122 research outputs found

    Limiting Performance of Conventional and Widely Linear DFT-precoded-OFDM Receivers in Wideband Frequency Selective Channels

    Get PDF
    This paper describes the limiting behavior of linear and decision feedback equalizers (DFEs) in single/multiple antenna systems employing real/complex-valued modulation alphabets. The wideband frequency selective channel is modeled using a Rayleigh fading channel model with infinite number of time domain channel taps. Using this model, we show that the considered equalizers offer a fixed post signal-to-noise-ratio (post-SNR) at the equalizer output that is close to the matched filter bound (MFB). General expressions for the post-SNR are obtained for zero-forcing (ZF) based conventional receivers as well as for the case of receivers employing widely linear (WL) processing. Simulation is used to study the bit error rate (BER) performance of both MMSE and ZF based receivers. Results show that the considered receivers advantageously exploit the rich frequency selective channel to mitigate both fading and inter-symbol-interference (ISI) while offering a performance comparable to the MFB

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Técnicas de igualização adaptativas com estimativas imperfeitas do canal para os futuros sistemas 5G

    Get PDF
    Wireless communication networks have been continuously experiencing an exponential growth since their inception. The overwhelming demand for high data rates, support of a large number of users while mitigating disruptive interference are the constant research focus and it has led to the creation of new technologies and efficient techniques. Orthogonal frequency division multiplexing (OFDM) is the most common example of a technology that has come to the fore in this past decade as it provided a simple and generally ideal platform for wireless data transmission. It’s drawback of a rather high peak-to-average power ratio (PAPR) and sensitivity to phase noise, which in turn led to the adoption of alternative techniques, such as the single carrier systems with frequency domain equalization (SC-FDE) or the multi carrier systems with code division multiple access (MC-CDMA), but the nonlinear Frequency Domain Equalizers (FDE) have been of special note due to their improved performance. From these, the Iterative Block Decision Feedback Equalizer (IB-DFE) has proven itself especially promising due to its compatibility with space diversity, MIMO systems and CDMA schemes. However, the IB-DFE requires the system to have constant knowledge of the communication channel properties, that is, to have constantly perfect Channel State Information (CSI), which is both unrealistic and impractical to implement. In this dissertation we shall design an altered IB-DFE receiver that is able to properly detect signals from SC-FDMA based transmitters, even with constantly erroneous channel states. The results shall demonstrate that the proposed equalization scheme is robust to imperfect CSI (I-CSI) situations, since its performance is constantly close to the perfect CSI case, within just a few iterations.Redes sem fios têm crescido de maneira contínua e exponencial desde a sua incepção. A tremenda exigência para altas taxas de dados e o suporte para um elevado número de utilizadores sem aumentar a interferência disruptiva originada por estes são alguns dos focos que levaram ao desenvolvimento de técnicas de compensação e novas tecnologias. “Orthogonal frequency division multiplexing” (OFDM) é um dos exemplos de tecnologias que se destacaram nesta última década, visto ter fornecido uma plataforma para transmissão de dados sem-fio eficaz e simples. O seu maior problema é a alta “peak-to-average power ratio” (PAPR) e a sua sensibilidade a ruído de fase que deram motivo à adoção de técnicas alternativas, tais como os sistemas “single carrier” com “frequency domain equalization” (SC-FDE) ou os sistemas “multi-carrier” com “code division multiple access” (MC-CDMA), mas equalizadores não lineares no domínio de frequência têm sido alvo de especial atenção devido ao seu melhor desempenho. Destes, o “iterative block decision feedback equalizer” (IB-DFE) tem-se provado especialmente promissor devido à sua compatibilidade com técnicas de diversidade no espaço, sistemas MIMO e esquemas CDMA. No entanto, IB-DFE requer que o sistema tenha constante conhecimento das propriedades dos canais usados, ou seja, necessita de ter perfeito “channel state information” (CSI) constantemente, o que é tanto irrealista como impossível de implementar. Nesta dissertação iremos projetar um recetor IB-DFE alterado de forma a conseguir detetar sinais dum transmissor baseado em tecnologia SC-FDMA, mesmo com a informação de estado de canal errada. Os resultados irão então demonstrar que o novo esquema de equalização proposto é robusto para situações de CSI imperfeito (I-CSI), visto que o seu desempenho se mantém próximo dos valores esperados para CSI perfeito, em apenas algumas iterações.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Channel Estimation in Uplink of Long Term Evolution

    Get PDF
    Long Term Evolution is considered to be the fastest spreading communication standard in the world.To live up to the increasing demands of higher data rates day by day and higher multimedia services,the existing UMTS system was further upgraded to LTE.To meet their requirements novel technologies are employed in the downlink as well as uplink like Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier- Frequency Division Multiple Access (SC-FDMA).For the receiver to perform properly it should be able to recover athe transmittedadata accurately and this is done through channel estimation.Channel Estimation in LTE engages Coherent Detection where a prior knowledge of the channel is required,often known as Channel State Information (CSI).This thesis aims at studying the channel estimation methods used in LTE and evaluate their performance in various multipath models specified by ITU like Pedestrian and Vehicular.The most commonly used channel estimation algorithms are Least Squarea(LS) and Minimum MeanaSquare error (MMSE) algorithms.The performance of these estimators are evaluated in both uplink as well as Downlink in terms of the Bit Error Rate (BER).It was evaluated for OFDMA and then for SC-FDMA,further the performance was assessed in SC-FDMA at first without subcarrier Mapping and after that with subcarrier mapping schemes like Interleaved SC-FDMA (IFDMA) and Localized SC-FDMA (lFDMA).It was found from the results that the MMSE estimator performs better than the LS estimator in both the environments.And the IFDMA has a lower PAPR than LFDMA but LFDMA has a better BER performance

    doi:10.1155/2011/614571 Research Article MMSE Beamforming for SC-FDMA Transmission over

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider transmit beamforming for single-carrier frequency-division multiple access (SC-FDMA) transmission over frequency-selective multiple-input multiple-output (MIMO) channels. The beamforming filters are optimized for minimization of the sum of the mean-squared errors (MSEs) of the transmitted data streams after MIMO minimum mean-squared error linear equalization (MMSE-LE), and for minimization of the product of the MSEs after MIMO MMSE decision-feedback equalization (MMSE-DFE), respectively. We prove that for SC-FDMA transmission in both cases eigenbeamforming, diagonalizing the overall channel, together with a nonuniform power distribution is the optimum beamforming strategy. The optimum power allocation derived for MMSE-LE is similar in spirit to classical results for the optimum continuous-time transmit filter for linear modulation formats obtained by Berger/Tufts and Yang/Roy, whereas for MMSE-DFE the capacity achieving waterfilling strategy well known from conventional single-carrier transmission schemes is obtained. Moreover, we present a modification of the beamformer design to mitigate an increase of the peak-to-average power ratio (PAPR) which is in general associated with beamforming. Simulation results demonstrate the high performance of the proposed beamforming algorithms. 1

    Técnicas de equalização iterativas no espaço-frequência para o LTE

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesMobile communications had a huge leap on its evolution in the last decade due to the constant increase of the user requirements. The Long Term Evolution is the new technology developed to give proper answer to the needs of a growing mobile communications community, offering much higher data rates, better spectral efficiency and lower latency when compared to previous technologies, along with scalable bandwidth, interoperability and easy roaming. All these advantages are possible due to the implementation of new network architectures like the E-UTRAN access network and the EPC core network, the use of MIMO systems, and new multiple access schemes: OFDMA for downlink and SC-FDMA for uplink. This thesis focuses on the uplink communication of this technology with SC-FDMA, specifically on the use of Iterative Block Decision Feedback Equalizers (IB-DFE) where both the feedback and the feedforward equalizer matrices are applied on the frequency domain. Two IB-DFE schemes were implemented using both Parallel Interference Cancellation (PIC) and Serial Interference Cancellation (SIC) based processing. We considered the uplink scenario where some users share the same physical channel to transmit its own information to the Base Station (BS). Also, we consider that the BS is equipped with multiple antennas and the user terminals (UT) with a single antenna. The aim of the studied iterative schemes is to efficiently remove both the multi-user and inter-carrier interferences, while allowing a close-to-optimum space-diversity gain. The results obtained showed that both PIC and SIC implementations presented better performance than the conventional used linear multi-user sub optimal equalizers ZF and MMSE. Both solutions efficiently eliminate the multi-user interference, although the SIC based scheme slightly outperforms the PIC approach, with a performance close to the one achieved by the Matched Filter Bound (MFB).As comunicações móveis tiveram um grande avanço na sua evolução na última década devido ao constante aumento dos requisitos dos utilizadores. O Long Term Evolution é a nova tecnologia desenvolvida para dar resposta às necessidades de uma crescente comunidade de comunicações móveis, oferecendo taxas de transmissão de dados muito mais elevadas, melhor eficiência espectral e menor latência quando comparado a tecnologias anteriores, incluindo também largura de banda escalável, interoperabilidade e roaming simples. Todas estas vantagens são possíveis devido à implementação de novas arquiteturas de rede, como a rede de acesso E-UTRAN e a rede core EPC, o uso de sistemas MIMO, e novos esquemas de múltiplo acesso: OFDMA para o downlink e SC-FDMA para o uplink. Esta tese centra-se na comunicação no sentido ascendente desta tecnologia onde o esquema utilizado é o SC-FDMA, mais especificamente na aplicação de Iterative Block Decision Feedback Equalizers (IB-DFE) onde tanto a matriz de feedback como a de feedfoward do equalizador são aplicadas no domínio da frequência. Dois esquemas IB-DFE foram implementados utilizando processamento baseado em cancelamento de interferência em paralelo (PIC) e em serie (SIC). Foi considerado um cenário ascendente onde alguns utilizadores (UEs) partilham o mesmo canal físico para transmitir a sua informação para a Estação Base (BS). È também assumido que a BS está equipada com múltiplas antenas, e os terminais dos utilizadores com uma antena apenas. O objetivo dos esquemas iterativos estudados é remover eficientemente a interferência entre utilizadores e entre portadoras, permitindo entretanto um ganho de diversidade no espaço quase ótimo. Os resultados obtidos mostraram que tanto a implementação PIC como a SIC apresentam melhor eficiência do que os habituais equalizadores lineares sub ótimos ZF e MMSE. Ambas as soluções eliminam a interferência entre utilizadores, embora o esquema SIC apresente um melhor desempenho que o PIC, aproximando- se do atingido com o Matched Filter Bound (MFB)

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)
    corecore