

DAGS

Citation for published version (APA):
Banegas, G., Barreto, P. S. L. M., Boidje, B. O., Cayrel, P. L., Dione, G. N., Gaj, K., Gueye, C. T., Haeussler, R.,
Klamti, J. B., N'Diaye, O., Nguyen, D. T., Persichetti, E., & Ricardini, J. E. (2018). DAGS: Key encapsulation
using dyadic GS codes. Journal of Mathematical Cryptology, 12(4), 221-239. https://doi.org/10.1515/jmc-2018-
0027

DOI:
10.1515/jmc-2018-0027

Document status and date:
Published: 01/12/2018

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1515/jmc-2018-0027
https://doi.org/10.1515/jmc-2018-0027
https://doi.org/10.1515/jmc-2018-0027
https://research.tue.nl/en/publications/20c8f26d-8381-4ddc-a877-27466762a806

J. Math. Cryptol. 2018; 12(4): 221–239

Research Article

Gustavo Banegas, Paulo S. L.M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel,
Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler,
Jean Belo Klamti, Ousmane N’diaye, Duc Tri Nguyen, Edoardo Persichetti* and
Jefferson E. Ricardini

DAGS: Key encapsulation using dyadic
GS codes
https://doi.org/10.1515/jmc-2018-0027
Received February 23, 2018; accepted August 15, 2018

Abstract: Code-based cryptography is one of the main areas of interest for NIST’s Post-Quantum Crypto-
graphy Standardization call. In this paper, we introduce DAGS, a Key EncapsulationMechanism (KEM) based
on quasi-dyadic generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both random
oracle model and quantum random oracle model. We believe that DAGS will offer competitive performance,
especially when compared with other existing code-based schemes, and represent a valid candidate for post-
quantum standardization.

Keywords: Post-quantum cryptography, code-based cryptography, key exchange

MSC 2010: 94B05, 11T71, 14G50, 94A60
||
Communicated by: Tran van Trung

1 Introduction
The availability of large-scale quantumcomputers is getting ever closer to reality, andwith it, all of the public-
key cryptosystems currently in use, which rely on number theory problems (e.g., factorization) and discrete
logarithmproblemswill become obsolete [41]. Therefore, it is of extreme importance to be able to offer a cred-
ible alternative that can resist attackers equipped with quantum technology. In this regard, NIST’s call for
proposals for post-quantum standardization is a further reassurance about the need for solid post-quantum
proposals. Furthermore, considering thedesired life of the encrypteddata, and the lengthy timeframe for such

Gustavo Banegas, Technische Universiteit Eindhoven, Eindhoven, Netherlands, e-mail: gustavo@cryptme.in
Paulo S. L.M. Barreto, University of Washington Tacoma, Tacoma, USA, e-mail: pbarreto@gmail.com
Brice Odilon Boidje, Gilbert Ndollane Dione, Cheikh Thiécoumba Gueye, Jean Belo Klamti, Ousmane N’diaye, Laboratoire
d’Algebre, de Cryptographie, de Géométrie Algébrique et Applications, Université Cheikh Anta Diop, Dakar, Senegal,
e-mail: boidjebo@gmail.com, dionegilbert@gmail.com, cheikht.gueye@ucad.edu.sn, jklamty@gmail.com,
ouzdeville@gmail.com
Pierre-Louis Cayrel, Laboratoire Hubert Curien, Université Jean Monnet, Saint-Etienne, France,
e-mail: pierre.louis.cayrel@univ-st-etienne.fr
Kris Gaj, Richard Haeussler, Duc Tri Nguyen, George Mason University, Washington D. C., USA, e-mail: kgaj@gmu.edu,
rhaeussl@masonlive.gmu.edu, cothannguyen@gmail.com
*Corresponding author: Edoardo Persichetti, Department of Mathematical Sciences, Florida Atlantic University, Boca Raton,
USA, e-mail: epersichetti@fau.edu
Jefferson E. Ricardini, Universidade de São Paulo, São Paulo, Brazil, e-mail: jeffricardini@gmail.com

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

222 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

a complex standardization process, it is clear how convincing research work in post-quantum cryptography
is not only necessary, but also urgent.

Code-based cryptography is one of the main candidates for this task. The area is generally based on the
syndrome decoding problem [10], which has shown no vulnerabilities to quantum attacks over the years.
Since McEliece’s seminal work [30] in 1978, many variants and modifications have been proposed, trying
to balance security and efficiency and in particular dealing with inherent flaws such as the large size of the
public keys. In fact, while the originalMcEliece’s cryptosystem (based on binaryGoppa codes) is still formally
unbroken, it features a key of several tenths of kilobytes, which has effectively prevented its use in many
applications.

There are currently two main trends to deal with this issue, and they both involve structured matrices:
the first, is based on “traditional” algebraic codes, and in particular alternant codes such as Goppa or gen-
eralized Srivastava codes; the second suggests to use sparse matrices as in LDPC/MDPC codes [3, 32]. This
work builds on the former approach, initiated in 2009 by Berger et al. [9], who proposed Quasi-Cyclic (QC)
codes, andMisoczki andBarreto [31], suggestingQuasi-Dyadic (QD) codes instead (later generalized toQuasi-
Monoidic (QM) codes [8]). Both proposals feature very compact public keys due to the introduction of the
extra algebraic structure, but unfortunately this also leads to a vulnerability. Indeed, Faugère et al. [22]
devised a clever attack (known simply as FOPT) which exploits the algebraic structure to build a system of
equations, which can successively be solved using Gröbner bases techniques. As a result, the QC proposal
is heavily compromised, while the QD/QM approach needs to be treated with caution. In fact, for a proper
choice of parameters, it is still possible to design secure schemes, using for instance binary Goppa codes, or
Generalized Srivastava (GS) codes as suggested by Persichetti in [36].

Our contribution. In this paper, we present DAGS¹, a key encapsulation mechanism that follows the QD
approach using GS codes. KEMs are the primitive favored by NIST for key exchange schemes, and can be
used to build encryption schemes, for example using the hybrid encryption paradigm introduced by Cramer
and Shoup [18]. To the best of our knowledge, this is the first code-based KEM that uses quasi-dyadic codes.
Another NIST submission, named BIG QUAKE [44], proposes a scheme based on quasi-cyclic codes.

Our KEM achieves IND-CCA security, following the recent framework by Kiltz et al. [27], and features
compact public keys and efficient encapsulation and decapsulation algorithms.Wemodulate our parameters
to achieve an efficient scheme, while at the same time keeping out of range of the FOPT attack. We provide
an initial performance analysis of our scheme as well as access to our reference code; the team is currently
working at several additional, optimized implementations, using C++, assembly language, and hardware
(FPGA).

Related work. We show that our proposal compares well with other post-quantum KEMs. These include the
classic McEliece approach [47], as well as more recent proposals such as BIKE [45] and the aforementioned
BIG QUAKE.

The “Classic McEliece” project is an evolution of the well-known McBits [12] (based on the work of
Persichetti [37]), and benefits from a well-understood security assessment but suffers from the usual public
key size issue. BIKE, a protocol based on QC-MDPC codes, is the result of amerge between two independently
publishedworkswith similar background, namely CAKE [7] andOuroboros [19]. The scheme possesses some

1 DAGS is not only an acronym but also one of the names for the Elder Futhark rune pictured above. The shape of the rune recalls
the dyadic property of the matrices at the core of our scheme.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 223

very nice features like compact keys and an easy implementation approach, but has currently some potential
drawbacks. In fact, the QC-MDPC encryption scheme onwhich it is based is susceptible to a reaction attack by
Guo, Johansson and Stankovski (GJS) [25], and thus the protocol is forced to employ ephemeral keys. More-
over, due to its non-trivial Decoding Failure Rate (DFR), achieving IND-CCA security becomes very hard, so
that the BIKE protocol only claims to be IND-CPA secure.

Finally, BIG QUAKE continues the line of work of [9] and proposes to use quasi-cyclic Goppa codes. Due
to the particular nature of the FOPT attack and its successors [21], it seems harder to provide security with
this approach, and the protocol chooses very large parameters in order to do so. We will discuss attack and
parameters in Section 5.

More distantly related are lattice-based schemes like NewHope [2] and Frodo [14], based respectively
on LWE and its ring variant. While these schemes are not necessarily a direct comparison term, it is nice to
observe that DAGS offers comparable performance.

Organization of the paper. The paper is organized as follows. We start by giving some preliminary notions in
Section2.Wedescribe theDAGSprotocol in Section3, andwediscuss its provable security in Section4, show-
ing that DAGS is IND-CCA secure in the random oracle model as well as the quantum random oracle model.
Section 5 features a discussion about practical security and known attacks, which include general decoding
attacks (information set decoding and the like) as well as algebraic attacks; we then present parameters for
the scheme. Performance details are given in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

2.1 Notation

We will use the following conventions throughout the rest of the paper:
a a constant
a a vector
A a matrix
A an algorithm or (hash) function
A a set
(a ‖ b) the concatenation of vectors a and b
Diag(a) the diagonal matrix formed by the vector a
In the n × n identity matrix
$← choosing a random element from a set or distribution
ℓ the length of a shared symmetric key

2.2 Linear codes

We briefly recall some fundamental notions from coding theory. The Hamming weight of a vector x ∈ 𝔽nq is
given by the number wt(x) of its non-zero components. We define a linear code using the metric induced by
the Hamming weight.

Definition 2.1. An [n, k]-linear codeCof length n anddimension k over𝔽q is a k-dimensional vector subspace
of 𝔽nq .

A linear code can be represented by means of a matrix G ∈ 𝔽k×nq , called generator matrix, whose rows form
a basis for the vector space defining the code. Alternatively, a linear code can also be represented as kernel of
amatrixH ∈ 𝔽(n−k)×nq , knownasparity-checkmatrix, i.e.C = {c : HcT = 0}. Thanks to the generatormatrix,we
can easily define the codeword corresponding to a vector μ ∈ 𝔽kq as μG. Finally, we call syndrome of a vector
c ∈ 𝔽nq the vector HcT .

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

224 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

2.3 Structured matrices and GS codes

Definition 2.2. Given a ringR (in our case the finite field𝔽qm) and a vector h = (h0, . . . , hn−1) ∈ Rn, the dyadic
matrix ∆(h) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j, where ⊕ stands for bitwise exclusive-
or on the binary representations of the indices. The sequence h is called its signature. Moreover, ∆(r, h)
denotes the matrix ∆(h) truncated to its first r rows. Finally, we call a matrix quasi-dyadic if it is a block
matrix whose component blocks are r × r dyadic submatrices.

If n is a power of 2, then every 2l × 2l dyadic matrix can be described recursively as

M = (A B
B A
) ,

where each block is a 2l−1 × 2l−1 dyadic matrix. Note that by definition any 1 × 1 matrix is trivially dyadic.

Definition 2.3. For m, n, s, t ∈ ℕ and a prime power q, let α1, . . . , αn and w1, . . . , ws be n + s distinct ele-
ments of 𝔽qm , and z1, . . . , zn be non-zero elements of 𝔽qm . The generalized Srivastava code of order st and
length n is defined by a parity-check matrix of the form

H =(

H1
H2
...
Hs

) ,

where each block is given by

Hi =
(((

(

z1
α1 − wi

. . . zn
αn − wi

z1
(α1 − wi)2

. . . zn
(αn − wi)2

...
. . .

...
z1

(α1 − wi)t
. . . zn
(αn − wi)t

)))

)

.

The parameters for such a code are the length n ≤ qm − s, dimension k ≥ n − mst and minimum distance
d ≥ st + 1. GS codes are part of the family of alternant codes, and therefore benefit of an efficient decoding
algorithm; according to Sarwate [40, Corollary 2] the complexity of decoding isO(n log2 n), which is the same
as for Goppa codes. Moreover, it can be easily proved that every GS code with t = 1 is a Goppa code. More
information about this class of codes can be found in [29, Chapter 12, Section 6].

3 Construction
The core idea of DAGS is to use GS codeswhich are defined bymatrices in quasi-dyadic form. In particular, the
public key of the scheme is the generator matrix of such a code, which, being quasi-dyadic, can be described
using just the signature of each block. This allows to obtain a very compact public key. Now, it can be easily
proved that everyGS codewith t = 1 is aGoppa code, andwe know [29, Chapter 12, Proposition 5] that Goppa
codes admit a parity-check matrix in Cauchy form under certain conditions (the generator polynomial has to
be monic and without multiple zeros). By Cauchy we mean a matrix C(u, v) with components Cij = 1

ui−vj .
Misoczki and Barreto showed in [31, Theorem 2] that the intersection of the set of Cauchy matrices with

the set of dyadic matrices is not empty if the code is defined over a field of characteristic 2, and the dyadic
signature h = (h0, . . . , hn−1) satisfies the following “fundamental” equation:

1
hi⊕j
=

1
hi
+
1
hj
+

1
h0

. (3.1)

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 225

On the other hand, it is evident from Definition 2.3 that if we permute the rows of H to constitute s × n blocks
of the form

Hi =(

z1
(α1−w1)i

. . . zn
(αn−w1)i

z1
(α1−w2)i

. . . zn
(αn−w2)i

...
. . .

...
z1
(α1−ws)i

. . . zn
(αn−ws)i

) ,

we obtain an equivalent parity-check matrix for a GS code, given by

Ĥ =(

Ĥ1
Ĥ2
...
Ĥ t

) .

The key generation process exploits first of all the fundamental equation to build a Cauchymatrix. Thematrix
is then successively powered (element by element) forming several blocks which are superimposed and then
multiplied by a randomdiagonalmatrix. Thanks to the observation above, we have now formed thematrix Ĥ,
where for ease of notation we use u and v to denote the vectors of elements w1, . . . , ws and α1, . . . , αn,
respectively. Finally, the resulting matrix is projected onto the base field (as usual for alternant codes) and
row-reduced to systematic form to form the public key. The process will be described in detail in the next
section: note that this is essentially the same as in [36], to which we refer the readers looking for additional
details about dyadic GS codes and the key generation process.

3.1 Algorithms

We are now ready to introduce the three algorithms that form DAGS. System parameters are the code length n
and dimension k, the values s and t which define a GS code, the cardinality of the base field q and the degree
of the field extension m. In addition, we have k = k󸀠 + k󸀠󸀠, where k󸀠 is arbitrary and is set to be “small”. In
practice, the value of k󸀠 depends on the base field and is such that a vector of length k󸀠 provides at least
256 bits of entropy. This also makes the hash functions (see below) easy to compute, and ensures that the
overhead due to the IND-CCA2 security in the QROM is minimal.

DAGS is a key encapsulationmechanismand as such it is composed of three algorithms–KeyGeneration,
Encapsulation and Decapsulation – which will present below in the respective order.

Algorithm 1 (Key Generation).
(1) Generate the dyadic signature h:

(a) Choose a random non-zero distinct h0 and hj for j = 2l , l = 0, . . . , ⌊log qm⌋.
(b) Form the remaining elements using (3.1).
(c) Return a selection² of blocks of dimension s up to length n.

(2) Build the Cauchy support:
(a) Choose a random³ offset ω $← 𝔽qm .
(b) Compute ui = 1

hi + ω for i = 0, . . . , s − 1.
(c) Compute vj = 1

hj +
1
h0 + ω for j = 0, . . . , n − 1.

(d) Set u = (u0, . . . , us−1) and v = (v0, . . . , vn−1).
(3) Form the Cauchy matrix Ĥ1 = C(u, v).
(4) Build Ĥ i, i = 2, . . . , t, by raising each element of Ĥ1 to the power of i.

2 Making sure to exclude any block containing an undefined entry.
3 See Appendix A for restrictions about the choice of the offset.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

226 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

(5) Superimpose the blocks Ĥ i in ascending order to form matrix Ĥ.
(6) Generate the vector z by sampling uniformly at random elements in 𝔽qm with the restriction zis+j = zis

for i = 0, . . . , n0 − 1, j = 0, . . . , s − 1.
(7) Set

yj =
zj

∏s−1
i=0 (ui − vj)t

for j = 0, . . . , n − 1 and y = (y0, . . . , yn−1).

(8) Form H = Ĥ ⋅ Diag(z).
(9) Project H onto 𝔽q using the co-trace function; call this Hbase.
(10) Write Hbase in systematic form (M | In−k).
(11) The public key is the generator matrix G = (Ik | MT).
(12) The private key is the pair (v, y).

The encapsulation and decapsulation algorithms follow the paradigm of [27] to obtain an IND-CCA secure
KEM from a PKE, and as such, theymake use of two functionsG : 𝔽k󸀠q → 𝔽kq andH : 𝔽k󸀠q → 𝔽k

󸀠

q , respectively an
expansion and a compression function, the former with the task of generating randomness for the scheme,
the latter to provide “plaintext confirmation”. The shared symmetric key is obtained via a third function
K : {0, 1}∗ → {0, 1}ℓ. Formore details about randomness generation and how the functions are implemented
in practice, see Section 6.2.

Algorithm 2 (Encapsulation).
(1) Choosem $← 𝔽k

󸀠

q .
(2) Compute r = G(m) and d = H(m).
(3) Parse r as (ρ ‖ σ) then set μ = (ρ ‖ m).
(4) Generate the error vector e of length n and weight w from σ.
(5) Compute c = μG + e.
(6) Compute k = K(m).
(7) Output the ciphertext (c, d); the encapsulated key is k.

The decapsulation algorithm consists mainly of decoding the noisy codeword received as part of the cipher-
text. This is doneusing the alternant decoding algorithmdescribed in [29, Chapter 12, Section 9] and requires
the parity-check matrix to be in alternant form.

Algorithm 3 (Decapsulation).
(1) Get the parity-check matrix H󸀠 in alternant form from a private key⁴.
(2) Use H󸀠 to decode c and obtain the codeword μ󸀠G and the error e󸀠.
(3) Output ⊥ if decoding fails or wt(e󸀠) ̸= w.
(4) Recover μ󸀠 and parse it as (ρ󸀠 ‖ m󸀠).
(5) Compute r󸀠 = G(m󸀠) and d󸀠 = H(m󸀠).
(6) Parse r󸀠 as (ρ󸀠󸀠 ‖ σ󸀠).
(7) Generate the error vector e󸀠󸀠 of length n and weight w from σ󸀠.
(8) If e󸀠 ̸= e󸀠󸀠 ∨ ρ󸀠 ̸= ρ󸀠󸀠 ∨ d ̸= d󸀠, output ⊥.
(9) Else, compute k = K(m󸀠).
(10) The decapsulated key is k.

DAGS is built upon theMcEliece cryptosystem,with a notable exception. In fact, we incorporate the “random-
ized” version of McEliece by Nojima et al. [35] into our scheme. This is extremely beneficial for two distinct
aspects: first of all, it allows us to use a much shorter vectorm to generate the remaining components of the
scheme, greatly improving efficiency. Secondly, it allowsus to get tighter security bounds. Note that our proto-
col differs slightly from the paradigm presented in [27], in the fact that we do not perform a full re-encryption

4 See Section 6.3.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 227

in the decapsulation algorithm. Instead, we simply re-generate the randomness and compare it with the one
obtained after decoding. This is possible since, unlike a generic PKE, McEliece decryption reveals the ran-
domness used, in our case e (and ρ). It is clear that if the re-generated randomness is equal to the retrieved
one, the resulting encryption will also be equal. This allows us to further decrease computation time.

The selection of the parameters for the scheme will be discussed in Section 5.4.

4 KEM security
In this section, we discuss some aspects of provable security, and in particular we show that DAGS satisfies
the notion of IND-CCA security for KEMs, as defined below.

Definition 4.1. The adaptive chosen-ciphertext attack game for a KEM proceeds as follows:
(1) Query a key generation oracle to obtain a public key pk.
(2) Make a sequence of calls to a decryption oracle, submitting any string c of the proper length. The oracle

will respond with Decaps(sk, c).
(3) Query an encryption oracle. The oracle runs Encaps(pk) to generate a pair (̃k, ̃c), then chooses a random

b ∈ {0, 1} and replies with the “challenge” ciphertext (k∗, ̃c) where k∗ = ̃k if b = 1 or k∗ is a random
string of length ℓ otherwise.

(4) Keep performing decryption queries. If the submitted ciphertext is c∗, the oracle will return ⊥.
(5) Output b∗ ∈ {0, 1}.
The adversary succeeds if b∗ = b. More precisely, we define the advantage ofA against KEM as

AdvIND-CCAKEM (A, λ) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Pr[b∗ = b] − 12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

We say that a KEM is secure if the advantage AdvIND-CCAKEM of any polynomial-time adversaryA in the above CCA
attack model is negligible.

Before discussing the IND-CCA security of DAGS,we show that the underlying PKE (i.e. randomizedMcEliece,
see [35]) satisfies a simple property. This will allow us to get better security bounds in our reduction.

Definition 4.2. Consider a probabilistic PKEwith randomness set R. We say that PKE is γ-spread if for a given
key pair (sk, pk), a plaintext m and an element y in the ciphertext domain, we have

Pr[r $← R | y = Encpk(m, r)] ≤ 2−γ

for a certain γ ∈ ℝ.

The definition above is presented as in [27], but note that in fact this corresponds to the notion of γ-uniformity
given by Fujisaki and Okamoto in [24], except for a change of constants. In other words, a scheme is γ-spread
if it is 2−γ-uniform.

It was proved in [16] that a simple variant of the (classic) McEliece PKE is γ-uniform for γ = 2−k, where k
is the code dimension as usual (more in general, γ = q−k for a cryptosystem defined over 𝔽q). We can extend
this result to our scheme as follows.

Lemma 4.3. Randomized McEliece is γ-uniform for γ = q
−k󸀠󸀠

(nw)
.

Proof. Let y be a generic vector of 𝔽nq . Then either y is a word at distance w from the code, or it is not. If it
is not, the probability of y being a valid ciphertext is clearly exactly 0. On the other hand, suppose y is at
distance w from the code; then there is only one choice of ρ and one choice of e that satisfy the equation
(since w is below the GV bound), i.e. the probability of y being a valid ciphertext is exactly 1/qk󸀠󸀠 ⋅ 1/(nw),
which concludes the proof.

We are now ready to present the security results.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

228 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

Theorem 4.4. Let A be an IND-CCA adversary against DAGS that makes at most qRO = qG + qK total random
oracle queries⁵ and qD decryption queries. Then there exists an IND-CPA adversary B against PKE, running in
approximately the same time asA, such that

AdvIND-CCAKEM (A) ≤ qRO ⋅ 2−γ + 3 ⋅ Adv
IND-CPA
PKE (B).

Proof. The thesis is a consequence of the results presented in [27, Section 3.3]. In fact, our scheme follows the
KEM⊥m framework that consists of applying two generic transformations to a public-key encryption scheme.
The first step consists of transforming the IND-CPA encryption scheme into an OW-PCVA (i.e. plaintext and
validity checking) scheme. Then, the resulting scheme is transformed into a KEM in a “standard” way. Both
proofs are obtained via a sequence of games, and the combination of them shows that breaking IND-CCA
security of the KEMwould lead to break the IND-CPA security of the underlying encryption scheme. Note that
randomized McEliece, instantiated with quasi-dyadic GS codes, presents no correctness error (the value δ
in [27]), which greatly simplifies the resulting bound.

The value d included in the KEM ciphertext does not contribute to the security result above, but it is a crucial
factor to provide security in theQuantumRandomOracleModel (QROM).Wepresent this in the next theorem.

Theorem 4.5. Let A be a quantum IND-CCA adversary against DAGS that makes at most qRO = qG + qK total
quantum random oracle queries⁶ and qD (classical) decryption queries. Then there exists an OW-CPA adver-
saryB against PKE, running in approximately the same time asA, such that

AdvIND-CCAKEM (A) ≤ 8qRO ⋅ √qRO ⋅ √Adv
OW-CPA
PKE (B).

Proof. The thesis is a consequence of the results presented in Section 4.4 of [27]. In fact, our scheme fol-
lows the QKEM⊥m framework that consists of applying two generic transformations to a public-key encryption
scheme. The first step transforming the IND-CPA encryption scheme into an OW-PCVA (i.e. plaintext and
validity checking) scheme, is the same as in the previous case. Now, the resulting scheme is transformed
into a KEM with techniques suitable for the QROM. The combination of the two proofs shows that breaking
IND-CCA security of the KEMwould lead to break the OW-CPA security of the underlying encryption scheme.
Note, therefore, that the IND-CPA security of the underlying PKE has in this case no further effect on the final
result, and can be considered instead just a guarantee that the scheme is indeed OW-CPA secure. The bound
obtained is a “simplified” and “concrete” version (as presented by the authors) and, in particular, it is easy
to notice that it does not depend on the number of queries qH presented to the random oracleH. The bound
is further simplified since, as above, the underlying PKE presents no correctness error.

5 Practical security and parameters
Having proved that DAGS satisfies the notion of IND-CCA security for KEMs, we now move onto a treatment
of practical security issues. In particular, we will briefly present the hard problem on which DAGS is based,
and then discuss the main attacks on the scheme and related security concerns.

5.1 Hard problems from coding theory

Most of the code-based cryptographic constructions are based on the hardness of the following problem,
known as the (q-ary) Syndrome Decoding Problem (SDP).

5 Respectively, qG queries to the random oracle G and qK queries to the random oracleK.
6 Same as in Theorem 4.4.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 229

Problem 5.1. Given an (n − k) × n full-rank matrix H over 𝔽q, a vector s ∈ 𝔽n−kq , and a non-negative integer w,
find a vector e ∈ 𝔽nq of weight w such that HeT = s.

The corresponding decision problemwas proved to beNP-complete in 1978 [10], but only for binary codes. In
1994, Barg proved that this result holds for codes over all finite fields ([5], in Russian, and [6, Theorem 4.1]).

In addition, many schemes (including the original McEliece proposal) require the following computa-
tional assumption.

Assumption 1. The public matrix output by the key generation algorithm is computationally indistinguishable
from a uniformly chosen matrix of the same size.

The assumption above is historically believed to be true, except for very particular cases. For instance, there
exists a distinguisher (Faugère et al. [20]) for cryptographic protocols that make use of high-rate Goppa codes
(like the CFS signature scheme [17]). Moreover, it is worthmentioning that the “classical”methods for obtain-
ing an indistinguishable public matrix, such as the use of scrambling matrices S and P, are rather outdated
and unpractical and can introduce vulnerabilities to the scheme as per the work of Strenzke et al. [42, 43].
Thus, traditionally, the safest method (Biswas and Sendrier, [13]) to obtain the public matrix is simply to
compute the systematic form of the private matrix.

5.2 Decoding attacks

The main approach for solving SDP is the technique known as Information Set Decoding (ISD), first intro-
duced by Prange [39], which targets directly the error vector and aims at decoding without knowing the
underlying structure of the code (i.e. treating the code as truly random). Among several variants and gen-
eralizations, Peters showed [38] that it is possible to apply Prange’s approach to generic q-ary codes. Other
approaches such as statistical decoding [1, 33] are usually considered less efficient. Thus, when choosing
parameters, we will focus mainly on defeating attacks of the ISD family.

Hamdaoui and Sendrier in [26] provide non-asymptotic complexity estimates for ISD in the binary case.
For codes over 𝔽q, instead, a bound is given in [34], which extends the work of Peters. For a practical evalu-
ation of the ISD running times and corresponding security level, we used Peters’s ISDFQ script [46].

Quantum speedup. Bernstein in [11] shows that Grover’s algorithm applies to ISD-like algorithms, effectively
halving the asymptotic exponent in the complexity estimates. Later, it was proved in [28] that several variants
of ISD have the potential to achieve a better exponent, however the improvement was disappointingly away
from the factor of 2 that could be expected. For this reason, we simply treat the best quantum attack on our
scheme to be “traditional” ISD (Prange) combined with Grover search.

5.3 Algebraic attacks

While, as we discussed above, recovering a privatematrix from a public one is in general a very difficult prob-
lem, the presence of special algebraic properties and additional structure in the code can have a considerable
effect in lowering this difficulty. It turns out that, in the case of alternant codes for instance, there are indeed
efficient methods that exploit this issue.

Solving systems of equations. A very effective structural attack was introduced by Faugère et al. in [22]. The
attack (for convenience referred to as FOPT) relies on the simple property H ⋅ GT = 0 to build an algebraic sys-
tem, using then Gröbner bases techniques to solve it. Note that this applies in principal to every linear code,
but the system of equations is in general way too large to be solved in practice. It is then the special proper-
ties of alternant codes, as we mentioned above, that make the attack possible, by considerably reducing the
number of unknowns of the system.

The attack was originally aimed at two variants of McEliece, introduced respectively in [9] and [31]. The
first variant, using quasi-cyclic codes, was easily broken in all proposed parameters and falls out of the scope

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

230 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

q m n k n0 ℓ nX 󸀠 nY 󸀠 Time (s) / Operations

2 16 3584 1536 56 26 60 15 N/A
22 8 3584 1536 56 26 60 7 1776.3 / 234.2

24 4 2048 1024 32 26 36 3 0.5 / 222.1

28 2 1280 768 20 26 24 1 0.03 / 216.7

28 2 640 512 10 26 14 1 0.03 / 215.9

28 2 768 512 6 27 11 1 0.02 / 215.4

28 2 1024 512 4 28 10 1 0.11 / 219.2

28 2 512 256 4 27 9 1 0.06 / 217.7

28 2 640 384 5 27 10 1 0.02 / 214.5

28 2 768 512 6 27 11 1 0.01 / 216.6

28 2 1280 768 5 28 11 1 0.05 / 217.5

28 2 1536 1024 6 28 12 1 0.06 / 217.8

24 4 4096 3584 32 27 37 3 7.1 / 226.1

28 2 3072 2048 6 29 13 1 0.15 / 219.7

Table 1: Details of FOPT applied to quasi-dyadic Goppa codes [23].

of this paper. The second variant, instead, only considered quasi-dyadic Goppa codes. In this case too, most
of the parameters proposed have been broken, except for the binary case (i.e. base field 𝔽2). This was, in
truth, not connected to the base field per se, but rather depended on the fact that, with a smaller base field,
the authors provided a much higher extension degree m. This is because, probably for comparison reasons,
all the proposed parameters were chosen so that the value qm = 216 was kept constant. As it turns out, the
extension degree m plays a key role in evaluating the complexity of the attack.

Attack complexity. Following up on their own work, the authors in [23] produced a paper which analyzes
the attack in detail, with the aim of evaluating its complexity at least somewhat rigorously. At the core of the
attack, there is an affine bilinear system, which is derived from the initial system of equations by applying
various algebraic relations due to the quasi-dyadic structure. This bilinear system has nX󸀠 + nY󸀠 variables,
where these are, respectively, the number of X and Y “free” variables (after applying the relations) of an
alternant parity-checkmatrix H with Hij = YjXi

j . Moreover, the degree of regularity (i.e. themaximal degree of
the polynomials appearing during the computation) is bounded above by 1 +min{nX󸀠 , nY󸀠 }. It is shown that
this number dominates computation time, and so it is crucial to correctly evaluate it in our case. In fact, for
the original proposal based on Goppa codes [31], we have nX󸀠 = n0 − 2 + log2(ℓ), where ℓ is the dyadic order
and n0 = n/ℓ is the number of dyadic blocks, and nY󸀠 = m − 1. We report an excerpt of some numbers from
the paper in Table 1.

It is possible to observe several facts. In every set of parameters, for instance, nX󸀠 ≫ nY󸀠 , and so nY󸀠 = m−1
is the most important number here. In other words, the degree of the extension field is crucial in evaluating
the complexity of the attack, as we mentioned above. As a confirmation, it is easy to notice that all param-
eters were broken very easily when this is extremely small (1 in most cases), while the running time scales
accordinglywhenm grows. In fact, the attack could not be performed in practice on the first set of parameters
(hence the N/A).

The first three groups of parameters are taken from the preliminary (unpublished) version of [31,
Tables 2, 3 and 5, respectively], while the last group consists of some ad hoc parameters generated by
the FOPT authors. It stands out the absence of parameters from [31, Table 4]. In fact, all of these parameters
used 𝔽2 as base field and thus could not be broken (at least not without very long computations), just like
for the case of the first set. As a result, an updated version of [31] was produced for publication, in which the
insecure parameters are removed and only the binary sets (those of [31, Table 4]) appear.

Towards the end of [23], the authors present a bound on the theoretical complexity of computing
a Gröbner base of the affine bilinear system which is at the core of the attack. They then evaluate this bound
and compare it with the number of operations required in practice (last column of Table 1). The bound is

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 231

given by
Ttheo ≈ (∑

d1+d2=D,
1≤d1 ,d2≤D−1

(dim Rd1 ,d2 − [t
d1
1 td22]HS(t1, t2))dim Rd1 ,d2), (5.1)

where D is the degree of regularity of the system, i.e.

dim Rd1 ,d2 = (
d1 + nX󸀠

d1
)(

d2 + nX󸀠

d2
),

and [td11 td22]HS(t1, t2) indicates the coefficient of the term [td11 td22] in theHilbert bi-seriesHS(t1, t2), as defined
in [23, Appendix A].

As it turns out this bound is quite loose, being sometimes above and sometimes below the experimental
results, depending onwhich set of parameters is considered. As such, it is to be read as a grossly approximate
indication of the expected complexity of a parameter set, and it only allows tohave a rough idea of the security
provided for each set. Nevertheless, since are able to compute the bound for all DAGS proposed parameters,
we will keep this number in mind when proposing parameters (Section 5.4), to make sure our choices are at
least not obviously insecure.

As a bottom-line, it is clear that the complexity of the attack scales somewhat proportionally to the value
m − 1 which defines the dimension of the solution space. The FOPT authors point out that any scheme for
which this dimension is less or equal to 20 should be within the scope of the attack.

Since GS codes are also alternant codes, the attack can be applied to our proposal as well. There is, how-
ever, one very important difference to keep in mind. In fact, it is shown in [36] that, thanks to the particular
structure of GS codes, the dimension of the solution space is defined by mt − 1, rather than m − 1. This pro-
vides greater flexibility when designing parameters for the code, and it allows, in particular, to “rest the
weight” of the attack on two shoulders rather than just one. Thus we are able to modulate the parameters
and keep the extension degreem small while still achieving a large dimension for the solution space. We will
discuss parameter selection in detail in Section 5.4 as already mentioned.

Folded codes. Recently, an extension of the FOPT attack appeared in [21]. In this work, the authors introduce
a new technique called “folding”, and show that it is possible to reduce the complexity of the FOPT attack to
the complexity of attacking a smaller code (the “folded” code). This is a consequence of the strong properties
of the automorphismgroup that is present in the alternant codes used. The attack turns out to be very efficient
against Goppa codes, as it is possible to recover a folded codewhich is also aGoppa code. As a consequence, it
is possible to tweak the attack to solve a different, augmented system of equations (named GX,Y󸀠), rather than
the “basic” one which is aimed at generic alternant codes (called AX,Y󸀠). Moreover, this can be further refined
in the case of binary Goppa codes, leading to a third system of equations referred to as McEX,Y󸀠 . In parallel,
the authors present a new method called “structural elimination” that manages to eliminate a considerable
number of variables, at the price of an increased degree in the equations considered. Solving the “eliminated”
systems (called respectively elimAX󸀠 ,Y󸀠 , elimGX󸀠 ,Y󸀠 and elimMcEX󸀠 ,Y󸀠) often proves amore efficient choice, but
the authors do occasionally use the non-eliminated systems when it is more convenient to do so.

The paper concentrates on attacking several parameters that were proposed for signature schemes and
encryption schemes in various follow-up works that build and expand on [9] and [31]. The latter includes,
among others, some of the parameters presented in Table 1. It turns out that codes designed towork for signa-
ture schemes are very easy to attack (due to their particular nature); however, the situation for encryption is
more complex. The authors are able to obtain a speedup in the attack times for previously investigated param-
eters, but some of the parameters could still not be solved in practice. We report the results in Table 2, where
we indicate the type of system chosen to be solved, and we keep some of the previously-shown parameters
for ease of comparison.

The authors do not report timings for codes that were already brokenwith FOPT in negligible time (which
is the case for all the parameter setswherem = 2). Also,wehavedecided to exclude fromour table parameters
that are not relevant to this submission. These include for example the quasi-monoidic codes introduced in [8]
(i.e. codes defined over a field 𝔽q for q not a power of 2).

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

232 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

q m n k n0 ℓ System New attack FOPT

24 4 2048 1024 32 26 elimAX󸀠 ,Y󸀠 0.01 s 0.5 s
24 4 4096 3584 32 27 elimAX󸀠 ,Y󸀠 0.01 s 7.1 s
22 8 3584 1536 56 26 elimAX󸀠 ,Y󸀠 0.04 s 1776.3 s
2 16 4864 4352 152 25 elimMcEX󸀠 ,Y󸀠 18 s N/A
2 12 3200 1664 25 27 elimMcEX󸀠 ,Y󸀠 ≤ 283.5 op N/A
2 14 5376 3584 42 27 elimMcEX󸀠 ,Y󸀠 ≤ 296.1 op N/A
2 15 11264 3584 22 29 elimMcEX󸀠 ,Y󸀠 ≤ 2146 op N/A
2 16 6912 2816 27 28 elimMcEX󸀠 ,Y󸀠 ≤ 2168 op N/A
2 16 8192 4096 32 28 elimMcEX󸀠 ,Y󸀠 ≤ 2157 op N/A

Table 2: Details of folding attack applied to quasi-dyadic Goppa codes [23].

This table confirms our intuition that high values of m result in a high number of operations, and that
complexity increases somewhat proportionally to this value. Note that the last five sets of parameters were
not broken in practice and the estimated complexity is always quite high. It is not clearwhat the authorsmean
by ≤, but it is reasonable to assume that the actual complexity would not be dramatically smaller than the
indicated value, and thus at least 280 in all cases. Consequently, the claim that parameters with m − 1 ≤ 20
are “within the scope of the attack” looks now perhaps a bit optimistic.

The fourth set of parameters seem to contradict our intuition, since it was broken in practice with relative
ease even though m = 16. However, it is possible to see that this is a code with a ridiculously high rate (k/n
is very close to1) and in particular, the very large number of blocks n0 clearly stands out. We remark that this
set of parameters was chosen ad hoc by the attack authors and in practice such a poor choice of parameters
would never be considered. Nevertheless, it gives us the confirmation (if needed) that high-rate codes are
a bad choice not only for ISD-like attacks, but for structural attacks also.

The authors didnot present any explicit result againstGS codes and, inparticular, it is not knownwhether
a folded GS code is still a GS code. Thus, the attack in this case is limited to solving the generic system AX,Y󸀠

(or elimAX󸀠 ,Y󸀠) and does not benefit from the speedups which are specific to (binary) Goppa codes. For these
reasons, and until an accurate complexity analysis is available, we choose to attain to the latest measurable
guidelines and choose our parameters such that the dimension of the solution space for the algebraic system
is strictly greater than 20. We then compute the bound given by equation (5.1) and report it as an additional
indication of the expected complexity of the attack. We hope that this work will encourage further study into
FOPT and folding attacks in relation to GS codes.

Norm-trace codes. An attack based on norm-trace codes has been recently introduced by Barelli and
Couvreur [4]. As the name suggests, these codes are the result of the application of both the trace and
the norm operation to a certain support vector, and they are alternant codes. In particular, they are subfield
subcodes of Reed–Solomon codes. The construction of these codes is given explicitly only for the specific
case m = 2 (as will be the case in all DAGS parameters), i.e. the support vector has components in 𝔽q2 , in
which case the norm-trace code is defined as

NT(x) = ⟨1, Tr(x), Tr(αx), N(x)⟩,

where α is an element of trace 1.
The main idea of the attack is that there exists a specific norm-trace code that is the conductor of the

secret subcode into the public code. By “conductor” the authors refer to the largest code for which the Schur
product (i.e. the component-wise product of all codewords, denoted by ⋆) is entirely contained in the target,
i.e.

Cond(D, C) = {u ∈ 𝔽nq : u ⋆D ⊆ C}.

The authors present two strategies to determine the secret subcode. The first strategy is essentially an exhaus-
tive search over all the codes of the proper co-dimension. This co-dimension is given by 2q/s, since s is the
size of the permutation group of the code, which is non-trivial in our case due to the code being quasi-dyadic.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 233

Security level* q m n k k󸀠 s t w Attack

1 25 2 832 416 43 24 13 104 270

3 26 2 1216 512 43 25 11 176 280

5 26 2 2112 704 43 26 11 352 255

Table 3: Early DAGS parameters. * Claimed.

While such a brute force in principlewould be too expensive, the authors present a few refinements thatmake
it feasible, which include an observation on the code rate of the codes in use, and the use of shortened codes.

The second strategy, instead, consists of solving a bilinear system, which is obtained using the parity-
check matrix of the public code and treating as unknowns the elements of a generator matrix for the secret
code (as well as the support vector x). This system is solved using Gröbner bases techniques, and benefits
from a reduction in the number of variables similar to the one performed in FOPT, as well as the refinements
mentioned above (shortened codes).

In any case, it is easy to deduce that the two parameters q and s are crucial in determining the cost of
running this step of the attack, which dominates the overall cost. In fact, the authors are able to provide
an accurate complexity analysis for the first strategy which confirms this intuition. The average number of
iterations of the brute force search is given by q2c, where c is exactly the co-dimension described above, i.e.
c = 2q/s. In addition, it is shown that the cost of computing Schur products is 2n3 operations in the base
field. Thus, the overall cost of the recovery step is 2n3q4q/s operations in 𝔽q. The authors then argue that
wrapping up the attack has negligible cost, and that q-ary operations can be done in constant time (using
tables) when q is not too big. All this leads to a complexity which is below the desired security level for all of
the DAGS parameters that had been proposed at the time of submission. We report these numbers in Table 3.

As it is possible to observe, the attack complexity is especially low for the last set of parameters since
the dyadic order s was chosen to be 26, and this is probably too much to provide security against this attack.
Still, we point out that, at the time this parameters were proposed, there was no indication this was the case,
since this attack is using an entirely new technique, and it is unrelated to the FOPT and folding attacks that
we just described.

Unfortunately, the attack authors were not able to provide a security analysis for the second strategy
(bilinear system). This is due to the fact that the attack uses Gröbner based techniques, and it is very hard
to evaluate the cost in this case (similarly to what happened for FOPT). In this case then, the only evidence
the authors provide is experimental, and based on running the attack in practice on all the parameters. The
authors report running times around 15minutes for the first set and less than aminute for the last, while they
admit theywere not able to complete the execution in themiddle case. This seems tomatch the evidence from
the complexity results obtained for the first strategy, and suggests a speedup proportional to those. Further
test runs are currently planned, but the fact that the attack already fails to run in practice for the middle set,
gives us some confidence to believe that updated parameters will definitely make the attack infeasible.

5.4 Parameter selection

To choose our parameters, we keep inmind all the remarks from the previous sections about decoding attacks
and structural attacks. As we have just seen, we need to respect the condition mt ≥ 21 to guarantee security
against FOPT. At the same time, to prevent the BC attack q has to be chosen large enough and s cannot be
too big. Finally, for ISD to be computationally intensive, we require a sufficiently large number w of errors to
decode. This is given by st/2 according to the minimum distance of GS codes.

In addition, we tune our parameters to optimize performance. In this regard, the best results are obtained
when the extension degreem is as small as possible. This, however, requires the base field to be large enough
to accommodate sufficiently big codes (against ISD attacks), since the maximum size for the code length n is
capped by qm − s. Realistically, this means wewant qm to be at least 212, and the optimal choice in this sense

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

234 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

Security level q m n k k󸀠 s t w nY 󸀠 BC

1 26 2 832 416 43 24 13 104 25 ≈ 2128

3 28 2 1216 512 32 25 11 176 21 ≈ 2288

5 28 2 1600 896 32 25 11 176 21 ≈ 2289

Table 4: Suggested DAGS parameters.

seems to be q = 28 (see Section 6). Finally, note that s is constrained to be a power of 2, and that odd values
of t seem to offer best performance.

Putting all the pieces together, we are able to present three sets of parameters, in Table 4. These corre-
spond to three of the security levels indicated by NIST (first column), which are related to the hardness of
performing a key search attack on three different variants of a block cipher, such as AES (with key length
respectively 128, 192 and 256). As far as quantum attacks are concerned, we claim that ISD with Grover (see
above)will usually requiremore resources than aGrover search attack onAES for the circuit depths suggested
by NIST (parameter MAXDEPTH). Thus, classical security bits are the bottleneck in our case, and as such we
choose our parameters to provide 128, 192 and 256 bits of classical security for security levels 1, 3 and 5
respectively. For practical reasons, during the rest of the paper we will refer to these parameters respectively
as DAGS_1, DAGS_3 and DAGS_5.

For the aboveparameters, it is easy to observe that the value nY󸀠 is always greater or equal to 21 (it is in fact
25 for DAGS_1), which keeps us clear of FOPT.With respect to the BC attack, the complexity analysis provided
by the authors results in a value of ≈ 2126 for DAGS_1 and more than 2288 for the other two sets. Finally, the
running cost of ISD (using Peters’ script) is estimated at 2128, 2192 and 2256 respectively, as desired.

6 Performance analysis

6.1 Components

DAGS operates on vectors of elements of the finite field 𝔽q, where q is a power of 2 as specified by the choice
of parameters. Finite field elements are represented as bit strings using standard log/antilog tables (see for
instance [29, Chapter 4, Section 5]) which are stored in the memory.

For DAGS_1, the finite field 𝔽26 is built using the polynomial x6 + x + 1 and then extended to 𝔽212 using
the quadratic irreducible polynomial x2 + αx + α, where α is a primitive element of 𝔽26 . In particular, using
a well-known result on finite fields, we choose α = γ65 where γ is a primitive element of 𝔽212 . This particular
choice allows for more efficient arithmetic using a conversion matrix to switch between different field rep-
resentations. Similarly, for DAGS_3 and DAGS_5, we build the base field using x8 + x4 + x3 + x2 + 1 and the
extension field 𝔽216 is obtained via x2 + β50x + β, where β is a primitive element of 𝔽28 .

6.2 Randomness generation

The randomness used in our implementation is provided by the NIST API. It uses AES as a PNGR, where
NIST chooses the seed in order to have a controlled environment for tests. We use this random generator to
obtain our input message m, after which we calculate G(m) and H(m), where G is an expansion function
andH is a compression function. In practice, we compute both using the KangarooTwelve function [48] from
the Keccak family. To generate a low-weight error vector, we take part of G(m) as a seed σ. We use again
KangarooTwelve to expand the seed into a string of length n, then transform the latter into a fixed-weight
string using a deterministic function.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 235

6.3 Efficient private key reconstruction and decoding

Asmentioned in Section3, in our schemeweuse a standard alternant decoder (step (2) of Algorithm3),which
requires the input to be amatrix in alternant form, i.e.H󸀠ij = yjx

i
j for i = 0, . . . , st − 1 and j = 0, . . . , n − 1. The

first step consists of computing the syndrome of the received word, H󸀠cT . Now, defining the whole alternant
matrix H󸀠 as private keywould require storing stn elements of𝔽qm , leading to huge key sizes. It would be pos-
sible to store as private key just the defining vectors u, v and z, and then compute the alternant form during
decapsulation. Doing sowould drastically reduce the private key size, but would also significantly slow down
the decapsulation algorithm. Thuswe came upwith a neat idea, and implemented a hybrid approach.We use
u, v and z to compute the vector y during key generation and store (v, y) as private key, which still results in
a compact size. Then, we complete the computation of the alternant form in the decapsulation algorithm. To
avoid an unnecessary overhead, we incorporate this computation together with the syndrome computation.
The process is detailed as follows.

Algorithm 4 (Alternant-Syndrome Computation).
(1) Input received word c to be decoded.
(2) Compute the vector s = Diag(y) ⋅ cT .
(3) Form intermediate matrix H̃. To do this:

(a) Set first row equal to s.
(b) Obtain row i, for i = 1, . . . , st − 1, by multiplying the j-th element of row i − 1 by vj,

for j = 0, . . . , n − 1.
(4) Sum elements in each row and output resulting vector.

6.4 Measurements

The implementation is inANSI C, as requested for a generic reference implementation. For themeasurements,
we used an x64 Intel Core i5-5300U processor at 2.30GHz, 16GiB of RAM and GCC version 6.3.0 20170516
without any optimization, running on Debian 9.2.

We start by considering space requirements.We recall the flowbetween two parties P1 and P2 in a generic
key exchange protocol derived from a KEM:

P1 P2
(pk, sk) ← KEM.KeyGen

(k, c) ← KEM.Encaps(pk)

k/⊥ ← KEM.Decaps(c, sk)

pk

c

shared key := k

(6.1)

When instantiated with DAGS, the public key is given by the generator matrix G. The non-identity block MT

is k × (n − k) = k × mst and is dyadic of order s, thus requires only kmst/s = kmt elements of the base field
for storage. The private key is simply the pair (v, y), consisting of 2n elements of 𝔽qm . Finally, the ciphertext
is the pair (c, d), that is, a q-ary vector of length n plus 256 bits. This leads to the measurements (in bytes)
given in Table 5 and Table 6.

Parameter set Public key Private key Ciphertext

DAGS_1 8112 2496 656
DAGS_3 11264 4864 1248
DAGS_5 19712 6400 1632

Table 5:Memory requirements.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

236 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

Message
flow

Transmitted
message

Size

DAGS_1 DAGS_3 DAGS_5

P1 → P2 G 8112 11264 19712
P2 → P1 (c, d) 656 1248 1632

Table 6: Communication costs in protocol flow.

Cycles

Algorithm DAGS_1 DAGS_3 DAGS_5

Key Generation 2540311986 4320206006 7371897084
Encapsulation 12108373 26048972 96929832
Decapsulation 215710551 463849016 1150831538

Table 7: Timings.

We now move on to analyzing time measurements. We are using x64 architecture and our measure-
ments use an assembly instruction to get the time counter. We do this by calling “rdtsc” before and after the
instruction, which gives us the cycles used by each function. Table 7 gives the results of our measurements
represented by the mean after running the code 50 times.

6.5 Comparison

We thought it useful to provide a comparison with other recently proposed code-based KEMs (and in particu-
lar, NIST submissions). In Table 8, we present data for Classic McEliece, BIKE and BIG QUAKEwith regards to
memory requirements, for the highest security level (256 bits classical). We did not deem necessary, on the
other hand, to provide a comparison in terms of implementation timings, as reference implementations are
designed for clarity, rather than performance.

It is easy to see that the public key is much smaller than Classic McEliece and BIG QUAKE, and similar
to that of BIKE. With regards to the latter, note that, for the same security level, the total communication
bandwidth is of the same order of magnitude. This is because DAGS uses much shorter codes, and as a con-
sequence the ciphertext is considerably smaller than a BIKE ciphertext. Moreover, for the purposes of a fair
comparison, we remark that BIKE uses ephemeral keys, has a non-negligible decoding failure rate and only
claims IND-CPA security – all factors that can restrict its use in various applications.

Parameter set Public key Private key Ciphertext

Classic McEliece 1047319 13908 226
BIKE-1 8187 548 8187
BIKE-2 4093 548 4093
BIKE-3 9032 565 9032
BIG QUAKE 149800 41804 492
DAGS_5 19712 6400 1632

Table 8: Comparison of code-based KEMs (bytes).

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 237

7 Conclusion
In this paper, we presented DAGS, a key encapsulation mechanism based on quasi-dyadic generalized
Srivastava codes. We proved that DAGS is IND-CCA secure in the random oracle model, and in the quantum
random oracle model. Thanks to this feature, it is possible to employ DAGS not only as a key exchange
protocol (for which IND-CPA would be a sufficient requirement), but also in other contexts such as hybrid
encryption, where IND-CCA is of paramount importance.

In terms of performance, DAGS compares well with other code-based protocols, as shown by Table 8 and
the related discussion (above). Another advantage of our proposal is that it does not involve any decoding
error. This is particularly favorable in a comparison with some lattice-based schemes like [15], [2] and [14],
aswell as BIKE. No decoding error allows for a simpler formulation andbetter security bounds in the IND-CCA
security proof.

Unlike traditional code-based protocols, DAGS features small sizes for all components, that is cipher-
texts, private keys (thanks to our improved computation idea) and public keys. All the objects involved in
the computations are vectors of finite fields elements, which in turn are represented as binary strings; thus
computations are fast. The cost of computing the hash functions isminimized thanks to the parameter choice
that makes sure the inputm is only 256 bits. As a result, we expect our scheme to be implemented efficiently
on multiple platforms.

The current reference code for the scheme is available at the repository https://git.dags-project.org/dags/
dags. Our team is currently at work to complete various implementations that can better showcase the poten-
tial of DAGS in terms of performance. These include code prepared with x86 assembly instructions (AVX) as
well as a hardware implementation (FPGA) etc. Ahint at the effectiveness ofDAGS canbehadby looking at the
performance of the scheme presented in [16], which also features an implementation for embedded devices.
In particular, we expect DAGS to perform especially well in hardware, due to the nature of the computations
of the McEliece framework.

Finally, we would like to highlight that a DAGS-based key exchange features an “asymmetric” structure,
where the bandwidth cost and computational effort of the twoparties are considerably different. In particular,
in the flow described in (6.1), the party P2 benefits from amuch smaller message and faster computation (the
encapsulation operation), whereas P1 has to perform a key generation and a decapsulation (which includes
a run of the decoding algorithm), and transmit a larger message (the public matrix). This is suitable for tra-
ditional client-server applications where the server side is usually expected to respond to a large number
of requests and thus benefits from a lighter computational load. On the other hand, it is easy to imagine
an instantiation, with reversed roles, which could be suitable for example in Internet-of-Things (IoT) appli-
cations, where it would be beneficial to lesser the burden on the client side, due to its typical processing,
memory and energy constraints. All in all, our scheme offers great flexibility in key exchange applications,
which is not the case for traditional key exchange protocols like Diffie–Hellman.

In light of all these aspects,webelieve thatDAGS is apromising candidate for post-quantumcryptography
standardization as a key encapsulation mechanism.

A Note on the choice of ω
As discussed in Section 6.3, in our scheme we use a standard alternant decoder. After computing the syn-
drome of the word to be decoded, the next step is to recover the error locator polynomial σ(x), by means
of the euclidean algorithm for polynomial division; the algorithm then proceeds by finding the roots of σ.
There is a one-to-one correspondence between these roots and the error positions: in fact, there is an error in
position i if and only if σ(1/xi) = 0.

Of course, if one of the xi’s is equal to 0, it is not possible to find the root, and to detect the error.
Now, the generation of the error vector is random, hencewe can assume the probability of having an error

in position i to be around st/2n; since the codes give the best performance when mst is close to n/2, we can

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

https://git.dags-project.org/dags/dags
https://git.dags-project.org/dags/dags

238 | G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes

estimate this probability as 1/4m, which is reasonably low for any non-trivial choice of m; however, we still
argue that the code is not fully decodable and we now explain how to adapt the key generation algorithm to
ensure that all the xi’s are non-zero.

As part of the key generation algorithmwe assign to each xi the value vi, hence it is enough to restrict the
possible choices for ω to the set {α ∈ 𝔽qm | α ̸= 1/hi + 1/h0, i = 0, . . . , n − 1}. In doing so, we considerably
restrict the possible choices for ω but we ensure that the decoding algorithm works properly.

References
[1] A. Al Jabri, A statistical decoding algorithm for general linear block codes, in: Cryptography and Coding, Lecture Notes in

Comput. Sci. 2260, Springer, Berlin (2001), 1–8.
[2] E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe, Post-quantum key exchange - a new hope, Cryptology ePrint Archive

Report 2015/1092 (2015), http://eprint.iacr.org/2015/1092.
[3] M. Baldi, F. Chiaraluce, R. Garello and F. Mininni, Quasi-cyclic low-density parity-check codes in the McEliece

cryptosystem, in: IEEE International Conference on Communications—ICC’07, IEEE Press, Piscataway (2007), 951–956.
[4] E. Barelli and A. Couvreur, An efficient structural attack on nist submission dags, preprint (2018),

https://arxiv.org/abs/1805.05429.
[5] S. Barg, Some new NP-complete coding problems (in Russian), Problemy Peredachi Informatsii 30 (1994), no. 3, 23–28.
[6] A. Barg, Complexity issues in coding theory, in: Handbook of Coding Theory. Vol. 1. Part 1: Algebraic Coding, Elsevier,

Amsterdam (1998), 649–754.
[7] P. S. L. M. Barreto, S. Gueron, T. Gueneysu, R. Misoczki, E. Persichetti, N. Sendrier and J.-P. Tillich, Cake: Code-based

algorithm for key encapsulation, in: Cryptography and Coding—IMACC 2017, Springer, Cham (2017), 207–226.
[8] P. S. L. M. Barreto, R. Lindner and R. Misoczki, Monoidic codes in cryptography, in: Post-quantum Cryptography, Lecture

Notes in Comput. Sci. 7071, Springer, Heidelberg (2011), 179–199.
[9] T. P. Berger, P.-L. Cayrel, P. Gaborit and A. Otmani, Reducing key length of the McEliece cryptosystem, in: Progress in

Cryptology—AFRICACRYPT 2009, Lecture Notes in Comput. Sci. 5580, Springer, Berlin (2009), 77–97.
[10] E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE

Trans. Inform. Theory IT-24 (1978), no. 3, 384–386.
[11] D. J. Bernstein, Grover vs. McEliece, in: Post-Quantum Cryptography, Lecture Notes in Comput. Sci. 6061, Springer, Berlin

(2010), 73–80.
[12] D. J. Bernstein, T. Chou and P. Schwabe, Mcbits: Fast constant-time code-based cryptography, in: Cryptographic Hardware

and Embedded Systems—CHES 2013, Lecture Notes in Comput. Sci. 8086, Springer, Berlin (2013), 250–272.
[13] B. Biswas and N. Sendrier, McEliece cryptosystem implementation: Theory and practice, in: Post-quantum Cryptography,

Lecture Notes in Comput. Sci. 5299, Springer, Berlin (2008), 47–62.
[14] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghunathan and D. Stebila, Frodo: Take off the ring!

Practical, quantum-secure key exchange from LWE, Cryptology ePrint Archive Report 2016/659 (2016),
http://eprint.iacr.org/2016/659.

[15] J. W. Bos, C. Costello, M. Naehrig and D. Stebila, Post-quantum key exchange for the tls protocol from the ring learning with
errors problem, in: IEEE Symposium on Security and Privacy, IEEE Press, Piscataway (2015), 553–570.

[16] P.-L. Cayrel, G. Hoffmann and E. Persichetti, Efficient implementation of a CCA2-secure variant of McEliece using
generalized Srivastava codes, in: Public Key Cryptography—PKC 2012, Lecture Notes in Comput. Sci. 7293, Springer,
Heidelberg (2012), 138–155.

[17] N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, in: Advances in
Cryptology—ASIACRYPT 2001, Lecture Notes in Comput. Sci. 2248, Springer, Berlin (2001), 157–174.

[18] R. Cramer and V. Shoup, Design and analysis of practical public-key encryption schemes secure against adaptive chosen
ciphertext attack, SIAM J. Comput. 33 (2003), no. 1, 167–226.

[19] J.-C. Deneuville, P. Gaborit and G. Zémor, Ouroboros: A simple, secure and efficient key exchange protocol based on coding
theory, in: Post-quantum Cryptography, Lecture Notes in Comput. Sci. 10346, Springer, Cham (2017), 18–34.

[20] J.-C. Faugère, V. Gauthier-Umaña, A. Otmani, L. Perret and J.-P. Tillich, A distinguisher for high-rate McEliece
cryptosystems, IEEE Trans. Inform. Theory 59 (2013), no. 10, 6830–6844.

[21] J.-C. Faugère, A. Otmani, L. Perret, F. de Portzamparc and J.-P. Tillich, Structural cryptanalysis of McEliece schemes with
compact keys, Des. Codes Cryptogr. 79 (2016), no. 1, 87–112.

[22] J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of McEliece variants with compact keys,
in: Advances in Cryptology—EUROCRYPT 2010, Lecture Notes in Comput. Sci. 6110, Springer, Berlin (2010),
279–298.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

http://eprint.iacr.org/2015/1092
https://arxiv.org/abs/1805.05429
http://eprint.iacr.org/2016/659

G. Banegas et al., DAGS: Key encapsulation using dyadic GS codes | 239

[23] J.-C. Faugère, A. Otmani, L. Perret and J.-P. Tillich, Algebraic cryptanalysis of McEliece variants with compact keys –
towards a complexity analysis, in: Proceedings of the 2nd International Conference on Symbolic Computation and
Cryptography—SCC’10, Laboratoire d’Informatique de Paris 6, Paris (2010), 45–55.

[24] E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, J. Cryptology 26 (2013),
no. 1, 80–101.

[25] Q. Guo, T. Johansson and P. Stankovski, A key recovery attack on MDPC with CCA security using decoding errors, in:
Advances in Cryptology—ASIACRYPT 2016. Part I, Lecture Notes in Comput. Sci. 10031, Springer, Berlin (2016), 789–815.

[26] Y. Hamdaoui and N. Sendrier, A non asymptotic analysis of information set decoding, Cryptology ePrint Archive Report
2013/162 (2013), http://eprint.iacr.org/2013/162.

[27] D. Hofheinz, K. Hövelmanns and E. Kiltz, A modular analysis of the Fujisaki–Okamoto transformation, in: Theory of
Cryptography. Part I, Lecture Notes in Comput. Sci. 10677, Springer, Cham (2017), 341–371.

[28] G. Kachigar and J.-P. Tillich, Quantum information set decoding algorithms, in: Post-quantum Cryptography, Lecture Notes
in Comput. Sci. 10346, Springer, Cham (2017), 69–89.

[29] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. I, North-Holland Math. Libr. 16, North-Holland,
Amsterdam, 1977,

[30] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Netw. Prog. Rep. 44 (1978),
114–116.

[31] R. Misoczki and P. S. L. M. Barreto, Compact mceliece keys from goppa codes, in: Selected Areas in Cryptography,
Springer, Berlin (2009), 376–392.

[32] R. Misoczki, J.-P. Tillich, N. Sendrier and P. L. S. M. Barreto, MDPC-McEliece: New McEliece variants from moderate density
parity-check codes, in: International Symposium on Information Theory—ISIT 2013, IEEE Press, Piscataway (2013),
2069–2073.

[33] R. Niebuhr, Statistical decoding of codes over 𝔽q, in: Post-quantum Cryptography, Lecture Notes in Comput. Sci. 7071,
Springer, Heidelberg (2011), 217–227.

[34] R. Niebuhr, E. Persichetti, P.-L. Cayrel, S. Bulygin and J. Buchmann, On lower bounds for information set decoding over 𝔽q
and on the effect of partial knowledge, Int. J. Inf. Coding Theory 4 (2017), no. 1, 47–78.

[35] R. Nojima, H. Imai, K. Kobara and K. Morozov, Semantic security for the McEliece cryptosystem without random oracles,
Des. Codes Cryptogr. 49 (2008), no. 1–3, 289–305.

[36] E. Persichetti, Compact McEliece keys based on quasi-dyadic Srivastava codes, J. Math. Cryptol. 6 (2012), no. 2, 149–169.
[37] E. Persichetti, Secure and anonymous hybrid encryption from coding theory, in: Post-Quantum Cryptography—PQCrypto

2013, Berlin, Heidelberg (2013), 174–187.
[38] C. Peters, Information-set decoding for linear codes over Fq, in: Post-quantum Cryptography, Lecture Notes in Comput. Sci.

6061, Springer, Berlin (2010), 81–94.
[39] E. Prange, The use of information sets in decoding cyclic codes, IRE Trans. IT-8 (1962), S5–S9.
[40] D. V. Sarwate, On the complexity of decoding Goppa codes, IEEE Trans. Inform. Theory IT-23 (1977), no. 4, 515–516.
[41] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J.

Comput. 26 (1997), no. 5, 1484–1509.
[42] F. Strenzke, A timing attack against the secret permutation in the McEliece PKC, in: Post-quantum Cryptography, Lecture

Notes in Comput. Sci. 6061, Springer, Berlin (2010), 95–107.
[43] F. Strenzke, E. Tews, H. G. Molter, R. Overbeck and A. Shoufan, Side channels in the McEliece PKC, in: Post-quantum

Cryptography, Lecture Notes in Comput. Sci. 5299, Springer, Berlin (2008), 216–229.
[44] https://bigquake.inria.fr/.
[45] https://bikesuite.org.
[46] http://christianepeters.wordpress.com/publications/tools/.
[47] https://classic.mceliece.org/.
[48] https://keccak.team/kangarootwelve.html.

Brought to you by | Eindhoven University of Technology
Authenticated

Download Date | 2/26/20 3:08 PM

http://eprint.iacr.org/2013/162
https://bigquake.inria.fr/
https://bikesuite.org
http://christianepeters.wordpress.com/publications/tools/
https://classic.mceliece.org/
https://keccak.team/kangarootwelve.html

	DAGS: Key encapsulation using dyadic GS codes
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Linear codes
	2.3 Structured matrices and GS codes

	3 Construction
	3.1 Algorithms

	4 KEM security
	5 Practical security and parameters
	5.1 Hard problems from coding theory
	5.2 Decoding attacks
	5.3 Algebraic attacks
	5.4 Parameter selection

	6 Performance analysis
	6.1 Components
	6.2 Randomness generation
	6.3 Efficient private key reconstruction and decoding
	6.4 Measurements
	6.5 Comparison

	7 Conclusion
	A Note on the choice of ω

