207 research outputs found

    Even-cycle decompositions of graphs with no odd-K4K_4-minor

    Full text link
    An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5K_5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4K_4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that `odd-K4K_4-minor-free' cannot be replaced with `odd-K5K_5-minor-free.' The main technical ingredient is a structural characterization of the class of odd-K4K_4-minor-free graphs, which is due to Lov\'asz, Seymour, Schrijver, and Truemper.Comment: 17 pages, 6 figures; minor revisio

    Perfect Matching and Circuit Cover of Graphs

    Get PDF
    The research of my dissertation is motivated by the Circuit Double Cover Conjecture due to Szekeres and independently Seymour, that every bridgeless graph G has a family of circuits which covers every edge of G twice. By Fleischner\u27s Splitting Lemma, it suffices to verify the circuit double cover conjecture for bridgeless cubic graphs.;It is well known that every edge-3-colorable cubic graph has a circuit double cover. The structures of edge-3-colorable cubic graphs have strong connections with the circuit double cover conjecture. In chapter two, we consider the structure properties of a special class of edge-3-colorable cubic graphs, which has an edge contained by a unique perfect matching. In chapter three, we prove that if a cubic graph G containing a subdivision of a special class of edge-3-colorable cubic graphs, semi-Kotzig graphs, then G has a circuit double cover.;Circuit extension is an approach posted by Seymour to attack the circuit double cover conjecture. But Fleischer and Kochol found counterexamples to this approach. In chapter four, we post a modified approach, called circuit extension sequence. If a cubic graph G has a circuit extension sequence, then G has a circuit double cover. We verify that all Fleischner\u27s examples and Kochol\u27s examples have a circuit extension sequence, and hence not counterexamples to our approach. Further, we prove that a circuit C of a bridgeless cubic G is extendable if the attachments of all odd Tutte-bridges appear on C consequently.;In the last chapter, we consider the properties of minimum counterexamples to the strong circuit double cover. Applying these properties, we show that if a cubic graph G has a long circuit with at least | V(G)| - 7 vertices, then G has a circuit double cover

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    Combinatorics of embeddings

    Full text link
    We offer the following explanation of the statement of the Kuratowski graph planarity criterion and of 6/7 of the statement of the Robertson-Seymour-Thomas intrinsic linking criterion. Let us call a cell complex 'dichotomial' if to every cell there corresponds a unique cell with the complementary set of vertices. Then every dichotomial cell complex is PL homeomorphic to a sphere; there exist precisely two 3-dimensional dichotomial cell complexes, and their 1-skeleta are K_5 and K_{3,3}; and precisely six 4-dimensional ones, and their 1-skeleta all but one graphs of the Petersen family. In higher dimensions n>2, we observe that in order to characterize those compact n-polyhedra that embed in S^{2n} in terms of finitely many "prohibited minors", it suffices to establish finiteness of the list of all (n-1)-connected n-dimensional finite cell complexes that do not embed in S^{2n} yet all their proper subcomplexes and proper cell-like combinatorial quotients embed there. Our main result is that this list contains the n-skeleta of (2n+1)-dimensional dichotomial cell complexes. The 2-skeleta of 5-dimensional dichotomial cell complexes include (apart from the three joins of the i-skeleta of (2i+2)-simplices) at least ten non-simplicial complexes.Comment: 49 pages, 1 figure. Minor improvements in v2 (subsection 4.C on transforms of dichotomial spheres reworked to include more details; subsection 2.D "Algorithmic issues" added, etc

    Circuits, Perfect Matchings and Paths in Graphs

    Get PDF
    We primarily consider the problem of finding a family of circuits to cover a bidgeless graph (mainly on cubic graph) with respect to a given weight function defined on the edge set. The first chapter of this thesis is going to cover all basic concepts and notations will be used and a survey of this topic.;In Chapter two, we shall pay our attention to the Strong Circuit Double Cover Conjecture (SCDC Conjecture). This conjecture was verified for some graphs with special structure. As the complement of two factor in cubic graph, the Berge-Fulkersen Conjecture was introduced right after SCDC Conjecture. In Chapter three, we shall present a series of conjectures related to perfect matching covering and point out their relationship.;In last chapter, we shall introduce the saturation number, in contrast to extremal number (or known as Turan Number), and describe the edge spectrum of saturation number for small paths, where the spectrum was consisted of all possible integers between saturation number and Turan number

    Cycle Double Covers and Integer Flows

    Get PDF
    My research focuses on two famous problems in graph theory, namely the cycle double cover conjecture and the integer flows conjectures. This kind of problem is undoubtedly one of the major catalysts in the tremendous development of graph theory. It was observed by Tutte that the Four color problem can be formulated in terms of integer flows, as well as cycle covers. Since then, the topics of integer flows and cycle covers have always been in the main line of graph theory research. This dissertation provides several partial results on these two classes of problems
    • …
    corecore