for the proof of completeness as we will see below. For
that reason, the following result is needed. Since the proof is quite straightforward,
we skip it here and refer to Corro Ramos et al. (2006a) for details.

Lemma 9.1. Let p be a path in an LTS. If p has cycles, then there exists another
non-empty path p̃, without cycles, such that p̃ is a subpath of p, first(p̃) = first(p)
and last(p̃) = last(p).

Finally, the next two theorems show that the M-operator is sound and complete
for labelled transitions systems.

Theorem 9.1 (Soundness). Let L = (S, T ,R) be an LTS. Suppose that p =
(b, t1, s1, . . . , sn−1, tn, e) is a linear path such that {b, e} ⊆ S, {t1, . . . , tn} ∩ T = ∅
and {s1, . . . , sn−1} ∩ S = ∅. Then, M(L, p) is an LTS. Thus, the M-operator is
sound for labelled transition systems.

Proof. Let us considerM(L, p). This is an extension of L and since the extension of
L is a new path from b to e it holds that there is no new nor final state introduced
and every node of L is still on a path from i to f . Since b and e are on paths from
i to f , there is a path u from i to b and a path v from e to f . So every new node
x ∈ {t1, . . . , tn} ∪ {s1, . . . , sn−1} is on a path from i to f , namely u ◦ p ◦ v.
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Theorem 9.2 (Completeness). Let S̃ and T̃ be disjoint sets of states and transitions
labels. Every LTS over S̃ and T̃ can be constructed by repeated application of the
M-operator.

Proof. Let L = (S, T ,R) be an arbitrary LTS over S̃ and T̃ , respectively, with an
initial state i and a set of final states {f1, . . . , fk}.

1. Initial step: Consider L0 = ({i, f1, . . . , fk},∅,∅). Note that L0 is a sub-LTS of
L according to Definition 9.2.

2. Iteration: Let Ln = (Sn, Tn,Rn) be an LTS such that Ln ⊆ L. Choose a
transition t ∈ T \ Tn. Since L is an LTS, there exists a path p from i to a final
state, say f`, with 1 ≤ ` ≤ k, via t in L. We can consider p = u ◦ v ◦ w, where
first(u) = i, last(u) = b, first(v) = b, last(v) = e, first(w) = e, last(w) = f`
and b and e are the only nodes in v that are also in Sn ∪ Tn. Clearly v is not
empty (at least it contains one transition). If v is not linear, then by Lemma 9.1
there is a (non-empty) linear path, denoted by ṽ, that is also a subpath of v and
it is such that first(ṽ) = b and last(ṽ) = e. Note that t may not be a transition
on ṽ. Consider now Ln+1 =M(Ln, ṽ). We have the following properties:

(a) Ln+1 ⊆ L: we have added a path ṽ of L to Ln so only nodes from S ∪ T
and arcs from R are added.

(b) Ln+1 is an LTS: this is trivial by the soundness property of theM-operator
(see Theorem 9.1) since it transforms an LTS into an LTS.

(c) If Ln+1 = Ln, then Ln = L: note that onlyM(Ln, ε) = Ln, where ε denotes
the empty sequence. This is the case where we cannot find a transition
t ∈ T \ Tn. Therefore, T = Tn. By construction, for any t ∈ T ∩ Tn, we
have that •t ⊆ Sn and t• ⊆ Sn. Therefore, it follows that Ln = L.

We have shown that the whole population of labelled transition systems can be
synthesized by repeated application of theM-operator. In fact, we can consider that
the population of labelled transition systems depends on the following parameters:

1. Number of final states in an LTS. This can be fixed in advance or chosen
according to a certain probability distribution.

2. Number of times we apply the M-operator. This can be fixed in advance or
chosen according to a certain stochastic process (Bernoulli, Poisson, etc.).

3. Length of the path added by theM-operator in each step. This can be chosen
according to a certain probability distribution.

4. Selection of the states b and e to which theM-operator will be applied. This
can be done at random over the set of states S.
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Therefore, we can generate random samples from the population of labelled transi-
tion systems providing us an infinite benchmark for studying our procedure in an
experimental way. Further, we can compute all kind of characteristics of the popula-
tion like the expected value of T (total number of transitions), the expected degree
of nodes, the expected length of the longest path, etc. Although the generation of
random models is out of the scope of this thesis, we think that this is an interesting
area for future research.

9.2 Quality of the procedure

Our major interest is to establish the quality of a test procedure, i.e., to determine
which are the best walking strategies and stopping rules. For that purpose we can
use different kind of statistics collected during testing. For example, for walking
strategies some metrics of interest are the number of runs to detect all error-marked
transitions, the number of runs to observe all transitions, the length of the runs, the
number and type of transitions observed, etc. For stopping rules we can compute
the number of runs to stop testing, the number of tests with remaining error-marked
transitions, the number of error-marked transitions left or the observed reliability.
We have presented different walking strategies in Section 7.5 and stopping rules
in Chapter 8 but we can define other rules and many different walking strategies.
The same applies to the error distribution. We have presented in Section 7.3 a
simple way to define and distribute error-marked transitions over an LTS but we
can also consider a more complicated (and maybe more realistic) way of doing this.
For example, we can define different types of error-marked transitions and consider
correlations between them. With all the elements introduced so far, we can define
an experimental step-by-step procedure to determine the quality of a certain test
procedure as follows:

(1) Choose a walking strategy and a stopping rule.

(2) Generate an LTS of the population chosen. For example, the population can
be the labelled transition systems introduced in Definition 7.1 and the genera-
tion method can be based on the M-operator and the population parameters
mentioned in Section 9.1.

(3) Distribute a certain number of error-marked transitions over the LTS. We can
consider several probability distributions for this, for example the error-marking
process described in Section 7.3.

(4) Test the system according to the walking strategy and stopping rule chosen in
step (1) for a given distribution of error-marked transitions. We will refer to
this as an experimental unit.

(5) From the previous step we collect test data.

(6) We repeat steps (4) and (5), say n1 > 0 times.
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(7) We repeat steps (3) to (5), say n2 > 0 times.

(8) We repeat steps (2) to (5), say n3 > 0 times.

(9) End the procedure.

The whole procedure consisting of steps (1) to (9) is called an experiment . There-
fore, the parameters of the experiment are the walking strategy, the stopping rule
and the integers n1, n2 and n3. In this case, we can define the size of the experiment
as the number of its experimental units which is given by n = n1 n2 n3. Note that
the smallest experiment is precisely a single experimental unit, i.e., it corresponds to
the case where n1 = n2 = n3 = 1 and it consists of testing (according to the chosen
walking strategy and stopping rule) one time only a single LTS with a fixed distribu-
tion of error-marked transitions. An example of an experiment can be observed in
Table 9.1. The size of the experiment is n and for each experimental unit we display

Before stopping After stopping

E
xp

er
im

en
t

Exp. unit Runs to stop Seen transitions Seen error-marked Errors left Survivals
1 x1,1 x1,2 x1,3 x1,4 x1,5

2 x2,1 x2,2 x2,3 x2,4 x2,5

3 x3,1 x3,2 x3,3 x3,4 x3,5

...
...

...
...

...
...

...
...

...
...

...
...

n xn,1 xn,2 xn,3 xn,4 xn,5

Table 9.1: Example of experiment.

under the label Before stopping the number of runs to stop testing, the total num-
ber of observed transitions and the number of observed error-marked transitions.
In the last two columns (After stopping) we observe the number of error-marked
transitions left when we decide to stop testing and the number of consecutive new
error-free transitions observed if we decide to perform one more run after testing is
stopped. Note that these two metrics are related to the two stopping rules presented
in Chapter 8 since they can be used to check the reliability of the procedure as we
will explain now. Our stopping rules are statistically based since they allow us to
stop testing with a certain statistical reliability. For that reason it is of special in-
terest to study whether the procedure performs according to the required reliability,
i.e., how many times the application of a stopping rule yields the correct answer.
We consider that the result of an experimental unit with respect to a stopping rule
has two possible outcomes: success, which occurs when the stopping rule is correct
and failure, otherwise. For example, for the stopping rule presented in Section 8.1,
if we stop testing and there are at most k remaining error-marked transitions in
the LTS, then this is considered as a success. Note that the average number of
successful experimental units is what we called observed reliability in Chapter 6 and
Section 9.2 (and denoted by δ̃ in Chapter 6). Therefore, if we fix a reliability level
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1 − δ for our procedure, then, as shown in Theorem 8.1 and Theorem 8.2 for our
stopping rules, the probability of a failure experimental unit is at most δ. Thus, the
outcome of the ith experimental unit can be defined as a Bernoulli random variable
Bi with success parameter p, which is larger than or equal to 1− δ, i.e.,

P [Bi = bi] = pbi(1− p)1−bi , (9.1)

for bi = 0, 1, where 0 represents a failure experimental unit, 1 represents a successful
experimental unit and p ≥ 1 − δ. Note that, given a sample of size n (the number
of experimental units that we want to consider), the ML estimator of p, denoted
by p̂, is in this case the percentage of successes that are observed in the sample.
Therefore, we have that

p̂ =
1
n

n∑
i=1

Bi . (9.2)

Thus, p̂ is the observed reliability. If we assume that the result of one experimental
unit does not have effect on the result of another one, then the random variables Bi
are i.i.d. for all i = 1, . . . , n, and the random variable B =

∑n
i=1Bi is binomially

distributed with parameters n and p. Therefore, by (9.2), we have that

E[p̂] = p ≥ 1− δ , (9.3)

and

V ar[p̂] =
p(1− p)

n
≤ δ(1− δ)

n
, (9.4)

where the last inequality holds assuming that δ < 1/2. Thus, from (9.2) and (9.3)
we can see that the expected number of failure experimental units is precisely np.
By the Central Limit Theorem it follows that, as n→∞,

p̂− p√
p(1− p)/n

−→W ∼ N (0, 1) , (9.5)

where N (0, 1) denotes the standard normal distribution. Therefore, if we fix a
confidence level α ∈ (0, 1), we can write a confidence interval for p as follows:(

p̂− zα
2

√
p̂(1− p̂)/n , p̂+ zα

2

√
p̂(1− p̂)/n

)
,

where zγ denotes the γ-percentile of the standard normal distribution. Moreover,
since we expect that p̂ has a value near to p, we can determine the size of the
experiment (the number of experimental units) to ensure that p̂ is as close as p as
desired with confidence at least α. Thus, if d denotes the radius of the interval
centered in p, then n is given by

n =
p̂(1− p̂)(
d/zα

2

)2 . (9.6)

In this way, we can establish beforehand the size of the experiment in order to reach
a prefixed reliability level. Next we introduce a software tool that allows us to
implement the approach described in this section in an automated way.
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9.3 Stresser: a tool for model-based testing certification

Stresser is a software tool used to study different test procedures for software systems
in an experimental way. Stresser works with Petri nets which, as mentioned in
Section 7.1, are a generalization of the labelled transition systems introduced in
Definition 7.1. Stresser is based on PNML (Petri Net Markup Language) standards
(see e.g. Billington et al. (2003)) and can be used together with Yasper (see van
Hee et al. (2006) for details). Yasper is a tool to specify and execute models of
processes that allows Stresser to view PNML files as Petri nets. Like the diagram
technique introduced in Section 7.1, Yasper uses different symbols to distinguish
between states and transitions: circles for states and rectangles for transitions. An
oriented arrow represents the arc between an input state and an output state. The
GUI of Stresser is shown in Figure 9.1. We can distinguish 5 different parts on the
GUI. We explain the characteristics of each of them below.

9.3.1 Creating labelled transition systems

To begin with an experiment we need an LTS that models our software system.
This can be done in the Creating nets frame (see Figure 9.2). We can use an
already existing LTS, for example one created with Yasper. We can also generate
an LTS by specifying the number of transitions of the LTS and the parameters of
certain generation rules (like the M-operator in Definition 9.1). By clicking the
Generate button, Stresser creates an LTS using the previously specified input data.
For example, as initial step, it considers only two states (that will be the initial
state and a final state, respectively). Next, we apply the M-operator to those
states to obtain an initial LTS. Afterwards, two states and the length of the path
to be added by the M-operator to the existing LTS are selected. As shown in
Section 9.1, the whole class of labelled transition systems can be generated by using
this procedure. After generating the LTS, the Show net button allows us to see
the graphical representation of the created LTS in the default viewer for PNML files
(for example, Yasper). With the option Regenerate for each test selected, a different
LTS is generated after the testing of a given LTS is finished. This is done according
to the generation parameters specified in the beginning.

9.3.2 Error distribution

After an LTS is generated, we can distribute error-marked transitions over it. Note
that for us an error is just a special label given to a transition (see Definition 7.3).
This can be done in the Error distribution frame (see Figure 9.3). There are two ways
of distributing error-marked transitions currently available in Stresser: either we
specify in advance a fixed number of error-marked transitions or we specify an error-
marking probability for each transition (denoted by θ in Section 7.3). Afterwards,
the error-marked transitions are distributed by clicking the Distribute button. We
can observe how many error-marked transitions have been distributed in the number
of errors distributed text box.
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Figure 9.1: Stresser GUI.

Figure 9.2: Creating nets frame.
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Figure 9.3: Error distribution frame.

Figure 9.4: Test frame.

9.3.3 Parameters of testing: walking strategy and stopping rule

After distributing error-marked transitions over the LTS at hand, we must now
decide how we wish to test it. This can be done by selecting a walking strategy and
a stopping rule. The walking strategy can be based on a probabilistic choice, like in
Section 7.5, or in a deterministic choice, for example deciding the next transition to
be tested according to a log file. This choice (probabilistic or deterministic) cannot
be changed until the testing of the current LTS stops (based on the selected stopping
rule). Afterwards, and based on our previous choices, we can test the same LTS
with a different distribution of error-marked transitions, test another LTS or end
with testing. The parameters needed for their stopping rule can be observed in
Figure 9.4.

9.3.4 Collecting results

After testing is completed some important statistics are collected. These statistics
are used to measure the quality of the chosen test procedure. In fact, as mentioned
in the previous section, we can collect any kind of information that we think we
can use to compare different walking strategies and stopping rules. For example,
the number of runs to stop testing, the average length of a run, the average number
of error-free transitions after an error observation, the number of remaining error-
marked transitions, etc. Of special interest is the metric called observed reliability in
Section 9.2, since this guarantees that the reliability level required in our procedure
is reached in reality. In Figure 9.5 we can observe a frame where some of the
statistics of interest will be placed.
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Figure 9.5: Results frame.

9.3.5 Further remarks

Stresser is in an early stage of development. Now the program generates only work-
flow transition systems (see Definition 7.8). Thus, all the experiments have to be
done with this kind of systems. Moreover, it is not using theM-operator (see Defini-
tion 9.1) for generating them but it uses two other synthesis rules (called Transition
Addition and Transition Refinement) which are described in Corro Ramos et al.
(2006b). The choice between different walking strategies and stopping rules is not
possible yet. Stresser runs randomly through the generated WTS, following a path
from the initial state to the final state. When an error-marked transition is found,
it is repaired (without introducing new error-marked transitions) and a new run
is started. Testing is stopped based on the approach presented in Di Bucchianico
et al. (2008) that we discussed in Section 5.1.2. In the future, Stresser should be
extended incorporating the class of labelled transition systems introduced in Def-
inition 7.1 (and more complex classes of Petri nets) and adding the possibility of
choosing between different walking strategies and stopping rules (for example, the
ones presented in previous chapters of this thesis).
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The major contribution of this thesis is the development of new statistical test pro-
cedures for certification of software systems for both black-box and model-based
testing. Our main goal is to certify, with high statistical confidence, that soft-
ware systems do not have certain undesirable properties. In particular we focus on:
fault-free period after last failure observation and number of remaining faults in the
system. The procedures developed in the black-box context consider a large family
of software reliability growth models: semi-Markov models with independent times
between failures. In model-based testing we use labelled transition systems (a special
class of Petri nets) as the model of software. Practical application of our approach
is supported with software tools. The main results of this thesis can be found in
chapters 5 and 6 for black-box testing, and in chapters 7 and 8 for model-based
testing.

In Chapter 2 we emphasize the important role of stochastic processes in black-box
testing. Based on basic properties of stochastic processes we propose a classification
scheme for software reliability growth models. We also describe two popular families
of models known as General Order Statistics (GOS) and Non-homogeneous Poisson
Process (NHPP) models. We explain how these classes are related in a Bayesian
way.

In Chapter 3 we present a step-by-step procedure to statistically analyze software
failure data. For us statistical analysis of software reliability data should include
data description, trend tests, initial model selection, estimation of model parameters,
model validation and model interpretation. In particular, the problem of initial
model selection has not been studied in details in the software reliability literature.
We also focus on model estimation and illustrate some common problems related to
Maximum Likelihood (ML) estimation. In general, to obtain the ML estimators of
model parameters numerical optimization is required which is often a very difficult
problem. Finally, we point out that further research is needed in this area, especially
in problems regarding analysis of interval-time data and computation of confidence
intervals for the parameters of the models.

In Chapter 4, we report on the status of a new software reliability tool to per-
form statistical analyses of software failure data based on the approach described
in chapters 2 and 3. The new tool is a joint project of the Laboratory for Quality
Software (LaQuSo) of the Eindhoven University of Technology (www.laquso.com),
Refis (www.refis.nl) and the Probability and Statistics group of the Eindhoven
University of Technology.

In Chapter 5 we present a sequential software release procedure where the cer-
tification criterion can be defined as the next software failure is not observed in a
certain time interval. Our procedure is developed assuming that the failure detec-
tion process can be modeled as a semi-Markov software reliability growth model
with independent times between failures. The main result of this chapter shows that
under certain conditions the global risk taken in the whole procedure (defined as
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the probability to stop testing too early) can be controlled.
In Chapter 6 we study, via simulation, the performance of our certification pro-

cedure for the models considered in Chapter 5.
In Chapter 7 we introduce a general framework for model-based testing. We

use a model of labelled transition systems (a special class of Petri nets) where each
transition in a labelled transition system represents a software component. We
assume that the transitions can either have a correct or an erroneous behaviour. For
us a fault is a symbolic labelling of a transition. Transitions labelled as erroneous
are called error-marked. We assume that the number of error-marked transitions is
unknown and a fault can only be discovered by executing the corresponding error-
marked transition. In this context a test is defined as the execution of a run through
the system that either ends without discovering an erroneous transition (successful
run), or it ends in an error-marked transition (failure run). Our main assumption is
to consider testing to be non-anticipative, i.e., it does not depend on future observed
transitions but it may depend on the past (test history). Under this assumption, we
prove in Section 7.4 that the error-marking of transitions at the beginning (caused
by the programmers) gives the same distribution as error-marking on the fly (when
a transition is tested) and that this holds for all possible testing strategies. A testing
strategy for labelled transition systems based on reduction techniques is described
in Section 7.5. The main idea is that after each successful run, we increase the
probability of visiting unseen transitions. For that reason, we discard for the next
run some already visited parts of the system. We show that after a finite number of
updates all the transitions are visited, so that the updating procedure is exhaustive.

In Chapter 8 we describe two statistical certification procedures for the testing
framework developed in Chapter 7. We consider the process where only the tran-
sitions observed for the first time are taken into account. We refer to this as the
embedded process. We provide two statistical stopping rules, that are independent
of the underlying way of walking through the system, which allows us to stop earlier
with a certain statistical reliability. The first rule is based on the probability of
having a certain number of remaining error-marked transitions when we decide to
stop testing and the second one is based on the survival probability of the system.
Like in Chapter 5, we also prove that the global risk can be controlled. Finally, we
illustrate our whole approach with an example.

In Chapter 9 we discuss how different testing strategies and stopping rules may
influence the result of the whole test procedure and how to measure their quality.
Since testing strategies and stopping rules can be very complex, we have no analyt-
ical methods to determine their quality in general. Therefore, we have to resort to
empirical methods. In order to do so, we need a population of labelled transitions
systems that could be used as benchmark. Instead of fixing some finite set of la-
belled transition systems, we define a mechanism to generate an infinite population
of labelled transition systems, each element having a certain probability of being
generated. Based on this approach, we describe a procedure to test the quality of
different test procedures. Finally, we present a software tool that can be used to
study in an experimental way different test procedures for software systems that
can be modelled as labelled transition systems.
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