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The world of hereditary graph classes viewed through

Truemper configurations

Kristina Vušković

Abstract

In 1982 Truemper gave a theorem that characterizes graphs whose edges
can be labeled so that all chordless cycles have prescribed parities. The char-
acterization states that this can be done for a graph G if and only if it can be
done for all induced subgraphs of G that are of few specific types, that we will
call Truemper configurations. Truemper was originally motivated by the prob-
lem of obtaining a co-NP characterization of bipartite graphs that are signable
to be balanced (i.e. bipartite graphs whose node-node incidence matrices are
balanceable matrices).

The configurations that Truemper identified in his theorem ended up playing
a key role in understanding the structure of several seemingly diverse classes of
objects, such as regular matroids, balanceable matrices and perfect graphs. In
this survey we view all these classes, and more, through the excluded Truemper
configurations, focusing on the algorithmic consequences, trying to understand
what structurally enables efficient recognition and optimization algorithms.

1 Introduction

Optimization problems such as coloring a graph, or finding the size of a largest
clique or stable set are NP-hard in general, but become polynomially solvable when
some configurations are excluded. On the other hand they remain difficult even
when seemingly quite a lot of structure is imposed on an input graph. For example,
determining whether a graph is 3-colorable remains NP-complete for triangle-free
graphs with maximum degree 4 [92]. The approximation approach to these prob-
lems does not help either, since for example unless P=NP, there does not exist a
polynomial time algorithm that can find a 2χ(G)-coloring of a graph G [73]. So if C
is a class of graphs for which there exist polynomial time algorithms that find the
chromatic number, C must have some “strong structure”. Understanding structural
reasons that enable efficient algorithms is our primary interest in this survey.

In 1982 Truemper [121] gave a theorem (Theorem 2.1) that characterizes graphs
whose edges can be labeled so that all chordless cycles have prescribed parities.
The characterization states that this can be done for a graph G if an only if it
can be done for all induced subgraphs of G that are of few specific types (depicted
in Figure 1), that we will call Truemper configurations, and will describe precisely
in Section 2. Truemper was originally motivated by the problem of obtaining a
co-NP characterization of bipartite graphs that are signable to be balanced (i.e.
bipartite graphs whose node-node incidence matrices are balanceable matrices, a
class of matrices that have important polyhedral properties).

The configurations that Truemper identified in his theorem ended up playing a
key role in understanding the structure of several seemingly diverse classes of objects,
such as regular matroids, balanceable matrices and perfect graphs. A powerful
technique called the decomposition method, which we describe in Section 3, was
used in structural analysis of all these classes. In these decomposition theorems
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The world of hereditary graph classes 2

Truemper configurations appear both as excluded structures that are convenient to
work with, and as structures around which the actual decomposition takes place.

In this survey, in trying to understand what structurally enables efficient recog-
nition and optimization algorithms, we will view different classes of objects and their
associated decomposition theorems, through excluded Truemper configurations. We
survey the above mentioned classes, as well as other classes closed under taking graph
minors (such as cycle-free graphs, outerplanar graphs, series-parallel graphs, etc.)
and those closed under taking induced subgraphs (such as hole-free graphs, claw-free
graphs, bull-free graphs, even-hole-free graphs, odd-hole-free graphs, graphs that do
not contain cycles with a unique chord, ISK4-free graphs, etc.).

Most generally all of the above mentioned classes of objects can be viewed as
hereditary graph classes, i.e. classes of graphs closed under taking induced sub-
graphs. We say that a graph G contains a graph F , if F is isomorphic to an induced
subgraph of G, and it is F -free if it does not contain F . For a family of graphs F we
say that G is F-free if G is F -free for every F ∈ F . So for every hereditary graph
class C there is a family F of graphs such that C is precisely the set of graphs that
are F-free.

Throughout the paper all graphs are finite and simple. A hole in a graph is an
induced cycle of length at least 4, and it is even or odd depending on the parity of
its length. A clique is a graph in which every pair of nodes are adjacent. A stable set
(or independent set) S in a graph G is a subset of the vertex set of G such that no
pair of vertices of S are adjacent. For S ⊆ V (G), G[S] denotes the subgraph of G
induced by S, N(S) denotes the set of nodes in V (G) \S with at least one neighbor
in S, and N [S] = N(S) ∪ S.

The remainder of this survey is organised in the following sections.

2: Truemper’s Theorem

2.1: Recognizing Truemper configurations

3: The decomposition method

3.1: Triangulated graphs

3.2: Common cutsets

4: Regular and balanced matrices

4.1: Decomposition of regular matroids

4.2: Decomposition of balanced matrices

5: Classes closed under minor taking

6: (3PC(·, ·), 3PC(∆, ·), 3PC(∆,∆),wheel)-free graphs

7: (3PC(∆, ·), 3PC(∆,∆),wheel)-free graphs

7.1: (ISK4, wheel)-free graphs

7.2: Unichord-free graphs
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7.3: Propeller-free graphs

8: (3PC(∆, ·), proper wheel)-free graphs

8.1: Cap-free graphs

8.2: Claw-free graphs

8.3: Bull-free graphs

9: Excluding some wheels and some 3-path-configurations

9.1: Even-hole-free graphs

9.2: Perfect graphs and odd-hole-free graphs

10: Combinatorial optimization with 1-joins and 2-joins

10.1: 1-Joins

10.2: 2-Joins

2 Truemper’s Theorem

Theorem 2.1 (Truemper [121]) Let β be a {0, 1} vector whose entries are in
one-to-one correspondence with the chordless cycles of a graph G. Then there exists
a subset F of the edge set of G such that |F ∩ C| ≡ βC (mod 2) for all chordless
cycles C of G, if and only if for every induced subgraph G′ of G that is a Truemper
configuration or K4 (see Figure 1), there exists a subset F ′ of the edge set of G′ such
that |F ′ ∩ C| ≡ βC (mod 2), for all chordless cycles C of G′.

3PC(·, ·) 3PC(∆, ·) 3PC(∆,∆) wheel K4

Figure 1: Truemper configurations and K4

Truemper configurations are depicted in Figure 1, where a solid line denotes an
edge and a dashed line denotes a chordless path containing one or more edges. We
now define these configurations.

The first three configurations in Figure 1 are referred to as 3-path configu-
rations (3PC’s). They are structures induced by three paths P1, P2 and P3, in
such a way that the nodes of Pi ∪ Pj , i 6= j, induce a hole. More specifically,
a 3PC(x, y) is a structure induced by three paths that connect two nonadjacent
nodes x and y; a 3PC(x1x2x3, y), where x1x2x3 is a triangle, is a structure induced
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by three paths having endnodes x1, x2 and x3 respectively and a common endnode
y; a 3PC(x1x2x3, y1y2y3), where x1x2x3 and y1y2y3 are two node-disjoint trian-
gles, is a structure induced by three paths P1, P2 and P3 such that, for i = 1, 2, 3,
path Pi has endnodes xi and yi. We say that a graph G contains a 3PC(·, ·)
if it contains a 3PC(x, y) for some x, y ∈ V (G), a 3PC(∆, ·) if it contains a
3PC(x1x2x3, y) for some x1, x2, x3, y ∈ V (G), and it contains a 3PC(∆,∆) if it
contains a 3PC(x1x2x3, y1y2y3) for some x1, x2, x3, y1, y2, y3 ∈ V (G). Note that the
condition that nodes of Pi ∪ Pj , i 6= j, must induce a hole, implies that all paths
of a 3PC(·, ·) have length greater than one, and at most one path of a 3PC(∆, ·)
has length one. In literature 3PC(·, ·) is also referred to as theta [23], 3PC(∆, ·) as
pyramid [22], and 3PC(∆,∆) as prism [23].

A wheel (H,x) consist of a hole H, called the rim, and a node x, called the center,
that has at least three neighbors on H. Finally, a K4 is a clique on four vertices. We
note that in [121] K4’s are also referred to as wheels, but in this paper we choose to
separate these two structures. In this survey we will refer to 3-path-configurations
and wheels as Truemper configurations.

Truemper’s interest in this theorem at the time was to obtain a co-NP charac-
terization of balanceable matrices, that are a generalization of regular matrices. An
alternative simple proof of Theorem 2.1 is given by Conforti, Gerards and Kapoor
in [52], where they also give some of its consequences, such as an easy way to obtain
Tutte’s characterization of regular matrices.

2.1 Recognizing Truemper configurations

A natural question to ask is whether Truemper configurations can be recognized
in polynomial time. These questions in fact arose when people were studying how
to construct polynomial time recognition algorithms for even-hole-free graphs and
perfect graphs. Observe that if a graph contains a 3PC(∆,∆) or a 3PC(·, ·) then
it must contain an even hole, and if it contains a 3PC(∆·) then it must contain an
odd hole. Even-hole-free graphs and perfect graphs are further discussed in Section
9. We now briefly describe different general techniques that were developed when
trying to recognize whether a graph contains a particular Truemper configuration.

In [22] it is shown that detecting whether a graph contains a 3PC(∆, ·) can be
done in O(n9) time. This algorithm is based on the shortest-paths detector technique
developed by Chudnovsky and Seymour. The idea of their algorithm is as follows. If
G has a 3PC(∆, ·), then it has a Σ = 3PC(∆, ·) with fewest number of nodes. The
algorithm “guesses” some vertices of Σ, and then finds shortest paths in G between
the guessed vertices that are joined by a path in Σ. If the graph induced by the
union of these paths is a 3PC(∆, ·), then clearly G contains a 3PC(∆, ·). If it is
not, then it turns out that G is 3PC(∆, ·)-free.

Chudnovsky and Seymour [29] show that detecting whether a graph contains a
3PC(·, ·) can be done in O(n11) time. For this detection problem, the shortest-paths
detector technique does not work. The detection of 3PC(·, ·)’s relies on being able
to solve a more general problem called the three-in-a-tree problem defined as follows:
given a graph G and three specified vertices a, b and c, the question is whether G

contains a tree that passes through a, b and c. It is shown in [29] that this problem
can be solved in O(n4) time. What is interesting is that the algorithm for the three-



The world of hereditary graph classes 5

in-a-tree problem is based on an explicit construction of the cases when the desired
tree does not exist, and that this construction can be directly converted into the
algorithm. As we shall see in this survey, this direct connection between structure
and algorithm does not occur so frequently for graph classes closed under taking
induced subgraphs. The three-in-a-tree algorithm is quite general, and can be used
to solve different detection problems, including the detection of a 3PC(·, ·), and a
3PC(∆, ·) (this time in O(n10) time).

It turns out that detecting whether a graph contains a 3PC(∆,∆) is NP-
complete, as shown by Maffray and Trotignon [94]. Detecting whether a graph
contains a wheel remains an open problem.

A number of related detection problems will be looked at throughout this sur-
vey. The reader is also referred to [86] for more on detection of induced subgraphs
problems.

3 The decomposition method

In the past few decades a number of important results were obtained through
the use of decomposition theory, such as a polynomial time recognition algorithm for
regular matroids [115] and the proof of the Strong Perfect Graph Conjecture (SPGC)
[26] (discussed further in Sections 4 and 9). The power of decomposition is that it
allows us to understand complex structures by breaking them down into simpler
ones. Once these simpler structures are understood, this knowledge is propagated
back to the original structure by understanding how their composition behaves.
Decomposition is a general concept that applies to different classes of objects. Here
we start by introducing the method in the context of graphs.

In a connected graph G, a subset S of nodes and/or edges is a cutset if its removal
disconnects G. If S consists only of nodes then it is referred to as a node cutset, and
if it consists only of edges then it is referred to as an edge cutset. A decomposition
theorem for a class of graphs C is of the following form.

Decomposition Theorem: If G belongs to C then G is either “basic” or G has a
cutset S for S ∈ S.

Depending on what one wants to prove about the class of graphs C using the
Decomposition Theorem, “basic” graphs and cutsets in S have to have adequate
properties. For example, the SPGC was proved using the decomposition theorem
for Berge graphs [26], by ensuring that “basic” graphs were simple in the sense that
the SPGC could be easily proved for them directly, and the cutsets in S had the
property that no minimal imperfect graph could contain them (or if it did it would
have to be an odd hole or an odd antihole).

To use a decomposition theorem to recognize a class of graphs C, “basic” graphs
need to be simple in the sense that they can be easily recognized, and the cutsets
S ∈ S need to have the following property. The removal of a cutset S from a graph
G disconnects G into two or more connected components. From these components
blocks of decomposition are constructed by adding some more nodes and edges. A
decomposition is C-preserving if it satisfies the following: G belongs to C if and only
if all the blocks of decomposition belong to C. A recognition algorithm takes a graph
G as input and decomposes it using C-preserving decompositions into undecompos-
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able blocks, which are then checked whether they belong to C (which according to
the decomposition theorem reduces to checking whether they are basic). The de-
composition can be represented with a decomposition tree T , whose root is the input
graph, and for every non-leaf node H of T , its children in T are the blocks of de-
composition of H. In order for such an algorithm to have polynomial complexity we
need to ensure that T can be constructed in polynomial time (which in particular
means that we can find the cutsets in polynomial time and that we can ensure that
the decomposition tree is polynomial in size) and that checking whether a graph is
basic can be done in polynomial time.

This is an ideal scenario, which works, for example, for obtaining a recognition
algorithm for regular matroids [115]. On the other hand, it does not work, for exam-
ple, for obtaining a recognition algorithm for perfect graphs. The problem is that for
the cutsets from the decomposition theorem in [26], one does not know how to con-
struct the blocks of decomposition that would, at the same time, be class-preserving
as well as guarantee polynomiality of the decomposition tree. This problem was
first encountered when trying to construct a polynomial time recognition algorithm
for balanced matrices. At that time a technique called “cleaning” (i.e. preprocess-
ing the input graph, so that later when the decomposition is applied it would be
class-preserving) was developed by Conforti and Rao [54] that enabled them to rec-
ognize, in polynomial time, linear balanced matrices. This technique was further
developed and used in obtaining decomposition based polynomial time recognition
algorithms for balanced matrices [47], balanced 0,±1 matrices [44], even-hole-free
graphs [46, 62], and it was the key to obtaining a recognition algorithm for perfect
(in fact Berge) graphs [22].

Decomposition can also be used to construct optimization algorithms. The gen-
eral paradigm would be as follows: given a decomposition tree T for a graph G

obtained by using S-decompositions, for S ∈ S (referring to the general decompo-
sition theorem stated above), with the property that for every leaf L of T one can
solve an optimization problem (such as coloring or finding the size of the largest
clique or a stable set), can we construct an algorithm to solve the problem on G?
This general paradigm sometimes works nicely, but most of the time it is difficult
to apply to classes whose decomposition theorems use “powerful cutsets”.

We next illustrate the ideal scenarios, discussed above, for using a decomposition
theorem for constructing a recognition algorithm as well as for obtaining combina-
torial optimization algorithms, on the class of triangulated graphs. We close this
section by introducing some cutsets that commonly appear in the decomposition
theorems we will discuss in this survey.

3.1 Triangulated graphs

A graph is triangulated (or chordal or hole-free) if it does not contain a hole.
On this class we will illustrate different techniques for obtaining recognition and
combinatorial optimization algorithms. Although, as we shall see, there are more
efficient methods for obtaining algorithms for triangulated graphs, we will start
by describing the use of the general decomposition method, because it is ideally
illustrated on this class and it generalizes to other more complex classes of objects.
First, it is simple to obtain the following decomposition theorem for triangulated
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graphs. A node set S ⊆ V (G) is a clique cutset of G, if S is a node cutset of G and
it induces a clique in G.

Theorem 3.1 (Dirac [65]) If G is a connected triangulated graph, then G is either
a clique or G has a clique cutset.

Proof Suppose that G is not a clique. Then G clearly has a node cutset. Let S

be a minimal node cutset of G, and let C1 and C2 be two connected components of
G \ S. Suppose S is not a clique and let u and v be two non-adjacent vertices of S.
Since S is minimal, both u and v have a neighbor in both C1 and C2. Hence, for
i = 1, 2, there exists a chordless path Pi from u to v whose interior vertices belong
to Ci. But then P1 ∪ P2 induces a hole, a contradiction. �

Let S be a clique cutset of a graph G, and let C1, . . . , Ck be the connected
components of G \ S. We define the blocks of decomposition by a clique cutset S to
be graphs Gi = G[Ci ∪ S], for i = 1, . . . , k. It is now easy to see that this definition
of blocks is class-preserving for the class of triangulated graphs.

Theorem 3.2 G is triangulated if and only if all the blocks of decomposition by a
clique cutset are triangulated.

Proof Since the blocks of decomposition are all induced subgraphs of G, if G is
triangulated then so are all the blocks. Now suppose that all the blocks G1, . . . , Gk

are triangulated, but that G contains a hole H. Since H cannot be contained in any
of the blocks, it must contain nodes of at least two connected components C1, . . . , Ck.
Consequently H contains at least two nodes of S that are not consecutive on H,
which contradicts the assumption that S is a clique. �

Theorems 3.1 and 3.2 actually give us a complete structure theorem for the class
of triangulated graphs, i.e. they show how (connected) triangulated graphs can be
built starting from cliques, gluing them together through cliques (clique composi-
tion), and all graphs built this way are triangulated. Such structure theorems are
stronger than the usual decomposition theorems, and are quite rare for classes of
graphs closed under taking induced subgraphs.

We now turn to using a decomposition theorem to construct algorithms. We
construct a decomposition tree T using clique cutsets as follows: the root of T is our
input graph G; for every internal node G′ of T , the children of G′ are the blocks of
decomposition of G′ by some clique cutset; and the leaves of T are graphs that have
no clique cutset. An O(nm) algorithm is given in [126] for finding a clique cutset
in a graph, and a simple counting argument shows that the number of nodes in T

is bounded by O(n2), giving an O(n3m) algorithm for constructing T . As we shall
see one can actually do better than that.

First observe that, by Theorem 3.1 and Theorem 3.2, the input graph G is
triangulated if and only if all the leaves of T are cliques. One can now recognize
triangulated graphs (in the same time it takes to construct T ) as follows: construct
a decomposition tree T using clique cutsets, check whether all the leaves of T are
cliques, if yes then G is triangulated, and otherwise it is not.
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Clique cutsets have another interesting property, that is quite useful for con-
structing algorithms. We say that S is an extreme clique cutset if for some i, the
block of decomposition Gi = G[Ci ∪ S] has no clique cutset. We say that Gi is an
extreme block. It turns out that every graph that has a clique cutset has an extreme
clique cutset. This is a very useful property, that not many types of cutsets have.

Lemma 3.3 If a graph G has a clique cutset, then it has an extreme clique cutset.

Proof Let S be a clique cutset of G such that out of all clique cutsets of G a
connected component C of G \ S is smallest possible. Suppose that G′ = G[C ∪ S]
has a clique cutset S′. Since S is a clique, there is a connected component C ′ of
G′\S′ such that C ′∩S = ∅. Clearly, S′∩C 6= ∅, and hence C ′ is a proper subset of C.
In particular |C ′| < |C|. Also C ′ is a connected component of G \ S′, contradicting
our choice of S and C. So G′ has no clique cutset, and hence S is an extreme clique
cutset of G. �

We will now use extreme clique cutsets to decompose. Suppose that S is an
extreme clique cutset with Gi being an extreme block. This time we will construct
only two blocks of decomposition: GB = Gi = G[Ci ∪ S] and GA = G \Ci. We now
construct an extreme decomposition tree T using clique cutsets as follows: the root
of T is our input graph G; for every internal node G′ of T , the children of G′ are
the blocks of decomposition G′

A and G′
B of G′ by some extreme clique cutset; and

the leaves of T are graphs that have no clique cutset. Note that every G′
B is a leaf,

so T is a binary tree in which every internal node has a child that is a leaf.
It turns out that such an extreme decomposition tree using clique cutsets can

be built in O(nm) time [117]. This relies on being able to find a particular ordering
of vertices, called a minimal elimination ordering, in O(nm) time, which is done in
[112] using lexicographic breadth-first search (Lex-BFS).

For a graph G, let T be an associated extreme decomposition tree using clique
cutsets, and let L1, . . . , Lt be the leaves of T . We now consider how T can be
used to construct combinatorial optimization algorithms for maximum weight clique,
vertex coloring and maximum weight independent set problems, assuming that these
problems can be efficiently solved on the leaves of T (see [117]). For any graph G,
let ω(G) denote the weight of a maximum weighted clique of G, χ(G) the chromatic
number of G, and α(G) the weight of a maximum weighted stable set of G.

Since any clique of G is contained in one of the blocks of decomposition by a
clique cutset, it follows that ω(G) = max{ω(L1), . . . , ω(Lt)}. And hence the problem
of finding a maximum weight clique reduces to doing it on the leaves. Similarly, the
coloring problem reduces to coloring the leaves, since any k-colorings of the blocks
of decomposition by a clique cutset S can be combined into a k-coloring of the
graph by renaming the colors in the blocks so that they agree on S. In particular
χ(G) = max{χ(L1), . . . , χ(Lt)}. For both of these problems it is not essential that
T is an extreme decomposition tree, but it gives a better time bounds if it is.

For solving the maximum weight independent set problem in polynomial time
(assuming this is possible to do on the leaves of T ) it actually does matter that T is an
extreme decomposition tree. Let H be an interior node of T and let HA and HB be
its children (where HB is a leaf of T ), obtained by decomposing H with clique cutset
S. Let w be the weight function defined on the nodes of H. For every u ∈ S redefine
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the weight of u in HA to be w(u)+α(H[V (HB) \NHB
(u)])−α(HB \S). Let H ′

A be
the resulting weighted graph. Then it is easy to see that α(H) = α(H ′

A)+α(HB \S).
So the independent set problem for H reduces to recursively solving the independent
set problem on block H ′

A (with newly defined weights). Note that computing the
weights for H ′

A and computing α(HB \S) amounts to solving |S|+1 independent set
problems on HB. Since HB is a leaf this is not a problem since it requires no further
recursion, but if we were not using an extreme decomposition tree this method could
lead to an exponential explosion.

Note that if the input graph G is triangulated, then all the leaves of T are cliques,
and hence all of the above mentioned problems can be solved on G in the same time
it takes to construct T .

Triangulated graphs are in fact characterized by having very special types of
minimal elimination orderings that can be found more efficiently. A perfect elimi-
nation ordering is an ordering of vertices v1, . . . , vn such that vi is simplicial (where
a vertex is simplicial if its neighborhood induces a clique) in G[vi, . . . , vn].

Theorem 3.4 (Dirac [65]) G is triangulated if and only if G has a perfect elimi-
nation ordering.

Proof Suppose G has a perfect elimination ordering v1, . . . , vn, but is not triangu-
lated. Let H be a hole of G, and let vi be a smallest indexed vertex of H. Then
clearly vi has two nonadjacent neighbors in G[vi, . . . , vn], a contradiction. To prove
the converse, assume G is triangulated. If G is a clique then any ordering of ver-
tices is a perfect elimination ordering. Otherwise by Theorem 3.1, G has a clique
cutset, and by Lemma 3.3 it has an extreme clique cutset S. So for some connected
component C of G \ S, G′ = G[C ∪ S] has no clique cutset. By Theorem 3.1, G′ is
a clique, and hence any vertex u ∈ C is simplicial in G′ and hence in G as well. Let
u = v1 and inductively construct the remainder of a perfect elimination ordering.
�

Note that if v1, . . . , vn is a perfect elimination ordering of G and G is not a clique,
then N(v1) is an extreme clique cutset of G separating a single vertex v1 from the
rest of the graph.

In [112] it is shown that a perfect elimination ordering of a triangulated graph
can be found in linear time using Lex-BFS, and more generally, by using Lex-BFS to
construct this particular ordering and checking that in fact the ordering constructed
is a perfect elimination ordering one gets a linear time recognition algorithm for
triangulated graphs. It follows that all of the above mentioned optimization prob-
lems can be solved in linear time for triangulated graphs. Note that triangulated
graphs can also be optimally colored, in linear time, by applying a greedy coloring
algorithm to the vertices in the reverse of a perfect elimination ordering.

3.2 Common cutsets

Here we introduce some cutsets that commonly appear in decompositions of
graph classes closed under taking induced subgraphs.

We start by introducing several edge cutsets. First observe that a disconnected
graph can be defined as a graph that has a partition (X1, X2) of its vertex set
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satisfying: there are no edges between X1 and X2; and for i = 1, 2, |Xi| ≥ 1.
This concept can be generalized by controlling the kinds of edges that go across the
partition.

A partition (X1, X2) of the vertex set of a graph G is a general join if, for
i = 1, 2, there exist disjoint Ai, Bi, Ci ⊆ Xi satisfying the following: every vertex of
A1 is adjacent to every vertex of A2, every vertex of B1 is adjacent to every vertex
of B2, every vertex of C1 is adjacent to every vertex of A2 ∪ B2, every vertex of
C2 is adjacent to every vertex of A1 ∪ B1, and there are no other edges between
X1 and X2. Sets X1 and X2 are the two sides of the general join. We say that
(X1, X2, A1, B1, C1, A2, B2, C2) is a split of a general join (X1, X2). For i = 1, 2 sets
Ai, Bi, Ci are called the special sets of general join (X1, X2).

A general k-join, for k = 0, 1, is a general join with split (X1, X2, A1, B1, C1, A2,

B2, C2) such that for i = 1, 2 exactly k of the sets Ai, Bi, Ci are nonempty, there are
at least k edges going from X1 to X2, and |Xi| ≥ k+1. A general 2-join is a general
join with split (X1, X2, A1, B1, C1, A2, B2, C2) such that for i = 1, 2 at least 2 of
the sets Ai, Bi, Ci are nonempty, and |Xi| is greater than the number of nonempty
sets among Ai, Bi, Ci. A general 2-join was first introduced in [41]. General joins
generalize some of the previously introduced edge cutesets.

A general 0-join corresponds to a disconnected graph. A general 1-join is ex-
actly the 1-join (or join or split decomposition) as introduced by Cunningham and
Edmonds [59]. A related notion is that of a homogeneous set (or module) of a graph
G, that is a proper subset S of V (G) of at least two vertices such that every ver-
tex not in S is adjacent to either all or none of the vertices in S. Note that if
V (G) \ S ≥ 2, then homogeneous set corresponds to a 0-join, or 1-join with split
(X1, X2, A1, ∅, ∅, A2, ∅, ∅) such that X1 \A1 = ∅.

A general 2-join with C1 = C2 = ∅ and all the other special sets nonempty
is called a 2-join and it was first introduced by Cornuéjols and Cunningham [56].
A general 2-join with B1 = C2 = ∅ (or equivalently A1 = A2 = ∅) and all the
other special sets nonempty is called a N-join. A general 2-join with C2 = ∅ (or
equivalently B2 = ∅) and all the other special sets nonempty is called a M-join.
A general 2-join with all special sets nonempty is called a 6-join and it was first
introduced by Conforti, Cornuéjols, Kapoor and Vušković [44].

General joins also generalize the notion of a homogeneous pair introduced by
Chvátal and Sbihi [39]. A homogeneous pair in a graph G is a pair {Q1, Q2} of
disjoint sets of vertices of G such that: every vertex of V (G) \ (Q1 ∪Q2) is adjacent
to either all vertices of Q1 or to no vertex of Q1; every vertex of V (G) \ (Q1 ∪Q2)
is adjacent to either all vertices of Q2 or to no vertex of Q2; |Q1| ≥ 2 or |Q2| ≥
2; and |V (G) \ (Q1 ∪ Q2)| ≥ 2. Note that a homogeneous pair in a graph with
no homogeneous set is a special case of a general 2-join, where A1, B1 6= ∅ and
X1 \ (A1 ∪B1) = ∅.

Furthermore, there is a correspondence between k-separations, k = 1, 2, 3, in
binary matroids and general joins. A 1-separations corresponds to a general 0-join,
a 2-separation corresponds to a general 1-join and a 3-separation corresponds to a
general 2-join. This correspondence is discussed in Section 4.

We now consider some commonly appearing node cutsets. Let S be a node cutset
of a graph G. S is a k-node cutset if |S| = k. We say that S is a small node cutset if
|S| is bounded by some fixed integer k. Recall that S is a clique cutset if S induces
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a clique in G.
A node set S ⊆ V (G) is a k-star if S is comprised of a clique C (the clique center

of S) of size k and nodes with at least one neighbor in C, so S ⊆ N [C]. A k-star
cutset is a k-star S that is a node cutset. A 1-star cutset is also referred to as a
star cutset, a 2-star cutset as a double star cutset, and a 3-star cutset as a triple star
cutset.

Here is another generalization of a star cutset, that is a special case of a double
star cutset. A node cutset S is a skew cutset if there exists a partition (S1, S2) of S
such that every node of S1 is adjacent to every node of S2. Star cutsets and skew
cutsets were first introduced by Chvátal [38].

In trying to understand why these cutsets appear “naturally” in decomposition
theorems, we first observe that with clique cutsets one can only separate vertices
that are not contained in a hole. When we need to break a hole, we can either use a
node that has neighbors on this hole as a center of a star cutset (or more generally a
k-star cutset), or when no such node exists we can hope for example that two edges
of this hole will extend to a 2-join that separates the hole.

4 Regular and balanced matrices

A matrix is totally unimodular if every square submatrix has determinant equal
to 0,±1. In particular, all entries of a totally unimodular matrix are 0,±1. A 0, 1
matrix is balanced if it does not contain a square submatrix of odd order with two
1’s per row and per column. This notion was introduced by Berge [6], and it was
extended to 0,±1 matrices by Truemper [121]. A 0,±1 matrix is balanced if, in every
square submatrix with exactly two nonzero entries per row and column, the sum of
the entries is a multiple of 4. Note that the class of 0,±1 balanced matrices properly
includes totally unimodular matrices. All these matrices have important polyhedral
properties, see for example [55]. In this section we describe decomposition theorems
that were the key to obtaining polynomial time recognition algorithms for all these
classes of matrices.

4.1 Decomposition of regular matroids

What enabled the structural understanding of totally unimodular matrices, which
led to their polynomial time recognition, was the translation of the property into
the realm of matroids, and the use of existent powerful tools from matroid theory.

A 0, 1 matrix is regular if its nonzero entries can be signed +1 or −1 so that
the resulting matrix is totally unimodular. Camion [10] observed that this signing
is unique up to multiplying rows and columns by −1, and gave a simple signing
algorithm, from which it follows that the recognition of totally unimodular matrices
reduces to the recognition of regular matrices. This shift to regular matrices allows
for the focus on the structure of the pattern of zero/nonzero entries.

Let M be a binary matroid and X ⊆ V (M) a base of M . The partial represen-
tation of M with respect to X is the 0,1 matrix A(M) with rows indexed by the
elements of X, columns indexed by the elements of Y = V (M) \ X, and axy = 1
if and only if x belongs to the unique circuit contained in X ∪ {y}. Note that if
A(M) is a partial representation of a binary matroid M , then (I, A(M)) is a binary
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representation of M .
A binary matroid is regular if all of its partial representation matrices are reg-

ular. Let A be a partial representation matrix of a binary matroid, i.e. rows of
A are indexed by a base of the matroid. One can always go from one partial rep-
resentation of a binary matroid to another by using GF(2)-pivoting and row and

column permutations. Pivoting over GF(2) consist in replacing A =

(

1 y

x D

)

by

Ã =

(

1 y

x D + xy

)

. It can be shown that if A is a regular matrix, then so is Ã,

and hence it is the case that for a binary matroid either all or none of its partial
representation matrices are regular.





1 1 0 1
1 0 1 1
0 1 1 1





Figure 2: Partial representation matrix of the Fano matroid.

The matrix in Figure 2 is not regular, and is a partial representation matrix
of the Fano matroid F7. The transpose of this matrix is a partial representation
of the dual of the Fano matroid F ∗

7 . Let M be a binary matroid and A a partial
representation of M . Any submatrix of A is a partial representation of a binary
matroid M ′. A matroid M ′ obtained from M in this way is a minor of M . A
convenient way to work with regular matroids is provided by the following excluded
minors characterization.

Theorem 4.1 (Tutte [124]) A binary matroid is regular if and only if it has no
minor isomorphic to F7 or F ∗

7 .

What enabled the polynomial time recognition of regular matroids, and hence
totally unimodular matrices, is the following decomposition theorem. Let M be
a matroid defined by a finite ground set V (M) and a family E(M) of subsets of
V (M) that are the independent sets of M . The rank r(U) of a set U ⊆ V (M) is the
maximum cardinality of an independent set contained in U . A k-separation of M
is a partition (U1, U2) of V (M) such that |U1| ≥ k, |U2| ≥ k and r(U1) + r(U2) ≤
r(V (M)) + k − 1.

Theorem 4.2 (Seymour [115]) A regular matroid is either graphic, cographic or
R10 (a certain 10-element matroid), or it has a k-separation, for k = 1, 2, 3.

This theorem leads to a decomposition based polynomial time recognition algo-
rithm for regular matroids in the following way. First of all, 1-, 2- and 3-separations
can be found in polynomial time (see [123] Section 8.4). For 1-, 2- and 3-separation,
blocks of decomposition can be constructed that are regularity-preserving and lead
to a linear size of the decomposition tree (see for example [55]). Finally, by Theo-
rem 4.2, it just remains to check whether the leaves of this decomposition tree are
R10, graphic or cographic matroids, which can be done in polynomial time (see for
example [123] Section 10.6). By Camion’s signing algorithm it follows that totally
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unimodular matrices can be recognized in polynomial time. We note that before
Seymour’s decomposition approach no polynomial time recognition algorithm for
totally unimodular matrices was known. The fastest known algorithm for testing
total unimodularity is the O(n+m)3 algorithm of Truemper [122], where the input
is an n×m real matrix. The algorithm uses Seymour’s decomposition theorem, but
does not blindly search for 3-separations as described above. Instead it searches for
3-separations by starting with particular minors that have 3-separation that should
extend to the entire matroid.

This decomposition approach was later extended to recognition algorithms for
other classes of matrices and graphs (such as balanced matrices and perfect graphs),
but as we shall see, with many more complications. To relate these results, we close
this section by translating the work described above into graphs.

Let A be a 0, 1 matrix. A can be thought of as a node-node incidence matrix of
a bipartite graph, which we denote with G(A) and call the bipartite graph represen-
tation of A. We say that a bipartite graph G(A) is regular if A is regular. Pivoting
on an entry aij of A corresponds to the following operation on G(A): let ij be the
edge of G(A) that corresponds to the pivot element, then G(Ã) is obtained from
G(A) by complementing the edges between N(i) \ {j} and N(j) \ {i}. We refer to
this operation as pivoting on the edge ij. Note that the bipartite representation of
the matrix in Figure 2 is a wheel whose rim is of length 6 (in particular, the center
of the wheel has three neighbors on the rim and they are all on the same side of the
bipartition). Let us call this wheel Fano wheel. Theorem 4.1 now translates into the
following:

A bipartite graph is regular if and only if it cannot be transformed into a Fano wheel
by a sequence of edge pivots and/or node deletions.

Let G be a bipartite graph. Since G is bipartite, the only Truemper configura-
tions that G can possibly have are 3PC(·, ·)’s and wheels. Let (H,x) be a wheel.
Suppose that x has more than 3 neighbors on H. It can easily be seen that if we
pivot on an edge xxi, where xi is a neighbor of x on H, we get a wheel (H ′, x) such
that x has fewer neighbors on H ′ than on H. Now suppose that a sector S of (H,x)
is of length greater than 2, and let uv be an interior edge of that sector. If we pivot
on uv we get a wheel (H ′, x) that has all the sectors of (H,x) except for S, and the
sector S′ of (H ′, x) that corresponds to S in (H,x) is shorter than S. So clearly, a
wheel (H,x) such that x has an odd number of neighbors on H, can be transformed
into a Fano wheel by a sequence of edge pivots and node deletions. Let us call such
a wheel in a bipartite graph an odd bipartite wheel. Similarly it can be seen that
a 3PC(u, v) where u and v are on opposite sides of the bipartition, can be trans-
formed into a Fano wheel. Let us call such a 3PC(u, v) a 3-odd-path configuration.
Therefore regular bipartite graphs cannot contain odd bipartite wheels nor 3-odd-
path configurations (as well as all the other configurations that can be transformed
into a Fano wheel). In other words, out of all the Truemper configurations, regular
bipartite graphs may contain only wheels (H,x) such that x has an even number
of neighbors on H, and 3PC(u, v)’s such that u and v are on the same side of the
bipartition.

Let M be a binary matroid, and consider a k-separation (U1, U2) where r(U1) +
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r(U2) = r(|V (M)|) + k − 1. Let X2 be a maximal independent subset of U2, and
enlargeX2 by subsetX1 of U1 to a base ofM . The partial representation matrix A of

M w.r.t. base X1∪X2 is A =
X1

X2

(

A1 0
D A2

)

where the sum of rows and columns

of Ai is at least k, for i = 1, 2, and the rank of D over GF(2) is k − 1. Observe
that when k = 1, then D = 0, and hence G(A) corresponds to a disconnected graph,
or a general 0-join. By similarly analyzing the possibilities for matrix D, it turns
out that a 2-separation corresponds to a general 1-join in G(A), and a 3-separation
corresponds to a general 2-join in G(A). (As mentioned in Section 3.2 different
forms of general joins were introduced by different authors, interestingly without
being aware of this correlation. They were notions that emerged naturally when
dealing with different graph classes.) Therefore, Theorem 4.2 translated states that
regular bipartite graphs can be decomposed by general k-joins, for k = 0, 1, 2.

4.2 Decomposition of balanced matrices

We immediately switch from 0, 1 matrices to their bipartite graph representa-
tions. So a bipartite graph is balanced if it does not contain a hole of length 2
(mod 4). A signed bipartite graph is a bipartite graph with edge weights +1 and
−1. A signed bipartite graph is balanced, if it does not contain a hole of weight 2
(mod 4). A bipartite graph is balanceable if there exists a signing of its edges so that
the resulting signed bipartite graph is balanced.

If a graph is a balanceable bipartite graph, there exists an easy signing algorithm
that signs it into a balanced signed bipartite graph (since if such a signing exists, it is
essentially unique and easy to find by Camion’s signing algorithm [10], see also [50]).
So the recognition of signed balanced bipartite graphs reduces to the recognition of
balanceable bipartite graphs.

Clearly the class of balanceable bipartite graphs is closed under taking induced
subgraphs, but it is not closed under edge pivoting. Consider for example a graph
G that consists of a 3PC(x, y) where all the paths have length 3 together with
an edge xy. This graph is balanceable, but if we pivot on the middle edge of any
of the paths, edge xy disappears and we get the original 3-odd-path configuration
3PC(x, y), which is not balanceable (since no matter how we sign its edges two of
the paths will have weights that are congruent (mod 4) and would hence induce a
hole of weight 2 (mod 4)). Observe that it also follows that G is not regular. So
balanceable bipartite graphs properly contain regular bipartite graphs.

The following theorem characterizes balanceable bipartite graphs in terms of
excluded induced subgraphs, and provides a convenient way to work with this class.

Theorem 4.3 (Truemper [121]) A bipartite graph is balanceable if and only if it
does not contain an odd bipartite wheel nor a 3-odd-path configuration.

The first known polynomial time recognition algorithm for balanced matrices (or
equivalently, balanced bipartite graphs) is given by Conforti, Cornuéjols and Rao
[47], and it is based on the following decomposition theorem.

Theorem 4.4 (Conforti, Cornuéjols and Rao [47]) If a bipartite graph is bal-
anced but not totally unimodular, then it has a double star cutset.
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These results were later extended to balanceable bipartite graphs. The first
known polynomial time recognition algorithm for balanceable bipartite graphs is
given by Conforti, Cornuéjols, Kapoor and Vušković [44], and it is based on the
following decomposition theorem.

Theorem 4.5 (Conforti, Cornuéjols, Kapoor and Vušković [44]) A connected
balanceable bipartite graph is either strongly balanceable or R10 (a certain 10-element
graph), or has a 2-join, a 6-join or a double star cutset.

We observe that the 2-joins in the above theorem are in fact of a special type that
we call connected non-path 2-joins and describe in Section 9. The major difficulty in
using Theorems 4.4 and 4.5 to construct decomposition based recognition algorithms
is the double star cutsets. For the 2-join and 6-join it is possible to construct blocks
of decomposition that are balancedness-preserving and keep the decomposition tree
polynomial in size (see [44]), but it is not clear how to do that for the double star
cutset. The double star cutsets in Theorems 4.4 and 4.5 are actually more structured,
but that does not help, the problem appears even when trying to use just the star
cutsets. Consider for example an odd wheel (H,x) whose every sector is of length 2.
This wheel can be decomposed with a star cutset S = N [x]. If we construct blocks
of decomposition as we did for the clique cutset decomposition in Section 3.1, we
get that all the blocks of decomposition are balanced (or balanceable), but (H,x) is
not. (We observe that it was precisely for the decomposition of wheels that double
star cutsets are needed in the proofs of Theorems 4.4 and 4.5.) One might add some
more information to the blocks to make the decomposition balancedness-preserving,
but then the decomposition tree blows up in size. To deal with this problem, a
technique called cleaning was developed by Conforti and Rao [54], which enabled
them to recognize linear balanced matrices in polynomial time. This technique
was further developed and used in obtaining decomposition based polynomial time
recognition algorithms for balanced matrices [47], balanced 0,±1 matrices [44], and
a new level of cleaning had to be developed for recognition of even-hole-free graphs
[46, 62], that was also used in the cleaning for recognition of perfect graphs [22].

We now describe the cleaning procedure in the context of its use for recognizing
balanced bipartite graphs. A hole of length 2 (mod 4) is called an unbalanced hole.
Given an input graph G, the cleaning procedure produces, in polynomial time, a
clean graphG′, such thatG is balanced if and only ifG′ is balanced, and ifG contains
an unbalanced hole then G′ contains a clean unbalanced hole (i.e. an unbalanced
hole for which there are no nodes outside the hole that have problematic neighbors on
the hole, which can be used as centers of star cutsets to break the hole). This is done
by studying the structure of a smallest unbalanced hole in a graph, showing that
such a hole contains a fixed number of nodes that see all the problematic neighbors
of the hole, and using that information to remove them. Once we have a clean graph
G′, decomposition by (double) star cutsets can be applied safely, since it will now
be balancedness-preserving, as well as lead to a polynomial decomposition tree.

Using Theorem 4.5 Chudnovsky and Seymour prove the following decomposition
theorem for balanceable bipartite graphs, resolving a conjecture from [44]. We ob-
serve that this decomposition theorem does not help with the recognition algorithm,
since the double star cutsets are still used.
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Theorem 4.6 (Chudnovsky and Seymour [28]) A balanceable bipartite graph
that is not regular has a double star cutset.

The following conjecture is the last unresolved conjecture about balanced (bal-
anceable) bipartite graphs in Cornuéjols’ book [55].

Conjecture 4.7 (Conforti and Rao [53]) Every balanced bipartite graph contains
an edge that is not the unique chord of a cycle.

This conjecture was proved recently for linear balanced bipartite graphs and
balanced bipartite graphs whose maximum degree is at most 3 in [4] using the idea
of extreme decomposition (in fact in this paper the analogous form of this conjecture
for balanceable bipartite graphs is proved for 4-hole-free balanceble bipartite graphs
and subcubic balanceable bipartite graphs).

5 Classes closed under minor taking

In this section we briefly consider graph classes that are not only closed under
deletion of vertices, but also under deletion and contraction of edges, i.e. classes
of graphs that are closed under minor taking. Some important examples of such
classes are cycle-free graphs (or forests), series-parallel graphs, planar graphs or
more generally classes of graphs embeddable in any fixed surface.

A graph H is a minor of a graph G, if it is isomorphic to a graph that can
be produced from G by a sequence of contracting edges, and deleting vertices and
edges. A class of graphs G is minor-closed, if for every G ∈ G, every minor of G
also belongs to G. Trivially, every minor-closed class of graphs can be characterized
by a list of excluded minors, by just listing all the graphs that are not in the class.
Wagner conjectured that this can always be done by a finite list of excluded minors.
This famous conjecture was proved by Robertson and Seymour in their monumental
work on revealing the structure of minor-closed families of graphs, with far reaching
algorithmic consequences.

Theorem 5.1 (Robertson and Seymour [111]) Every minor-closed class of graphs
can be characterized by a finite family of excluded minors.

The proof of this theorem is based on the following structural characterization:
if a minor-closed class of graphs does not contain all graphs, then every graph in it
is “glued” together in a tree-like fashion from graphs that can almost be embedded
in a fixed surface. To be more specific we need to introduce the concept of tree-
decomposition [108]. A tree-decomposition of a graph G is a pair (T,W ), where T

is a tree and W = (Wt : t ∈ V (T )) is such that:

(i) ∪t∈V (T )Wt = V (G), and every edge of G has both endnodes in some Wt, and

(ii) if t, t′, t′′ ∈ V (T ) and t′ lies on the path from t to t′′ in T , then Wt∩Wt′′ ⊆ Wt′ .

The width of (T,W ) is the max{|Wt| − 1 : t ∈ V (T )}, and the tree-width of G is the
least integer k such that G has a tree-decomposition of width k.
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Theorem 5.2 (Robertson and Seymour [109]) For every planar graph H there
is an integer k > 0 such that if a graph is H-minor-free, then its tree-width is at
most k.

In other words, if a graph does not contain some planar graph as a minor, then it
has bounded tree-width, and hence it can be constructed from bounded sized graphs
by “gluing” them together in a tree-like structure. In [110] an analogous construction
is given for H-minor-free graphs in general, starting with graphs embedded in a
connected closed surface with genus at most k, adding more nodes in a specified
way, and “gluing” such pieces together in a tree-like fashion. This time the pieces
that are “glued on” are not necessarily of bounded size, but the parts that are being
glued over are.

This structural characterization leads to an O(n3) algorithm to test whether a
graph G is H-minor-free (although there is a constant factor that depends super-
polynomially on the size of G). Together with Theorem 5.1 we get the following
algorithmic consequence.

Theorem 5.3 Every minor-closed class of graphs can be recognized in polynomial
time.

This theoretically beautiful result, has its practical shortcomings. Unless a
minor-closed class of graphs is given by its finite list of excluded minors, from The-
orem 5.1 we only get an existence of a polynomial time algorithm.

There are further algorithmic consequences for graph classes that have tree-
decompositions of bounded tree-width, as is the case for example with any minor-
closed family that does not include all planar graphs (by Theorem 5.2). Many
problems that are NP-hard in general, such as the independent set problem or the
coloring problem, can be solved by dynamic programming in linear time when the
input graph has bounded tree-width. In fact, each problem that can be formulated
in Monadic Second Order Logic can be solved in linear time on graphs of bounded
tree-width [57].

In the terminology used in this survey, a tree-decomposition of width k corre-
sponds to decomposing a graph into blocks of size at most k + 1 by a sequence of
“non-crossing” node cutset decompositions, where the cutsets are all of size at most
k. Indeed, let (T,W ) be a tree-decomposition of a graph G, let t1t2 be an edge of T ,
and for i = 1, 2, let Ti be the subgraph of G \ t1t2 that contains ti. Then Wt1 ∩Wt2

is a cutset of G that separates ∪t∈V (T1) \ (Wt1 ∩Wt2) from ∪t∈V (T2) \ (Wt1 ∩Wt2).
Clearly the size of all such cutsets is at most the width of (T,W ). Let us now say
that for A,B ⊆ V (G), (A,B) is a separation of G if A∪B = V (G) and there are no
edges between A \B and B \A. Two separations (A,B) and (C,D) do not cross if
one of the following holds: A ⊆ C and B ⊇ D, or A ⊆ D and B ⊇ C, or A ⊇ C and
B ⊆ D, or A ⊇ D and B ⊆ C. So a tree-decomposition corresponds to a family of
cross-free separations of a graph G.

As we shall see in this survey, we cannot hope for such strong structure results,
with sweeping algorithmic consequences, for graph classes that are closed just under
vertex deletion. Their structure is a lot more general, so that much stronger cutsets
are needed for their decomposition which makes it a lot more difficult to make use
of in algorithms. On the other hand Geelen, Gerards and Whittle have worked on



The world of hereditary graph classes 18

generalizing results and techniques of Robertson and Seymour’s Graph Minor Theory
to matroids representable over finite fields, see [74]. They have shown that binary
matroids are well-quasi-ordered by minors, and that any minor-closed property can
be tested in polynomial time for binary matroids.

6 (3PC(·, ·), 3PC(∆, ·), 3PC(∆,∆),wheel)-free graphs

Cycle-free graphs are an example of a graph class that does not contain any
of the Truemper configurations. This class of graphs is closed under minor taking
and is in fact the class of K3-minor-free graphs. The graphs in this class have tree-
width at most 1. Outerplanar graphs (or (K4,K2,3)-minor-free graphs), generalize
cycle-free graphs and also do not contain any of the Truemper configurations. Their
tree-width is at most 2, meaning that they can be decomposed by a sequence of non-
crossing node cutsets of size at most 2 into cliques of size at most 3. Triangulated,
or hole-free graphs, are another generalization of cycle-free graphs, that are not
closed under minor taking, but still have the property of not containing any of the
Truemper configurations. They can be decomposed by clique cutsets into cliques (as
we have discussed in Section 3.1). The following class introduced in [42] generalizes
all these classes of graphs.

Let γ be a {0, 1} vector whose entries are in one-to-one correspondence with the
holes of a graph G. G is universally signable if for all choices of vector γ, there exists
a subset F of the edge set of G such that |F ∩H| ≡ γH (mod 2), for all holes H of G.
From Theorem 2.1 it is easy to obtain the following characterization of universally
signable graphs in terms of forbidden induced subgraphs.

Theorem 6.1 ([42]) A graph is universally signable if and only if it is (3PC(·, ·),
3PC(∆, ·), 3PC(∆,∆), wheel)-free.

This characterization of universally signable graphs is then used to obtain the
following decomposition theorem.

Theorem 6.2 (Conforti, Cornuéjols, Kapoor and Vušković [42]) A connected
(3PC(·, ·), 3PC(∆, ·), 3PC(∆,∆), wheel)-free graph is either a clique or a hole or
has a clique cutset.

By the discussion in Section 3.1 it is clear how Theorem 6.2 can be used to
construct efficient decomposition based algorithms for the recognition of the class, for
finding the size of a largest clique, or independent set, and coloring the class. From
Theorem 6.2 it is easy to deduce that every universally signable graph has a vertex
that is simplicial or of degree 2. Recently it was shown in [2] that using LexBFS
one can find in linear time an ordering of vertices v1, . . . , vn of a universally signable
graph G such that for i = 1, . . . , n, vi is simplicial or of degree 2 in G[{v1, . . . , vi}].
This implies a linear time robust algorithm for the maximum weight clique and
coloring problems.

As we shall see in the following sections, once Truemper configurations are al-
lowed to appear in a graph class, one will need more complex cutsets to decompose
the class.
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7 (3PC(∆, ·), 3PC(∆,∆),wheel)-free graphs

A multigraph is called series-parallel if it arises from a forest by applying the
following operations: adding a parallel edge or subdividing an edge. A series-parallel
graph is a series-parallel multigraph with no parallel edges. Series-parallel graphs
are an example of a graph class that is (3PC(∆, ·), 3PC(∆,∆),wheel)-free. This
class of graphs is closed under minor taking and is in fact the class of K4-minor-
free graphs. Their tree-width is at most 2. In this section we describe three more
classes that are (3PC(∆, ·), 3PC(∆,∆),wheel)-free, but are also closed under taking
induced subgraphs.

7.1 (ISK4, wheel)-free graphs

A subdivision of a graph G is obtained by subdividing edges of G into paths of
arbitrary length (at least 1). An ISK4 is a subdivision of aK4. Note that graphs that
have no ISK4 as a subgraph are precisely series-parallel graphs. ISK4-free graphs
are studied by Lévêque, Maffray and Trotignon in [87]. They prove a decomposition
theorem for this class that uses double star cutsets. Unfortunately this does not lead
to a recognition algorithm for ISK4-free graphs, which remains an open problem.
In [87] a complete structural characterization of (ISK4, wheel)-free graphs is given,
which we now describe.

A node cutset S = {a, b} of a connected graph G is a proper 2-cutset if a and
b are nonadjacent and both of degree at least 3, and such that V (G) \ S can be
partitioned into X and Y so that: |X| ≥ 2, |Y | ≥ 2; there are no edges between
X and Y ; and both G[X ∪ S] and G[Y ∪ S] contain an ab-path, but neither is a
chordless ab-path.

Given a graph G, an induced subgraph K of G, and a set C of vertices of G \K,
the attachment of C over K is N(C) ∩ V (K). When a set S = {u1, u2, u3, u4}
induces a square (i.e. a 4-hole) in a graph G, with u1, u2, u3, u4 in this order along
the square, a link of S is an induced pp′-path P of G such that either p = p′ and
NS(p) = S, or NS(p) = {u1, u2} and NS(p

′) = {u3, u4}, or NS(p) = {u1, u4} and
NS(p

′) = {u2, u3}, and no interior vertex of P has a neighbor in S. A link with
ends p, p′ is said to be short if p = p′, and long otherwise. A rich square (resp. long
rich square) is a graph K that contains a square S such that K \ S has at least two
components and every component of K \ S is a link (resp. long link) of S.

A graph is chordless if all its cycles are chordless. It is easy to check that a line
graph G = L(R) is wheel-free if and only if R is chordless.

Theorem 7.1 (Lévêque, Maffray and Trotignon [87]) An (ISK4, wheel)-free
graph either has a clique cutset or a proper 2-cutset, or is one of the following types:

• a series-parallel graph,

• a complete bipartite graph,

• line graph of a chordless graph with maximum degree at most 3, or

• a long rich square.
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The structure of chordless graphs is given by the following theorem (that was
implicitly proved in [119] and explicitly stated and proved in [87]). A graph G is
sparse if every edge of G has an endnode that is of degree at most 2. Note that
chordless graphs were first studied in the 1960s by Dirac [66] and Plummer [104]. A
description of their work can also be found in [3].

Theorem 7.2 ([119, 87]) A connected chordless graph is either sparse or has a
1-cutset or proper 2-cutset.

Theorems 7.1 and 7.2 are used in [87] to recognize (ISK4, wheel)-free graphs in
O(n2m) time, as well as to show that (ISK4, wheel)-free graphs are 3-colorable and
to give an O(n2m) time coloring algorithm.

7.2 Unichord-free graphs

The class of graphs that do not contain a cycle with a unique chord, also known
as unichord-free graphs, is studied by Trotignon and Vušković in [119], where they
obtain the following structure theorem for this class.

Figure 3: Petersen and Heawood graph

The Petersen and Heawood graphs are the two famous graphs, depicted in Figure
3, that were discovered at the end of the XIXth century in the research on the four
color conjecture ([103], [79]), and they also appear as basic classes of unichord-
free graphs. A graph is strongly 2-bipartite if it is 4-hole-free and bipartite with
bipartition (X,Y ) where X is the set of all degree 2 vertices of G and Y is the set
of all nodes of G of degree at least 3. A node cutset S = {a, b} of a connected graph
G is a special 2-cutset if a and b are nonadjacent and both of degree at least 3, and
such that V (G)\S can be partitioned into X and Y so that: |X| ≥ 2, |Y | ≥ 2; there
are no edges between X and Y ; and both G[X∪S] and G[Y ∪S] contain an ab-path.
A 1-join with split (X1, X2, A1, ∅, ∅, A2, ∅, ∅) is proper if both A1 and A2 are stable
sets of size at least 2.

Theorem 7.3 (Trotignon and Vušković [119]) A connected unichord-free graph
either has a 1-cutset, a special 2-cutset, or a proper 1-join, or is one of the following
types:

• a clique,

• a hole of length at least 7,
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• a strongly 2-bipartite graph, or

• an induced subgraph of the Petersen or the Heawood graph.

We note that the decomposition theorem above in fact implies a complete struc-
ture theorem for unichord-free graphs. The decompositions in Theorem 7.3 can be
reversed into compositions in such a way that every unichord-free graph can be built
starting from basic graphs, that can be explicitly constructed, and gluing them to-
gether with prescribed composition operations, and all graphs built this way are
unichord-free. This also implies a straightforward decomposition based recognition
algorithm for this class that runs in O(nm) time.

Since unichord-free graphs are diamond-free, any edge of a unichord-free graph
is contained in a unique maximal clique. Hence to find a maximum clique it is
enough to look for common neighbors of every edge. This leads to an O(nm) time
algorithm. In [119] an O(n+m) algorithm is given for the maximum clique problem
for unichord-free graphs. It is based on the fact that a connected unichord-free graph
that contains a triangle is either a clique or has a 1-cutset. Also in [119] it is shown
how Theorem 7.3 can be used to obtain an O(nm) coloring algorithm for unichord-
free graphs. It turns out that every unichord-free graph G is either 3-colorable or
has an ω(G)-coloring, and in particular χ(G) ≤ ω(G) + 1. The problem of finding a
maximum stable set of a unichord-free graph is NP-hard (follows from 2-subdivisions
[105]).

Another characterization of unichord-free graphs is given by McKee in [97]:
unichord-free graphs are precisely the graphs whose all minimal separators are stable
sets (where a separator in a graph G is a set S ⊆ V (G) such that G \ S has more
connected components than G).

7.3 Propeller-free graphs

Motivated by trying to understand the structure of wheel-free graphs, whose
recognition remains an open problem, Aboulker, Radovanović, Trotignon and Vušković
studied in [3] a subclass of wheel-free graphs known as propeller-free graphs. A pro-
peller is a a graph that consists of a cycle C and a node x that has at least two
neighbors on C. Let C0 be the class of graphs that have no node that has at least
two neighbors of degree at least 3, C1 the class of graphs that have no propeller as
a subgraph, and C2 the class of propeller-free graphs. Clearly C0 ( C1 ( C2.

First let us point out that by considering a longest path it is easy to show that
graphs in C2 must always have a node of degree at most 2, and hence they are 3-
colorable, see [3]. Observe that since a clique on 4 nodes is a propeller finding the
size of a largest clique in a propeller-free graph can easily be done in polynomial
time. On the other hand, finding a maximum independent set of a propeller-free
graph is NP-hard (follows easily from [105], see also [119]).

The following decomposition theorems are given in [3], and used to obtain an
O(nm) recognition algorithm for class C1, and an O(n2m2) recognition algorithm
for class C2.

A 2-cutset {a, b} of a graph G is an S2-cutset (resp. K2-cutset) if ab is not
an edge (resp. is an edge). An S2-cutset is proper if nodes of G \ {a, b} can be
partitioned into sets X and Y so that no node of X is adjacent to a node of Y , and
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neither G[X ∪ {a, b}] nor G[Y ∪ {a, b}] is a chordless ab-path. A K2-cutset is proper
if G \ {a, b} contains no node adjacent to both a and b. A 3-cutset {u, v, w} of a
graph G is an I-cutset if G[{u, v, w}] contains exactly one edge.

Theorem 7.4 (Aboulker, Radovanović, Trotignon and Vušković [3]) A con-
nected graph in C1 is either in C0 or it has a 1-cutset, a proper K2-cutset or a proper
S2-cutset.

Theorem 7.5 (Aboulker, Radovanović, Trotignon and Vušković [3]) A graph
in C2 is either in C1 or it has an I-cutset.

Furthermore, it is shown in [3] that propeller-free graphs admit an extreme de-
composition, which is used to prove that 2-connected propeller-free graphs must
always have an edge whose endnodes are of degree 2. This implies that propeller-
free graphs can also be edge-colored in polynomial time.

8 (3PC(∆, ·), proper wheel)-free

Let (H,x) be a wheel. A sector of (H,x) is a minimal subpath of H, of length
at least one, whose endnodes are neighbors of x on H. A sector is short if it is
of length one, and long otherwise. (H,x) is a triangle-free wheel if it has no short
sectors. (H,x) is a universal wheel if x is adjacent to all nodes of H, i.e. it has no
long sectors. (H,x) is a line wheel if it has four sectors, exactly two of which are
short, and the short sectors have no common node. (H,x) is a fanned wheel if it has
exactly one long sector. A proper wheel is a wheel that is not a triangle-free wheel,
a universal wheel, a line wheel, or a fanned wheel with 2 or 3 short sectors. We
now consider three different subclasses of the class of (3PC(∆, ·), proper wheel)-free
graphs.

8.1 Cap-free graphs

A cap is a hole together with a node that is adjacent to exactly two adjacent nodes
on the hole. Cap-free graphs were studied in [43], where the focus was on obtaining
polynomial time algorithms for recognizing whether a cap-free graph contains an odd
(respectively even) hole. Note that the only Truemper configurations that cap-free
graphs can contain are 3PC(·, ·)’s and wheels that are either triangle-free, universal
or fanned with exactly two short sectors. The following decomposition theorem is
obtained in [43] for this class, generalizing the decomposition theorem for Meyniel
graphs obtained by Burlet and Fonlupt in [7].

A graph G contains a 1-amalgam (or amalgam) (X1, X2,K,A1, A2) if V (G) =
X1 ∪ X2 ∪ K, where X1, X2 and K are disjoin sets, |X1| ≥ 2, |X1| ≥ 2 and the
nodes of K induce a clique in G (possibly K is empty). Furthermore, for i = 1, 2,
∅ 6= Ai ⊆ Xi; every node of A1 is adjacent to every node of A2, and these are the
only edges between X1 and X2; and every node of K is adjacent to every node of
A1 ∪ A2. Amalgams were first introduced in [7], and they generalize 1-joins, as a
1-amalgam with K = ∅ corresponds to a 1-join.

A basic cap-free graph G is either a triangulated graph or a biconnected triangle-
free graph with at most one additional node, that is adjacent to all other nodes of
G
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Theorem 8.1 (Conforti, Cornuéjols, Kapoor and Vušković [43]) A cap-free
graph is either basic or it has a 1-amalgam.

Cap-free graphs can easily be recognized in polynomial time directly, but in
[43] Theorem 8.1 is used to obtain decomposition based recognition algorithms for
cap-free even-signable and cap-free odd-signable graphs (even-signable graphs are a
generalization of odd-hole-free graphs, and odd-signable graphs are a generalization
of even-hole-free graphs; they are formally defined in Section 9).

Since triangle-free graphs are cap-free (basic), it follows that the problems of
coloring and finding the size of a largest independent set are both NP-hard for cap-
free graphs. On the other hand, it is easy to see how to use Theorem 8.1 to obtain a
polynomial time algorithm to solve the maximum weight clique problem for cap-free
graphs, see [51].

Theorem 8.1 is a generalization of analogous result obtained by Burlet and
Fonlupt [7] for Meyniel graphs, which are exactly (cap, odd-hole)-free graphs. The
decomposition of Meyniel graphs by 1-amalgams is used in [7] to obtained the first
known polynomial time recognition algorithm for this class. Subsequently, Rous-
sel and Rusu [113] obtained a faster algorithm for recognizing Meyniel graphs (of
complexity O(m2)), that is not decomposition based.

Hertz [80] gives an O(nm) algorithm for coloring and obtaining a largest clique
of a Meyniel graphs. This algorithm is based on contractions of even pairs. Roussel
and Rusu [114] give an O(n2) algorithm that colors a Meyniel graph without using
even pairs. This algorithm “simulates” even pair contractions and it is based on
lexicographic breadth-first search and greedy sequential coloring. In [9] Cameron,
Lévêque and Maffray give another O(n2) algorithm for coloring Meyniel graphs,
which takes as input any graph and finds either a clique and a coloring of the same
size or a Meyniel obstruction (i.e. an odd cycle of length at least 5 with at most one
chord).

Conforti and Gerards [51] show how to obtain a polynomial time algorithm for
solving maximum weight independent set problem, on any class of graphs that is
decomposable by amalgams into basic graphs for which one can solve the max-
imum weight independent set problem in polynomial time. In particular, using
Theorem 8.1, they obtain a polynomial time algorithm for solving the maximum
weight independent set problem for (cap, odd-hole)-free graphs (i.e. Meyniel graphs)
and (cap, even-hole)-free graphs (and more generally, cap-free odd-signable graphs).
Whether (cap, even-hole)-free graphs can be colored in polynomial time remains an
open problem.

8.2 Claw-free graphs

A claw is a complete bipartite graph K1,3. Observe that claw-free graphs are
3PC(·, ·)-free and the only wheels they may contain are line wheels, universal wheels
whose rim is of length 4 or 5, and fanned wheels with 2 or 3 short sectors.

Structural study of claw-free graphs started in the context of perfect graphs.
Claw-free Berge graphs have been shown to be perfect by Parthasarathy and Ravin-
dra [101] by exploiting properties of minimally imperfect graphs. Another proof,
based on properties of minimally imperfect graphs, is given by Giles, Trotter and
Tucker in [75]. The first insight into the structure of claw-free Berge graphs is given
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by Chvátal and Sbihi [15]. They use the following characterization of claw-free Berge
graphs to obtain a polynomial time recognition algorithm for this class (based on
decomposition by clique cutsets). A graph is elementary if its edges can be colored
by two colors in such a way that edges xy and yz have distinct colors whenever x

and z are nonadjacent. It is easy to see that every elementary graph is claw-free
Berge.

Theorem 8.2 (Chvátal and Sbihi [15]) A claw-free graph G with no clique cut-
set is Berge if and only if it has at least one of the following properties:

(i) G is elementary,

(ii) α(G) ≥ 3 and G contains no hole of length at least 5.

The following strengthening of Theorem 8.2 describes graphs that satisfy (ii)
more precisely. A cobipartite graph G is the complement of bipartite graph, and
cobipartition of G is its vertex partition (X,Y ) such that X and Y are cliques. A
graph is peculiar if it can be obtained as follows: take three, pairwise vertex-disjoint,
cobipartite graphs (A1, B1), (A2, B2), (A3, B3) such that each of them has at least
one pair of nonadjacent vertices; add all edges between every two of them; then take
three cliques K1,K2,K3 that are pairwise disjoint and disjoint from the Ai’s and
Bi’s; add all the edges between Ki and Aj ∪ Bj for j 6= i; there is no other edge in
the graph.

Theorem 8.3 (Chvátal and Sbihi [15]) A claw-free Berge graph either has a
clique cutset or it is elementary or peculiar.

Maffray and Reed [93] further strengthen Theorem 8.3 by giving complete de-
scription of the structure of elementary graphs.

An edge is flat if it does not lie in a triangle. Let xy be a flat edge of a graph
G and let B be a cobipartite graph, disjoin from G, with cobipartition (X,Y ) such
that there is at least one edge between X and Y in B. Let G′ be the graph obtained
from G \ {x, y} and B by adding all possible edges between X and N(x) \ {y} and
between Y and N(y)\{x}. We say that G′ is obtained from G by augmenting along
xy with augment B.

Now let x1y1, . . . , xhyh be pairwise non-incident flat edges ofG, and letB1, . . . , Bh

be pairwise disjoint cobipartite graphs, that are also disjoint from G, with cobipar-
titions (X1, Y1), . . . , (Xh, Yh). Let G

′ be the graph obtained from G by augmenting
respectively each edge xiyi with augment Bi. Graph G′ is called an augmentation
of G.

A line graph of a graph G, denoted by L(G), is a graph whose vertices are edges
of G, and two vertices of L(G) are adjacent if and only if the corresponding edges
of G have a common vertex.

Theorem 8.4 (Maffray and Reed [93]) G is elementary if and only if G is an
augmentation of a line graph of bipartite multigraph.

Theorem 8.3 and Theorem 8.4 yield a new proof of the perfection of claw-free
Berge graphs: by directly showing that peculiar graphs are perfect, using the above
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structural characterization of elementary graphs to show directly that they are per-
fect, and the fact that composing along clique cutsets preserves perfection. We now
show that Theorems 8.3 and 8.4 in fact imply the following decomposition theorem
for claw-free Berge graphs.

Corollary 8.5 If G is a connected claw-free Berge graph, then either G has a clique
cutset, a 1-join (whose one side is a homogeneous set that is a cobipartite graph) or
a 2-join (whose one side is a homogeneous pair of cliques), or G is cobipartite or a
line graph of a bipartite multigraph.

It is easy to see that peculiar graphs have a 1-join whose one side is in fact a
homogeneous set that induces a cobipartite graph. Let G be a connected claw-free
graph with flat edge xy, and let G′ be an augmentation of G along xy with augment
B with cobipartition (X,Y ). Let Nx = N(x) \ {y} and Ny = N(y) \ {x}. We first
observe that since G is claw-free, it follows that both Nx and Ny are cliques. If
V (G) = N [x] then G′ is a cobipartite graph. In particular, a cobipartite graph itself
can be viewed as an augmentation of the line graph of a bipartite graph consisting of
just two adjacent vertices. If Ny = ∅ and V (G)\N [x] 6= ∅ then Nx is a clique cutset.
Let us now assume that G′ is not cobipartite, G′ 6= G, and that G′ does not have a
clique cutset. Then it follows that (X ∪ Y, V (G) \ {x, y}, X, Y, ∅, Nx, Ny, ∅) is a split
of a 2-join. Given a 2-join of a graph H with split (X1, X2, A1, B1, ∅, A2, B2, ∅), let
us construct the blocks of decomposition by this 2-join as follows: block H1 (resp
H2) is the graph obtained from H[X1] (resp. H[X2]) by adding an edge a2b2 (resp.
a1b1), all edges between a2 and A1 (resp. a1 and A2), and all edges between b2 and
B1 (resp. b1 and B2). We observe that augmenting along a flat edge is the reverse of
decomposing along a 2-join with such construction of the blocks of decomposition.

Given a graph G we say that the two 2-joins (X1, X2) and (Y1, Y2) of G are
non-crossing if X1 ⊆ Y1 or Y1 ⊆ X1. Theorem 8.4 in fact shows that connected
elementary graphs can be decomposed by a sequence of non-crossing 2-joins into
cobipartite graphs and a line graph of a bipartite multigraph. Furthermore, if the
graph G contains a line graph of a bipartite multigraph H (and H is a maximal
such graph in G), then at each step of the decomposition of G a cobipartite graph
is split off from the skeleton of H. Moreover, it is shown in [93] how to efficiently
find such a sequence of 2-joins.

Minty [98] (corrected by Nakamura and Tamura [99]) showed that there is a
polynomial algorithm to find a stable set of maximum weight in a claw-free graph
by generalizing the algorithm of Edmonds [67, 68] for finding a maximum weighted
matching in a graph. The problems of finding a largest clique and a minimum
coloring are both NP-hard for claw-free graphs [83] (finding α in a triangle-free
graph is NP-hard, and hence so is ω in a claw-free graph; edge-coloring on general
graphs can be reduced to vertex coloring on claw-free graphs and hence the HP-
hardness of that problem).

Hsu and Nemhauser [84] gave a combinatorial polynomial time algorithm which
finds a maximum weighted clique and a minimum coloring of claw-free perfect
graphs. Note that finding a maximum weighted clique in a claw-free perfect graph
follows easily from the fact that the neighborhood of any vertex in such a graph
is cobipartite. Li and Zang [88] gave a combinatorial polynomial time algorithm
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which finds a minimum weighted coloring of claw-free perfect graphs and is based
on Theorems 8.3 and 8.4.

Chudnovsky and Seymour, in a series of papers [30, 31, 32, 33, 34, 35, 36],
extend the above structural characterization of claw-free Berge graphs, to claw-free
graphs in general. They show how all claw-free graphs can be obtained through
explicit constructions starting from a few basic classes that can all be described
explicitly. The full structural characterization they obtain is too complicated to
explain. Here we state the decomposition theorem they obtain in [33] and then
use in [34] for describing the construction. Basic claw-free graphs consist of seven
subclasses, some of which are line graphs (of multigraphs), induced subgraphs of
icosahedron, circular interval graphs and antiprismatic graphs (claw-free graphs in
which every four vertices induce a subgraph with at least two edges). Antiprismatic
graphs are further studied in [30] and [31]. We state the decomposition theorem in
a weakened form and then explain the strong form actually obtained in [33].

Theorem 8.6 (Chudnovsky and Seymour [33]) A connected claw-free graph is
either basic claw-free or it has a 1-join, 2-join, M-join or 6-join.

The decomposition theorem in [33] is stronger than the statement we gave above
in two ways of key importance for being able to reverse the decomposition into a
construction. First, the general joins used in the decomposition theorem in [33]
have a particular structure, some of which is directly implied by the fact that the
graph is assumed to be connected claw-free, but some is not. For example the 1-
joins used in [33] have the following property: if neither side of the split of a 1-join
is a homogeneous set then both special sets are cliques (this follows from being
connected claw-free), and otherwise at least one of the sides is a homogeneous set
and in this case at least one of the two possible homogeneous sets is a clique (note
that this is not directly implied by being claw-free when both sides are homogeneous
sets). For the 2-join the requirement is that at least one side has special sets that
are cliques, and if neither side is a homogeneous pair then all special sets must be
cliques. For the M-join, either one side is a homogeneous pair of cliques (that are
neither complete nor anticomplete to each other) or all special sets are cliques. For
the 6-join, all special sets are cliques and the two sides consist only of special sets.

The second important strengthening of Theorem 8.6 is that in [33] the decom-
position theorem is actually proved for claw-free trigraphs. A trigraph is an object
that generalizes a graph: in a graph every pair of vertices is either adjacent or non-
adjacent, and in a trigraph every pair of vertices is either adjacent, or nonadajacent
or semi-adjacent. A general join with split (X1, X2) in a trigraph has exactly the
same requirements for adjacent and nonadjacent pairs of vertices from different sides
of the split as in the graph version. In other words, if a pair of vertices are semi-
adjacent they must both belong to the same side of the split. The decomposition
theorem for claw-free trigraphs is used to strengthen the structure of needed general
2-joins to the point that decompositions can be reversed into compositions.

It is interesting to observe that out of all types of general 2-joins, the only one
that does not appear in this decomposition theorem is the N-join. Here is why.
Suppose that G is a claw-free graph that has an N-join but does not have any of
the cutsets described in Theorem 8.6. Then it is easy to see that G must have a
clique cutset S such that V (G) can be partitioned into sets S, V1, V2 with |Vi| ≥ 2,
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for i = 1, 2. If G has such a clique cutset, then (as shown in [33]) it follows that
G must be a linear interval graph, i.e. one of the basic graphs (since every linear
interval graph is also a circular interval graph).

Let us point out that the NP-hardness of the coloring problem and the maximum
clique problem on claw-free graphs stems from the NP-hardness of these problems
on the basic subclasses. For example, coloring line graphs is NP-hard, and finding
a maximum clique in the class of graphs with no stable set of size 3 (a subclass of
antiprismatic graphs) is already NP-hard. On the other hand, the chromatic number
of a claw-free graph is bounded by the function of the size of its largest clique: it is
easy to see that for a claw-free graph G, χ(G) ≤ ω(G)2, and that this is not far from
being best possible since every graph with no stable set of size 3 is claw-free. One
consequence of the structure theory for claw-free graphs is the following boundedness
of the chromatic number for claw-free graphs that do contain a stable set of size 3.

Theorem 8.7 (Chudnovsky and Seymour [36]) If G is a connected claw-free
graph with α(G) ≥ 3, then χ(G) ≤ 2ω(G) (and this is asymptotically best possible).

8.3 Bull-free graphs

A bull is a graph with five vertices a, b, c, d, e and five edges ab, bc, cd, be, ce. Bull-
free graphs cannot contain 3PC(∆, ·)’s, the only 3PC(∆,∆)’s they can have are C̄6’s
(i.e. the complements of holes of length 6), and the only wheels they can have are
triangle-free wheels, universal wheels, fanned wheels with 2 short sectors, and wheels
whose rim is a 5-hole and whose centre has 4 neighbors on the rim.

The study of bull-free graphs also started in the context of perfect graphs. First
Chvátal and Sbihi [39] proved that bull-free Berge graphs are perfect by obtaining
the following decomposition theorem.

Theorem 8.8 (Chvátal and Sbihi [39]) A connected bull-free Berge graph is ei-
ther bipartite or cobipartite, or it has a homogeneous pair or a star cutset in the
graph or its complement.

Since bipartite and cobipartite graphs are perfect and minimal imperfect graphs
cannot have homogeneous pairs [39], nor star cutsets [38], nor star cutsets in the
complement (which follows from the Perfect Graph Theorem: a graph is perfect if
and only if its complement is perfect [89]), it follows that bull-free Berge graphs
must be perfect.

Reed and Sbihi [107] showed how bull-free perfect graphs can be recognized in
polynomial time by decomposing them with homogeneous sets and finding vertices
whose removal does not change whether the graph is Berge or not, and hence avoiding
decomposition by star cutsets.

De Figueiredo and Maffray [63] give a combinatorial strongly polynomial time
algorithm for solving the maximum weighted clique problem on bull-free perfect
graphs. Since this class is self-complimentary, this algorithm implies combinatorial
polynomial time algorithms for maximum weighted stable set problem, minimum
weighted coloring problem and minimum weighted clique covering problem. Their
algorithm is based on the following decomposition theorem. A graph is weakly
triangulated if it is (hole, antihole)-free. A graph is transitively orientable if it admits
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a transitive orientation, i.e. an orientation of its edges with no circuit and with no
P3 abc with the orientation ~ab and ~bc. Such graphs are also called comparability
graphs.

Theorem 8.9 (De Figueiredo and Maffray [63]) A connected bull-free Berge
graph is either weakly triangulated, transitively orientable, complement of a tran-
sitively orientable graph, or it has a homogeneous set or a homogeneous pair.

A maximum weighted clique of a weakly triangulated graph can be found in
strongly polynomial time by the algorithm in [81], of a transitively orientable graph
by the algorithm in [82], and of the complement of a transitively orientable graph
by the algorithm in [8].

The complete structural characterization of bull-free graphs in general is done by
Chudnovsky in a series of papers [18, 19, 20, 21]. This characterization is too difficult
to explain precisely here, but we give some flavor of it. First let us consider some
examples of bull-free graphs. Triangle-free graphs are clearly bull-free, and since a
bull is a self-complementary structure, so are their complements. Note that from
these two classes of graphs it follows that the maximum clique problem, maximum
stable set problem and the vertex coloring problem are all NP-hard for bull-free
graphs. Another example of a bull-free graph is an ordered split graph: a graph G

whose vertex set is a union of a clique {k1, . . . , kn} and a stable set {s1, . . . , sn},
and si is adjacent to kj if and only if i + j ≤ n + 1. A larger bull-free graph
can be created from smaller ones using the operation of substitution: input are two
bull-free graphs G1 and G2 with disjoint vertex sets, and vertex v ∈ V (G1); output
is a new graph G whose vertex set is V (G1) ∪ V (G2) \ {v} and whose edge set
is E(G1 \ {v}) ∪ E(G2) ∪ {xy : x ∈ V (G1) \ {v}, y ∈ V (G2), and xv ∈ E(G1)}.
We observe that this composition operation is the reverse of the homogeneous set
decomposition.

Chudnovsky’s construction of all bull-free graphs starts from three explicitly
constructed classes of basic bull-free graphs: T0, T1 and T2. T0 is a class of graphs with
few nodes, the graphs in T1 are built from a triangle-free graph F and a collection of
disjoint cliques with prescribed attachments in F (so triangle-free graphs are in this
class, and also ordered split graphs), and T2 generalizes graphs G that have a pair
uv of vertices, so that uv is dominating both in G and Ḡ. Furthermore, each graph
G in T1 ∪ T2 comes with a list LG of “expandable edges”. Chudnovsky shows that
every bull-free graph that is not obtained by substitution from smaller ones, can
be constructed from a basic bull-free graph by expanding the edges in LG (where
edge expansion is an operation corresponding to “reversing the homogeneous pair
decomposition”). To prove this result, again it was convenient to work on trigraphs,
and the first step is to obtain the following decomposition theorem for bull-free
trigraphs.

Theorem 8.10 (Chudnovsky [18, 19, 20, 21]) If G is a bull-free trigraph, then
either G or Ḡ is basic bull-free, or G has a homogeneous set or a homogeneous pair.

The fact that the theorem is proved on trigraphs makes it possible to put enough
structure on the homogeneous pairs actually needed in the decomposition to allow
for the reversal of the decomposition into a composition.
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Recall that the way homogeneous sets and homogeneous pairs are defined for
trigraphs, is the same as for graphs when it comes to adjacent and nonadjacent
pairs that go across the split, the semi-adjacent pairs are only allowed to be fully
contained in a side of a split. So in some sense the above decomposition theorem is
saying that there is a sequence of non-crossing decompositions by homogeneous sets
and homogeneous pairs that can break the graph down to a basic graph. We can
see this by thinking of semi-adjacent edges in the trigraph as marker edges used in
the construction of blocks of decomposition by homogeneous pairs.

One consequence of Chudnovsky’s characterization of bull-free graphs is that the
Erdős-Hajnal conjecture holds for them.

Conjecture 8.11 (Erdős and Hajnal [69]) For every graph H, there exists f(H) >
0, such that if G is H-free, then G contains either a clique or a stable set of size at
least |V (G)|f(H)

Theorem 8.12 (Chudnovsky and Safra [27]) If G is a bull-free graph, then G

contains a stable set or a clique of size at least |V (G)|
1

4 .

The proof of Theorem 8.12 is actually based on the following decomposition
theorem.

Theorem 8.13 (Chudnovsky [18, 27]) If G is a bull-free graph that contains a
hole H of length at least 5, and vertices c, a ∈ V (G) \ V (H) such that c is complete
to V (H) and a is anticomplete to V (H), then G has a homogeneous set.

The structure theorem for bull-free graphs is also used to derive a structure the-
orem for bull-free perfect graphs [25], which is then used in [102] to derive combina-
torial polynomial time algorithm for maximum weighted clique problem on bull-free
perfect graphs that is a bit faster than the algorithm in [63].

9 Excluding some wheels and some 3-path-configurations

The class of regular bipartite graphs and the class of balanceable bipartite graphs,
that generalizes it, were discussed in Section 4. As we have seen, the only Truemper
configurations that balanceable bipartite graphs can have are bipartite wheels whose
center has an even number of neighbors on the rim, and 3PC(u, v)’s where u and
v are on the same side of the bipartition. In this section we discuss three more
well studied classes of graphs where some 3-path-configurations and some wheels
are excluded, but enough is left in to make them structurally quite complex, namely
the classes of even-hole-free graphs, odd-hole-free graphs and perfect graphs.

9.1 Even-hole-free graphs

The class of even-hole-free graphs is structurally quite similar to the class of
perfect graphs, which was the key initial motivation for their study. The first major
structural study of even-hole-free graphs was done by Conforti, Cornuéjols, Kapoor
and Vušković in [45] and [46]. They were focused on showing that even-hole-free
graphs can be recognized in polynomial time (a problem that at that time was not
even known to be in NP), and their primary motivation was to develop techniques
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which can then be used in the study of perfect graphs. In [45] a decomposition
theorem is obtained for even-hole-free graphs, based on which the first known poly-
nomial time recognition algorithm for even-hole-free graphs is constructed in [46].
This research kick-started a number of other studies of even-hole-free graphs which
we survey in this section. A more detailed survey of even-hole-free graphs is given
in [125].

The class of even-hole-free graphs is also of independent interest due to its re-
lationship to β-perfect graphs introduced by Markossian, Gasparian and Reed [96].
For a graph G, let δ(G) be the minimum degree of a vertex in G. Consider the
following total order on V (G): order the vertices by repeatedly removing a vertex of
minimum degree in the subgraph of vertices not yet chosen and placing it after all
the remaining vertices but before all the vertices already removed. Coloring greedily
on this order gives the upper bound χ(G) ≤ β(G), where β(G) =max{δ(G′)+1 : G′

is an induced subgraph of G}. A graph is β-perfect if for each induced subgraph H

of G, χ(H) = β(H). It is easy to see that β-perfect graphs belong to the class of
even-hole-free graphs, and that this containment is proper.

The essence of even-hole-free graphs is actually captured by their generaliza-
tion to signed graphs. A graph is odd-signable if there exists an assignment of 0, 1
weights to its edges that makes every chordless cycle of odd weight. We say that
a wheel (H,x) is even if x has an even number of neighbors on H. The following
characterization of odd-signable graphs can be easily derived from Theorem 2.1.

Theorem 9.1 ([43]) A graph is odd-signable if and only if it does not contain an
even wheel, a 3PC(·, ·) nor a 3PC(∆,∆).

All decomposition theorems for even-hole-free graphs which we now describe are
in fact proved for 4-hole-free odd-signable graphs, and the above characterization of
odd-signable graphs is repeatedly used in the proofs.

A 2-join with split (X1, X2, A1, B1, ∅, A2, B2, ∅) is connected if for i = 1, 2, G[Xi]
contains a path whose one endnode is in Ai and the other in Bi. It is a path 2-join
if for some i ∈ {1, 2}, G[Xi] is a chordless path whose one endnode is in Ai and the
other in Bi. A non-path 2-join is a 2-join that is not a path 2-join. A graph is a
clique tree if each of its maximal 2-connected components is a clique. A graph is an
extended clique tree if it can be obtained from a clique tree by adding at most two
vertices.

Theorem 9.2 (Conforti, Cornuéjols, Kapoor and Vušković [45]) A connected
even-hole-free graph is either an extended clique tree, or it has a k-star cutset for
k ≤ 3 or a connected non-path 2-join.

This theorem was strong enough to be used in the construction of a polyno-
mial time recognition algorithm for even-hole-free graphs in [46], but even at that
time it was suspected that a stronger decomposition theorem was possible. The
strengthening of Theorem 9.2 was eventually given in [62].

Theorem 9.3 (da Silva and Vušković [62]) A connected even-hole-free graph is
either an extended clique tree, or it has a star cutset or a connected non-path 2-join.
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We observe that in the decomposition theorems in [45] and [62], the basic graphs
are defined in a more specific way, but for the purposes of the algorithms the state-
ments of Theorems 9.2 and 9.3 suffice. As in the case of the decomposition based
recognition algorithm for balanced bipartite graphs, described in Section 4.2, the
problem in using the above theorems for constructing a recognition algorithm for
even-hole-free graphs are the star cutsets. For 2-joins it is possible to construct
the blocks of decomposition that are class-preserving for the class of even-hole-free
graphs (by replacing a side of a 2-join by a path of appropriate length, which clarifies
the usefulness of connected non-path 2-joins in the above decomposition theorems),
and lead to a polynomial decomposition tree. To use the decomposition by star
cutsets, one first needs to clean the graph (as described in Section 3). The decom-
position based recognition algorithm for even-hole-free graphs in [46] is of complexity
of about O(n40). In [24] an O(n31) recognition algorithm for even-hole-free graphs
is given, that first cleans the graph and then directly looks for an even hole (using
the shortest-paths detector technique described in Section 2.1). In [62] an O(n19)
decomposition based algorithm is obtained. Finally, by using Theorem 9.3 Chang
and Lu [11] obtain an O(n11) recognition algorithm for even-hole-free graphs. They
improve the complexity by introducing a new idea of a “tracker” that allows for fewer
graphs that need to be recursively decomposed by star cutsets, and they improve the
complexity of the cleaning procedure by first looking for certain structures, using
the three-in-a-tree algorithms from [29], before applying the cleaning. We observe
that detecting whether a graph contains a 3PC(·, ·) or a 3PC(∆,∆) can be done in
O(n35) time [23]. The high complexity of all these algorithms is due to the cleaning
procedure.

The following intermediate result is used as one of the steps in the proof of
Theorem 9.3, and as we shall see later, it is of an independent interest. A diamond
is the graph obtained from a clique on 4 nodes by removing an edge. A bisimplicial
cutset is a node cutset that either induces a clique or two cliques with exactly one
common node. Note that a bisimplicial cutset is a very special type of a star cutset.

Theorem 9.4 (Kloks, Müller and Vušković [85]) A connected (even-hole,
diamond)-free graph is either an extended clique tree, or it has a bisimplicial cutset
or a connected non-path 2-join.

We now survey known results related to combinatorial optimization on even-hole-
free graphs. In Section 10 we shall see that 2-joins can be used in a decomposition
based optimization algorithm, but it is not clear how to use star cutsets. The decom-
position by star cutsets can, on the other hand, be used to obtain local structural
properties that can then be used in algorithms.

The complexities of finding a maximum independent set and an optimal coloring
are not known for even-hole-free graphs. One can find a maximum clique of an
even-hole-free graph in polynomial time, since as observed by Farber [70], 4-hole-
free graphs haveO(n2) maximal cliques and hence one can list them all in polynomial
time. The following structural characterization of even-hole-free graphs leads to a
faster algorithm for computing a maximum clique in an even-hole-free graph.
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Theorem 9.5 (da Silva and Vušković [61]) Every even-hole-free graph has a node
whose neighborhood is triangulated.

This result follows from the fact that universal wheels in even-hole-free graphs
can be decomposed in a particular way by star cutsets. For any node x in a graph
G, a maximal clique belongs to G[N [x]] or G \ {x}. Therefore Theorem 9.5 reduces
the problem of finding a maximum clique in an even-hole-free graph to the prob-
lem of finding a maximum clique in a triangulated graph, which as we have seen
in Section 3.1 can be done efficiently. Observe that in order to find a maximum
clique, it is not necessary that we know that the input graph is even-hole-free. The
algorithm proceeds by attempting to construct an ordering of vertices x1, . . . , xn
of the input graph G such that, for every i = 1, . . . , n, the neighborhood of xi in
Gi = G[{xi, . . . xn}] is triangulated. If it cannot complete the sequence, then it
follows from Theorem 9.5 that the input graph is not even-hole-free. Otherwise, we
get a sequence of triangulated graphs G1, . . . , Gn such that every maximal clique of
G belongs to exactly one of them. It follows that there are at most n+2m maximal
cliques in an even-hole-free graph and all of them can be generated in O(n2m) time
(and hence in the same time a maximum weighted clique in a weighted even-hole-free
graph can be found). In [2] it is shown how LexBFS can be used to find the above
ordering of vertices, reducing the complexity of finding a maximum weighted clique
to O(nm). Again, the algorithms discussed are robust in the sense that they either
correctly compute the desired clique or they correctly identify the input graph as
not being even-hole-free.

Here is another property of even-hole-free graphs that shows that this class is
χ-bounded (i.e. the chromatic number is bounded by a function of the size of a
largest clique). A bisimplicial vertex is a vertex whose set of neighbors induces a
graph that is a union of two cliques.

Theorem 9.6 (Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1])
Every even-hole-free graph has a bisimplicial vertex.

It is interesting to observe that Theorem 9.6 is also obtained using decomposition,
although in [1] not all even-hole-free graphs are decomposed, but enough structures
are decomposed using special double star cutsets (star cutsets and cutsets that
become double star cutsets after some edges are added) to obtain the desired result.
It clearly implies the following corollary.

Corollary 9.7 ([1]) If G is even-hole-free then χ(G) ≤ 2ω(G)− 1.

Recall that β-perfect graphs are a subclass of even-hole-free graphs that can be
efficiently colored, by coloring greedily on a particular easily constructable ordering
of vertices. Unfortunately it is not known whether β-perfect graphs can be recog-
nized in polynomial time. In [96] it is shown that (even-hole, diamond, cap)-free
graphs are β-perfect, and in [64] it is shown that (even-hole, diamond, cap-on-6-
vertices)-free graphs are β-perfect. These results are further generalized in [85]
where it is shown that (even-hole, diamond)-free graphs are β-perfect, and hence
can be both recognized and colored in polynomial time. This result follows from the
following property of (even-hole, diamond)-free graphs, that is obtained by using
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Theorem 9.4. A vertex is simplicial if its neighborhood set induces a clique, and it
is a simplicial extreme if it is either simplicial or of degree 2.

Theorem 9.8 (Kloks, Müller and Vušković [85]) Every (even-hole, diamond)-
free graph has a simplicial extreme.

Theorem 9.8 and the following property of minimal β-imperfect graphs, imply
that (even-hole, diamond)-free graphs are β-perfect.

Lemma 9.9 (Markossian, Gasparian and Reed [96]) A minimal β-imperfect
graph that is not an even hole, contains no simplicial extreme.

Corollary 9.10 ([85]) Every (even-hole, diamond)-free graph is β-perfect.

Note that the fact that (even-hole, diamond)-free graphs have simplicial extremes
implies that for such graphs G, χ(G) ≤ ω(G) + 1.

9.2 Perfect graphs and odd-hole-free graphs

A graph G is perfect if for every induced subgraph H of G, χ(H) = ω(H). In
1961 Berge [5] made a conjecture that characterizes perfect graphs in terms of ex-
cluded induced subgraphs in the following way: a graph is perfect if and only if it
does not contain an odd hole nor an odd antihole (where an antihole is a comple-
ment of a hole). The graphs that do not contain an odd hole nor an odd antihole
are known as Berge graphs. It is easy to see that perfect graphs must be Berge, so
the essence of the conjecture is to show that Berge graphs must be perfect. This
famous conjecture, known as the Strong Perfect Graph Conjecture (SPGC), sparked
an enormous amount of diverse research until it was finally proved in 2002 by Chud-
novsky, Robertson, Seymour and Thomas [26], and is now known as the Strong
Perfect Graph Theorem.

The approach that eventually worked for proving the SPGC is the decomposition
method. This approach entails proving a decomposition theorem for Berge graphs,
in such a way that the undecomposable (basic) graphs are simple enough so that
the SPGC can be proved directly for them, and the cutsets used have the property
that no minimum counter-example to the conjecture can have them. This approach
was used to prove the SPGC for a number of subclasses of graphs (i-triangulated
graphs using clique cutsets [72], weakly triangulated graphs using star cutsets [78],
bull-free graphs using homogeneous pairs and star cutsets [14]), but the one subclass
that came closest to revealing the structure of Berge graphs in general is the class of
4-hole-free Berge graphs. In [48] Conforti, Cornuéjols and Vušković prove the SPGC
for 4-hole-free graphs by the following decomposition theorem, and the fact that it
was already known that no minimal imperfect graph can have a star cutset [38], and
that if a a minimal imperfect graph has a 2-join then it must be an odd hole [56].

Theorem 9.11 (Conforti, Cornuéjols and Vušković [48]) A 4-hole-free Berge
graph is either bipartite or line graph of a bipartite graph, or it has a star cutset or
a connected non-path 2-join.
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Before we describe the decomposition theorem for Berge graphs in general, we
state the decomposition theorem for odd-hole-free graphs (a superclass of Berge
graphs), that also preceded the work in [26].

Theorem 9.12 (Conforti, Cornuéjols and Vušković [49]) An odd-hole-free graph
is either bipartite, line graph of a bipartite graph or complement of a line graph of a
bipartite graph, or it has a double star cutset or a connected non-path 2-join.

We observe that, as in the study of even-hole-free graphs, a convenient setting
for the study of odd-hole-free graphs is their generalization to signed graphs. A
graph is even-signable if there exists an assignment of 0, 1 weights to its edges that
makes every triangle of odd weight and every hole of even weight. An odd wheel is
a wheel that induces an odd number of triangles. The following characterization of
even-signable graphs can easily be derived from Theorem 2.1.

Theorem 9.13 ([43]) A graph is even-signable if and only if it does not contain
an odd wheel nor a 3PC(∆, ·).

We now describe the decomposition theorems for Berge graphs, by first intro-
ducing the specific cutsets used and the basic graphs.

A 2-join with split (X1, X2, A1, B1, ∅, A2, B2, ∅) is a P3-path 2-join if for some
i ∈ {1, 2}, G[Xi] induces a path on three nodes whose one endnode is in Ai and the
other in Bi. A non-P3-path 2-join is a 2-join that is not a P3-path 2-join.

The homogeneous pair as defined in Section 3.2 was first introduced by Chvátal
and Sbihi in [39], where it was also shown that no minimal imperfect graph has
a homogeneous pair. The definition that we give here is a slight variation that is
used in [26]. A homogeneous pair is a partition of V (G) into six non-empty sets
(A,B,C,D,E, F ) such that:

• every vertex in A has a neighbor in B and a non-neighbor in B, and vice versa;

• the pairs (C,A), (A,F ), (F,B), (B,D) are complete;

• the pairs (D,A), (A,E), (E,B), (B,C) are anticomplete.

If S is a skew cutset in a graph G, then (S, V (G) \ S) is also called a skew par-
tition of G. A balanced skew partition is a skew partition (S, T ) with the additional
property that every induced path of length at least 2 in G with ends in S and interior
in T has even length, and every induced path of length at least 2 in G with ends
in T and interior in S has even length. If (S, T ) is a balanced skew partition we
say that the skew cutset S is balanced. Balanced skew partitions were first defined
in [26] where it was also shown that no minimum counter-example to the strong
perfect graph conjecture admits a balanced skew partition.

A double split graph is a graph G constructed as follows. Letm,n ≥ 2 be integers.
Let A = {a1, . . . , am}, B = {b1, . . . , bm}, C = {c1, . . . , cn}, D = {d1, . . . , dn} be four
disjoint sets. Let G have vertex set A ∪B ∪ C ∪D and edges in such a way that:

• ai is adjacent to bi for 1 ≤ i ≤ m. There are no edges between {ai, bi} and
{ai′ , bi′} for 1 ≤ i < i′ ≤ m;
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• cj is non-adjacent to dj for 1 ≤ j ≤ n. There are all four edges between {cj , dj}
and {cj′ , bj′} for 1 ≤ j < j′ ≤ n;

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ m,
1 ≤ j ≤ n and these two edges are disjoint.

Note that C ∪ D is a non-balanced skew cutset of G and that G is a double
split graph. Note that in a double split graph, vertices in A ∪ B all have degree
n + 1 and vertices in C ∪ D all have degree 2n + m − 2. Since n ≥ 2,m ≥ 2
implies 2n− 2 +m > 1 + n, it is clear that given a double split graph the partition
(A∪B,C ∪D) is unique. Hence, we call matching edges the edges that have an end
in A and an end in B.

A graph is said to be basic if one of G,G is either a bipartite graph, the line-graph
of a bipartite graph or a double split graph.

The following theorem was first conjectured in a slightly different form in [48].
A corollary of it is the Strong Perfect Graph Theorem.

Theorem 9.14 (Chudnovsky, Robertson, Seymour and Thomas, [26]) Let G
be a Berge graph. Then either G is basic or G has a homogeneous pair or a balanced
skew partition, or one of G,G has a connected non-P3-path 2-join.

The theorem that we state now is due to Chudnovsky who proved it from scratch,
that is without assuming Theorem 9.14. Her proof uses the notion of a trigraph.
The theorem shows that homogeneous pairs are not necessary to decompose Berge
graphs. Thus it is a result stronger than Theorem 9.14.

Theorem 9.15 (Chudnovsky, [17, 16]) Let G be a Berge graph. Then either
G is basic, or one of G,G has a connected non-P3-path 2-join or a balanced skew
partition.

In [22] Chudnovsky, Cornuéjols, Liu, Seymour and Vušković show that Berge
graphs (and hence perfect graphs) can be recognized in polynomial time. As ex-
pected, cleaning (that, recall from Section 3, was developed in order to be able to
use cutsets such as star cutsets in decomposition based recognition algorithms) was
the key to the work in [22]. What was surprising, as Chudnovsky and Seymour
observed, was that once the cleaning is performed, one does not need the decom-
position based algorithm, one can simply look for the odd hole directly (using the
shortest-paths detector technique described in Section 2.1). In [22] two recogni-
tion algorithms for Berge graphs are given: an O(n9) Chudnovsky/Seymour style
algorithm that uses the direct method, and an O(n18) decomposition based algo-
rithm (that uses Theorem 9.12). Whether odd-hole-free graphs can be recognized
in polynomial time remains an open problem.

Finding a maximum clique, a maximum independent set and an optimal color-
ing can all be done in polynomial time for perfect graphs. This result of Grötschel,
Lovász and Schrijver uses the ellipsoid method and a polynomial time separation
algorithm for a certain class of positive semidefinite matrices related to Lovász’s up-
per bound on the Shannon capacity of a graph [90]. The question remains whether
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these optimization problems can be solved for perfect graphs by purely combinato-
rial polynomial time algorithms, avoiding the numerical instability of the ellipsoid
method. Some partial results in this direction are described in Section 10. We ob-
serve that for a number of classes we have seen so far, the decomposition theorem
is used to prove the existence of a vertex with a particular neighborhood, which is
then used to obtain some optimization algorithms. Such a result is not yet known
for perfect graphs.

The complexities of finding a maximum independent set and an optimal coloring
for odd-hole-free graphs are not known. Finding a maximum clique is NP-hard for
odd-hole-free graphs (follows from 2-subdivisions [105]: if G′ is the graph obtained
from G by subdividing every edge twice then α(G′) = α(G) + |E(G)|; also all holes
of G′ are of length at least 9, and hence G′ does not contain a hole of length at least
5).

10 Combinatorial optimization with 1-joins and 2-joins

In this section we consider how decompositions with 1-joins and 2-joins can be
used for construction of different optimization algorithms.

10.1 1-Joins

1-Join decompositions (also known as split decompositions) were used for circle
graph recognition [71, 116] and parity graph recognition [40, 60]. Cunningham [58]
showed how 1-join decompositions can be used for the independent set problem,
and Cicerone and Di Stefano [40] showed how this algorithm can be applied to
parity graphs. Rao [106] shows how to use 1-join decompositions for the clique and
coloring problems. To describe these results we first need to describe the blocks of
decomposition by a 1-join.

Let (X1, X2, A1, ∅, ∅, A2, ∅, ∅) be a 1-join of a graphG. The block of decomposition
by a 1-join are graphs G1 = G[X1∪{m2}] (where m2 is any vertex of A2) and G2 =
G[X2∪{m1}] (where m1 is any vertex of A1). It turns out that if a graph has a 1-join
then it has an extreme 1-join, i.e. a 1-join where one of the blocks of decomposition
does not have a 1-join. So one can construct an extreme decomposition tree by
1-joins, similarly to the extreme decomposition tree by clique cutsets described in
Section 3.1. Dahlhaus shows that this decomposition tree can in fact be constructed
in linear time ([60], see also [13]). (The first algorithm for decomposing a graph
by 1-joins, of complexity O(n3), was given in [58], this was later improved to an
O(nm) algorithm in [71], and to an O(n2) algorithm in [91]). The fact that one can
compute an extreme decomposition tree by 1-joins is quite useful when constructing
optimization algorithms.

To solve the independent set, clique and coloring problems using 1-join de-
composition we need to move to the weighted versions of these problems. Let
w : V (G) −→ N be a weight function for a graph G. When H is an induced
subgraph of G, w(H) denotes the sum of the weights of vertices in H. By αw(G) we
denote the weight of a maximum weighted independent set of G, and by ωw(G) we
denote the weight of a maximum weighted clique of G. From the discussion above
and the following lemmas it is easy to see how to obtain polynomial time algorithms
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to solve the weighted independent set and the weighted clique problems for graphs
that are decomposable by 1-joins into basic graphs for which these problems can be
solved in polynomial time. Similarly, one can also solve the weighted chromatic num-
ber problem [106]. For a ∈ N , denote by w|v→a the function on domain V (G)∪ {v}
such that w|v→a(v) = a and w|v→a(u) = w(u) for all u ∈ V (G) \ {v}.

Lemma 10.1 ([58]) Let a = αw(G2 \ NG2
[m1]) and a′ = αw(G2 \ m1). Then

αw(G) = αw|
m2→a′−a

(G1) + a.

Lemma 10.2 ([106]) Let a = ωw(G2[NG2
[m1]). Then ωw(G) = max{ωw(G2 \

m1), ωw|m2→a
(G1)}.

10.2 2-Joins

To use 2-joins in a decomposition based optimization algorithm is a lot more
difficult. In [120] Trotignon and Vušković focused on developing techniques for com-
binatorial optimization with 2-joins, by considering two classes of graphs decom-
posable by 2-joins into basic graphs for which we know how to solve the respective
optimization problems in polynomial time. They give combinatorial polynomial time
algorithms for finding the size of a largest independent set in even-hole-free graphs
with no star cutset; as well as finding the size of a largest independent set, the size
of a largest clique and an optimal coloring for Berge graphs with no skew cutset, no
2-join in the complement and no homogeneous pair. The coloring algorithm can be
implemented to run in O(n7) time, and all the other ones in O(n6) time. Coloring
of Berge graphs actually follows from being able to compute the size of a largest
independent set and largest clique ([76, 77]), so these two problems are the focus of
the work in [120].

Using 2-joins in combinatorial optimization algorithms requires building blocks
of decomposition and asking at least two questions for at least one block, while for
recognition algorithms one question suffices. Applying this process recursively can
lead to an exponential blow-up even when the decomposition tree is linear in size
of the input graph. In [120] this problem is bypassed by using extreme 2-joins, i.e.
2-joins whose one block of decomposition is basic. Graphs in general do not have
extreme 2-joins, this is a special property of 2-joins in graphs with no star cutset.

Consider the following way of constructing blocks of decomposition by 2-joins.
Let (X1, X2, A1, B1, ∅, A2, B2, ∅) be a 2-join of the graph G. The blocks of decom-
position by 2-join are graphs Gk1

1 and Gk2
2 defined as follows. Gk1

1 is obtained by
replacing X2 by a marker path P2, of length k1, from a vertex a2 complete to A1, to
a vertex b2 complete to B1 (the interior of P2 has no neighbor in X1). The block Gk2

2

is obtained similarly by replacing X1 by a marker path P1 of length k2. It is easy to
see that in an even-hole-free graph or an odd-hole-free graph, all paths from a node
in Ai to a node in Bi with interior in Xi \ (Ai ∪Bi) have the same parity. So if we
are careful about the parity of the marker paths, the blocks of decomposition will
be class-preserving for the classes of even-hole-free graphs and odd-hole-free graphs.

The graph G in Figure 4 has exactly two 2-joins, one is represented with bold
lines, and the other is equivalent to it. Both of the blocks of decomposition are
isomorphic to graph H (where dotted lines represent paths of arbitrary length,
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possibly of length 0), and H has a 2-join whose edges are represented with bold
lines. So G does not have an extreme 2-join.

G H

Figure 4: A graph G with no extreme 2-join

With the above construction of blocks of decomposition by 2-joins, clearly one
needs to use non-path 2-joins in algorithms. For optimization algorithms it is es-
sential that the 2-joins used are extreme. Can these 2-joins be found efficiently in a
graph? The first algorithm for detecting 2-joins, of complexity O(n3m), was given by
Cornuéjols and Cunningham in [56]. In [12] this complexity is improved to O(n2m),
and an algorithm of the same complexity is given for detecting non-path 2-joins,
as well as an O(n3m) algorithm for detecting extreme non-path 2-joins. Note that
finding an extreme non-path 2-join reduces to finding a minimally-sided non-path
2-join.

We now give a method from [120] that can be used to solve the maximum
weighted clique problem for any class of graphs that can be decomposed with ex-
treme (non-path) 2-joins into basic graphs for which the problem can be solved
efficiently. To be able to apply arguments inductively one needs to switch to the
weighted version of the problem. Let G be a weighted graph with a weight function
w : N+ −→ V (G). Let ω(G) denote the weight of a maximum weighted clique of G.

Let G1 and G2 be the blocks of decomposition by a 2-join of G. Let us also
assume that the lengths of the marker paths are at least 3 (this is important in [120]
because there it is not just important that the parity of holes is preserved in the
blocks, but also the property of not having a star cutset). Let P1 = a1, x1, . . . , xk, b1
be the marker path of G2, where a1 is adjacent to all of A2 and b1 is adjacent to all
of B2. The weights of vertices of G2 are modified as follows:

• for every u ∈ X2, wG2
(u) = wG(u);

• wG2
(a1) = ω(G[A1]);

• wG2
(b1) = ω(G[B1]);

• wG2
(x1) = ω(G[X1])− ω(G[A1]);

• wG2
(xi) = 0, for i = 2, . . . , k.
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With such modification of weights it can be shown that ω(G) = ω(G2) [120].
Now if our 2-join is an extreme 2-join, we may assume that block G1 is undecom-
posable and hence basic in the sense that the maximum weighted clique problem
can be solved on that block efficiently. In particular, all of the weights needed to be
computed for modifying the weights of G2 as above can be computed efficiently. We
note that this method of computing a maximum clique in the case of even-hole-free
graphs (with no star cutset) is not so interesting since the algorithm described in
Section 9.1 is more efficient.

Using 2-joins to compute a maximum stable set is more difficult since stable sets
can completely overlap both sides of the 2-join. In [120] a simple class of graphs C
decomposable along extreme 2-joins into bipartite graphs and line graphs of cycles
with one chord is given for which computing a maximum stable set is NP-hard. Here
is how C is constructed. A gem-wheel is a graph made of an induced cycle of length
at least 5 together with a vertex adjacent to exactly four consecutive vertices of the
cycle. Note that a gem-wheel is a line-graph of a cycle with one chord. A flat path
of a graph G is a path of length at least 2, whose interior vertices all have degree
2 in G, and whose ends have no common neighbors outside the path. Extending a
flat path P = p1, . . . , pk of a graph means deleting the interior vertices of P and
adding three vertices x, y, z and the following edges: p1x, xy, ypk, zp1, zx, zy, zpk.
Extending a graph G means extending all paths of M, where M is a set of flat paths
of length at least 3 of G. Class C is the class of all graphs obtained by extending
2-connected bipartite graphs. From the definition, it is clear that all graphs of C
are decomposable along extreme 2-joins. One leaf of the decomposition tree is the
underlying bipartite graph, and all the others leaves are gem-wheels. The following
is shown by Naves [100], and the proof of it can be found in [120].

Theorem 10.3 (Naves [100, 120]) The problem whose instance is a graph G from
C and an integer k, and whose question is “Does G contain a stable set of size at
least k” is NP-complete.

Let CPARITY be the class of graphs in which all holes have the same parity. In
[120] it is shown how to use 2-joins to compute a maximum stable set in CPARITY .

Let G be a graph with a weight function w on the vertices and (X1, X2, A1, B1, ∅,
A2, B2, ∅) a 2-join of G. For i = 1, 2, Di = Xi \ (Ai ∪ Bi). For any graph H, α(H)
denotes the weight of a maximum weighted stable set of H. Let a = α(G[A1 ∪D1]),
b = α(G[B1 ∪D1]), c = α(G[D1]) and d = α(G[X1]). The blocks of decomposition
by a 2-join that would be useful for computing a largest stable set can be done as
follows.

A flat claw of a weighted graph G is any set {q1, q2, q3, q4} of vertices such that:

• the only edges between the qi’s are q1q2, q2q3 and q4q2;

• q1 and q3 have no common neighbor in V (G) \ {q2};

• q4 has degree 1 in G and q2 has degree 3 in G.

Define the even block G2 with respect to a 2-join X1|X2 in the following way. Keep
X2 and replace X1 by a flat claw on q1, . . . , q4 where q1 is complete to A2 and q3 is
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complete to B2. Give the following weights: w(q1) = d−b, w(q2) = c, w(q3) = d−a,
w(q4) = a+ b− d. It can be shown that all weights are in fact non-negative.

A flat vault of graph G is any set {r1, r2, r3, r4, r5, r6} of vertices such that:

• the only edges between the ri’s are such that r3, r4, r5, r6, r3 is a 4-hole;

• N(r1) = N(r5) \ {r4, r6};

• N(r2) = N(r6) \ {r3, r5};

• r1 and r2 have no common neighbors;

• r3 and r4 have degree 2 in G.

Define the odd block G2 with respect to a 2-join in the following way. Replace X1 by
a flat vault on r1, . . . , r6. Moreover r1, r5 are complete to A2 and r2, r6 are complete
to B2. Give the following weights: w(r1) = d− b, w(r2) = d− a, w(r3) = w(r4) = c,
w(r5) = w(r6) = a+ b− c− d. It can be shown that all weights are non-negative, if
c+ d ≤ a+ b holds.

By adequately choosing when to use even or odd blocks, it can be shown that
for a 2-join in a graph G in CPARITY , α(G2) = α(G).

We observe that such construction of blocks is not class-preserving, so it would
not allow for inductive use of the decomposition theorems. This problem is avoided
in [120] by building the decomposition tree in two stages. First using blocks of
decomposition constructed as we discussed at the beginning of this section (that
are class-preserving). In the second stage the decomposition tree is reprocessed to
replace marker paths by gadgets designed for even and odd blocks. This results
in the leaves of the decomposition tree that are not basic as in the decomposition
theorems used, but some extensions of these basic classes, for which it is shown that
the weighted stable set problem can be computed efficiently.

Recently this work was extended by Chudnovsky, Trotignon, Trunck and Vušković
[37] to obtain an O(n7) coloring algorithm for perfect graphs with no balanced skew-
partition, by focusing on decompositions by 2-joins, their complements and homoge-
neous pairs. Here the notion of trigraphs was quite helpful in obtaining the desired
extreme decompositions.
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[27] M. Chudnovsky and S. Safra, The Erdős-Hajnal conjecture for bull-free graphs,
Journal of Combinatorial Theory B 98 (2008), 1301-1310.

[28] M. Chudnovsky and P. Seymour, Solution of three problems of Cornuéjols,
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[55] G. Cornuéjols, Combinatorial Optimization: Packing and Covering, SIAM,
Philadelphia, PA (2001). CBMS-NSF Regional Conference Series in Applied
Mathematics 74.
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