78 research outputs found

    New Identities Relating Wild Goppa Codes

    Get PDF
    For a given support L∈FqmnL \in \mathbb{F}_{q^m}^n and a polynomial g∈Fqm[x]g\in \mathbb{F}_{q^m}[x] with no roots in Fqm\mathbb{F}_{q^m}, we prove equality between the qq-ary Goppa codes Γq(L,N(g))=Γq(L,N(g)/g)\Gamma_q(L,N(g)) = \Gamma_q(L,N(g)/g) where N(g)N(g) denotes the norm of gg, that is gqm−1+⋯+q+1.g^{q^{m-1}+\cdots +q+1}. In particular, for m=2m=2, that is, for a quadratic extension, we get Γq(L,gq)=Γq(L,gq+1)\Gamma_q(L,g^q) = \Gamma_q(L,g^{q+1}). If gg has roots in Fqm\mathbb{F}_{q^m}, then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of gg in Fqm\mathbb{F}_{q^m}. These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.Comment: 14 page

    Constructions of Pure Asymmetric Quantum Alternant Codes Based on Subclasses of Alternant Codes

    Full text link
    In this paper, we construct asymmetric quantum error-correcting codes(AQCs) based on subclasses of Alternant codes. Firstly, We propose a new subclass of Alternant codes which can attain the classical Gilbert-Varshamov bound to construct AQCs. It is shown that when dx=2d_x=2, ZZ-parts of the AQCs can attain the classical Gilbert-Varshamov bound. Then we construct AQCs based on a famous subclass of Alternant codes called Goppa codes. As an illustrative example, we get three [[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]][[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]] AQCs from the well known [55,16,19][55,16,19] binary Goppa code. At last, we get asymptotically good binary expansions of asymmetric quantum GRS codes, which are quantum generalizations of Retter's classical results. All the AQCs constructed in this paper are pure

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Polynomial time attack on high rate random alternant codes

    Full text link
    A long standing open question is whether the distinguisher of high rate alternant codes or Goppa codes \cite{FGOPT11} can be turned into an algorithm recovering the algebraic structure of such codes from the mere knowledge of an arbitrary generator matrix of it. This would allow to break the McEliece scheme as soon as the code rate is large enough and would break all instances of the CFS signature scheme. We give for the first time a positive answer for this problem when the code is {\em a generic alternant code} and when the code field size qq is small : q∈{2,3}q \in \{2,3\} and for {\em all} regime of other parameters for which the aforementioned distinguisher works. This breakthrough has been obtained by two different ingredients : (i) a way of using code shortening and the component-wise product of codes to derive from the original alternant code a sequence of alternant codes of decreasing degree up to getting an alternant code of degree 33 (with a multiplier and support related to those of the original alternant code); (ii) an original Gr\"obner basis approach which takes into account the non standard constraints on the multiplier and support of an alternant code which recovers in polynomial time the relevant algebraic structure of an alternant code of degree 33 from the mere knowledge of a basis for it

    DAGS:Key encapsulation using dyadic GS codes

    Get PDF
    Code-based cryptography is one of the main areas of interest for NIST's Post-Quantum Cryptography Standardization call. In this paper, we introduce DAGS, a Key Encapsulation Mechanism (KEM) based on quasi-dyadic generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both random oracle model and quantum random oracle model. We believe that DAGS will offer competitive performance, especially when compared with other existing code-based schemes, and represent a valid candidate for post-quantum standardization.</p
    • …
    corecore