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ABSTRACT

Cycle Double Covers and Integer Flows

Zhang Zhang

My research focuses on two famous problems in graph theory, namely the cycle double cover

conjecture and the integer flows conjectures. This kind of problem is undoubtedly one of the

major catalysts in the tremendous development of graph theory. It was observed by Tutte that

the Four color problem can be formulated in terms of integer flows, as well as cycle covers.

Since then, the topics of integer flows and cycle covers have always been in the main line of

graph theory research. This dissertation provides several partial results on these two classes of

problems.

Fleischner’s problem concerning the compatible circuit decomposition is solved in Chapter

1, which is closely related to the famous cycle double cover conjecture. Actually, a compatible

circuit decomposition is basically a circuit decomposition of an eulerian graph satisfying the

required properties. Such a decomposition implies the existence of a cycle double cover in the

following way: Let G be an arbitrarily bridgeless graph and G̃ be the eulerian graph obtained

from G by replacing each edge with a pair of parallel edges. Since G̃ is an eulerian graph, it

has a circuit decomposition. We further require that each pair of parallel edges can’t occur in

the same circuit. This is just a special case of compatible circuit decomposition. Clearly, such a

decomposition corresponds to a cycle double cover of the original graph G. Fleischner (1990’s)

wondered implicitly whether if an even graph does not have a compatible circuit decomposition

then it must have an undecomposable K5-transition-minor or its generalized transition-minor.

This conjecture is now completely solved in this paper.

The Four color conjecture can be viewed as a coloring problem on orientable surfaces. Indeed,

Tutte showd the equivalence of face coloring problem and the integer flows problems. In Chapter

2, we further generalize it into non-orientable surfaces by introducing the natural signatures on

signed graphs. In 1983, Bouchet conjectured that every flow-admissible signed graph admits

a nowhere-zero 6-flow. In Chapter 2, we deduce this conjecture to a small class of graphs by

applying the classification theorem of surfaces. Moreover, we verify this conjecture for a special

class of embedding graphs.

In Chapter 3, we show that every flow-admissible signed graph admits a nowhere-zero 11-

flow, which is the best partial result to Bouchet’s conjecture. The main part is to prove that

every flow-admissible signed graph admits a balanced nowhere-zero Z2 × Z3-flow, which will be

a powerful tool in dealing with the integer flow problems of signed graphs. We also discuss

the conversion of modulo flows into integer flows in this Chapter. In particular a new result to

convert a modulo 3-flow to an integer 5-flow will be introduced and proved.
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Chapter 1

Bad K5

The well known cycle double cover conjecture, proposed independently by Tutte and other

mathematicians, states that every bridgeless graph has a collection of cycles which together

cover each edge of the graph exactly twice.

The following is an approach towards the cycle double cover conjecture, using circuit decom-

position of eulerian graphs: Let G be arbitrarily a bridgeless graph and G̃ be the eulerian graph

obtained from G by replacing each edge with a pair of parallel edges. Since G̃ is an eulerian

graph, it has a circuit decomposition. We further require that each pair of parallel edges can

not occur in the same circuit. This is just a special case of compatible circuit decomposition.

Clearly, such a decomposition corresponds to a cycle double cover of the original graph G. This

relation leads us the following problem.

1.1 Introduction

Compatible Circuit Decomposition (CCD) Problem. Let G be a 2-connected eulerian

graph with δ(G) ≥ 4, and for each v ∈ V (G) let T (v) be a set of edge-disjoint edge-pairs (called

transitions) of E(v) (in the case of a loop l we allow {l, l} to be a transition). Can we find a

circuit decomposition C of G such that, for every C ∈ C and every v ∈ V (G) and every P ∈ T (v),

|E(C) ∩ P | ≤ 1 (unless C is a loop and P = {l, l}, in which case there is no CCD)?

Such C is called compatible with the transition system T =
⋃
v∈V (G) T (v) (see also Defini-

tion 1.2.2).

The compatible circuit decomposition (CCD) problem is closely related to the famous circuit

double cover conjecture, [16, 24,27,30], and to the Sabidussi conjecture [11,12].

It is well known that not every eulerian graph associated with a transition system has a

compatible circuit decomposition. For example, an undecomposable K5 (or, a bad K5 to use a
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more colloquial expression) is the complete graph K5 associated with the transition system

T5 = {{vivi+µ, vivi−µ} : i ∈ Z5, µ ∈ {1, 2}}

where V (K5) = {v0, v1, . . . , v4} (see Figure 1.1).

The compatible circuit decomposition problem has been verified for planar graphs by Fleis-

chner [11], and for K5-minor-free graphs by Fan and Zhang [9]. Fleischner further asked im-

plicitly the following question [14] which is beyond a graph-minor problem. In what follows we

restrict ourselves to 2−connected graphs.

Problem 1. (Fleischner [14]) If (G, T ) does not have a compatible circuit decomposition, does

(G, T ) contain either an undecomposable K5-transition-minor or one of its generalized transition-

minors?

A transition-minor is not only a graph-minor that preserves some topological structure of G

but also inherits the original transition system T (see Definitions 1.2.7 and 1.2.9 for definitions

of transition-minor and SUD-K5). Problem 1 is completely solved in this chapter.

Theorem 1.1.1. Let (G, T ) be a 2-connected eulerian graph with the minimum degree δ ≥ 4

associated with a transition system. If (G, T ) is SUD-K5-minor-free, then it has a compatible

circuit decomposition.

We observe that if T = ∅, then any circuit decomposition of (G, T ) is in accordance with

Theorem 1.1.1. Thus, we assume that our point of departure is a (G, T ) with T 6= ∅.
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Figure 1.1: K5 with T5 = {{vi−1vi, vivi+1}, {vi−2vi, vivi+2} : i ∈ Z5}

In the study of circuit cover and circuit decomposition problems, one of the fundamental

steps is to determine the structure of two adjacent circuits (i.e., two circuits having at least

one vertex in common). The Hamilton weight problem ( [20, 34]) is one of such approaches

for faithful cover problem. Its corresponding version for circuit decomposition is the Hamilton

transition problem. That is, if (G, T ) has some compatible circuit decomposition and every
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such decomposition consists of a pair of hamiltonian circuits, then (G, T ) must be constructed

recursively from two loops (2L) via a series of (X ↔ O)−operations (the operation extending a

vertex to a digon); see Definition 1.2.13 and Conjecture A. The family of transitioned graphs

constructed in such a way is denoted by 〈2L〉. This problem is solved in this paper for SUD-

K5-minor-free graphs, as stated in Theorem 1.1.2 below.

Theorem 1.1.2. Let (G, T ) be a 4-regular fully transitioned graph that has a compatible circuit

decomposition and such that every such decomposition consists of a pair of hamiltonian circuits.

If (G, T ) is SUD-K5-minor-free, then (G, T ) ∈ 〈2L〉.

This result plays a key role in the determination of a UD-K5-transition-minor in Theo-

rem 1.1.1. It is important to point out that both Theorems 1.1.1 and 1.1.2 are proved simultane-

ously because one provides the structures of extreme cases, while the other assures the existence

of a compatible circuit decomposition for any proper minor of a smallest counterexample.

The rest of the chapter is organized as follows. Some notation and terminology are recalled

and introduced in Section 1.2. Main results, Theorems 1.1.1 and 1.1.2 are further summarized

in Section 1.3. In Section 1.4, some preliminary lemmas for Theorem 1.1.1 are proved in Sub-

section 1.4.1 before its simultaneous proof with Theorem 1.1.2 (in Section 1.5). There are other

important results (Lemmas 1.4.10 and 1.4.11) in Subsection 1.4.2 that determine the specific

structure of UD-K5 and are used in the simultaneous proof of Theorems 1.1.1 and 1.1.2.

1.2 Preliminary Discussions

For terminology and notation not defined here we follow [4, 7, 32], and the papers listed in the

References.

A circuit is a 2-regular connected subgraph of a given graph G. A subgraph H of G is called

even or eulerian if degH(v) is even for every vertex v ∈ V (H).

Let v be a degree two vertex of a given graph G. Suppressing v is the operation of removing

v and adding an edge between the two neighbours of v in G.

Definition 1.2.1. A vertex subset U is a separator of G separating G to G1, G2 if E(G) =

E(G1)∪E(G2) and V (G1)∩ V (G2) = U and E(G1)∩E(G2) = ∅. U is a t-separator if |U | = t.

We say a separator U separating subgraphs X1, X2 of G if U is a separator of G separating G

to G1, G2 with Xi ⊆ Gi, i = 1, 2.

Definition 1.2.2. Let G be an eulerian graph, and, for each v ∈ V (G) with deg(v) ≥ 4, let T (v)

be a set of edge-disjoint edge-pairs of E(v). The set T =
⋃
v∈V (G) T (v) is called a transition

system of G and each member of T is called a transition. A non-trivial vertex is a vertex with

3



some transition (that is, T (v) 6= ∅); otherwise, we called v a trivial vertex. The graph G with a

transition system T is called a transitioned graph and denoted by (G, T ); (possibly T = ∅). A

fully transitioned graph is a transitioned graph without trivial vertex. For every subgraph H of

G, T |H = {P ∈ T |P ⊂ E(H)}. In the case of multiple edges e, f at u, v ∈ V (G), we distinguish

between the transition {e, f} at u and the transition {e, f} at v.

Definition 1.2.3. Let (G, T ) be a transitioned graph.

(1) A 1-separator {v} separating G to G1, G2 is a bad cut-vertex if E(v) ∩ E(Gi) ∈ T for at

least one i ∈ {1, 2}.

(2) (G, T ) is admissible if it does not have a bad cut-vertex.

Definition 1.2.4. Let (G, T ) be a transitioned graph. Let C = v0v1 . . . vr−1v0 be a circuit. Let

ei be the edge of C joining vi and vi+1 for every i ∈ Zr.

(1) vi is an inner vertex of C if {ei−1, ei} ∈ T (vi) or E(vi)\{ei−1, ei} ∈ T (vi), and we call

{ei−1, ei} an inner transition of C at vi. C is compatible at vi if it is not an inner vertex

of C.

(2) C is a compatible circuit of (G, T ) if C is compatible at every vertex of C.

Definition 1.2.5. A family F of circuits of G is a compatible circuit decomposition (abbreviated

CCD) of (G, T ) if F is a circuit decomposition of G and every member of F is a compatible

circuit.

It is obvious that the absence of bad cut-vertices (see Definition 1.2.3) is a necessary condition

for a transitioned graph admitting a CCD.

Observation 1.2.1. Consider a non-trivial vertex v of degree 4 in (G, T ). Let E(v) = {e1, . . . , e4}
and P = {e1, e2} ∈ T (v). Then every circuit of a CCD of (G, T ) covers at most one edge of

{e3, e4}. This means in a natural way and without loss of generality, we can assume that if

P ∈ T (v), then E(v) \ P ∈ T (v), for every vertex v of degree 4. Thus every vertex v of degree

4 is either a trivial vertex, or |T (v)| = 2.

Definition 1.2.6. A circuit C is a removable circuit of (G, T ) if it is compatible and (G \
E(C), T |G\E(C)) remains admissible (that is, (G \ E(C), T |G\E(C)) has no bad cut-vertex).

Definition 1.2.7. Let (G, T ) be a transitioned eulerian graph, and, G
′

= (G \ Fd)/Fc be an

eulerian minor of G obtained by deleting Fd and contracting Fc where Fd, Fc ⊆ E(G). The

resulting transition system T ′
= T |G′ on G

′
is defined as follows.

(1) Delete the edges of (Fd ∪ Fc). The resulting transition system T ′
contains all transitions

P ∈ T for which P ⊆ E(G \ (Fd ∪ Fc)).

4



(2) For each edge e = v
′
ev

′′
e ∈ Fc, identify the end-vertices v

′
e and v

′′
e as a new vertex ve.

(3) Since we do not define a transition at any vertex v of degree 2, T ′
(v) = ∅ if degG′ (v) = 2.

And we apply Observation 1.2.1 to extend T ′
(z) if degG′ (z) = 4.

The resulting transitioned graph (G
′
, T ′

) is called a transition-minor of (G, T ).

Definition 1.2.8. (G, T ) is called the undecomposable K5 (UD-K5 for short) if G = K5, and

the transition system T is defined as follows.

T (vi) = {{vivi+µ, vivi−µ} : µ ∈ {1, 2} (mod 5)}

for every vi ∈ V (K5) = {v0, v1, . . . , v4}; see Figure 1.1.

Definition 1.2.9. The transitioned graph (G, T ) is a sup-undecomposable K5 (SUD-K5 for

short) if the graph G can be decomposed into 15 connected edge-disjoint subgraphs

{Pi,j : {i, j} ⊂ Z5, i < j} ∪ {Qi : i ∈ Z5}

as follows (see Figure 1.2).

(1) Each Pi,j is a path joining V (Qi) and V (Qj) (i < j), and the different Pi,j’s are internally

disjoint;

(2) {Qi : i ∈ Z5} are disjoint connected subgraphs;

(3) Let Q+
i be the subgraph of H induced by E(Qi) and the four adjacent paths Pi,j (for every

pair j 6= i). Then each subgraph Q+
i has a bad cut-vertex ui separating Pi,(i+1) ∪ Pi,(i−1)

and Pi,(i+2) ∪ Pi,(i−2), where ui ∈ V (Qi).

�
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Figure 1.2: A sup-undecomposable K5

Note that a UD-K5 is a special case of a SUD-K5 where |Qi| = 1 for every i ∈ Z5.
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Definition 1.2.10. (G, T ) is sup-undecomposable K5-transition-minor free (or, SUD-K5-minor-

free for short) if it does not have any eulerian minor H such that (H, T |H) is a SUD-K5.

The following is a straightforward observation.

Observation 1.2.2. Let G
′

be an eulerian minor of G. If (G, T ) is SUD-K5-minor-free, then

(G
′
, T ′

) remains SUD-K5-minor-free (where T ′
is described in Definition 1.2.7).

Example 1. In [15], an infinite family of snarks {Hn} has been constructed, which has a

2−factor Fn such that Fn is not contained in any circuit double cover of Hn. Let Hn be the

4-regular graph obtained from Hn by contracting the 1−factor Hn \Fn and Tn be the transition

system of Hn such that each circuit of Fn has all its vertices as inner vertices (see Definition 1.2.4-

(1)). Clearly, (Hn, Tn) has no CCD. Otherwise we can get a circuit double cover by taking Fn

together with the CCD of (Hn, Tn) (after a proper adjustment by adding edges of Hn \ Fn).

The 4-regular graph illustrated in Figure 1.3−(a) is the contracted graph H0 where the 2-factor

F0 is a pair of edge-disjoint hamiltonian circuits (illustrated by thin lines and thick lines). A

study in [15] reveals that each member (Hn, Tn) in this family contains a UD-K5-minor due to

the structure of (Hn, Tn). For example, the resulting transition graph by deleting some edges

H0 is a subdivision of a UD-K5 (illustrated in Figure 1.3−(b)). Therefore, every transitioned

4-regular graph (Hn, Tn) in this family contains a SUD-K5-minor and does not have a CCD.

tv1 tv2 tv3

tv4

tv5t
v6t

v7

t
v8

tv9

t v10 tv11 tv12

t v13

tv14t
v15t v16

tv17

t tv2 tv3

tv4

tttt
v8

t t t
t

tv14ttt

Figure 1.3: (a) (H0, T0) has no CCD. (b) A UD-K5−minor in (H0, T0).

Next, we introduce the Hamiltonian circuit decomposition problem, which is the correspond-

ing Hamilton weight problem in faithful circuit cover.

Definition 1.2.11. Let (G, T ) be a fully transitioned 4-regular graph. If every CCD of (G, T )

is a pair of hamiltonian circuits, then (G, T ) is called a Hamilton transitioned graph.
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Definition 1.2.12. Let D = v0v1v0 be a digon. D is of type λ where λ is the number of inner

vertices of D (see Figure 1.4).

t
t

t
t

t
t

Figure 1.4: Digons of type 0, 1, and 2, respectively.

Definition 1.2.13. Let v be a non-trivial degree 4 vertex of a transitioned graph (G, T ). The

(X ↔ O)−operation at v with T (v) = {{e1, e2}, {e3, e4}} is defined as follows (see Figure 1.5).

Split v with {e1, e2} becoming incident to a new vertex v1 and {e3, e4} incident to another

new vertex v2, and add a pair of parallel edges {e5, e6} between v1 and v2, and define a new

transition system by replacing T (v) with T (v2) = {{e3, e4}, {e5, e6}} and with either T (v1) =

{{e1, e5}, {e2, e6}} or T (v1) = {{e1, e2}, {e5, e6}}. In fact, we have created a digon of type > 0

between v1 and v2.

tv
e1 e2

e4 e3

←→

t
tv1

v2

e1 e2

e4 e3

e5 e6 or

t
tv1

v2

e1 e2

e4 e3

e5 e6

Figure 1.5: (X ↔ O)−operations.

Definition 1.2.14. Denote by 〈2L〉 the family of all transitioned 4−regular graphs obtained from

(2L, T2) (which appears on the top left of Figure 1.6) by a sequence of (X ↔ O)−operations; it

is called the 2L−family and its members are called 〈2L〉−elements.

Lemma 1.2.1. Let (G, T ) ∈ 〈2L〉 be of order at least 3. Then (G, T ) has either two vertex-

disjoint digons of type ≥ 1, or two edge-disjoint digons of type ≥ 1 with at least one inner

transition in the common vertex.
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Figure 1.6: 〈2L〉-elements of order ≤ 3.

Proof. Note that the order of (G, T ) ∈ 〈2L〉 being at least 3 implies that G does not contain

an edge with multiplicity more than 2 (this is straightforward from the definition of 〈2L〉).
The family 〈2L〉 has precisely three members of order 3 (see Figure 1.6); in this case, every

(G, T ) ∈ 〈2L〉 has two edge-disjoint digons of type > 0 sharing a common inner vertex.

Thus, the statement of the lemma is true for (G, T ) ∈ 〈2L〉 of order 3. Hence suppose that

G is of order greater than 3.

Since (X ↔ O)−operations create a new digon of type > 0, every member of 〈2L〉 except

2L contains at least one digon of type > 0. Let D be a digon of type λ > 0 in (G, T ) and let

(G
′
, T ′

) ∈ 〈2L〉 be the graph obtained from (G, T ) by contracting D. By induction on |V (G)|,
(G

′
, T ′

) has either two vertex-disjoint digons of type > 0 or two edge-disjoint digons of type > 0

with an inner transition in a common vertex in each of these two digons. In all cases at least

one of these digons of type > 0 and D are either two vertex-disjoint digons of type > 0 or two

edge-disjoint digons of type > 0 with inner transitions in the common vertex in (G, T ).

1.3 Main results

Given Definition 1.2.3, Theorem 1.1.1 is restated as a stronger version below.

Theorem 1.1.1’. Let (G, T ) be an eulerian graph associated with an admissible transition

system. If (G, T ) is SUD-K5-minor-free, then it has a CCD.

Theorem 1.1.1’ is not only a graph minor problem, but also a transition minor problem. It

was originally proposed by Fleischner [14]. Its weak version for graph minors was solved by

Fleischner [11] for planar graphs, and by Fan and Zhang [9] for K5-minor-free graphs.

Note that Theorem 1.1.1’ is stronger than the following theorem which is only a graph-minor-
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free result (not a transition-minor-free result).

Theorem A. [9] Let T be an admissible transition system of an eulerian graph G. Then (G, T )

has a CCD if G is K5-minor-free.

In the studies of circuit covering problems or circuit decomposition problems, one of the

critical steps is to determine the structure of the subgraph induced by a pair of incident cir-

cuits ( [36, 38], etc.). The structure of a graph that is covered by or decomposed into a pair of

hamiltonian circuits provides a local structure of a possible counterexample to many open prob-

lems (such as the circuit double cover conjecture). Its structure for the faithful circuit covering

problem was conjectured in [34]; the following is an equivalent version for the corresponding

compatible circuit decomposition problem.

Conjecture A. [34] Let (G, T ) be a fully transitioned 4-regular graph such that it has some CCD

and every such decomposition consists of a pair of hamiltonian circuits. Then (G, T ) ∈ 〈2L〉.

Theorem 1.1.2 solves Conjecture A for SUD-K5-minor-free graphs. This result generalizes

an early result by Lai and Zhang [20] which is a graph minor result for the faithful covering

problem.

Note that, in this paper, Theorems 1.1.1’ and 1.1.2 are proved simultaneously, which indicates

the technical importance of Hamilton transitioned results (such as, Theorem 1.1.2) in the studies

of this area.

1.4 Primary lemmas

1.4.1 For the proof of Theorem 1.1.1’

We consider a counterexample (G, T ) to Theorem 1.1.1’, such that

(1) |E(G)| is as small as possible;

(2) subject to (1), the number of transitions is as small as possible.

(G, T ) is called a smallest counterexample to Theorem 1.1.1’. It follows from the choice of (G, T )

that (G, T ) has no removable circuit.

Definition 1.4.1. Let v be a non-trivial vertex in a transitioned 4−regular graph (G, T ). A

circuit decomposition of (G, T ) is called an almost compatible circuit decomposition with respect

to v, if it is compatible in every vertex except v.

A sequence of edge-disjoint circuits {C1, . . . , Ck} (k ≥ 2) of (G, T ) is called an almost com-

patible circuit chain decomposition with respect to v (ACCCD(v) for short), if

9



(1) it is an almost compatible circuit decomposition with respect to v;

(2) v ∈ V (C1) ∩ V (Ck), and v /∈ V (Ci) ∀i ∈ {2, . . . , k − 1}.

(3) for each i, j ∈ {1, . . . , k} with i 6= j, [V (Ci) ∩ V (Cj)] \ {v} 6= ∅ if and only if |j − i| = 1.

The integer k is called the length of the chain {C1, . . . , Ck} (see Figure 1.7).

By an approach similar to the one in [2], [1] and [9], we obtain the following structural

results. For the purpose of being self-contained, proofs are therefore included.

Lemma 1.4.1. [9] Let (G, T ) be a smallest counterexample to Theorem 1.1.1’ and let Fv =

{C1, . . . , Ck} be an ACCCD of (G, T ) with respect to a non-trivial vertex v. If k ≥ 3, then

V (C1) ∩ V (Ck) = {v}.

Proof. By Definition 1.4.1, v ∈ V (C1)∩V (Ck). LetH be the subgraph induced by E(C1)∪E(Ck).

If |V (C1) ∩ V (Ck)| ≥ 2, then (H, T |H) is 2−connected. So each Ci, 1 < i < k, is a removable

circuit, which is a contradiction.

Lemma 1.4.2. [9] Any smallest counterexample (G, T ) to Theorem 1.1.1’ is 4−regular, 2-

connected, and for every non-trivial vertex v of (G, T ), there exists an ACCCD(v). Furthermore,

every almost CCD with respect to v is an ACCCD(v).

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Since T is admissible, (G, T )

has no bad cut-vertex. If {v} is a 1-separator of G separating G to G1, G2, then (G1, T |G1) and

(G2, T |G2) have CCD’s C1 and C2, respectively, Thus, C1∪C2 is a CCD of (G, T ), a contradiction.

Therefore, G is 2−connected.

Let v be a non-trivial vertex in G and let (G
′
, T ′

) be a transitioned graph obtained from

(G, T ) by removing one transition in vertex v, if deg(v) > 4, or by removing all transitions of

T (v), if deg(v) = 4.

By the choice of (G, T ), the new graph (G
′
, T ′

), which has a smaller number of transitions,

has a CCD, Fv. Let Cv be the circuit of Fv containing the vertex v and one of the removed

transitions and let A = {C ∈ Fv \ {Cv}| C contains v.}.
By the choice of (G, T ), Fv is an almost compatible circuit decomposition with respect to v.

Construct an auxiliary graph I with the vertex set V (I) = Fv and two vertices of I are

adjacent to each other if and only if their corresponding circuits of Fv have a non-empty inter-

section in G \ {v}. Since G is 2−connected, I is connected. Let S = C1 . . . Ck be a shortest

path in I from C1 = Cv to A (Ck ∈ A). Obviously, S is a circuit chain of G closed at v.

Let G
′′

be the subgraph induced by edges of ∪ki=1E(Ci). The transitioned graph (G
′′
, T |G′′ )

is 2−connected, so it has no bad cut-vertex. Thus, every circuit C ∈ Fv \ {C1, . . . , Ck} is a

removable circuit. This is impossible. Therefore, Fv = {C1, . . . , Ck} is an ACCCD(v) of (G, T )

and G is 4−regular.
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Figure 1.7: An ACCCD(v) of (G, T ).

Lemma 1.4.3. Any smallest counterexample to Theorem 1.1.1’ has no digon of type λ > 0.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Suppose (G, T ) has a digon

of type λ > 0, D. The smaller graph (G
′
, T ′

) obtained from (G, T ) by contracting D remains

SUD-K5-minor-free, because (G, T ) has this property. Thus it has a CCD. It is easily seen that

every CCD of (G
′
, T ′

) induces a CCD on (G, T ), which is a contradiction.

Lemma 1.4.4. Any smallest counterexample to Theorem 1.1.1’ is 4−edge-connected.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Assume that {e1, e2} is

a 2−edge-cut of (G, T ) and G1, G2 are the components of G \ {e1, e2}. By Lemma 1.4.2,

G is 2−connected, so e1 and e2 are vertex disjoint. Let e1 = u1u2 and e2 = v1v2 where

{ui, vi} ⊂ V (Gi), i = 1, 2.

Let Hi = G/G3−i for each i = 1, 2. It is easy to check that (Hi,Si), i = 1, 2, is SUD-K5-

minor-free, Si = T |Gi . So there exists a CCD Ci of (Hi,Si) and a circuit Ci ∈ Ci covering uivi,

i = 1, 2. Let C = (C1 ∪ C2 ∪ {u1u2, v1v2}) \ {u1v1, u2v2}. Thus, C = (C1 ∪ C2 ∪ {C}) \ {C1, C2}
is a CCD of (G, T ), a contradiction.

Since no eulerian graph has an edge-cut of odd size, (G, T ) is 4−edge-connected.

Lemma 1.4.5. Any smallest counterexample to Theorem 1.1.1’ is 3−connected.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. By Lemma 1.4.2, G is a

2−connected 4−regular graph. By Lemma 1.4.4, G \X has exactly two components, for every

2−vertex-cut X.

Suppose {u, v} is a 2−vertex-cut of G such that G1, G2 are the components of G \ {u, v}.
Every edge-cut in an eulerian graph has an even number of edges. It follows that u, v can be
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chosen such that for i = 1, 2, both u and v have the same degrees in G\V (Gi). By Lemma 1.4.4,

uv /∈ E(G) and degG\V (Gi)(u) = degG\V (Gi)(v) = 2, i = 1, 2. We have two cases (see Figure 1.8).

'
&

$
%

G1

'
&

$
%G2

tu tv

Case 1

'
&

$
%

G1

'
&

$
%G2

t
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Figure 1.8: 2−vertex-cut {u, v}.

Case 1. E(G \ V (Gi)) ∩ E(u) ∈ T (u).

In this case, let (G
′
i, T

′
i ) be a transitioned 4−regular graph obtained from (G, T ) by con-

tracting all edges of G \ V (Gi). Then, (G
′
i, T

′
i ) has no SUD-K5-minor. It follows from the

minimality of (G, T ) that (G
′
i, T

′
i ) has a CCD. Then by adapting the circuits containing

edges of E(u) ∪ E(v) in these two CCD’s, we may obtain a CCD of (G, T ), which is a

contradiction.

Case 2. {u1u, uu2} ∈ T (u), {v1v, vv2} ∈ T (v), where ui, vi are neighbours of u and v in Gi,

i = 1, 2, respectively.

In this case, we set G
′
i = G\V (Gi+1), and define T ′

i as the set of transitions in G
′
i induced

by T |
G

′
i
. Observe that (G

′
1, T

′
1 ) and (G

′
2, T

′
2 ) have no bad cut-vertex; otherwise, the bad

cut-vertex and vertex u is a 2−vertex-cut yielding Case 1. Therefore, (G
′
i, T

′
i ) has a CCD,

i = 1, 2. The union of these two CCD’s is a CCD of (G, T ), which is a contradiction.

Lemma 1.4.5 now follows.

Corollary 1.4.6. Any smallest counterexample to Theorem 1.1.1’ has no digon.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Suppose (G, T ) has a digon,

D. By Lemma 1.4.3, D is a digon of type 0. Then by Lemma 1.4.5, G \ E(D) is 2−connected.

Thus, D is a removable circuit, which is a contradiction.

Definition 1.4.2. An even subgraph H of (G, T ) is compatible if |E(H) ∩ P | ≤ 1, for every

P ∈ T . An almost compatible 2−even subgraph decomposition {U1, U2} with respect to v is
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a decomposition into two even subgraphs in such a way that both Ui’s are compatible at every

w ∈ V (G) \ {v}, and Ui is not compatible at v for at least one i.

Definition 1.4.3. Let (G, T ) be a transitioned 4−regular graph. Let v be a non-trivial vertex

of degree 4 in (G, T ) and let {e, f} ∈ T (v). By splitting v (with respect to T ) we mean that

v is split into two degree 2 vertices such that e and f are incident with the same vertex. The

split graph of (G, T ), denoted by SP (G, T ), is the graph obtained from (G, T ) by splitting every

non-trivial vertex.

The following lemma appeared in [1, 9] as part of proofs of some theorems (not as an in-

dependent lemma). For the purpose of smoothness of the chapter and possible applications in

the future, Lemma 1.4.7 is stated in this chapter as an independent lemma. The proof is also

included here for the purpose of not only the consistency of notation and terminology but also

for the self-completeness of the chapter.

Lemma 1.4.7. [1, 9] Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Then

(1) SP (G, T ) has exactly two components;

(2) for each non-trivial vertex v, if x and y are the two vertices in SP (G, T ) which result by

splitting v, then they are contained in different components of SP (G, T );

(3) each component of SP (G, T ) is a circuit of odd length.

Proof. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. By Lemma 1.4.2, G is

4−regular and for every non-trivial vertex v ∈ V (G), there exists an ACCCD(v), say Fv =

{C1, . . . , Ck}.

Let

S1 = ∪d
k
2
e

µ=1E(C2µ−1) and S2 = ∪b
k
2
c

µ=1E(C2µ).

Then, {S1, S2} is an almost compatible 2−even subgraph decomposition with respect to v. Note

that depending on the parity of k, v ∈ V (S2) if and only if k is even. If k is odd then S2 is a set

of compatible circuits.

Next, to establish the validity of the Lemma we prove a sequence of claims.

Claim 1.4.1. For every almost compatible 2−even subgraph decomposition {U1, U2} with respect

to v, for every vertex w 6= v, degUi(w) = 2, i = 1, 2.

Assume that {U1, U2} is an almost compatible 2−even subgraph decomposition with respect

to v and that there exists a vertex w 6= v, degU1
(w) = 4. By Definition 1.4.2, a non-trivial

vertex of G other than v cannot be of degree 4 in Ui, i = 1, 2. Thus, w is a trivial vertex and

E(w) ⊆ E(U1).
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Let Fi be a circuit decomposition of Ui for each i = 1, 2. The union F1∪F2 forms an almost

compatible circuit decomposition with respect to v, by the choice of (G, T ). By Lemma 1.4.2,

every almost CCD with respect to a non-trivial vertex is a circuit chain, hence F1 ∪ F2 is a

circuit chain {D1, . . . , Dr}. Since G[U1] has a vertex of degree 4, it follows that r ≥ 3. By

Lemma 1.4.1, we have V (D1) ∩ V (Dr) = {v}. Let w ∈ V (Dj) ∩ V (Dj+1). Note that Dj and

Dj+1 are edge-disjoint and both are subsets of U1. So, every vertex of the induced subgraph

G[Dj ∪Dj+1] is of degree 2 or 4. If w is the only vertex of V (Dj) ∩ V (Dj+1), then {v, w} is a

2−vertex-cut of G (since G has no digon by Corollary 1.4.6). This contradicts Lemma 1.4.5.

Thus the induced subgraph G[Dj ∪ Dj+1] is 2−connected. Let uj ∈ V (Dj) ∩ V (Dj−1)

(or uj = v if j = 1), and let uj+1 ∈ V (Dj+1) ∩ V (Dj+2) (or uj+1 = v if j + 1 = r). Let

D ⊂ G[Dj ∪Dj+1] be a circuit containing the vertices uj and uj+1. Then G[Dj ∪Dj+1] \D is

a removable even subgraph of (G, T ). This is a contradiction. Thus, degUi(w) = 2, for every

w 6= v, i = 1, 2, and thus Claim 1.4.1 is true.

The following claim is obvious.

Claim 1.4.2. For each circuit C of SP (G, T ), {S1∆C, S2∆C} is also an almost compatible

2−even subgraph decomposition with respect to v.

Claim 1.4.3. For each trivial vertex w with {e′ , e′′} = E(w) ∩ S1, no circuit of SP (G, T )

contains both edges e
′

and e
′′
.

Suppose that C is a circuit of SP (G, T ) containing both edges e
′

and e
′′
. By Claim 1.4.2,

{S1∆C, S2∆C} is also an almost compatible 2−even subgraph decomposition with respect to v.

Note that degS2∆C(w) = 4. This contradicts Claim 1.4.1. Thus Claim 1.4.3 now follows.

Therefore, by Claim 1.4.3, we have the following immediate conclusions about SP (G, T ).

Let w be a trivial vertex of (G, T ).

Claim 1.4.4. For each pair {e′ , e′′} = E(w) ∩ Si (i = 1, 2), the edges e
′

and e
′′

must be in

different blocks of SP (G, T ).

From Claim 1.4.4, we conclude

Claim 1.4.5. The trivial vertex w must be a cut-vertex of some component of SP (G, T ).

This also implies

Claim 1.4.6. The circuit decomposition of SP (G, T ) is unique.

Notation. Let R1, . . . , Rh be the components of the split graph SP (G, T ), and let {X1, . . . , Xt}
be the unique circuit decomposition of SP (G, T ), which is also the block decomposition of

SP (G, T ).
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Claim 1.4.7. Let x and y be the two vertices in SP (G, T ) which result from by splitting v.

Then x and y are contained in different components of SP (G, T ).

Proceeding by contradiction, suppose that x and y are contained in the same component R1,

of SP (G, T ). Let P be a path of R1 joining x and y. Let C be the even subgraph induced by

E(P ) in G. Note that C is not compatible in its vertices except at v. S1 and S2 are compatible

at every vertex u 6= v, and S1 is not compatible at vertex v. Therefore, {S1∆C, S2∆C} is a

compatible 2−even subgraph decomposition which is a contradiction to the choice of G and thus

proves the claim.

By Claim 1.4.7 assume without loss of generality that x ∈ X1 and y ∈ X2 where Xj is a

block of Rj , j = 1, 2.

Claim 1.4.8. The circuits X1 and X2 are of odd lengths, while all other Xi(i > 2) are of even

lengths.

Color the edges of S1 with blue, and the edges of S2 with red. By Claim 1.4.4, each circuit

Xi is of even length if i 6= 1, 2 since its edges are alternately colored with red and blue, while

X1 and X2 are of odd length since each of x, y is incident with two edges of the same color.

Claim 1.4.8 now follows.

The following is the final claim and concludes the proof of the lemma.

Claim 1.4.9. h = t = 2. That is, the split graph SP (G, T ) has precisely components R1 = X1

and R2 = X2 each of which is a circuit of odd length.

Since the non-trivial vertex v was selected arbitrarily, all conclusions we have had above can

be applied to every non-trivial vertex; that is, for every non-trivial vertex v and the vertices x

and y resulting by splitting v, it follows that x ∈ X1 and y ∈ X2.

If R1 has more than one block, then R1 must have a block Q3 other than X1 that contains

precisely one cut-vertex z of R1 (note that Q3 corresponds to a leaf in the block-cut-vertex graph

of R1). By Claims 1.4.7 and 1.4.8, every vertex of Q3 is trivial. So by Claim 1.4.5, every vertex

of Q3 is a cut-vertex of SP (G, T ). This contradicts the supposed existence of Q3.

Furthermore, no edge of Ri with i > 2 is incident with a non-trivial vertex. By the definition

of SP (G, T ), each Ri with i > 2 also corresponds to a component of G whose vertices are all

trivial. This contradicts G being connected.

Therefore, SP (G, T ) consists of two vertex disjoint circuits of odd length X1 = R1 and

X2 = R2. Lemma 1.4.7 now follows.

Since in the proof of Lemma 1.4.7, it is shown that any smallest counterexample to Theo-

rem 1.1.1’ has no trivial vertex, we have the following corollary.

Corollary 1.4.8. Any smallest counterexample to Theorem 1.1.1’ is a fully transitioned graph.
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Lemma 1.4.9. [9] Let (G, T ) be a smallest counterexample to Theorem 1.1.1’ and let Fv =

{C1, . . . , Ck} be an ACCCD of (G, T ) with respect to a non-trivial vertex v with k = |Fv|
maximum. Then k ≥ 3.

Proof. Since v is of degree 4, k > 1 where Fv = {C1, . . . , Ck}. Assume that k = 2. Let

R1 and R2 be the components of SP (G, T ) (see Lemma 1.4.7 (1)). By Lemma 1.4.7 and

Definition 1.4.3, without loss of generality, let E(v)∩E(C1) ⊆ E(R1) and E(v)∩E(C2) ⊆ E(R2).

Consider {C1∆R1, C2∆R1}. It is easy to check that {C1∆R1, C2∆R1} is an almost compatible

decomposition into even subgraphs of (G, T ) with respect to v. Note that E(v) ⊆ E(C2∆R1).

Therefore, the maximum degree of C2∆R1 is four and hence any of its circuit decomposition

consists of at least two circuits. Since SP (G, T ) has two components and G is 2−connected,

(G, T ) has at least a second non-trivial vertex u 6= v. Because C1 is compatible in u, C1∆R1 is

not empty. Therefore, the union of circuit decompositions of C1∆R1 and C2∆R1 has at least

three elements. This contradicts the maximality of |Fv|.

1.4.2 Cornered triangle extension property: key lemmas for the determina-

tion of UD-K5

There are few results in graph theory that tell us the existence of the Petersen-minor (for

example, [8, 26], etc). The main lemmas in this section provide a new approach to identify the

precise structure of a transitioned UD-K5 (their corresponding versions for the faithful circuit

covering problem identify the Petersen graph). These lemmas are applied in the final steps of

the proofs of Theorems 1.1.1’ and 1.1.2.

Definition 1.4.4. Let C0 = xy1y2x be a non-compatible circuit of length 3.

(1) The corner of C0 is a given inner vertex, say x, of the triangle. If yj is a compatible vertex

of C0, then the opposite edge xyi is called a leg of C0 (i 6= j).

(2) For µ = 1, 2, a triangle C0 with the corner x is called µ-legged if E(x) ∩ E(C0) contains

at least µ legs.

(3) Let C0 = xy1y2x be a triangle with the corner x. Given xyi a leg of C0, an extension of C0

along the leg xyi is another triangle Ci = wixyiwi with the corner wi where wi /∈ V (C0)

(note that yiwi is a leg of Ci).

(4) A µ-legged triangle C0 = xy1y2x with the corner x is µ-extendable if every leg xyi has an

extension which is also µ-legged (a µ-legged extension; see Figure 1.9).

Definition 1.4.5. For a given integer µ ∈ {1, 2}, a graph G has the the µ-legged-triangle-

extension property (abbreviated as µ-LTEP) if G contains some µ-legged triangle and each of

them is µ-extendable (see Definition 1.4.4(4)).
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Figure 1.9: A cornered triangle C0 = xy1y2x, and its extension C1 = w1xy1w1

The µ-legged-triangle-extension property is an inductive hypothesis, which means one can

get an extension sequence of µ-legged triangles starting from a fix µ-legged triangle.

The following two lemmas play an important role in the proofs of the main theorems. These

lemmas identify the structure of the UD-K5 based on the extension property.

In the proofs of the main theorems, the 1-LTEP or 2-LTEP will be verified for smallest

counterexamples to the theorems. We wish to point out that although Lemma 1.4.10 and

Lemma 1.4.11 look very similar, neither of them is an immediate corollary of the other.

Lemma 1.4.10. Let (G, T ) be a 4-regular, fully transitioned, simple graph. If (G, T ) has the

2-LTEP, then it is exactly the UD-K5.

Proof. By the 2-LTEP, there exists a 2-legged triangle in (G, T ), say S0 = vv1v2v, with corner

v and two legs vv1 and vv2. Since S0 has the 2-LTEP, each leg vvi (i = 1, 2), has a 2-legged

extension Si = vi+2vvivi+2 which is also a 2-legged triangle with the corner vi+2.

Since G is simple, it can be seen that v3 6= v4, for otherwise, by looking at the transitions

contained in E(v3), the edge vv3 would be contained in two distinct transitions {v3v, v3v1} and

{v3v, v3v2} (see Figure 1.10-(ii)).

Since Si has the 2-LTEP (i = 1, 2), each leg vvi+2 has a 2-legged extension Si+2 = wivvi+2wi.

Since G is 4-regular, w1 ∈ {v2, v4} and w2 ∈ {v1, v3}. Since the transition {v4v, v4v2} ∈ T (v4)

and w1 is an inner vertex of S3, we have that w1 6= v4. Hence, w1 = v2. Symmetrically, w2 = v1.

Since S1 has the 2-LTEP, the leg v1v3, has a 2-legged extension S5 = w3v1v3w3 with corner

w3. By the 4-regularity of G, w3 ∈ {v, v2, v4}. Since w3 is an inner vertex of S5, one has w3 = v4

by looking at the transitions at v and v2. Thus, {v4v1, v4v3} ∈ T (v4), and {v3v2, v3v4} ∈ T (v3)

(see Figure 1.10-(iii)).

It is now easy to check that (G, T ) is exactly the UD-K5.

17



S0

t

tt

v

v2v1

(i)

⇒
S0

S1 S2

t
t
tt

t
Z
Z
Z
ZZ
�
�
�
�
�A

A
A
A
A
�
�
�
��

v

v4

v2v1

v3

(ii)

⇒

t
t
tt

t
Z
Z
Z
ZZ
�
�
�
�
�A

A
A
A
A
�
�
�
��

�
�
�

�
�
�
� Q

Q
Q

Q
Q

Q
Q

v

v4

v2 = w1v1 = w2

v3

(iii)

Figure 1.10: Proof of Lemma 1.4.10

Lemma 1.4.11. Let (G, T ) be a 4-regular, 4-edge-connected, fully transitioned, simple graph.

If (G, T ) has the 1-LTEP, then either it is the UD-K5 or it has a CCD of size 3.

Proof. Let S1 = v0v1v2v0 be a 1-legged triangle with the corner v2 and a leg v0v2. By using the

1-LTEP of S1 at the leg v0v2, we have a new vertex v3 such that S2 = v0v2v3v0 is a 1-legged

triangle with the corner v3 and a leg v0v3.

By using the 1-LTEP of S2 at the leg v0v3, there is a 1-legged triangle S3 = v0v3w0v0 with

the corner w0 and a leg v0w0. Since S3 6= S2 and G is simple, there are two possibilities for w0:

w0 = v1 or w0 /∈ {v0, . . . , v3}.

Case A: w0 = v1 (see Figure 1.11).

t
t
tv0

v1 = w0

v2

tv3

S3 ⇒ t
t
tv0

v1

v2

tv3 tw1

S4

⇒ t
t
tv0

v1 = w2

v2

tv3 tw1

S5

Figure 1.11: Case A (w0 = v1)

We will show that this case cannot happen.

Since (G, T ) is fully transitioned, there exists a transition of v0 contained in the edge set

{v0v1, v0v2, v0v3}. By rotational symmetry, we may assume that {v0v1, v0v2} ∈ T (v0). Thus

v2v3 is another leg of the 2-legged triangle S2. By using the 1-LTEP of S2 at the leg v2v3, there

exists a 1-legged triangle S4 = v2v3w1v2 with the corner w1 and a leg v2w1. It is obvious that

w1 /∈ {v0, v2, v3}. If w1 = v1, then the edge v1v3 will be contained two distinct transitions, which

is impossible.
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By using the 1-LTEP of S4 at the leg v2w1, there exists a 1-legged triangle S5 = v2w1w2v2

with the corner w2 and a leg v2w2. Since G is 4−regular and simple, w2 ∈ {v0, v1}. If the corner

w2 = v0, then {w2w1, w2v2} = {v0w1, v0v2} ∈ T (v0). But the edge v0v2 is already contained in

another transition {v0v1, v0v2}. This is a contraction, and therefore, w2 = v1.

Let e
′ ∈ E(v0)−{v0v1, v0v2, v0v3} and e

′′ ∈ E(w1)−{w1v1, w1v2, w1v3}. Since G is 4-regular

and 4-edge-connected, we have that e
′

= e
′′

for otherwise {e′ , e′′} is a 2-edge-cut of G. That is,

e
′

= e
′′

= w1v0, and V (G) = {v0, v1, v2, v3, w1}.
Consider the 2-legged triangle v0w1v3v0 with corner v0. By using the 1-LTEP at the leg

v0w1, there exists a 1-legged triangle v0w1w3v0 with the corner w3. By the 4-regularity of G,

one must have w3 = v1 or w3 = v2. However, none of them can happen as can be seen by

checking the transitions around v1 and v2.

Case B: w0 /∈ {v0, . . . , v3}; denote w0 = v4 (see Figure 1.12).

By using the 1-LTEP of S3 at the leg v0v4, there exists a 1-legged triangle S6 = v0v4w3v0

with the corner w3 and a leg v0w3. Since G is 4−regular and simple, w3 ∈ {v1, v2}. If w3 = v2,

then the edge v0v2 is contained in the two transitions {v2v0, v2v1} and {v2v0, v2v4} of v2. This

is a contradiction. Therefore, w3 = v1.

Note there is no information yet about the transitions around the vertex v0. By symmetry,

there are two cases for further analysis:

{v0v1, v0v2} ∈ T (v0) or {v0v1, v0v3} ∈ T (v0). (1.1)

In either case, we can assume that v0 is compatible in the triangle S2 = v0v2v3v0. That is,

the edge v2v3 is another leg of the triangle S2. By using the 1-LTEP of S2 at the leg v2v3, we

have an extension S7 = v2v3w4v2 with the corner w4 and a leg v2w4. Proceeding similarly to

the above, by looking at the transitions around v4, we have that w4 6= v4. Hence, there are two

possibilities for w4: w4 /∈ {v0, . . . , v4} or w4 = v1 (see Figure 1.12).

Subcase B-1. w4 /∈ {v0, . . . , v4}; denote w4 = v5 (see Figure 1.13).

For this subcase, we will find a CCD of size 3. By using the 1-LTEP of S7 at the leg

v2v5 = v2w4, there exists an extension v2v5w5v2 with the corner w5 and a leg v2w5. Since G is

4−regular and simple and w5 ∈ [N(v2) ∩ N(v5)] − V (S7), we have w5 = v1 (see Figure 1.13).

Arguing similarly as above, we then get v4v5 ∈ E(G) by the 4-edge connectivity and 4-regularity.

Therefore V (G) = {v0, . . . , v5}.
By (1.1), if {v0v1, v0v3} ∈ T (v0), then consider the 2-legged triangle S1 = v2v1v0v2 with the

corner v2. The leg v1v2 cannot be extended by checking at the transitions around v5 and the

neighborhood of v3, v4. This is a contradiction.
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So, by (1.1), we must have {v0v1, v0v2} ∈ T (v0), and thus the set

{v1v2v3v4v1, v0v1v5v3v0, v0v2v5v4v0}

is a CCD of (G, T ) of size 3.

t
t
tv0

v1 = w3

v2

tv3

tv4 = w0

S6

S3

⇒ t
t
tv0

v1

v2

tv3

tv4

tv5 = w4

S7

or t
t
tv0

v1 = w4

v2

tv3

tv4

S7

Figure 1.12: Case B (w0 = v4): S7 = v2v3w4v2 and subcase B-1 (w4 = v5), subcase B-2 (w4 = v1)
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⇒ t
t
tv0

v1 = w5

v2

tv3

tv4

tv5

Figure 1.13: Subcase B-1 (w4 = v5).

Subcase B-2. w4 = v1 (see Figure 1.14).

It is obvious that v2v4 ∈ E(G) by the 4-edge connectivity and 4-regularity of G (see Fig-

ure 1.14). By (1.1), we may first assume that {v0v1, v0v2} ∈ T (v0). Then consider the 2-legged

triangle v4v2v1v4 with the corner v4. The leg v2v4 cannot be extended by checking at the

transitions around v0 and v3. This is a contradiction.

So, by (1.1), we must have {v0v1, v0v3} ∈ T (v0). It is easy to check that (G, T ) is the UD-K5

(see Figure 1.14).

1.5 Simultaneous proof of Theorems 1.1.1’ and 1.1.2

Suppose at least one of these two theorems is false. Let (G, T ) be a counterexample to either

Theorem 1.1.1’ or Theorem 1.1.2 with |E(G)| being as small as possible. Therefore, every

admissible transitioned 4−regular graph without SUD-K5-minor and smaller than (G, T ) has
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Figure 1.14: Subcase B-2 (v1 = w4): (G, T ) is the UD-K5.

a CCD; and for every Hamilton transitioned graph (H,S) smaller than (G, T ), if (H,S) is

SUD-K5-minor-free, then (H,S) ∈ 〈2L〉.
For our considerations we introduce an extra definition.

Definition 1.5.1. Let G
′

be a graph obtained from G by some operations. A digon D
′

of G
′

is

virtual if its corresponding subgraph D in G is a circuit of length > 2 such that at least one edge

of D
′

corresponds to a path of length > 1 in D; otherwise we speak of D
′

as a real digon.

Now we consider two cases with respect to the assumed counterexample.

Case I. (G, T ) is a counterexample to Theorem 1.1.1’.

Case II. (G, T ) is a counterexample to Theorem 1.1.2.

Actually, both Case I and Case II contain two sub-cases: For Case I, either Theorem 1.1.1’

is false with the smallest counterexample (G, T ) while Theorem 1.1.2 is true, or both of the

two Theorems are false, the smallest counterexample of Theorem 1.1.1’, denoted by (G, T ), has

smaller or equal size to the smallest counterexample of Theorem 1.1.2. Similarly for Case II.

1.5.1 Case I. (G, T ) is a counterexample to Theorem 1.1.1’.

The goal of our first step is to show that (G, T ) has a kind of extension property for a type of

cornered triangle, which is to be proved in Lemma 1.5.3.

Definition 1.5.2. A circuit C = v1v2 . . . vkv1 is called an almost removable circuit with re-

spect to v1 (ARC(v1), for short) if it is compatible at every vertex except v1 such that (G \
E(C), T |G\E(C)) has no bad cut-vertex.

Note that, for an almost removable circuit Cv1 with respect to v1, if d(v1) = 4 and v1 is

incident with two transitions, say P1 and P2, then P1 is contained in Cv1 and P2 remains in

G \ E(Cv1). If this case happens, the remaining transition P2 is removed from T |G\E(Cv1 ) by

Definition 1.2.7-(3).
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Lemma 1.5.1. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’, and let Cv1 be a

circuit of G containing v1. Then Cv1 is an ARC(v1) if and only if there exists an ACCCD(v1)

Fv1 containing Cv1.

Proof. Sufficiency is trivially true. Let Cv1 be an ARC(v1). Since (G, T ) is a smallest coun-

terexample to Theorem 1.1.1’, the transitioned graph (G \ E(Cv1), T |G\E(Cv1 )) has a CCD, say

C1. Note that C1 ∪ {Cv1} is an ACCCD(v1) because of Lemma 1.4.2.

Lemma 1.5.2. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’, and let Cv1 be a

triangle of G containing v1. If Cv1 is compatible at every vertex except v1, then Cv1 is an

ARC(v1).

Proof. Let Cv1 = v1v2v3v1 be compatible at every vertex except v1. By Definition 1.5.2, we

need to show (G \E(Cv1), T |G\E(Cv1 )) has no bad cut-vertex. Assume there exists a cut-vertex

x 6= v1 in G such that G has two blocks Q1 and Q2 incident with x and Q1 ∩ E(x) ∈ T (x).

If V (Q1) ∩ V (Cv1) = {v2}, then {x, v2} is a 2−vertex-cut. If V (Q1) ∩ V (Cv1) = {v1, v2}, then

{x, v3} is a 2−vertex-cut. In both cases we obtain a contradiction to Lemma 1.4.5.

Lemma 1.5.3. Let (G, T ) be a smallest counterexample to Theorem 1.1.1’. Then (G, T ) has

the following properties.

(i) ARC(v) exists for every vertex v;

(ii) a shortest ARC is of length 3, and

(iii) for every ARC(v1) = v1v2v3v1 and for the edge v1v2, there exists an ARC(w) = wv1v2w,

w 6= v3.

Proof. By Lemma 1.4.2, for every vertex v ∈ V (G), there exists an ACCCD(v) (see Corol-

lary 1.4.8), and, for every v ∈ V (G), by Lemma 1.5.1, (G, T ) contains an ARC(v).

Choose ACR(v) with the smallest length among all ARC’s in (G, T ) and choose ACCCD(v),

Fv = {C1, . . . , Ck} with maximum length involving this shortest ACR(v), Ck say (see the left

side of Figure 1.15).

Let (G
′
, T ′

) be obtained from (G, T ) by deleting all edges of Ck except uv where u is a

neighbour of v on Ck, contracting uv to a new vertex v∗ and suppressing vertices of degree two.

For every C
′ ∈ G

′
, assume that C is the subgraph of (G, T ) induced by E(C

′
) and vice

versa.

Clearly, (G
′
, T ′

) has no SUD-K5-minor (see the right side of Figure 1.15), and because of

the choice of (G, T ), we may consider F ′
to be a CCD of (G

′
, T ′

). There exist two circuits H
′
1

and H
′
2 of F each of which contains the new vertex v∗.
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Figure 1.15: An ACCCD(v) of (G, T ), and, (G
′
, T ′

).

Claim 1.5.1. F ′
= {H ′

1, H
′
2}.

Proof of Claim 1.5.1. Assume that |F ′ | ≥ 3. Then we have to show that, for every C
′ ∈

F ′ \ {H ′
1, H

′
2}, the corresponding circuit C in G is a removable circuit of (G, T ). It is evident

that C is compatible in (G, T ) since v∗ /∈ V (C
′
). We thus want to show that (G\E(C), T |G\E(C))

has no bad cut-vertex.

To this end, it is sufficient to show that J is 2-connected where J is the subgraph of G

induced by the edges of H
′
1 and H

′
2 and the circuit Ck. Note that H

′
1 ∪H

′
2 corresponds in G the

H1 ∪H2 which is a pair of paths with the common end-vertices u and v. Adding the circuit Ck,

the resulting graph J is therefore 2-connected (because H1 ∪H2 ∪ {uv} is already 2-connected).

It now follows that every CCD of (G
′
, T ′

) is a pair of hamiltonian circuits. By the minimality

of (G, T ), the smaller transitioned graph (G
′
, T ′

) is not a counterexample to Theorem 1.1.2.

Thus, we can draw the following conclusion.

Claim 1.5.2.

(G
′
, T ′

) ∈ 〈2L〉.

By Lemma 1.4.3, (G, T ) has no digon of type λ > 0. However, by Claim 1.5.2 and

Lemma 1.2.1, (G
′
, T ′

) contains at least two digons of type λ > 0. Let D
′

be a digon of type

λ > 0 in (G
′
, T ′

). Because of Lemma 1.4.3, there can only be two kinds of digons in (G
′
, T ′

);
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either

E(D
′
) ∩ E(C

′
k−1) 6= ∅ 6= E(D

′
) ∩ E(C

′
k−2)

(which is a virtual digon), or D
′

contains the vertex v∗ and some edges of C
′
1 and C

′
k−1, where

k = 3 (which is a real digon).

Let D
′
1 be a virtual digon in (G

′
, T ′

). Let D1 denote the circuit in G corresponding to D
′
1.

Observe that C
′
k−2 ∩D

′
1 = Ck−2 ∩D1 is an edge of G and Ck−1 ∩D1 contains some vertices of

Ck. Let V (D
′
1) = {y, z} and let z be an inner vertex of D

′
1. If D

′
1 is of type 2, then it can be

easily seen that the circuit Ck−1∆D1 is a removable circuit in (G, T ). Thus, D
′
1 is of type 1.

Claim 1.5.3. D1 is an ARC(z).

Proof of Claim 1.5.3. Since D
′
1 is of type 1, it is sufficient to show that G \ E(D1) remains

2-connected.

Suppose G∗ = G \ E(D1) has a cut-vertex, x say. Then x ∈ V (Ck−1) ∩ V (Ck−2), since, for

every i ∈ {1, . . . , k} \ {k− 2, k− 1}, Ci is also as a circuit in G∗. For, if x /∈ V (Ck−1)∩ V (Ck−2)

would hold, then {v, x} would be a 2-vertex-cut in G, contradicting Lemma 1.4.5. Note that

J = (Ck−2 ∪ Ck−1) \ E(D1) is a pair of edge-disjoint paths with common end-vertices y and

z implying that y and z are not cut-vertices of G∗. Thus, x 6= y, z and x is a cut-vertex of

J separating y and z. Let G∗1, G
∗
2 be components of G∗ \ {x} with y ∈ V (G∗1), z ∈ V (G∗2).

Let K be the subgraph of G∗ induced by the set of circuits {C1, . . . , Ck} \ {Ck−2, Ck−1}, which

is a connected subgraph of G∗ since v ∈ V (C1) ∩ V (Ck). Then it is easy to see that either

V (K) ⊆ V (G∗1)∪{x} or V (K) ⊆ V (G∗2)∪{x}, but not both. Assume that V (K) ⊆ V (G∗1)∪{x}.
Then {x, z} is a 2-vertex-cut of G. This contradicts Lemma 1.4.5 and finishes the proof of the

claim.

By the choice of Ck, the length of D1 is not smaller than the length of Ck. Thus, by

Claim 1.5.3, we have the following immediate corollary.

Claim 1.5.4.

V (Ck) \ {v, u} ⊆ V (Ck−1) ∩ V (D1).

Claim 1.5.5. k = 3.

Proof of Claim 1.5.5. By Lemma 1.2.1, (G
′
, T ′

) has at least two edge-disjoint digons of types 1

or 2. If k ≥ 4, then every digon of (G
′
, T ′

) is virtual. But, by Claim 1.5.4, at least one of them

is a digon of type > 0 in (G, T ), contrary to Lemma 1.4.3. Hence k = 3.

Since k = 3, (G
′
, T ′

) has at most one virtual digon. Let D
′
2 be a real digon in (G

′
, T ′

) and

let D2 = uvwu correspond to D
′
2 in G.

Claim 1.5.6. D2 is an ARC(w) for some w ∈ V (C1) ∩ V (C2).
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Proof of Claim 1.5.6. Denote D
′
2 = 〈w, v∗〉 with one edge in C

′
1 and the other edge in C

′
k−1 = C

′
2.

By the definition of T ′
(v∗), D

′
2 is compatible at v∗. So w is an inner vertex of D2 since D

′
2 is of

type λ > 0. D
′
2 is extended to D2 in G which is the triangle vwuv. If u is also an inner vertex

of D2, then it is easy to see that C2∆D2 is a removable circuit in (G, T ). Now by Lemma 1.5.2,

D2 is an ARC(w).

In the general case, by the analogous argument as we did for C3 and uv, for every ARC(v1),

say Cv1 = v1v2v3v1 and the edge v1v2, for some v1 ∈ V (G), there exists a vertex w ∈ (NG(v1) ∩
NG(v2)) \ {v3} such that Cw = wv1v2w is an ARC(w). This completes the proof of the lemma.

Proof of Theorem 1.1.1’.

We first claim that every shortest ARC is a 2-legged cornered triangle. Note that, by

Definition 1.5.2, each ARC contains precisely one inner vertex. By Lemma 1.5.3(ii), every

shortest ARC is a triangle. That is, every shortest ARC is a 2-legged cornered triangle.

In order to apply Lemma 1.4.10, we further claim that (G, T ) has the 2-LTEP. By Lemma 1.5.3(i)

and (ii) again, (G, T ) contains some 2-legged cornered triangles. By Lemma 1.5.3(iii), each

shortest ARC has an extension at every leg.

Thus, by Lemma 1.4.10, (G, T ) is exactly the UD-K5, which is a contradiction.

1.5.2 Case II. (G, T ) is a counterexample to Theorem 1.1.2.

Lemma 1.5.4. (G, T ) has no non-hamiltonian removable circuit.

Proof. Let C be a non-hamiltonian removable circuit of (G, T ). Then the SUD-K5-minor-free

transitioned graph (G \E(C), T |G\E(C)) has a CCD C. Thus, C ∪ {C} is a CCD of (G, T ) with

at least three circuits, which is a contradiction.

Lemma 1.5.5. (G, T ) has no digon of any type.

Proof. Suppose that D is a digon of type ≥ 1 in (G, T ). Let (G
′
, T ′

) = (G/D, T |G/D). It is

obvious that every CCD of (G, T ) induces a CCD on the smaller graph (G
′
, T ′

) because edges of

D of are contained in different members of any CCD. By the same token, every CCD of (G
′
, T ′

)

also induces a CCD of (G, T ). Note that (G
′
, T ′

) remains SUD-K5-minor-free. Therefore, by

the minimality of (G, T ), the reduced graph (G
′
, T ′

) ∈ 〈2L〉. Then, by the definition of the

family 〈2L〉 of graphs and by the choice of D, we have (G, T ) ∈ 〈2L〉, which is a contradiction.

Assume that D = 〈v1, v2〉 is a digon of type 0 in (G, T ) with E(D) = {e1, e2}. D is a

compatible circuit, but not a removable circuit (by Lemma 1.5.4). Hence, (G \E(D), T |G\E(D))

has a bad cut-vertex w. That is, {w} is a 1-separator of G \E(D) separating G \E(D) into two

subgraphs G1 and G2.
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Let Hi = G/Gj for i 6= j and let wi be the contracted vertex of Gi, for i = 1, 2. As an eulerian

minor of G, each Hi is SUD-K5-minor free. And every CCD Fi of (Hi, T |Hi) has exactly two

members for otherwise, a third member of Fi not passing through the contracted vertex wi is

a removable circuit of (G, T ), for i = 1, 2. This contradicts Lemma 1.5.4. Hence, (Gi, T |Hi)
remains a Hamilton transitioned graph, and therefore, a member of 〈2L〉. By Lemma 1.2.1, each

(Gi, T |Hi) has at least two edge-disjoint digons of type ≥ 1, one of which is different from D

and must be a digon of the original graph G. This contradicts the first part of the proof that

(G, T ) contains no digon of type ≥ 1.

Definition 1.5.3. Let {H1, H2} be a CCD of the Hamilton transitioned graph (G, T ). A circuit

C = v1v2 . . . vkv1 is called an Hi-Segment-Chord Circuit with respect to v1 (Hi-SgCC(v1) for

short) if v1vk is a chord of Hi and C \ {v1vk} is a segment of Hi and v1 is an inner vertex of C

(See Figure 1.16).

rv3

rvkrv1

rv2 . . .

H1

Figure 1.16: H1-SgCC(v1) C0 = v1v2 . . . vkv1.

Obviously, for every compatible hamiltonian circuit Hi, every transition P at a non-trivial

vertex v and every chord e contained in P , there exists an Hi-SgCC(v) containing e.

Lemma 1.5.6. For any given decomposition {H1, H2} into hamiltonian compatible circuits in

(G, T ) a shortest Hi-SgCC is of length 3.

Proof. For i ∈ {1, 2}, among all Hi-SgCC’s, let C0 = v1 . . . vkv1 be a shortest one. Without loss

of generality C0 is an H1-SgCC(v1) (see Figure 1.16). By Lemma 1.5.5, k ≥ 3.

The new 4−regular graph (G
′
, T ′

) is obtained from (G, T ) by deleting all edges of C0 except

v1vk, contracting v1vk to a new vertex v∗ and suppressing vertices of degree two. (G
′
, T ′

) remains

SUD-K5-minor-free. Hence, (G
′
, T ′

) does have a CCD.

Claim 1.5.7. Every CCD of (G
′
, T ′

) is a pair of hamiltonian circuits.

Let F ′
be an arbitrary CCD of (G

′
, T ′

). There exist two circuits C
′
1 and C

′
2 in F ′

each of

which contains the new vertex v∗.

For every circuit C
′ ∈ F ′

, let C denote the subgraph of G induced by the edges of C
′
. Note

that C3 = C
′
3 is also a compatible circuit of (G, T ), for every circuit C

′
3 ∈ F

′ \ {C ′
1, C

′
2} if such
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C
′
3 exists. We show that C3 is removable in (G, T ) by showing that the subgraph of G induced

by E(C0) ∪ E(C1) ∪ E(C2) is 2−connected.

Set H = G[C1 ∪ C2 ∪ (C0 \ {v1vk})]; this is the union of three edge-disjoint paths with the

common end-vertices v1 and vk. If H has a cut-vertex x, it must separate v1 and vk. Hence,

H∪{v1vk} = C0∪C1∪C2 does not have any cut-vertex. Thus, C3 is a removable circuit of (G, T ),

for every circuit C
′
3 ∈ F

′ \ {C ′
1, C

′
2}. This contradicts Lemma 1.5.4. Therefore, F ′

= {C ′
1, C

′
2}.

Since (G
′
, T ′

) has no SUD-K5-minor, by the minimality of (G, T ), we draw the following con-

clusion.

Claim 1.5.8. (G
′
, T ′

) ∈ 〈2L〉.

Note that v∗ is the only contracted vertex of G
′

and v2, . . . , vk−1 are the only suppressed

vertices of G
′
. Since G has no digon of type λ > 0 (see Lemma 1.5.5), for each digon D

′
of G

′
,

the corresponding circuit D of G must contain either some of {v2, . . . , vk−1} or the edge v1vk.

And if D contains v1vk, then D
′

must contain the contracted vertex v∗ and be compatible at v∗.

Claim 1.5.9. Let D
′

be a digon of type λ > 0 in G
′
. Then the corresponding circuit in G is an

H2-SgCC.

If x is an inner vertex of D
′

= 〈x, y〉, then one edge of D
′

is an H1-edge, another one is an

H2-segment. So it is an H2-SgCC(x).

Assume that k ≥ 4.

Claim 1.5.10. There is no real digon in G
′
.

Suppose to the contrary that there is a real digon D
′

in G
′
. Let D be the circuit in G corre-

sponding to D
′
. Since D is not a digon in G and does not contain any vertex of {v2, . . . , vk−1},

it corresponds to a H2-SgCC(x) of length 3. This contradicts k ≥ 4.

Claim 1.5.11. Every virtual digon uses v∗.

Let D
′
1, D

′
2 be a pair of edge-disjoint digons of G

′
; both are virtual (by Claim 1.5.10).

Suppose that v∗ /∈ V (D
′
1) and x is an inner vertex of D

′
1. By Claim 1.5.9, D1 is an H2-

SgCC(x). By the choice of C0 (that it is shortest), D1 must contain all vertices of {v2, . . . , vk−1}.
Thus D2 contains no other suppressed vertices and, therefore, D

′
2 is a real digon contradicting

Claim 1.5.10.

Claim 1.5.12. Every virtual digon is compatible at v∗.

Suppose that v∗ is an inner vertex of the digon D
′
1. Thus, D1 is an H2-SgCC(v1). We will

show that D1 is shorter than C0. Since D
′
1 and D

′
2 are edge-disjoint, each of D

′
1, D

′
2 contains

one transition of T ′
(v∗). Hence, v∗ must be an inner vertex of both D

′
1 and D

′
2. Furthermore,

the corresponding circuits D1, D2 in G do not contain the chord v1vk, and contain some vertex
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of {v2, . . . , vk−1}. That is, D1 contains at most (k − 3) vertices of {v2, . . . , vk−1}. Thus, D1 is

shorter than C0. This contradicts the choice of C0.

Claim 1.5.13. k ≤ 4. Furthermore, each Di contains precisely one vertex of {v2, v3} if k = 4.

Let D
′
1, D

′
2 be two edge-disjoint digons of G

′
. Both are virtual, use v∗ and are compatible at

v∗. And it is obvious that if D
′
1 traverses vn and then D

′
2 traverses vk+1. The corresponding cir-

cuits Di in G contain an H2-segment each passing through at least k−3 vertices of {v2, . . . , vk−1},
i = 1, 2; for otherwise, it would be shorter than C0. Since G is 4−regular, (k−3)+(k−3) ≤ k−2.

Thus, k ≤ 4 and {v2, . . . , vk−1} = {v2, v3} implying the validity of the remainder of the claim.

Claim 1.5.14. k = 3. rv3

rv4rv1

rv2

rvn
H1

rv3

rv4rv1

rv2

rvn
H1

Figure 1.17: k = 4 : D1 = v1v4vµvnv1, µ = 2, 3.

If k = 4, then, by Claim 1.5.13, let D1 = v1v4vµvnv1 with an inner vertex vn where µ = 2

or 3 (see Figure 1.17). Furthermore, the segment v4vµvn is an H2-segment. If µ = 2, then

there is a triangle vnv2v1vn inner at vn, which is an H1-SgCC(vn) shorter than C0. If µ = 3,

then D∗ = 〈v3, v4〉 induces a digon of G. This contradicts Lemma 1.5.5. Thus, k = 3 and

Lemma 1.5.6 now follows.

Since k = 3 and by Claim 1.5.8, at least one digon of (G
′
, T ′

) is a real digon, with the circuit

corresponding to this digon in (G, T ) is a 1-legged triangle v1v3wv1 with the corner w and a leg

either v1w or v3w.

In Lemma 1.5.6, we proved the existence of 1-legged triangles. In the next lemma (Lemma 1.5.7),

we show that every 1-legged triangle has the 1-LTEP. Note that the proof of this lemma is similar

to the proof of Claims 1.5.7 and 1.5.8 for Lemma 1.5.6.

Lemma 1.5.7. (G, T ) has the 1-LTEP.

Proof. Assume that S1 = u1u2u3u1 is a 1-legged triangle with the corner u1 and a leg u1u3. Let

(G
′′
, T ′′

) be a new 4−regular graph obtaining from (G, T ) as follows. Remove u1u2 and u2u3,

contract u1u3 to a new vertex u∗ and then suppress vertices of degree two. (G
′′
, T ′′

) remains

SUD-K5-minor-free.
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Claim 1.5.15. (G
′′
, T ′′

) has no bad cut-vertex.

Proof of Claim 1.5.15. Suppose that p is a bad cut-vertex in (G
′′
, T ′′

) (p 6= u3, otherwise u1 is a

cut-vertex of G contrary to G is 2−connected). Thus, {u2, p} is a 2−vertex-cut in (G, T ). Let

G
′′
1 and G

′′
2 be the components of G \ {u2, p} such that {u1, u3} ⊆ V (G

′′
1).

Remove V (G
′′
2) and identify u2 and p to a new vertex q to obtain a new transitioned

4−regular graph (G
′′′
, T ′′′

) which is admissible (since u1u3 ∈ E(G),) and SUD-K5-minor-free.

Thus (G
′′′
, T ′′′

) has a CCD. It is easily seen that every CCD of (G
′′′
, T ′′′

) is a pair of hamiltonian

circuits (a removable circuit in (G
′′′
, T ′′′

) not containing q is also a removable circuit in (G, T )).

By the choice of (G, T ), (G
′′′
, T ′′′

) ∈ 〈2L〉. By Lemma 1.2.1, (G
′′′
, T ′′′

) has two edge-disjoint

digons of type > 0. Since (G, T ) has no digon of any type, {u1u2, u1p} ∈ T (u1). However,

{u1u2, u1u3} ∈ T (u1) (see definition of a 1-legged triangle with corner u1); this contradicts

p 6= u3. Now Claim 1.5.15 follows.

Hence, (G
′′
, T ′′

) does have a CCD.

Claim 1.5.16. (G
′′
, T ′′

) ∈ 〈2L〉.

Let F ′′
be an arbitrary CCD of (G

′′
, T ′′

). There exist two circuits C
′′
1 and C

′′
2 in F ′′

each of

which contains the new vertex u∗.

For every circuit C
′′ ∈ F ′′

, denote bz C the subgraph of G induced by the edges of a circuit

C
′′
. Note that C3 is also a compatible circuit of (G, T ), for every circuit C

′′
3 ∈ F

′′ \ {C ′′
1 , C

′′
2 }.

Let H be the subgraph of G induced by the edges contained in C1, C2 and {u1u3}, which

is the union of three edge-disjoint paths with the common end-vertices u1 and u3; and it is

2−connected. Hence, S1∪C1∪C2 is 2−connected. Thus, C3 is a removable circuit of (G, T ), for

every circuit C
′′
3 ∈ F

′′ \ {C ′′
1 , C

′′
2 } which contradicts Lemma 1.5.4. Therefore, F ′′

= {C ′′
1 , C

′′
2 }.

Note that (G
′′
, T ′′

) has no SUD-K5-minor, thus by the minimality of (G, T ), we have

(G
′′
, T ′′

) ∈ 〈2L〉 which finishes the proof of the claim.

By Lemma 1.2.1, (G
′′
, T ′′

) has at least two edge-disjoint digons of type λ > 0. Since (G, T )

has no digon by Lemma 1.5.5, for each digon D
′′

of (G
′′
, T ′′

), the corresponding circuit D in G

must contain either u2 or the edge u1u3.

There is at most one D in (G, T ) with u2 ∈ V (D) corresponding to a digon in (G
′′
, T ′′

);

otherwise, (G, T ) would contain a digon, contrary to Lemma 1.5.5. Let D
′′

= 〈u∗, w〉 be a digon

of type > 0 in (G
′′
, T ′′

) containing the contracted vertex u∗ with edges {e1, e2} (such digon must

exist because of the preceding argument). Because of Lemma 1.5.5 u∗ is not an inner vertex

of D
′′
. Its corresponding triangle D in G containing the edge u1u3 and therefore {e1, e2} is

not a transition in T (u∗). Therefore, the only inner vertex of D
′′

is w. Thus (G, T ) has the

1-LTEP.
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Proof of Theorem 1.1.2.

By Lemma 1.5.7, (G, T ) has the 1-LTEP. Thus by Lemma 1.4.11, either (G, T ) is the UD-K5

or it has a CCD of size 3, which is a contradiction. Now Theorem 1.1.2 follows.
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Chapter 2

Embedding signed flows

From now on, we study the integer flows of signed graphs. Tutte establishd an equivalent

relation between integer flows of planar graphs and face coloring problems. As a generalization,

we introduce the natural signatures of all embedded signed graphs and study the existence of

integer flows, from which we generalize the equivalent relation from planar cases to all possible

embeddings, including the non-orientable cases.

In 1983, Bouchet proposed a conjecture that every flow-admissible signed graph admits a

nowhere-zero 6-flow. In this paper, We deduce this conjecture to a small class of embedded

graphs by applying the classification theorem of surfaces. Moreover, we verify this conjecture

for a special but important case in this class of embedded graphs, which can be view as a new

approach towards Bouchet’t conjecture.

2.1 Introduction

Motivated by face coloring problems, such as the famous Four color problem, Tutte introduced

integer flows. The following equivalent relations between these two categories of problems indi-

cates that integer flows is no doubt a powerful tool to deal with the face coloring problems.

Theorem 2.1.1. (Tutte [28]) Let G be a graph strongly embedded on an orientable surface S. If

G is k-face colorable on S then G admits a nowhere-zero k-flow. Furthermore, if S is a sphere,

then they are equivalent.

In this paper, we generalized this relation to all the surfaces (including non-orientable cases)

and introduce the natural signature of embedded graphs.

Theorem 2.1.2. Let G be a signed graph strongly embedded on a surface S and σ be the natural

signature with respect to the embedding. If G is k-face colorable on S then (G, σ) admits a

nowhere-zero k-flow. Furthermore, if S is a sphere or a projective plane, then they are equivalent.
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Basic definitions will be introduced in Section 2.2. For more terminology and notations not

defined here we refer to [7]. Actually, the signature of a signed graph can be defined arbitrarily,

which gives a natural generalization of the ordinary graphs. Indeed, Bouchet proposed the

following famous conjecture on the flows of signed graphs and it remains open.

Conjecture 2.1.1. (Bouchet [5]) Every flow-admissible signed graph admits a nowhere-zero

6-flow.

The main approach of this paper is to deduce the Conjecture 2.1.1 to a special case of

embedded graphs. We will make use of the methods of surfaces, more precisely, the isomorphic

operations of surfaces. Since the negative edges of a natural signature are caused by cross-caps

of the surface, which we will see later in next section, we want to reduce them as much as

possible. Indeed, we have the following proposition by reversing the proof of the Classification

Theorem for surfaces.

Proposition 2.1.1. Every surface is homeomorphic to a space obtained from the sphere by

adding n tori and m cross-caps with m ≤ 2 and n ≥ 0.

The core method of isomorphic operation, called cut-paste operation, is frequently used in

the proof of Proposition 2.1.1, as well as in the Classification Theorem. We next show that the

existence of nowhere-zero flow is kept under these operations.

Theorem 2.1.3. Let S be a surface and (G,S, π) be an embedded graph. Then the two natural

signatures are equivalent if one of corresponding surfaces can be obtained from the other by

cut-paste operation.

Combining these result together, we get the following

Theorem 2.1.4. Bouchet’s Conjecture holds if every graph embedded on a surface with at most

2 cross-cap admits a nowhere-zero 6-flow for its natural signature.

The structure of the paper is organized as follows: Theorem 2.1.2, Proposition 2.1.1 and

Theorem 2.1.3 will be proved in Section 2.2. In Section 2.3, we construct the nowhere-zero

6-flow for an important case of Theorem 2.1.4.

2.2 Main result: the methods of surfaces operations

2.2.1 Notation and terminology

Let G = (V,E) be a graph. For U ⊆ V (G), denote δG(U) the set of edges with one end in U and

the other in V \ U . We always skip the subscript G if it is clear from the context and simplify

δG({v}) by δG(v).

32



A signed graph (G, σ) is a pair consisting of a graph G together with a signature σ : E(G)→
{±1}. For convenience, the signature σ is always omitted if no confusion arises. An edge

e ∈ E(G) is positive if σ(e) = 1 and negative otherwise. Denote the set of all negative edges of

G by EN (G). A graph is called unsigned if EN (G) = ∅. For a vertex v in G, we define a new

signature σ′ by changing σ′(e) = −σ(e) for each e ∈ δG(v). We say that σ′ is obtained from

σ by making a switch at the vertex v. Two signatures are said to be equivalent if one can be

obtained from the other by making a sequence of switching operations.

Every edge of G is composed of two half-edges h and ĥ, each of which is incident with one

end. Denote the set of half-edges of G by H(G) and the set of half-edges incident with v by

HG(v). For a half-edge h ∈ H(G), we refer to eh as the edge containing h. An orientation of

a signed graph (G, σ) is a mapping τ : H(G) → {±1} such that τ(h)τ(ĥ) = −σ(eh) for each

h ∈ H(G). It is convenient to think of τ as an assignment of orientations on H(G). Namely, if

τ(h) = 1, h is a half-edge oriented away from its end and otherwise towards its end. Such an

ordered triple (G, σ, τ) is called a bidirected graph.

Definition 2.2.1. Assume that G is a signed graph associated with an orientation τ . Let A be

an abelian group and f : E(G) → A be a mapping. The boundary of f at a vertex v is defined

as

∂f(v) =
∑

h∈HG(v)

τ(h)f(eh).

The pair (τ, f) (or simplify, f) is an A-flow of G if ∂f(v) = 0 for each v ∈ V (G), and is an

(integer) k-flow if it is a Z-flow and |f(e)| < k for each e ∈ E(G). Let f be a flow of a signed

graph G. The support of f , denoted by supp(f), is the set of edges e with f(e) 6= 0. The flow f

is nowhere-zero if supp(f) = E(G).

An embedding of a graph G on surface S is an injective continuous function π from G to

S such that vertices corresponds to distinct points of S (called vertex-point) and each edge

corresponds a path of S joining its two vertex-points, which satisfies that different paths can

only have intersection at vertex-points. We use the triple (G, π, S) to denote the embedded

graph. Each component of S − G is a face of G and denoted by F (G) the set of all faces of

G. An embedding is called strong if the boundary of each face is circuit. Clearly each edge is

incident with two different faces if the embedding is strong. For a strong embedding, a k-face

coloring is a map c : F (G) → {1, . . . , k} and c is called proper if each edge lies between two

differently colored faces. G is called k-colorable (for the embedding on S) if G has a k′-face

coloring for some integer k′ ≤ k.

2.2.2 Face coloring for non-orientable surfaces

As a special case of signed graphs, the natural signature is defined as follows.
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Definition 2.2.2. (See Mohar-Thomassen’s book [22]) Let G be a graph strongly embedded on

a surface S. A natural signature σ with respect to the embedding is a mapping σ : E(G)→ {±1}
that σ(e) = −1 if and only if e passes through the cross-caps of S odd times.

In fact, arbitrarily a signature of a graph can be viewed as a natural signature induced by

some surface and a corresponding embedding: Let (G, σ) be a signed graph. We may firstly

draw the ordinary graph G on the sphere with some possible crossings. Next insert a cross-cap

at each crossing and make this drawing an embedding. That is, delete a small open disk centred

at the crossing point and paste each pair of diametrical points on the boundary of the deleted

open disk, which is a circle. Finally, insert possibly one cross-cap at the segments of each edge,

making the signature of each edge compatible with the parity of cross-caps it passes. Thus we

show

Proposition 2.2.1. For arbitrarily a signed graph (G, σ), there exists a surface S and an em-

bedding of G on S such that σ is the nataral signature of the embedding.

The concept of natural signatures enables us to extend Tutte’s flow theory from orientable

surfaces to non-orientable surfaces.

Proof of Theorem 2.1.2. We may assume that the vertex set of G has no intersection with

the boundaries of the cross-caps after a proper adjustment of the embedding. Let c be a proper

face coloring of the embedded graph G, i.e., a map from all the regions of S to {1, . . . , k}, we

next want to construct a nowhere-zero k-flow of G. By the Classification Theorem of surfaces, S

can be obtained from the sphere by adding several tori and cross-caps. Cut along each cross-cap,

i.e., replace each cross-cap by a deleted open disk on the sphere. We get an orientable structure

S′.

Let D be an arbitrary orientation of G. Define a function f : H(G)→ Z by setting f(h) =

c(F1)− c(F2) where F1 (F2) is the face lies on the left (right) side of h (note that S′ is already

orientable).

We claim that f(he1) = f(he1) for any e ∈ E(G). If an edge passes through a cross-cap, its

adjacent face will change side. By definition, a negative edge e passes through an odd number

of cross-caps, hence each of the two faces adjacent with e switches side odd times along e. Thus

each face lies on the same side of he1 and he2, hence f(he1) = f(he1). Similarly for the case of

positive edges.

So we may view f as a function f : E(G) → Z by setting f(e) = f(he1) = f(he1) Clearly

f satisfies the Kirchhoff’s Law at each vertex and 1 < |f(e)| < k − 1 since c is a proper face

coloring. Thus f is a nowhere-zero k-flow of G.

If S is a sphere, then the graph is unsigned since there is no cross-cap in S, thus go back to

the case of Theorem 2.1.1.
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Finally, consider S be a projective plane and f be the nowhere-zero k-flow f of G. Construct

a surface S′′ by contracting the cross-cap of S into a single point and G′ by insert a new vertex v0

to G at that point. Verify that f is still a flow of G′ by showing that ∂f(v0) = −
∑

v∈V ∂f(v) = 0.

Noting that S′′ is already a sphere. We can use Tutte’s method in Theorem 2.1.1 to define a

face coloring c′ of G′: Pick arbitrarily a face F0 of S′ and set c′(F0) = 0. For any edge e together

with its two incident faces F ′ and F ′′ such that F ′ is on the left, set

c(F ′′) = c(F ′) + f(e) (mod k) (2.1)

To verify that c′ is well-defined, we only need to show that each pair of diametrical faces at

v0 (i.e., the two faces between the same adjacent pair of negative edges of G) are assigned the

same color. Let F1, F2 be such two faces. Suppose that F1 is already colored and then we color

the faces incident with v0 recursively in the cyclic order. We pass through exactly half of E(v0)

before reaching F2, thus each negative edge of G is involved exactly once in this process. Since

∂f(v0) = −
∑

v∈V ∂f(v) = 0, we have c′(F1)− c′(F2) = ±1
2∂f(v0) = 0.

2.2.3 topological methods

A surface is a connected and compact topological space such that each point has a neighbourhood

homeomorphic to the open disk. Most notations we follow Munkres’s book [23] with a little

simplification.

Perhaps the most natural example of surface is the quotient space obtained by pasting the

edges of a polygonal region pair by pair. Actually, all the surfaces can be obtained in this way

by the well-known Classification Theorem.

More precisely, we introduce the polygon representation and cut-paste operation, which are

core methods both in Classification and our project.

A polygon representation consists of the following data: (1) a polygon region in R2 with even

number of edges. (2) each edge is assigned a label such that each label appears exactly twice.

(3) each label is given a exponent +1 or −1 to indicate its orientation along clockwise. Every

polygon representation can be written as a label scheme, i.e, w = (a1)±1 · · · (an)±1, which is a

list of all the labels together with their orientations in clockwise or counter-clockwise.

We say a surface S has a polygon representation (or equivalently, a label scheme) if S can

be obtained from the polygon representation by paste each pair of edges with same label along

their orientations.

Definition 2.2.3. Let P1, P2 be two polygon representations, we define the cut-paste operation

if P2 can be obtained from P1 by following steps: Let L be a segment of P1 joining two non-

adjacent vertices and a be a pair of labels lying on different side of L. Cut the polygon P1 into

2 pieces along L and paste at 2 edges with label a along their orientations. Give the new pair of
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a ab a ab b b ba

Figure 2.1: Cut-paste operation.

edges L a new label b. If the pair a have same (resp., opposite) orientation, the pair b are also

assigned same (resp., opposite) orientation. Thus we get a new polygon representation P2. Such

a cut-paste operation is said of type-I (resp., type-II) if the pair a have same (resp., opposite)

orientation. See Figure 2.1.

Note that one of the two pieces should be flipped before pasting for the type-I operation.

Definition 2.2.4. The surface obtained from the following labelling scheme wt is called the

n-fold torus and denoted by Tn where

wt = (a1b1a
−1
1 b−1

1 )(a2b2a
−1
2 b−1

2 ) . . . (anbna
−1
n b−1

n )

with n ≤ 1. For convenience reason, let T0 = S2 be the sphere.

Definition 2.2.5. The surface obtained from the following labelling scheme wp is called the

m-fold projective plane and denoted by Pm where

wt = (a1a1)(a2a2) . . . (amam)

with m ≤ 1.

Theorem 2.2.1. (Classification theorem) Every surface is homeomorphic either to the n-fold

torus Tn (n ≥ 0) or to the m-fold projective plane Pm (m ≥ 1).

One can easily check that all the vertices of the polygon in the standard forms Definition

2.2.4 or Definition 2.2.5 are glued to a single point in the corresponding surfaces. This property

is kept under cut-paste operation.

From the definition of natural signature, we know that the cross-caps corresponds the neg-

ative edges. We hope that they occur as less as possible. The core method to prove the

Classification Theorem is the isomorphic operation, i.e., cut-paste operation. We use the same

operation and somehow reverse the process of Classification Theorem, we can get a proof of

Proposition 2.1.1.

Proof of Proposition 2.1.1. Let w be a labelling scheme and [w1][w2], [w3][w4] be two

subsequence of w. For a cut-paste operation, we call it cutting along [w1] • [w2] and [w3] • [w4]
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Figure 2.3:

if the cutting segment goes from the common vertex of [w1] and [w2] to the common vertex of

[w3] and [w4].

Step1. We show that the following two labeling scheme are equivalent. [xx][y0y
−1
1 y2] ∼

[y0]x′[y1]x′[y2] (equation 1). As shown in Figure 2.2, starting from [xx][y0y
−1
1 y2], we firstly cut

along [x] • [x] and [y0y
−1
1 ] • [y2] with a new label b and paste at the pair x. Next cut along

[y0] • [y1] and [y−1
2 ] • [b] with a new label x′ and paste at the pair b , we get [y0]x′[y1]x′[y2].

Step2. Next we show that [w0](aabbcc)[w1] ∼ [w0](c′c′)(a′b′a′−1b′−1)[w1] (equation 2): Ap-

plying equation 1 to [w0](aabbcc)[w1] by setting x = a and y0 = bb, y1 = c−1, y2 = cw1w0, we

get an equivalent labelling scheme [bb]a′[c−1]a′cw1w0, see Figure 2.3. Next let x = b and y0 = a′,

y1 = c−1, y2 = a′cw1w0, we get [a′]b′[c]b′[a′cw1w0], see Figure 2.4

If at least one of w0, w1 is not empty, as shown in Figure 2.5, then by reversing equation

1 and setting x = c and y0 = a′b′, y1 = b′a′, y2 = w1w0, we get [c′c′][a′b′][(b′a′)−1][w1w0] =

[w0](c′c′)(a′b′a′−1b′−1)[w1]. Done. If both w0 and w1 are empty, as shown in Figure 2.6, then

we cut [a′]b′[c]b′[a′c] = [a′b′]c[b′a′]c along c • [b′a′] with a new label c′and c • [a′b′] and paste at

c, we get c′c′a′b′a′−1b′−1.

Step3. A subsequence of a labelling scheme is called P-form if it can be written as (a1a1) . . . (amam)

or T-form if it can be written as (a1b1a
−1
1 b−1

1 ) . . . (anbna
−1
n b−1

n ). By the Classification Theorem,
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if the surface S is of T-form, the conclusion is obvious true. Let’s consider the case of Pm with

m ≥ 3, thus S has the labelling scheme w = (a1a1)(a2a2) . . . (amam). Write w ∼ [wp][wt] where

[wp] is of P-form and [wt] is of T-form. Clearly w has such a decomposition if we take [wt] = ∅.
Choose such a decomposition of w such that [wp] has the minimum length. We claim that [wp] has

length at most 4, which corresponds to 1 or 2 cross-caps in the surface, so the conclusion holds.

Suppose for contradiction that wp = (a1a1)(a2a2) . . . (akak) with k ≥ 3, then apply equation 2 by

taking w0 = (a1a1) . . . (ak−3ak−3) and w1 = wt, we have w ∼ [w0](akak)(ak−2ak−1a
−1
k−2a

−1
k−1)[wt].

Thus we get a decomposition with a shorter P-form [w0](akak), a contradiction.

2.2.4 Switch when cut-paste

Let P be a polygon representation with label scheme w. A pair of labels is called oriented pair

(resp., opposite pair) if they have the same (resp., the opposite) orientation in P . For a cut-paste

operation of P with the cutting segment L. A pair of labels is called crossing pair if they are

separated by L in the polygon P , otherwise it is called side pair. For convenience reason, we

view L, which will be assigned a pair of new label, a crossing pair.

Let (G, π, S) be an embedded graph and P be a polygon representation of S. The left and

right-hand side of an edge e of G is exchanged when e passes through an oriented pair while

kept unchanged e passes through an opposite pair. Thus the oriented pair (resp., the opposite

pair) corresponds an odd number (resp., even number) of cross-caps. Now we can rewrite the

natural signature of (G, π, S) as follows: Define σ(e) = −1 if and only if e passes through the

oriented pairs odd times. We will use this definition in the proof of Theorem 2.1.3 and Theorem

2.1.4.

Proof of Theorem 2.1.3. Let w and w′ be two labelling schemes of S such that w′ is obtained

from w by a cut-paste. Let σ and σ′ be the corresponding natural signatures. We need to show

that σ ∼ σ′.
(1) If the cut-paste operation is of type I, we want to show that σ and σ′ differ at an edge

cut of G: Let P be the polygon representation of S. Assume that the cut-paste operation cuts

along the segment L = pipj of P . Denote P1, P2 the two small regions of P resulted by cutting

along L. After some proper adjustments, we may assume that V (G) have no intersection with L

as well as the boundary of P . Indeed, assume that E(G) have no intersection with the vertices

of P . Let Vi be the vertices of G contained in Pi (i = 1, 2).

Now we claim that (V1, V2) is the edge cut of G where σ differs from σ′, hence σ ∼ σ′:
By definition of natural signature and the analysis before the proof, σ(e) < 0 if and only

if e passes through odd number of oriented pairs. For crossing pairs, the oriented pairs and

the opposite pairs switch to the other after the cut-paste operation of type I, while for sided

pairs, the oriented and the opposite cases kept unchanged. For any e ∈ E(V1, V2), e must pass
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through the crossing pair odd times since its two end-vertices lie on different regions of P . Thus

σ(e) = −σ′(e) since the signature of e has changed odd times. For any e ∈ G[V1] ∪ G[V2], e

passes through the crossing pair even times, thus σ(e) = σ′(e).

(2) If the cut-paste operation is of type II, then σ = σ′ since the orientation of each pair

(include L) does not change by the cut-paste of type II.

Definition 2.2.6. An glueing operation is to delete an adjacent opposite pair of labels in a label

scheme.

Glueing operation, together with the cut-paste operation, are the only two operation involved

in the proof of Classification Theorem. However, the case of glueing operation is quite simple

for our topic. It doesn’t change the natural signature at all since in the definition only oriented

pairs are involved.

Now we are ready to prove Theorem 2.1.4

Proof of Theorem 2.1.4. For arbitrarily a signed graph (G, σ), there exists a surface S and

an embedding of G onto S such that σ is the corresponding natural signature. We want to find

a polygon representation of the surface S.

Recall the construction in Proposition 2.2.1. Cut along all the cross-caps on S and let

C = {C1, . . . , Ct} be the boundaries of the cross-caps, which is a collection of circles on S. For

each Ci ∈ C, Ci is divided by the edges of G into an even number of segments. Insert a point

at each segment of Ci. All these points are called inserted points, indicated by small circles in

Figure 2.7. A path on S is called connecting path if its two ends belong to the inserted points of

Ci and Cj (i 6= j) and has no intersection with other Ck (k 6= i, j). By the planarity of S, we can

connect all the members of C together such that different connecting paths are interior-disjoint.

Note that the connecting paths can have intersections with the edges of G on the surface.

We can view this easily in a auxiliary graph with the vertex-set C, and two circles are joined

by an edge if and only if they are connected by a connecting path. Parallel edges are allowed.

Thus the auxiliary graph is connected and we pick a spanning tree, which will give us the polygon

representation: Cut along each connecting path and assign an opposite pair of labels on it. Each

circle is divided into segments by the inserted points and assign every diametrical segments an

orient pair of labels. All these circles together with the connecting paths (already doubled) give

us a polygon representation by the structure of the spanning tree. Now σ is the corresponding

natural signature, thus σ(e) = −1 if and only if e passes through the oriented pairs odd times.

By the Classification Theorem, we can convert the polygon representation of S to the stan-

dard form Definition 2.2.5. In the process, only two operations are involved, namely cut-paste

operation and glueing operation. Denoted by σ′ the new natural signature. By Theorem 2.1.3

and the analysis before the proof, we have σ ∼ σ′ since both operations deduce the equivalent

signatures.
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Figure 2.7: Polygon representation.

By Proposition 2.1.1, one can convert this standard form to a surface with at most 2 cross-

caps and denote the new natural signature σ′′. Applying Theorem 2.1.3 again, we get σ′ ∼ σ′′.

By the hypothesis, (G, σ′′) admits a nowhere-zero 6-flow. Hence (G, σ) has a nowhere-zero

6-flow.

2.3 Twin propeller graphs

From now on, we just focus on the following special class of embedded graphs in Theorem 2.1.4

where the possible counterexamples can only occur: the embedded graphs whose surfaces have at

most 2 cross-caps together with their natural signatures. We call this class of embedded signed

graphs reduced class. In this section, we verify Bouchet’s conjecture for a basic but important

case in the reduced class, called twin propeller graphs.

Definition 2.3.1. Let G is a signed graph with a positive circuit C. If all the negative edges

occur as chords of C. Indeed, EN (G) has a partition EN (G) = E1 ∪ E2 where E1 = {xiwi}ki=1

and E2 = {yjzj}lj=1 and end-vertices of EN lies on C in the following cyclic order:

x1, . . . , xk, y1, . . . , yl, z1, . . . , zl, w1, . . . , wk.

Then we call G a twin propeller graph, see Figure 2.8.

Theorem 2.3.1. Every twin propeller graph admits a nowhere-zero 6-flow.

Similar to the proof of 6-flow Theorem, the main method to prove Theorem 2.3.1 is to

combine two particular 3-flows together.
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Figure 2.8: Twin propeller graph.

Proposition 2.3.1. Let G be a signed graph and f , h be 3-flows of G. Suppose that supp(f) ∪
supp(g) = E(G) and |supp(f) ∩ E±2(g)| ≤ 1 on each component of supp(g). Then G has a

6-NZF.

Proof. Let H1, . . . ,Ht be the components of supp(g) and denote gi := g|E(Hi) (1 ≤ i ≤ t). Then

at least one of 2f ± g1, . . . ,±gt is a 6-NZF of G.

To prove Theorem 2.3.1, we need some preparations, which are also powerful tools to deal

with Bouchet’s Conjecture. We next introduce some contractible configurations for Bouchet’s

6-flow conjecture.

Lemma 2.3.2. (Lu, Luo and Zhang [21]) Let k be a positive integer, and let G be a graph

with an orientation τ and admitting a k-NZF. If a vertex x of G is of degree at most three and

g : δG(x)→ {±1, . . . ,±(k− 1)} satisfies ∂g(x) = 0, then there is a k-NZF (τ, f) on G such that

f |δG(x) = g.

Lemma 2.3.3. Let G be a flow-admissible signed graph and H be a subgraph of G induced by

a subset X ⊆ V (G). If δG(X) + 2|EN (H)| ≤ 3, then G admits a 6-NZF if and only if so does

G/E(H − EN (H)).

Proof. The “only if” part is obvious since all edges in E(H) − EN (H) are positive. We now

prove the “if” part. Fix an arbitrary orientation τ of G. Let H ′ = H −EN (H), G1 = G/E(H ′),

and (τ1, f1) be a 6-NZF of G1, where τ1 is a restriction of τ on H(G1). To the end, we only need

to extend (τ1, f1) to be a 6-NZF of G.

If H has a component Q satisfying |δG(V (Q))| = 0 and |EN (Q)| = 0, then Q is also a

component of G. Since G is flow-admissible, Q is a bridgeless ordinary graph and thus admits a
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6-NZF by 6-flow theorem. Hence assume that H contains no such components. Since G is flow-

admissible and δG(X)+2|EN (H)| ≤ 3, either |EN (H)| = 0 and |δG(X)| ∈ {2, 3} or |EN (H)| = 1

and |δG(X)| = 1, moreover, H is connected.

Let HX be the set of the half edges of each edge in δG(X)∪EN (H) whose end is in X. Then

|HX | = |δG(X)| + 2|EN (H)| = 2 or 3. We add a new vertex x to H ′ + HX such that x is the

common end of all h ∈ HX , and denote the new graph by G2. Since G is flow-admissible, G2 is

a bridgeless ordinary graph and thus admits a 6-NZF by 6-flow theorem.

Let τ2 be the restriction of τ on H(G2) and define g(h) = f1(eh) for each h ∈ HX . Note

that τ2(h) = τ1(h) for each h ∈ HX since HX ⊆ H(G1). Since (τ1, f1) is a 6-NZF of G1, we

have ∂g(y) = −∂f1(y) = 0. By Lemma 2.3.2, there is a 6-NZF (τ2, f2) of G2 such that for every

h ∈ Hx, f2(h) = g(h) = f1(eh), and thus (τ1, f1) can be extended to a 6-NZF of G.

In general, the existence of k-NZF and Zk-NZF are not equivalent for all signed graphs.

However, we have the following equivalent relation when we restrict our cases on the signed

graphs with small negativeness and k = 3.

Lemma 2.3.4. Every signed graph with at most two negative edge admits a 3-NZF if and only

if it admits a Z3-NZF.

Proof. We only need to prove the sufficiency. Let G be a signed graph such that

(1) G admits a Z3-NZF (τ, f), but does not admit 3-NZFs;

(2) subject to (1),
∑

v∈V (G) |dG(x)− 3| is as small as possible.

Then G is flow-admissible and is of negativeness two. Further, assume that G is connected.

Claim 2.3.1. G is cubic.

Proof of Claim 2.3.1. By the choice of G, it is trivial that every vertex of G is of degree at

most 3. Suppose that x is a vertex of G with dG(x) ≥ 4. Pick arbitrarily two edges e and e′

from EG(x), and let G[x,{e,e′}] be the signed graph obtained from G by adding a new vertex x′

and changing the end x of e and e′ to be x′. If τ(hxe )f(e) + τ(hxe′)f(e′) ≡ 0 (mod 3), then let

G′ be the suppressed graph of G[x,{e,e′}]. If τ(hxe )f(e) + τ(hxe′)f(e′) 6≡ 0 (mod 3), then let G′ be

the signed graph obtained from G[x,{e,e′}] by adding a new positive edge xx′. In both cases, G′

admits a Z3-NZF and satisfies
∑

v∈V (G′) |dG′(x)− 3| <
∑

v∈V (G) |dG(x)− 3|. By the choice of G

again, G′ admits a 3-NZF, and so does G. This contradicts (1). 2

Let EN (G) = {e1, e2}, e1 = x1y1 and e2 = x2y2. We construct a new graph G∗ from G

as follows: insert a new vertex zi for i = 1, 2 of degree 2 into ei, and add a new positive edge

e∗ = z1z2.

Claim 2.3.2. G∗ is unsigned, cubic, 2-edge-connected and bipartite.

43



Proof of Claim 2.3.2. It is obvious that G∗ is unsigned and cubic since EN (G) = {e1, e2} and G

is cubic by Claim 2.3.1. Since a connected cubic graph is 2-edge-connected and bipartite if and

only if it admits 3-NZF, we only need to prove that G∗ admits a 3-NZF below.

Note that E(G∗) = (E(G) \ {e1, e2}) ∪ {z1x1, z1y1, z2x2, z2y2, e
∗}. For any e = xy ∈ E(G∗),

we orient e away from x if τ(hxe ) = 1 or x = z1 and y = z2, and toward x otherwise. Denote this

orientation of G∗ by τ∗. Define a mapping f∗ : E(G∗)→ Z3 by

f∗(e) =


f(e) if e ∈ E(G) \ {e1, e2};
f(e1) if e ∈ {z1x1, z1y1};
f(e2) if e ∈ {z2x2, z2y2};
f(e1) · 2τ(hx1e1 ) if e = e∗.

Since EN (G) = {e1, e2} and (τ, f) is a Z3-NZF of G, |f(e1)| = |f(e2)|, and thus it is not difficult

to check that (τ∗, f∗) is a Z3-NZF of G∗. 2

By Petersen theorem and Claim 2.3.2, G∗ has a 1-factor M containing e∗, furthermore,

admits a 3-NZF (τ1, f1) such that |f(e∗)| = 2. By the construction of G∗, G is the suppressed

graph G∗ − e∗, and the restriction of (τ1, f1) on E(G) is a 3-NZF of G, a contradiction to the

assumption.

The first 3-flow in Proposition 2.3.1 is constructed by Φ2-operations, which Seymour intro-

duced to prove the 6-flow theorem for ordinary graphs. Actually it can be generalized to signed

graphs.

Φk: add a balanced circuit or a barbell C into G if |E(C) \ E(G)| ≤ k.

For a subgraph H of G, denote by 〈H〉k the maximum subgraph of G obtained from H via

Φk-operations.

Lemma 2.3.5. (Seymour) Let G be a 3-edge-connected graph and v ∈ V (G). Then there is an

even subgraph H of G− v such that 〈H〉2 = G.

With a similar argument to the proof of Seymour’s 6-flow theorem, Zýka obtained the fol-

lowing result.

Lemma 2.3.6. (Zýka [39]) Let G be a signed graph and H be a subgraph of G. If 〈H〉2 = G,

then G admits a Z3-flow (τ, f) such that E(G) \ E(H) ⊆ supp(f).

The second 3-flow in Proposition 2.3.1 will be constructed at the local structure around the

circuit C. Let C be a circuit of G with even length, the pace of a chord e = xy of C is the length

of the path xCy of G.
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Proposition 2.3.2. Let G be a cubic signed graph with a all-positive Hamilton circuit C. Sup-

pose each positive chord of C has odd pace and each negative chord has even pace. Then G

admits a 3-NZF g such that E±1(g) = E(C) and E±2(g) = E(G) \ E(C)

Proof. Orient the edges of C alternatively along the circuit C and set all these edges with value

1. Since each positive chord has even pace, the boundaries of its two end-vertices have different

signs. Orient it towards the vertex with positive boundary and assign it value 2. Similar for the

negative chords. We get the required flow.

Proof of Theorem 2.3.1. Let G be a twin propeller signed graph and EN (G) = E1 ∪ E2 be

the partition of the negative edges in Definition 2.3.1. Denote G+ := G − EN (G) and G′ :=

G+/E(C). By Lemma 2.3.3, G′ is 3-edge connected. Hence there exists an even subgraph K in

G+− vC such that 〈K〉2 = G′ by Lemma 2.3.5 where vC is the contracted vertex corresponding

to C. Thus 〈K ∪ C〉2 = G+ in the ordinary graph G+. By Lemma 2.3.6, G+ admits a Z3-flow

f1 such that supp(f1) ⊇ E(G+) − E(C ∪ K). We have the following three cases to analyse

according to the parity of E1 and E2. Pick ei ∈ Ei if Ei 6= ∅ for i = 1, 2.

Case 1 Both |E1| and |E2|are even. Denote H := C + EN . Then H satisfies the conditions of

Proposition 2.3.2 by the analysis above. Thus H admits a 3-NZF f2 such that E±1(f2) = E(C)

and E±2(f2) = EN (G). Let f̃2 be the 3-flow of G obtained from f2 by adding a 2-NZF on K and

f̃1 be the 3-flow having the same support with f1 by Lemma 2.3.4. Clearly f̃1 and f̃2 satisfies

the conditions of Proposition 2.3.1, thus G admits a 6-NZF.

Case 2 One of |E1|, |E2| is odd, say |E1|. Let H ′ := C + EN − {e1}. Again by Proposition

2.3.2, H ′ admits a 3-NZF f ′2, which can be extend to K, denoted by f̃ ′2. Since 〈K ∪ C〉2 = G+,

we can extend this φ2 sequence by adding a balance circuit containing {e1, e2} at the final step.

Therefore 〈K ∪C〉2 = G+ + {e1, e2}. Then by Lemma 2.3.6, there exists a Z3-flow f ′1 such that

supp(f ′1) ⊇ E(G+) + {e1, e2} − E(C ∪K). Denoted by f̃ ′1 the 3-flow having the same support

with f ′1. Again, f̃ ′1 and f̃ ′2 satisfies Proposition 2.3.1, done.

Case 3 Both of |E1|, |E2| are odd. Let H ′′ := C + EN − {e1, e2} and f ′′2 be a 3-NZF of H ′′

by Proposition 2.3.2. Denote by f̃ ′′2 an extension of f ′′2 to K. Similar to case 2, there exists a

3-flow f̃ ′′1 such that supp(f ′′1 ) ⊇ E(G+) + {e1, e2} − E(C ∪K). By Proposition 2.3.1 again, we

can combine f̃ ′′1 and f̃ ′′2 together to get a 6-NZF of G.
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Chapter 3

11-FLOW

3.1 Introduction

In this Chapter, we provide a best partial result to Bouchet’s Conjecture.

In 1983, Bouchet [5] proposed a flow conjecture that every flow-admissible signed graph ad-

mits a nowhere-zero 6-flow. Bouchet [5] himself proved that such signed graphs admit nowhere-

zero 216-flows; Zýka [39] proved that such signed graphs admit nowhere-zero 30-flows. In this

Chapter, we prove the following result.

Theorem 3.1.1. Every flow-admissible signed graph admits a nowhere-zero 11-flow.

In fact, we prove a stronger and very structural result as follows, and Theorem 3.1.1 is an

immediate corollary.

Theorem 3.1.2. Every flow-admissible signed graph G admits a 3-flow f1 and a 5-flow f2 such

that f = 3f1 + f2 is a nowhere-zero 11-flow, |f(e)| 6= 9 for each edge e, and |f(e)| = 10 only

if e ∈ B(supp(f1)) ∩ B(supp(f2)), where B(supp(fi)) is the set of all bridges of the subgraph

induced by the edges of supp(fi) (i = 1, 2).

Theorem 3.1.2 may suggest an approach to further reduce 11-flows to 9-flows.

The main approach to prove the 11-flow theorem is the following result, which, we believe,

will be a powerful tool in the study of integer flows of signed graphs, in particular to resolve

Bouchet’s 6-flow conjecture.

Theorem 3.1.3. Every flow-admissible signed graph admits a balanced nowhere-zero Z2 × Z3-

flow.

A Z2 × Z3-flow (f1, f2) is called balanced if supp(f1) contains an even number of negative

edges.
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The rest of the chapter is organized as follows: Basic notations and definitions will be

introduced in Section 3.2. Section 3.3 will discuss the conversion of modulo flows into integer

flows. In particular a new result to convert a modulo 3-flow to an integer 5-flow will be introduced

and its proof will be presented in Section 3.5. The proofs of Theorems 3.1.2 and 3.1.3 will be

presented in Sections 3.4 and 3.6, respectively.

3.2 Signed graphs, switch operations, and flows

Let G be a graph. The degree of v ∈ V (G) is the number of edges incident with v, where each

loop is counted twice. A d-vertex is a vertex with degree d. Let Vd(G) be the set of d-vertices in

G. The maximum degree of G is denoted by ∆(G). We use B(G) to denote the set of cut-edges

of G.

A signed graph (G, σ) is a graph G together with a signature σ : E(G) → {−1, 1}. More

definitions about signed graphs, such as equivalence, orientation, are defined in Chapter 2.

Moreover, we define the negativeness of G by ε(G) = min{|EN (G, σ′)| : σ′ is equivalent to σ}.
A signed graph is balanced if its negativeness is 0. That is, it is equivalent to a graph without

negative edges. For a subgraph G′ of G, denote σ(G′) =
∏
e∈E(G′) σ(e). For convenience, the

signature σ is usually omitted if no confusion arises or is written as σG if it needs to emphasize

G.

Recall the integer flows of signed graphs we introduced in Chapter 2, it is so basic and

important, and we just repeat it here.

Definition 3.2.1. Assume that G is a signed graph associated with an orientation τ . Let A be

an abelian group and f : E(G) → A be a mapping. The boundary of f at a vertex v is defined

as

∂f(v) =
∑

h∈HG(v)

τ(h)f(eh).

The pair (τ, f) (or to simplify, f) is an A-flow of G if ∂f(v) = 0 for each v ∈ V (G), and is an

(integer) k-flow if it is a Z-flow and |f(e)| < k for each e ∈ E(G).

Let f be a flow of a signed graph G. The support of f , denoted by supp(f), is the set of edges

e with f(e) 6= 0. The flow f is nowhere-zero if supp(f) = E(G). For convenience, we abbreviate

the notions of nowhere-zero A-flow and nowhere-zero k-flow as A-NZF and k-NZF, respectively.

Observe that G admits an A-NZF (resp., a k-NZF) under an orientation τ if and only if it admits

an A-NZF (resp., a k-NZF) under any orientation τ ′. A Zk-flow is also called a modulo k-flow.

For an integer flow f of G and a positive integer t, let Ef=±t := {e ∈ E(G) : |f(e)| = t}.
A signed graph G is flow-admissible if it admits a k-NZF for some positive integer k.

Bouchet [5] characterized all flow-admissible signed graphs as follows.
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Proposition 3.2.1. ( [5]) A connected signed graph G is flow-admissible if and only if ε(G) 6= 1

and there is no cut-edge b such that G− b has a balanced component.

3.3 Modulo flows on signed graphs

Just like in the study of flows of ordinary graphs and as Theorem 3.1.3 indicates, the key to make

further improvement and to eventually solve Bouchet’s 6-flow conjecture is to further study how

to convert modulo 2-flows and modulo 3-flows into integer flows. The following lemma converts

a modulo 2-flow into an integer 3-flow.

Lemma 3.3.1 ( [6]). If a signed graph is connected and admits a Z2-flow f1 such that supp(f1)

contains an even number of negative edges, then it also admits a 3-flow f2 such that supp(f1) ⊆
supp(f2) and |f2(e)| = 2 if and only if e ∈ B(supp(f2)).

Remark 1. In Lemma 3.3.1 the conclusion “|f2(e)| = 2 if and only if e ∈ B(supp(f2))” is not

listed in Theorem 1.5 of [6]. However this fact is implicit and follows from the basic property of

flows of signed graphs: the flow value of each cut-edge must be even.

In this paper, we will show that one can convert a Z3-NZF to a very special 5-NZF.

Theorem 3.3.2. Let G be a signed graph admitting a Z3-NZF. Then G admits a 5-NZF g such

that Eg=±3 = ∅ and Eg=±4 ⊆ B(G).

Theorem 3.3.2 is also a key tool in the proof of the 11-theorem and its proof will be presented

in Section 3.5.

Remark 2. Theorem 3.3.2 is sharp in the sense that there is an infinite family of signed graphs

that admits a Z3-NZF but does not admit a 4-NZF. For example, the signed graph obtained from

a tree in which each vertex is of degree one or three by adding a negative loop at each vertex of

degree one. An illustration is shown in Fig. 3.1.

Figure 3.1: A signed graph admitting a Z3-NZF with all edges assigned with 1, but no 4-NZF.
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3.4 Proof of the 11-flow theorem

Now we are ready to prove Theorem 3.1.2, assuming Theorems 3.1.3 and 3.3.2.

Proof of Theorem 3.1.2. Let G be a connected flow-admissible signed graph. By Theo-

rem 3.1.3, G admits a balanced Z2 × Z3-NZF (g1, g2). By Lemma 3.3.1, G admits a 3-flow f1

such that supp(g1) ⊆ supp(f1) and |f1(e)| = 2 if and only if e ∈ B(supp(f1)).

By Theorem 3.3.2, G admits a 5-flow f2 such that supp(f2) = supp(g2) and

Ef2=±3 = ∅. (3.1)

Since (g1, g2) is a Z2 × Z3-NZF of G,

supp(f1) ∪ supp(f2) = supp(g1) ∪ supp(g2) = E(G). (3.2)

We are to show that f = 3f1 + f2 is a nowhere-zero 11-flow described in the theorem. Since

|f1(e)| ≤ 2 and |f2(e)| ≤ 4, we have

|f(e)| = |(3f1 + f2)(e)| ≤ 3|f1(e)|+ |f2(e)| ≤ 10 ∀e ∈ E(G).

Furthermore, by applying Equations (3.1) and (3.2),

3f1(e) + f2(e) 6= 0,±9 ∀e ∈ E(G).

If |f(e)| = 10 for some edge e ∈ E(G), then |f1(e)| = 2 and |f2(e)| = 4. Thus, by Lemmas 3.3.1

and 3.3.2 again, the edge e ∈ B(supp(f1)) ∩B(supp(f2)) and hence f = 3f1 + f2 is the 11-NZF

described in Theorem 3.1.2. 2

3.5 Proof of Theorem 3.3.2

As the preparation of the proof of Theorem 3.3.2, we first need some necessary lemmas.

The first lemma is a stronger form of the famous Petersen’s theorem, and here we omit its

proof (see Exercise 16.4.8 in [4]).

Lemma 3.5.1. Let G be a bridgeless cubic graph and e0 ∈ E(G). Then G has two perfect

matchings M1 and M2 such that e0 ∈M1 and e0 /∈M2.

We also need a splitting lemma due to Fleischner [10].

Let G be a graph and v be a vertex. If F ⊂ δG(v), we denote by G[v;F ] the graph obtained

from G by splitting the edges of F away from v. That is, adding a new vertex v∗ and changing

the common end of edges in F from v to v∗.
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Lemma 3.5.2. ( [10]) Let G be a bridgeless graph and v be a vertex. If dG(v) ≥ 4 and e0, e1, e2 ∈
δG(v) are chosen in a way that e0 and e2 are in different blocks when v is a cut-vertex, then either

G[v;{e0,e1}] or G[v;{e0,e2}] is bridgeless. Furthermore, G[v;{e0,e2}] is bridgeless if v is a cut-vertex.

Let G be a signed graph. A path P in G is called a subdivided edge of G if every internal vertex

of P is a 2-vertex. The suppressed graph of G, denoted by G, is the signed graph obtained from

G by replacing each maximal subdivided edge P with a single edge e and assigning σ(e) = σ(P ).

The following result is proved in [33] which gives a sufficient condition when a modulo 3-flow

and an integer 3-flow are equivalent for signed graphs.

Lemma 3.5.3 ( [33]). Let G be a bridgeless signed graph. If G admits a Z3-NZF, then it also

admits a 3-NZF.

Lemma 3.5.3 is strengthened in the following lemma, which will serve as the induction base

in the proof of Theorem 3.3.2.

Lemma 3.5.4. Let G be a bridgeless signed graph admitting a Z3-NZF. Then for any e0 ∈ E(G)

and for any i ∈ {1, 2}, G admits a 3-NZF such that e0 has the flow value i.

Proof. Let G be a counterexample with β(G) :=
∑

v∈V (G) |dG(v) − 2.5| minimum. Since G

admits a Z3-NZF, there is an orientation τ of G such that for each v ∈ V (G),

∂τ(v) :=
∑

h∈HG(v)

τ(h) ≡ 0 (mod 3). (3.3)

We claim ∆(G) ≤ 3. Suppose to the contrary that G has a vertex v with dG(v) ≥ 4.

By Lemma 3.5.2, we can split a pair of edges {e1, e2} from v such that the new signed graph

G′ = G[v;{e1,e2}] is still bridgeless. In G′, we consider τ as an orientation on E(G′) and denote the

common end of e1 and e2 by v∗. If ∂τ(v∗) = 0, then β(G′) < β(G) and by Eq. (3.3), ∂τ(u) ≡ 0

(mod 3) for each u ∈ V (G′), a contradiction to the minimality of β(G). If ∂τ(v∗) 6= 0, then we

further add a positive edge vv∗ to G′ and denote the resulting signed graph by G′′. Let τ ′′ be

the orientation of G′′ obtained from τ by assigning vv∗ with a direction such that ∂τ ′′(v∗) ≡ 0

(mod 3). Then by Eq. (3.3), ∂τ ′′(u) ≡ 0 (mod 3) for each u ∈ V (G′′). Since β(G′′) < β(G), we

obtain a contradiction to the minimality of β(G) again. Therefore ∆(G) ≤ 3.

Since G is bridgeless, every vertex of G is of degree 2 or 3. Note that the existence of the

desired 3-flows is preserved under the suppressing operation. Then the suppressed signed graph

G of G is also a counterexample, and β(G) < β(G) when G has some 2-vertices. Therefore G is

cubic by the minimality of β(G).

Since G is cubic, by Eq. (3.3), either ∂τ(v) = dG(v) or ∂τ(v) = −dG(v) for each v ∈ V (G).

By Lemma 3.5.1, we can choose two perfect matchings M1 and M2 such that e0 /∈ M1 and

e0 ∈M2. For i = 1, 2, let τi be the orientation of G obtained from τ by reversing the directions
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of all edges of Mi, and define a mapping fi : E(G) → {1, 2} by setting fi(e) = 2 if e ∈ Mi and

fi(e) = 1 if e /∈Mi. Then f1 and f2 are two desired nowhere-zero 3-flows of G under τ1 and τ2,

respectively, a contradiction.

Now we are ready to complete the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. We will prove by induction on t = |B(G)|, the number of cut-edges

in G. If t = 0, then G is bridgeless and it is a direct corollary of Lemma 3.5.4. This establishes

the base of the induction.

Assume t > 0. Let e = v1v2 be a cut-edge in B(G) such that one component, say B1, of G−e
is minimal. Let B2 be the other component of G− e. We may assume the bridge e is a positive

edge (by possibly some switching operations). Since G admits a Z3-NZF, δ(G) ≥ 2. Thus B1 is

bridgeless and nontrivial. WLOG assume vi ∈ Bi (i = 1, 2). Let B′i be the graph obtained from

Bi by adding a negative loop ei at vi. Then B′i admits a Z3-NZF since G admits a Z3-NZF.

By induction hypothesis, B′2 admits a 5-NZF g2 with g2(e2) = a ∈ {1, 2}. By Lemma 3.5.4, B′1

admits a 3-NZF g1 such that g1(e1) = a. Hence we can extend g1 and g2 to a 5-NZF g of G by

setting g(e) = 2a with appropriate orientation of e. Clearly g is a desired 5-NZF of G. 2

3.6 Proof of Theorem 3.1.3

In this section, we will complete the proof of Theorem 3.1.3, which is divided into two steps: first

to reduce it from general flow-admissible signed graphs to cubic shrubberies (see Lemma 3.6.5);

and then prove that every cubic shrubbery admits a balanced Z2×Z3-NZF by showing a stronger

result (see Lemma 3.6.10).

We first need some terminology and notations. Let G be a graph. For an edge e ∈ E(G),

contracting e is done by deleting e and then (if e is not a loop) identifying its ends. Note that

all resulting loops generated from the parallel edges of e are kept. For S ⊆ E(G), we use G/S

to denote the resulting graph obtained from G by contracting all edges in S.

For a path P , let End(P ) and Int(P ) be the sets of the ends and internal vertices of P ,

respectively. For U1, U2 ⊆ V (G), a (U1, U2)-path is a path P satisfying |End(P ) ∩ Ui| = 1

and Int(P ) ∩ Ui = ∅ for i = 1, 2; if G1 and G2 are subgraphs of G, we write (G1, G2)-path

instead of (V (G1), V (G2))-path. Let C = v1 · · · vrv1 be a circuit. A segment of C is the path

vivi+1 · · · vj−1vj (mod r) contained in C and is denoted by viCvj or vjC
−vi. An `-circuit is a

circuit with length `.

For a plane graph G embedded in the plane Π, a face of G is a connected topological region

(an open set) of Π \G. If the boundary of a face is a circuit of G, it is called a facial circuit of

G. Denote [1, k] = {1, 2, . . . , k}.
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3.6.1 Shrubberies

Now we start to introduce shrubberies and removable circuits, which are key concepts for in-

duction purpose.

Let G be a signed graph and H be a connected signed subgraph of G. An edge e ∈ E(G) \
E(H) is called a chord of H if both ends of e are in V (H). We denote the set of chords of H by

CG(H) or simply C(H), and partition C(H) into

U(H) = UG(H) = {e ∈ C(H) : H + e is unbalanced} and U(H) = UG(H) = C(H) \ U(H).

A circuit C is called removable if either it is unbalanced or it satisfies |U(C)|+|V2(G)∩V (C)| ≥ 2.

A signed graph G is called a shrubbery if it satisfies the following requirements:

(S1) ∆(G) ≤ 3;

(S2) every signed cubic subgraph of G is flow-admissible;

(S3) |δG(V (H))|+
∑

x∈V (H)(3− dG(x)) + 2|U(H)| ≥ 4 for any balanced and connected signed

subgraph H with |V (H)| ≥ 2;

(S4) G has no balanced 4-circuits.

The following proposition shows that shrubberies form a nice graph class which is closed

under deletion, a crucial fact for induction.

Proposition 3.6.1. Every signed subgraph of a shrubbery is still a shrubbery.

Proof. Let G′ be an arbitrary signed subgraph of a shrubbery G. Obviously, G′ satisfies (S1),

(S2) and (S4). We will show that G′ satisfies (S3).

Let H be a balanced and connected signed subgraph of G′ with |V (H)| ≥ 2. Let A1 =

δG(V (H)) \ δG′(V (H)) and A2 = CG(H) \ CG′(H). Then∑
x∈V (H)

(3− dG′(x))−
∑

x∈V (H)

(3− dG(x)) =
∑

x∈V (H)

(dG(x)− dH(x)) = |A1|+ 2|A2|.

Since UG′(H) ⊆ UG(H) and CG′(H) ⊆ CG(H), we have

|UG(H)| − |UG′(H)| ≤ |A2|.

Hence

|δG′(V (H))|+
∑

x∈V (H)

(3− dG′(x)) + 2|UG′(H)|

≥ (|δG(V (H))| − |A1|) +
[ ∑
x∈V (H)

(3− dG(x)) + |A1|+ 2|A2|
]

+ 2(|UG(H)| − |A2|)

= |δG(V (H))|+
∑

x∈V (H)

(3− dG(x)) + 2|UG(H)| ≥ 4,
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since G is a shrubbery.

Therefore G′ satisfies (S3) and thus is a shrubbery.

Proposition 3.6.1 will be applied frequently in the proof of Lemma 3.6.10 and thus it will

not be referenced explicitly.

Next we will apply the following two theorems and Lemma 3.6.4 to reduce Theorem 3.1.3

for general signed graphs to cubic shrubberies.

Theorem 3.6.1. ( [25]) Every ordinary bridgeless graph admits a 6-NZF.

Theorem 3.6.2. ( [28]) Let A be an abelian group of order k. Then an ordinary graph admits

a k-NZF if and only if it admits an A-NZF.

Let G be an ordinary oriented graph, T ⊆ E(G) and A be an abelian group. For any function

γ : T → A, let Fγ(G) denote the number of A-NZF φ of G with φ(e) = γ(e) for every e ∈ T .

For every X ⊆ V (G), let αX : E(G)→ {−1, 0, 1} be given by the rule

αX(e) =


1 if e ∈ δG(X) is directed toward X

−1 if e ∈ δG(X) is directed away X

0 otherwise.

For any two functions γ1, γ2 from T to A, we call γ1, γ2 similar if for every X ⊆ V (G), the

following holds ∑
e∈T

αX(e)γ1(e) = 0 if and only if
∑
e∈T

αX(e)γ2(e) = 0.

Lemma 3.6.3. (Seymour - Personal communication). Let G be an ordinary oriented graph,

T ⊆ E(G) and A be an abelian group. If the two functions γ1, γ2 : T → A are similar, then

Fγ1(G) = Fγ2(G).

Proof. We proceed by induction on the number of edges in E(G) \ T . If this set is empty, then

Fγi(G) ≤ 1 and Fγi(G) = 1 if and only if γi is an A-NZF of G for i = 1, 2. Thus, the result

follows by the assumption. Otherwise, choose an edge e ∈ E(G) \ T . If e is a cut-edge, then

Fγi(G) = 0 for i = 1, 2. If e is a loop, then we have inductively that

Fγ1(G) = (|A| − 1)Fγ1(G− e) = (|A| − 1)Fγ2(G− e) = Fγ2(G).

Otherwise, applying induction to G− e and G/e we have

Fγ1(G) = Fγ1(G/e)−Fγ1(G− e) = Fγ2(G/e)−Fγ2(G− e) = Fγ2(G).

The following lemma directly follows from Lemma 3.6.3.
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Lemma 3.6.4. Let G be an ordinary oriented graph and A be an abelian group. Assume that G

has an A-NZF. If G has a vertex v with dG(v) ≤ 3 and γ : δG(v)→ A \ {0} satisfies ∂γ(v) = 0,

then there exists an A-NZF φ such that φ|δG(v) = γ.

Proof. Let f be an A-NZF of G. Since dG(v) ≤ 3, f |δG(v) is similar to γ. Thus by Lemma 3.6.3,

we have Fγ(G) = Ff |δG(v)
(G) 6= 0. Therefore there exists an A-NZF φ such that φ|δG(v) = γ.

Now we can reduce Theorem 3.1.3 to cubic shrubberies.

Lemma 3.6.5. The following two statements are equivalent.

(i) Every flow-admissible signed graph admits a balanced Z2 × Z3-NZF.

(ii) Every cubic shrubbery admits a balanced Z2 × Z3-NZF.

Proof. “(i)⇒(ii)”: By (S2), every cubic shrubbery is flow-admissible, and thus (ii) follows from

(i).

“(ii)⇒(i)”: Let G be a counterexample to (i) with β(G) =
∑

v∈V (G) |dG(v)− 2.5| minimum.

Since G is flow-admissible, it admits a k-NZF (τ, f) for some positive integer k and thus V1(G) =

∅. Furthermore, by the minimality of β(G), G is connected and V2(G) = ∅ otherwise the

suppressed signed graph G of G is also flow-admissible and has smaller β(G) than β(G). We

are going to show that G is a cubic shrubbery and thus admits a balanced Z2×Z3-NZF by (ii),

which is a contradiction to the fact that G is a counterexample. By the definition of shrubberies,

we only need to prove (I)-(III) in the following.

(I) G is cubic.

Suppose to the contrary that G has a vertex v with dG(v) 6= 3. Then dG(v) ≥ 4. Let

{e1, e2} ⊂ δG(v) and let G′ = G[v;{e1,e2}]. Denote the new common end of e1 and e2 in G′ by

v∗. If ∂f(v∗) = 0, let G′′ = G′. If ∂f(v∗) 6= 0, we further add a positive edge vv∗ with direction

from v to v∗ and assign vv∗ with flow value ∂f(v∗). Let G′′ be the resulting signed graph. In

both cases, G′′ is flow-admissible and β(G′′) < β(G). By the minimality of β(G), G′′ admits a

balanced Z2 × Z3-NZF, and so does G, a contradiction. This proves (I).

(II) |δG(V (H))|+2|U(H)| ≥ 4 for any balanced and connected signed subgraphH with |V (H)| ≥
2.

Suppose to the contrary that H is such a subgraph with |δG(V (H))| + 2|U(H)| ≤ 3. Let

X = V (H). Then H ′ = G[X]−U(H) is a balanced and connected signed subgraph of G. WLOG

assume that all edges of H ′ are positive. Let G1 = G/E(H ′). Then G1 is also flow-admissible.

Since |δG(X)| + 2|U(H)| ≤ 3, it follows from the choice of G and Proposition 3.2.1 that

either |U(H)| = 0 and |δG(X)| ∈ {2, 3} or |U(H)| = 1 and |δG(X)| = 1. Let x be the contracted

vertex in G1 = G/E(H ′) corresponding to E(H ′). Then dG1(x) = |δG(X)| + 2|U(H)| ∈ {2, 3}
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and β(G1) < β(G) since |X| = |V (H)| ≥ 2. By the minimality of β(G), G1 admits a balanced

Z2 × Z3-NZF (τ1, f1), where τ1 is the restriction of τ on G1.

Let HX be the set of the half edges of each edge in δG(X) ∪ U(H) whose end is in X. Then

|HX | = |δG(X)| + 2|U(H)| = 2 or 3. Construct a new graph G2 from H ′ + HX by identifying

the non-ends of all half edges in HX into a new vertex y. Now in G2, y is the common end of

all h ∈ Hx. Then in G2, y is the vertex incident with all h ∈ HX . Since G is flow-admissible,

G2 is a bridgeless ordinary graph and thus admits a balanced Z2 × Z3-NZF by Theorems 3.6.1

and 3.6.2. Let τ2 be the restriction of τ on G2 and define γ(h) = f1(eh) for each h ∈ HX . Note

that τ2(h) = τ1(h) for each h ∈ HX . Since (τ1, f1) is a balanced Z2 × Z3-NZF of G1, we have

∂γ(y) = −∂f1(x) = 0. By Lemma 3.6.4, there is a balanced Z2 × Z3-NZF (τ2, f2) of G2 such

that f2|δG2
(y) = γ = f1|δG1

(x). Thus (τ1, f1) can be extended to a balanced Z2 × Z3-NZF of G,

a contradiction. This proves (II).

(III) G has no balanced 4-circuits.

Suppose to the contrary that G has a balanced 4-circuit C. Then we may assume that all

edges of C are positive. Let G′ = G/E(C). Then β(G′) < β(G). By the minimality of β(G),

G′ admits a balanced Z2 ×Z3-NZF, say (f ′1, f
′
2). Since C is a circuit with all positive edges and

|E(C)| = 4 and since |Z2 × Z3| = 6, it is easy to extend (f ′1, f
′
2) to a balanced Z2 × Z3-NZF of

G, a contradiction. This proves (III) and thus completes the proof of the lemma.

3.6.2 Nowhere-zero watering

In this subsection, we will prove that every cubic shrubbery admits a balanced Z2 × Z3-NZF.

In fact, we will prove a stronger result that every shrubbery admits a nowhere-zero watering as

in Lemma 3.6.10 below. Here a nowhere-zero watering (see Definition 3.6.1) involves flows with

certain boundaries at vertices of degree one or two, which provides some flexibility for induction

and makes some reduction arguments on removable circuits possible. Before proceeding, we

need some preparations.

Theorem 3.6.6. ( [31]) Let G be a 2-connected graph with ∆(G) ≤ 3 and let y1, y2, y3 ∈ V (G).

Then either there exists a circuit of G containing y1, y2, y3, or there is a partition of V (G) into

{X1, X2, Y1, Y2, Y3} with the following properties:

(1) yi ∈ Yi for i = 1, 2, 3;

(2) δG(X1, X2) = δG(Yi, Yj) = ∅ for 1 ≤ i < j ≤ 3;

(3) |δG(Xi, Yj)| = 1 for i = 1, 2 and j = 1, 2, 3.

Let H be a contraction of G and let x ∈ V (G). We use x̂ to denote the vertex in H which

x is contracted into.
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Theorem 3.6.7. ( [21]) Let G be a 2-connected signed graph with |EN (G)| = ε(G) = k ≥ 2,

where EN (G) = {x1xk+1, . . . , xkx2k}. Then the following two statements are equivalent.

(i) G does not contain two edge-disjoint unbalanced circuits.

(ii) The graph G can be contracted to a cubic graph G′ such that either G′−{x̂1x̂k+1, . . . , x̂kx̂2k}
is a 2k-circuit C1 on the vertices x̂1, . . . , x̂k, x̂k+1, . . . , x̂2k or can be obtained from a 2-

connected cubic plane graph by selecting a facial circuit C2 and inserting the vertices

x̂1, . . . , x̂k, x̂k+1, . . . , x̂2k on the edges of C2 in such a way that for every pair {i, j} ⊆ [1, k],

the vertices x̂i, x̂j , ˆxk+i, ˆxk+j are around the circuit C1 or C2 in this cyclic order.

Lemma 3.6.8. ( [19]) Let G be an ordinary oriented graph and A be an abelian group. Then G

is connected if and only if for every function β : V (G)→ A satisfying
∑

v∈V (G) β(v) = 0, there

exists φ : E(G)→ A such that ∂φ = β.

Definition 3.6.1. Let G be a signed graph with ∆(G) ≤ 3 and a given orientation. A nowhere-

zero watering (briefly, NZW) of G is a mapping f : E(G)→ Z2 × Z3 − {(0, 0)} such that

∂f(v) = (0, 0) if dG(v) = 3 and ∂f(v) = (0,±1) if dG(v) = 1, 2.

Similar to flows, the existence of an NZW is also an invariant under switching operation.

The following reductions/extensions of NZW on removable circuits play an important role in

later proofs.

Lemma 3.6.9. Let G be a shrubbery and C be a removable circuit of G. Then for every NZW

f ′ = (f ′1, f
′
2) of G′ = G− V (C), there exists an NZW f = (f1, f2) of G so that f(e) = f ′(e) for

every e ∈ E(G′) and supp(f1) = supp(f ′1) ∪ E(C).

Proof. We first extend f ′ to f : E(G)→ Z2×Z3 as follows where αe is a variable in Z3 for every

e ∈ U(C).

f(e) =


(0,±1) if e ∈ δ(V (C))

(1, 0) if e ∈ E(C)

(0, 1) if e ∈ U(C)

(0, αe) if e ∈ U(C).

Since every v ∈ V (G) \ V (C) adjacent to a vertex in V (C) has degree less than three in G′, we

may choose values f(e) for each edge e ∈ δ(V (C)) so that f satisfies the boundary condition for

a watering at every vertex in V (G) \ V (C). Obviously by the construction ∂f1(v) = 0 for every

v ∈ V (C). So we need only adjust ∂f2(v) for v ∈ V (C) to obtain a watering. We distinguish

the following two cases.

Case 1: C is unbalanced.
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In this case U(C) = ∅. Choose arbitrary ±1 assignments to the variables αe. Since C is

unbalanced, for every vertex u ∈ V (C), there is a function ηu : E(C) → Z3 so that ∂ηu(u) = 1

and ∂ηu(v) = 0 for any v ∈ V (C)\{u}. Now we may adjust f2 by adding a suitable combination

of the ηu functions so that f is an NZW of G, as desired.

Case 2: C is balanced.

WLOG we may assume that every edge of C is positive and every unbalanced chord is

oriented so that each half edge is directed away from its end. In this case, each negative chord

e contributes 2f2(e) = αe to the sum
∑

v∈V (C) ∂f2(v). For every v ∈ V (C) ∩ V2(G), let βv be a

variable in Z3. Since |U(C)|+ |V2(G) ∩ V (C)| ≥ 2, we can choose ±1 assignments to all of the

variables αe and βv so that the following equation is satisfied:∑
v∈V (C)

∂f2(v) =
∑

v∈V (C)∩V2(G)

βv.

By Lemma 3.6.8, we may choose a function φ : E(C)→ Z3 so that

∂φ(v) =

{
βv − ∂f2(v) if v ∈ V (C) ∩ V2(G),

−∂f2(v) if v ∈ V (C) \ V2(G).

Now modify f by adding φ to f2 and then f is an NZW of G, as desired.

A theta is a graph consisting of two distinct vertices and three internally disjoint paths

between them. A theta is unbalanced if it contains an unbalanced circuit. By the definition, the

following observation is straightforward.

Observation 3.6.1. Let G be a signed graph containing no unbalanced thetas and ∆(G) ≤ 3.

Then for any unbalanced circuit C and any x ∈ V (G) \V (C), G does not contain two internally

disjoint (x,C)-paths.

Now we present our main result of this subsection.

Lemma 3.6.10. Every shrubbery has an NZW. Furthermore, if G is a shrubbery with an un-

balanced theta or a negative loop and ε ∈ {−1, 1}, then G has an NZW f = (f1, f2) such that

σ(supp(f1)) = ε.

Before we go through the details of the proof, we first present the outline of the proof.

Outline of the proof of Lemma 3.6.10: Consider G the minimum counterexample to the

lemma. If G does not contain an unbalanced theta or a negative loop, all removable circuits

are forbidden from G (See Claim 3.6.2-(1)). However due to the requirement of ε, if G has

an unbalanced theta or a negative loop, only removable circuits with certain properties can be

forbidden from G (See Claim 3.6.2-(2a) and (2b)).
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Thus, in order to avoid “forbidden circuits”, certain structures of G are determined step-

by-step in Claims 3.6.3-3.6.8, especially, the non-existence of edge-disjoint unbalanced circuits

(Claim 3.6.6). With those structures and the application of Theorem 3.6.7, we are able to lead

the final contradiction that some forbidden circuit does exist in the remaining part of the proof

(Claims 3.6.9-3.6.11 and the final step).

Proof. Let G be a minimum counterexample with respect to |E(G)|. Then G is connected.

Claim 3.6.1. ∆(G) = 3 and G is 2-connected. Thus G does not contain loops.

Proof of Claim 3.6.1. It is obvious that both a circuit (balanced or unbalanced) and a path have

NZWs. Since ∆(G) ≤ 3 by (S1), we have ∆(G) = 3.

Now we show that G is 2-connected. Suppose to the contrary that G has a cut vertex. Since

∆(G) = 3, G contains a cut-edge e = v1v2. Let Gi be the component of G − e containing

vi. By the minimality of G, each Gi admits an NZW f i = (f i1, f
i
2), and ∂f i2(vi) 6= 0 since

dGi(vi) ≤ 2. Thus we can obtain an NZW f = (f1, f2) of G by setting f(e) = (0, 1) and

f |E(Gi) = f i or −f i according to the orientation of e and the values of ∂f1
2 (v1) and ∂f2

2 (v2).

Further, if G contains an unbalanced theta or a negative loop, so does one component of G− e,
say G1. By the minimality of G, we choose f1 such that σ(supp(f1

1 )) = ε · σ(supp(f2
1 )). Hence

σ(supp(f1)) = σ(supp(f1
1 )) · σ(supp(f2

1 )) = ε · σ(supp(f2
1 )) · σ(supp(f2

1 )) = ε, a contradiction. 2

Claim 3.6.2. (1) If G does not contain an unbalanced theta, then G doesn’t not contain a

removable circuit.

(2) If G contains an unbalanced theta, then G has no removable circuit C with one of the

following properties:

(2a) G− V (C) contains an unbalanced theta;

(2b) G− V (C) is balanced and σ(C) = ε.

Proof of Claim 3.6.2. Note that G does not contain a negative loop.

(1) is straightforward from Lemma 3.6.9

Suppose that (2) is not true. Then G contains an unbalanced theta. Let C be a removable

circuit satisfying (2a) or (2b). By the minimality of G, there exists an NZW f ′ = (f ′1, f
′
2) of

G − V (C) such that σ(supp(f ′1)) = ε · σ(C) in Case (2a) and σ(supp(f ′1)) = 1 in Case (2b).

By Lemma 3.6.9, f ′ can be extended to an NZW f = (f1, f2) of G such that supp(f1) =

supp(f ′1) ∪ E(C). In particular for Cases (2a) and (2b), σ(supp(f1)) = σ(supp(f ′1)) · σ(C) = ε,

a contradiction. 2

Claim 3.6.3. Let X ⊂ V (G) such that |X| ≥ 2, G[X] is balanced, and |δG(X)| = 2. If G−X
either contains an unbalanced theta, or is balanced and contains a circuit, then X ⊆ V2(G) and

thus G[X] is a path.
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Proof of Claim 3.6.3. The conclusion that G[X] is a path directly follows from the properties

of X and the first conclusion that X ⊆ V2(G).

Suppose the claim fails. Let X ⊂ V (G) be a minimal set with the above properties such

that X ∩V3(G) 6= ∅. Then G[X] is 2-connected by the minimality of X. Since G[X] is balanced

and U(G[X]) = ∅, by (S3), we have

2 +
∑
x∈X

(3− dG(x)) = |δG(X)|+
∑
x∈X

(3− dG(x)) + 2|U(G[X])| ≥ 4.

The above inequality implies that X contains at least two 2-vertices. Since G[X] is 2-connected,

let C be a circuit in G[X] containing at least two 2-vertices. Then C is removable and thus by

Claim 3.6.2-(2a), G−V (C) does not contain a unbalanced theta, which implies that G−X does

not contain unbalanced theta either. By the hypothesis, G−X is balanced and G−X contains

a circuit too.

Denote δG(X) = {e1, e2}. Since both G[X] and G −X are balanced, by possibly replacing

σG with an equivalent signature, we may assume that σG(e1) ∈ {−1, 1} and that σG(e) = 1 for

every other edge e ∈ E(G). Since C is a removable circuit of G, G contains an unbalanced theta

by Claim 3.6.2-(1), and so G is unbalanced. Therefore σG(e1) = −1 and thus e1 is the only

negative edge in G.

Let C ′ be an unbalanced circuit and C ′′ be a circuit in G−X. Then C ′′ is balanced and C ′

contains e1 and e2.

Now we show that C ′ ∪ (G − X) contains an unbalanced theta. Denote e1 = x1y1 and

e2 = x2y2, where x1, x2 ∈ X and y1, y2 ∈ V (G) \ X. Since G is 2-connected and ∆(G) = 3,

there are two disjoint (x1, C
′′)-paths P1 and P2 with V (P1) ∩ V (P2) = {x1}. Since C ′ contains

both e1 and e2, we may choose P1 and P2 such that P1 ∪P2 contains the segment of C ′ in G[X]

from x1 to x2. Since e1 is the only negative edge, P1 ∪ P2 ∪ C ′′ is an unbalanced theta.

Since C ′ is unbalanced, it is removable. Since G − V (C ′) is balanced and σ(C ′) = −1, by

Claim 3.6.2-(2b), we have ε = 1. On the other hand, since C is removable and σG(C) = 1 = ε,

G−V (C) is unbalanced by Claim 3.6.2-(2b) again. Thus we may choose the unbalanced circuit

C ′ in G − V (C). Hence V (C ′) ∩ V (C) = ∅. Therefore P1 ∪ P2 ∪ C ′′ is an unbalanced theta in

G− V (C), a contradiction to Claim 3.6.2-(2a). 2

Claim 3.6.4. Let X ⊂ V (G) such that |X| ≥ 2, G[X] is balanced, and |δG(X)| ≤ 3. For any

two distinct ends x1, x2 in X of δG(X), there is an (x1, x2)-path in G[X] containing at least one

vertex in V2(G).

Proof of Claim 3.6.4. Suppose that the claim fails. Let x1x
′
1, x2x

′
2 ∈ δG(X), and Bi be the

maximal 2-connected subgraph of G[X] containing xi for i = 1, 2. Since G is 2-connected and

∆(G) = 3 by Claim 3.6.1 and |δG(X)| ≤ 3, we have that G[X] is connected and dG(x1) =

dG(x2) = 3. Moreover every edge in δG[X](V (Bi)) is a cut-edge of G[X] by the maximality of
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Bi. Thus |δG[X](V (Bi))| is equal to the number of components of G[X] − V (Bi). Since G is

2-connected, we have

(a) for each component A of G[X]− V (Bi), δG(V (A), V (G) \X) ≥ 1 and thus

(b) |δG(V (Bi))| ≤ |δG(X)| ≤ 3.

Moreover, since G[X] is balanced, Bi is balanced for i = 1, 2. Thus we further have

(c) U(Bi) = ∅ for i = 1, 2.

We first show that for each i = 1, 2 Bi does not contain a 2-vertex and is trivial .

WLOG, suppose to the contrary that B1 contains a 2-vertex y.

If x2 ∈ V (B1), then there are two internally disjoint (y, {x1, x2})-paths P1 and P2. Then

P1 ∪ P2 is an (x1, x2)-path in G[X] containing one 2-vertex.

If x2 6∈ V (B1), then B1 and B2 are disjoint since ∆(G) = 3. Since G[X] is connected, let

P3 be an (x2, B1)-path and y1 be the other end of P3. Then y1 ∈ V (B1). Again since B1 is

2-connected and dG(x1) = 3, y1 6= x1 and there are two internally disjoint (y, {y1, x1})-paths,

P ′1 and P ′2. Then P3 ∪ P ′1 ∪ P ′2 is a desired (x1, x2)-path. This proves that B1 (and B2) doesn’t

contain a 2-vertex.

By (b) and (c), we have |δG(V (Bi))| ≤ 3 and U(Bi) = ∅ for i = 1, 2. If Bi is nontrivial, then

by (S3) , we have

4 ≤
∑

x∈V (Bi)

(3− dG(x)) + |δG(V (B1))| ≤
∑

x∈V (Bi)

(3− dG(x)) + 3.

The above inequality implies that Bi contains a 2-vertex, a contradiction. Therefore Bi is trivial.

Since dG(x1) = 3, dG[X](x1) = 2 and thus G[X] − x1 has two components, say A1 and

A2. WLOG, we may assume x2 ∈ V (A2). Since G is 2-connected, there exists x3x
′
3 ∈

δG(V (A1), V (G) \ X) with x3 ∈ V (A1). Similarly, G[X] − x2 has two components A3 and

A4. Since G[X] is connected, the subgraph induced by V (A1) together with x1 must be con-

tained in one of A3 and A4, say A4. Thus δG(V (A4), V (G) \ X) = {x1x
′
1, x3x

′
3}. Note that

δG(X) = {x1x
′
1, x2x

′
2, x3x

′
3} since |δG(X)| ≤ 3. Since x2 6∈ V (A3), δ(V (A3), V (G) \X) = 0 < 1,

a contradiction to (a). This proves the claim. 2

Claim 3.6.5. G does not contain two disjoint unbalanced circuits C1 and C2 such that V3(G) ⊆
V (C1) ∪ V (C2).

Proof of Claim 3.6.5. Suppose the claim fails. Let C1 and C2 be two disjoint unbalanced circuits

such that V3(G) ⊆ V (C1) ∪ V (C2). Then every vertex of G′ = G − E(C1 ∪ C2) is of degree at

most 2. By Claim 3.6.2-(2a), G − V (Ci) does not contain unbalanced theta for each i = 1, 2.

Thus by Observation 3.6.1, every nontrivial component of G′ is a path with one end in V (C1)

and the other end in V (C2). Since G is 2-connected and ∆(G) = 3, there are at least two

3-vertices in each Ci.
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When ε = −1, choose x1, x2 from V3(G)∩V (C1) such that the segment P = x1C1x2 contains

all vertices of V3(G) ∩ V (C1). Let Pi be the path in G′ with one end xi and yi be the other

end of Pi for i = 1, 2. Since C2 is unbalanced, there is a segment, say y1C2y2, of C2 such that

the circuit C = P ∪ P1 ∪ P2 ∪ y1C2y2 is unbalanced, and thus C is removable. This contradicts

Claim 3.6.2-(2b) since G− V (C) is a forest (which is balanced).

When ε = 1, by the minimality of G and since G′′ = G − V (C1 ∪ C2) is a forest, G′′

admits an NZW f ′ = (f ′1, f
′
2) with supp(f ′1) = ∅. By applying Lemma 3.6.9 twice, we extend

f ′ = (f ′1, f
′
2) to an NZW f = (f1, f2) of G such that supp(f1) = E(C1)∪E(C2). So σ(supp(f1)) =

σ(C1) · σ(C2) = 1 = ε, a contradiction. 2

Claim 3.6.6. G does not contain two disjoint unbalanced circuits.

Proof of Claim 3.6.6. Suppose to the contrary that C1 and C2 are two disjoint unbalanced

circuits of G. By Claim 3.6.5, V3(G) \ V (C1 ∪ C2) 6= ∅.
Let x ∈ V3(G)\V (C1∪C2). By Claim 3.6.2-(2a), for each Ci, G−V (Ci) does not contain an

unbalanced theta. Thus by Observation 3.6.1, there exists a 2-edge-cut of G separating x from

V (C1 ∪ C2). Let {e1, e2} be such a 2-edge-cut. Let

F = {e1} ∪ {e ∈ E(G) : {e, e1} is a 2-edge-cut of G}

and B be the set of all nontrivial components of G−F . Then every member of B is 2-connected.

Since dG(x) = 3, there is a B0 ∈ B containing x.

We claim that B has the following properties:

(a) Each B ∈ B contains a removable circuit. In particular, if B is balanced, then B contains

at least one 2-vertex.

(b) Each B ∈ B is either balanced or is an unbalanced circuit.

(c) |B| ≥ 3.

Let B ∈ B. Then |δG(V (B))| = 2 and U(B) = ∅. If B is balanced, then by (S3), B contains

at least two 2-vertices and thus contains a circuit containing at least two 2-vertices which is

removable. If B is unbalanced, then B contains an unbalanced circuit which is also removable.

This proves (a).

Since B0 doesn’t contain C1 or C2, |B| ≥ 2. By (a) each member B in B contains a removable

circuit. Thus by Claim 3.6.2-(2a), each member of B does not contain unbalanced theta and so

is an unbalanced circuit if it is unbalanced. This proves (b)

By (b), C1 and C2 belong to distinct members in B. Note that B0 doesn’t contain C1 or C2.

Thus |B| ≥ 3. This proves (c).

Since G is 2-connected, there is a circuit that contains all edges in F and goes through every

B ∈ B. We choose such a circuit C with the following properties:

(1) σ(C) = ε (the existence of C is guaranteed since C1 is unbalanced);
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(2) subject to (1), |V2(G) ∩ V (C − V (C1))| is as large as possible;

(3) subject to (1) and (2), |EN (G) ∩ E(C − V (C1))| is as small as possible.

We claim that C is removable.

Let B ∈ B \ {C1}. If B is balanced, then by (a), B contains a 2-vertex. Since B is 2-

connected, by (2), C contains at least one 2-vertex in B. If B is an unbalanced circuit of length

at least 3, then by (2), C contains one 2-vertex in B too. If B is an unbalanced circuit of

length 2, then by (3), C contains the positive edge in B and the negative edge in B belongs to

U(C). Therefore every B ∈ B \ {C1} contributes at least 1 to |U(C)| + |V2(G) ∩ V (C)|. Since

|B \ {C1}| ≥ 2, we have |U(C)|+ |V2(G) ∩ V (C)| ≥ 2. Hence C is a removable circuit.

Since each B ∈ B is either balanced or an unbalanced circuit, G − V (C) is balanced. This

contradicts Claim 3.6.2-(2b) since C is removable and since σ(C) = ε by (1). 2

Claim 3.6.7. G contains an unbalanced theta and ε = 1.

Proof of Claim 3.6.7. We first show that G contains an unbalanced theta.

Suppose that G does not contain unbalanced theta. If G is unbalanced, then it contains an

unbalanced circuit. If G is balanced, then |V2(G)| =
∑

x∈V (G)(3 − dG(x)) ≥ 4 − |δG(V (G))| −
|U(G)| = 4 by (S3). Since G is 2-connected by Claim 3.6.1, G has a circuit containing at least

two 2-vertices. Hence G has a removable circuit in either case. It contradicts Claim 3.6.2-(1).

Therefore G contains an unbalanced theta.

The existence of unbalanced thetas implies that ε ∈ {−1, 1}. Let C be an unbalanced

circuit. By Claim 3.6.6, G does not contain two disjoint unbalanced circuits, and thus G−V (C)

is balanced. By Claim 3.6.2-(2b), ε 6= σ(C) = −1, so ε = 1. 2

Claim 3.6.8. |EN (G)| ≥ 2.

Proof of Claim 3.6.8. By Claim 3.6.7, G is unbalanced. Suppose to the contrary that EN (G) =

{e0}. Let P be the maximal subdivided edge of G containing e0. Let y0, y1 be the two ends of

P . Then Int(P ) ⊆ V2(G) and y0, y1 ∈ V3(G). Let G′ = G − Int(P ) if Int(P ) 6= ∅; Otherwise,

let G′ = G− e0.

We claim that G′ is 2-connected. Suppose to the contrary that G′ is not 2-connected. Let B

be the maximal 2-connected subgraph of G′ containing y1. Since G = G′ ∪ P is 2-connected by

Claim 3.6.1, y0 6∈ V (B) and δG′(V (B)) 6= ∅. By the maximality of B, each edge in δG′(V (B)) is

a cut-edge of G′. Since G is 2-connected again, |δG′(V (B))| = 1 and thus |δG(V (B))| = 2 and

B is nontrivial since dG(y1) = 3. Similarly the maximal 2-connected subgraph of G′ containing

y0 is nontrivial and thus contains a circuit. Therefore B is balanced and G− V (B) is balanced

and contains circuits since EN (G) = {e0} ⊆ E(P ). By Claim 3.6.3, V (B) ⊆ V2(G), which

contradicts the fact y1 ∈ V3(G). This proves that G′ is 2-connected.

(i) G′ does not contain a circuit C such that {y0, y1} ∩ V (C) 6= ∅ and |V (C) ∩ V2(G)| ≥ 2.
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Proof of (i). Otherwise, C is a removable circuit such thatG−V (C) is balanced and σ(C) = 1 = ε

by Claim 3.6.7, a contradiction to Claim 3.6.2-(2b).

Since G′ is balanced and 2-connected, and is also a shrubbery by Proposition 3.6.1, |V2(G′)| =∑
x∈V (G′)(3 − dG′(x)) ≥ 4 by (S3) and thus at least two vertices in V2(G′), say y2 and y3, also

belong to V2(G). Note that {y2, y3} ∩ {y0, y1} = ∅. By (i), there is no circuit in G′ containing

{y1, y2, y3}. Thus by Theorem 3.6.6, there is a partition of V (G′) into I = {X1, X2, Y1, Y2, Y3}
such that yi ∈ Yi (i = 1, 2, 3), δG′(X1, X2) = δG′(Yi, Yj) = ∅ (1 ≤ i < j ≤ 3), and δG′(Xi, Yj) =

eij (i = 1, 2; j = 1, 2, 3). See Figure 3.2. For each Z ∈ I, G′[Z] is connected since G′ is

2-connected and |δG′(Z)| ≤ 3.

y1

y2

y3

e11

e12

e13

e21

e22

e23X1 X2

Y1

Y2

Y3

Figure 3.2: A partition of V (G′) into I = {X1, X2, Y1, Y2, Y3}.

Since G′ is 2-connected and |δG′(Yj)| = 2 for j ∈ {2, 3}, we have the following statement.

(ii) For any {i, j} = {2, 3}, there is a circuit Ci in G′ − Yj containing y1 and all the edges in

{e11, e1i, e2i, e21}. We choose Ci such that |V (Ci) ∩ V2(G)| is as large as possible. Then by (i),

|V (Ci) ∩ V2(G)| ≤ 1.

(iii) y0 6∈ Y2 ∪ Y3, Y2 = {y2}, and Y3 = {y3}.

Proof of (iii). Let j ∈ {2, 3}. We first show |Yj | = 1 if y0 /∈ Yj . WLOG suppose to the contrary

y0 6∈ Y3 and |Y3| ≥ 2. Since G = G′ ∪ P and y0 6∈ Y3, |δG(Y3)| = |δG′(Y3)| = 2. By (ii), C2 is a

circuit in G′ − Y3. Since G′[Z] is connected for each Z ∈ I, G′ − Y3 is connected. Thus there is

a (y0, C2)-path P ′ in G′ − Y3, so P ′ ∪ P ∪ C2 is an unbalanced theta in G − Y3. Since G[Y3] is

balanced and |δG(Y3)| = 2, by Claim 3.6.3, Y3 ⊆ V2(G) and G[Y3] is a path. Thus Y3 ⊂ V (C3)

and |V (C3) ∩ V2(G)| ≥ 2, a contradiction to (ii). This proves |Y3| = 1. Therefore |Yj | = 1 if

y0 /∈ Yj for each j ∈ {2, 3}.
Now we show y0 6∈ Y2 ∪Y3. Otherwise WLOG, assume y0 6∈ Y3 and y0 ∈ Y2. Then Y3 = {y3}

and y3 ∈ V2(G). By (S4), C3 is not a balanced 4-circuit, and thus there is a set Z ∈ {Y1, X1, X2}
such that |V (C3)∩Z| ≥ 2. Since |V (Z)∩{y0, y1}| ≤ 1, G[Z] is balanced. Obviously |δG(Z)| = 3.
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By Claim 3.6.4 and the maximality of |V (C3) ∩ V2(G)|, C3 contains a 2-vertex in Z. Together

with the 2-vertex y3, we have |V (C3)∩V2(G)| ≥ 2, a contradiction to (ii). This shows y0 6∈ Y2∪Y3

and thus |Y2| = |Y3| = 1.

(iv) |Xi| = 1 if y0 /∈ Xi for any i ∈ {1, 2} and thus y0 ∈ X1 ∪X2.

Proof of (iv). Suppose that for some i ∈ {1, 2}, y0 /∈ Xi and |Xi| ≥ 2. WLOG assume i = 1. Let

x1j be the end of e1j in X1 for j = 1, 2, 3. Since |X1| ≥ 2 and since ∆(G) = 3 and G is connected

by Claim 3.6.1, x11 6= x1j for some j ∈ {2, 3}. Note that x11, x1j ∈ V (Cj). Since |δG(X1)| = 3

and G[X1] is balanced, by Claim 3.6.4, there is an (x11, x1j)-path in X1 containing a 2-vertex.

So Cj contains a 2-vertex in X1 by the maximality of |V (Cj) ∩ V2(G)|. Since dG(yj) = 2 and

Cj contains yj , V (C3) contains at least two 2-vertices, a contradiction to (ii). This proves that

|Xi| = 1 if y0 /∈ Xi for any i ∈ {1, 2}.
If y0 6∈ X1 ∪X2, then |X1| = |X2| = 1. By (iii), G[Y2 ∪Y3 ∪X1 ∪X2] is a balanced 4-circuit,

a contradiction to (S4). Therefore y0 ∈ X1 ∪X2.

By (iv), WLOG assume y0 ∈ X1. Then by (iv) and (iii), |X2| = |Y2| = |Y3| = 1. Denote

X2 = {x2}.

(v) Y1 = {y1}.

Proof of (v). Suppose to the contrary that Y1 6= {y1}. Then |Y1| ≥ 2. Note that ∆(G′) ≤
∆(G) = 3. Since G′ is 2-connected and δG′(Y1) = {e11, e21}, the ends of e11 and e21 in Y1

are different. Let C4 be a circuit in G′ containing all the edges in {e11, e12, e22, e21} such that

|V (C4) ∩ V2(G)| is as large as possible. Since G[Y1] is balanced and |δG(Y1)| = 3, with a similar

argument in (iv), C4 contains a 2-vertex in Y1 and also contains the 2-vertex y2. Thus C4

contains at least two 2-vertices and hence is removable. Since δG(Y1) ∩ E(C4) = {e11, e21} and

|δG(Y1)| = 3, G− V (C4) is balanced. Since C4 does not contain e0, the only negative edge, C4

is balanced, meaning σ(C4) = 1 = ε, a contradiction to Claim 3.6.2-(2b). This completes the

proof of (v).

Let x11, x12 and x13 be the ends of e11, e12 and e13 inX1, respectively. By (S4), G[{x12, x13, x2, y2, y3}]
is not a 4-circuit, so x12 6= x13. Together with (iii), (iv), and (v), the structure of G′ is shown

in Figure 3.3.

Now we can complete the proof of Claim 3.6.8.

Recall that G′[X1] is connected. If there is an (x12, x13)-path P in G′[X1] containing y0, then

C5 = P ∪{e12, e22, e23, e13} is a circuit containing y0 and two 2-vertices y2, y3, a contradiction to

(i). Hence by Menger’s Theorem, G′[X1] = G[X1] has a cut-edge separating y0 from {x12, x13}.
Let B1 be the maximal 2-connected subgraphs in G[X1] containing y0. Then every edge

in δG[X1](V (B1)) is a cut-edge of G[X1] by the maximality of B1. Since G[X1] has a cut-

edge separating y0 from {x12, x13}, x12 and x13 are in the same component, denoted by B2,
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Figure 3.3: G′ = G− Int(P )− E(P ).

of G[X1] − V (B1). Since G′ is 2-connected and δG′(X1) = {e11, e12, e13}, x11 6∈ V (B2). Let

δG[X1](V (B2)) = {e′} and z be the end of e′ in B2. Then there exists an (x11, z)-path P ′ in

G′[X1] containing y0.

Recall that x12 6= x13. WLOG assume z 6= x13. Since δG(V (B2)) = {e12, e13, e
′} and B2 is

balanced and has at least two vertices, by Claim 3.6.4, B2 has a (z, x13)-path P ′′ containing at

least one vertex in V2(G). Then C6 = P ′ ∪P ′′ ∪x13y3x2y1x11 is a circuit containing at least two

2-vertices and y0, a contradiction to (i). This completes the proof of Claim 3.6.8. 2

By Claim 3.6.8, ε(G) = |EN (G)| ≥ 2. Denote ε(G) = k. By Claims 3.6.1 and 3.6.6 and

Theorem 3.6.7, we can choose a minimum subset S ⊆ E(G) \ EN (G) such that H = G/S

satisfies the following properties:

(i) ∆(H) ≤ 3;

(ii) H−EN (H)−∪e∈EN (H)Int(Pe) is a 2-connected planar graph with a facial circuit C, where

Pe is the maximal subdivided edge in H containing e;

(iii) x1, . . . , xk, xk+1, . . . , x2k are pairwise distinct and lie in that cyclic order on C, where

EN (H) = EN (G) = {e1, . . . , ek} and xi, xk+i are the two ends of Pei for each i ∈ [1, k].

For each v ∈ V (H), let Gv denote the corresponding component of G − E(H). Note that

∆(Gv) ≤ ∆(G) = 3. By the minimality of S, Gv is 2-connected. Otherwise we choose S \ Sv to

replace S, where Sv is the set of cut-edges of Gv. Moreover, S = ∪v∈V (H)E(Gv) and E(G) =

E(H) ∪ S.

Claim 3.6.9. k = 2 and |Int(Pe1)|+ |Int(Pe2)| = 1.

Proof of Claim 3.6.9. Since k ≥ 2, it is easy to see H − {x} contains an unbalanced theta for

any vertex x with dH(x) = 2. Thus by Claim 3.6.3 and by the minimality of S, we have that if

dH(x) = 2 then Gx = {x}.
We construct a circuit CH in the following cases. If there are distinct i, j ∈ [1, k] such that

|Int(Pei)| = |Int(Pej )| = 0, let CH = C; If |Int(Pei)| + |Int(Pei+1)| ≥ 2 for some i ∈ [1, k], let
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CH = C − E(xiCxi+1) − E(xi+kCxi+k+1) + Pei + Pei+1 . Note that Gv is 2-connected for any

v ∈ V (H), ∆(H) ≤ 3 and ∆(G) = 3. Then CH can be extended to a removable circuit CG of G

such that σ(CG) = 1 = ε and G− V (CG) is also balanced, a contradiction to Claim 3.6.2-(2b).

This completes the proof of the claim. 2

WLOG assume that Int(Pe1) = ∅ and Int(Pe2) = {y} by Claim 3.6.9. Then Pe1 = x1x3

and Pe2 = x2yx4. Denote Ai = xiCxi+1 (mod 4) for i ∈ [1, 4], C1 = Pe1 ∪ A1 ∪ Pe2 ∪ A3, and

C2 = Pe1 ∪A4 ∪ Pe2 ∪A2. Note that both C1 and C2 contain the 2-vertex y. See Figure 3.4.

x1

x2

x3

x4

Pe1

Pe2

y

A1

C1

C2

A2

A3

A4

Figure 3.4: C1 and C2 in C ∪ Pe1 ∪ Pe2 .

Claim 3.6.10. H = G and V2(G) = {y}.

Proof of Claim 3.6.10. As noted in the proof of Claim 3.6.9, for each x with dH(x) = 2,

Gx = {x}. In particular, Gy = {y}.
Note that Gx is balanced and |δG(Gx)| ≤ 3 for every x ∈ V (H). Thus by Claim 3.6.4, we

have the following fact:

(a) If Gx is nontrivial, then for each two distinct ends u, v in V (Gx) of δG(Gx), there is an

(u, v)-path in Gx containing at least one vertex in V2.

Let x ∈ V (C). WLOG assume x ∈ V (C1). Note that if dH(x) = 2, then dG(x) = 2. Thus, if

dH(x) = 2 or if Gx is nontrivial, C1 can be extended to a circuit C ′1 of G such that C ′1 contains

the 2-vertex y and one 2-vertex in Gx (the latter case follows from (a)). Hence C ′1 is removable,

σ(C ′1) = 1 = ε, and G − V (C ′1) is balanced, a contradiction to Claim 3.6.2-(2b). Therefore

dH(x) = 3 and Gx = {x} for each x ∈ V (C).

Next we show that y is the only 2-vertex in G. Suppose to the contrary that u is a 2-

vertex in G. Then u 6∈ V (C). Since G is 2-connected, there are two internally disjoint (u,C)-

paths Q1 and Q2 in G with v1 and v2 the end vertices in C respectively. Since ∆(G) = 3,

v1 6= v2. Let C3 = Q1 ∪ Q2 ∪ v1Cv2 and C4 ∈ {C1, C2} such that V (C4) ∩ {v1, v2} 6= ∅. Then
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C ′ = C3∆C4 is a circuit containing two 2-vertices {y, u} and the two negative edges. Thus C ′

is removable, σ(C ′1) = 1 = ε, and G − V (C ′) is balanced, which contradicts Claim 3.6.2-(2b).

Thus V2(G) = {y}.
Since V2(G) = {y}, Gx is trivial by (a). Therefore H = G. 2

Claim 3.6.11. Int(Ai) 6= ∅ for each i ∈ [1, 4].

Proof of Claim 3.6.11. Suppose to the contrary that Int(Ai) 6= ∅ for some i ∈ [1, 4]. WLOG

assume Int(A1) = ∅. Then A1 is a chord in U(C2). Since C2 contains the 2-vertex y, C2 is

removable, which contradicts Claim 3.6.2-(2b) since σ(C2) = 1 = ε and G− V (C2) is balanced.

2

The final step.

By Claim 3.6.11, let y1 ∈ Int(A1) be the neighbor of x1. Let Q be the component of

G−E(C) containing y1. Since dG(y1) = 3 by Claim 3.6.10, Q is nontrivial. Obviously, V (Q) ∩
{x1, x2, x3, x4} = ∅ since ∆(G) = 3.

If there is a vertex y2 in V (Q) ∩ (Int(A2) ∪ Int(A3)), let P be a (y1, y2)-path in Q. Since

∆(G) ≤ 3, C3 = P ∪ y1Cy2 is a circuit containing x2. Then C ′ = C2 4 C3 is a circuit of G

containing y and the chord x1y1 ∈ U(C ′). Thus C ′ is a removable circuit of G, a contradiction

to Claim 3.6.2-(2b) since G− V (C ′) is balanced.

If V (Q) ∩ (Int(A2) ∪ Int(A3)) = ∅, then V (Q) ∩ V (C) ⊆ Int(A4) ∪ Int(A1). Note that

|V (Q) ∩ V (C)| ≥ 2 since G is 2-connected. Let y2, y3 ∈ V (Q) ∩ V (C) be two ends of a segment

P ′ of A4∪A1 such that the length of P ′ is as large as possible. By Claim 3.6.10, G′ = G−x1x3−y
is a 2-connected planar graph with a facial circuit C, and so T ′ = δG′(V (P ′)) ∩ E(C) is a 2-

edge-cut of G′. Let T = T ′ if y2, y3 ∈ Int(A1), and otherwise T = T ′ ∪ {x1x3}. Then T is

an edge-cut of G with |T | ≤ 3 and the component, denoted by R, of G − T containing y2 is

balanced and doesn’t contain y. Since |δG(V (R))| = |T | ≤ 3, by (S3),
∑

v∈V (R)(3 − dG(v)) ≥
4 − |δG(V (R))| − 2|U(R)| ≥ 1, and so this component R contains a 2-vertex (distinct from y),

which contradicts V2(G) = {y} by Claim 3.6.10. This completes the proof of Lemma 3.6.10.

3.6.3 Completing the proof of Theorem 3.1.3

Finally we are to complete the proof of Theorem 3.1.3 in this subsection.

By Lemma 3.6.5, it suffices to show that every cubic shrubbery G admits a balanced Z2×Z3-

NZF. If G is balanced, then such a flow exists by Theorem 3.6.1.

Assume that G is unbalanced. We claim that G contains either an unbalanced theta or a

negative loop.

If G is 2-connected, then for any unbalanced circuit C, we can easily find a path in G−E(C)

to connect two distinct vertices of V (C), and thus G has an unbalanced theta.
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If G is not 2-connected, then it has an cut-edge since G is cubic. Let B be a leaf block of G.

If B is trivial, then B is a negative loop. If B is nontrivial, then B is unbalanced by Proposition

3.2.1 since G is flow-admissible by (S2). Since B is 2-connected and all vertex except one has

degree 3, similar to the argument in the case when G is 2-connected, one can find an unbalanced

theta in B, which is also an unbalanced theta in G.

By the claim, we apply Lemma 3.6.10 on cubic shrubbery G with ε = 1 to obtain an NZF

f = (f1, f2) with σ(supp(f1)) = ε = 1. By Definition 3.6.1 this is a balanced Z2 × Z3-NZF as

desired. This completes the proof of Theorem 3.1.3.
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