2,008 research outputs found

    Generation of folk song melodies using Bayes transforms

    Get PDF
    The paper introduces the `Bayes transform', a mathematical procedure for putting data into a hierarchical representation. Applicable to any type of data, the procedure yields interesting results when applied to sequences. In this case, the representation obtained implicitly models the repetition hierarchy of the source. There are then natural applications to music. Derivation of Bayes transforms can be the means of determining the repetition hierarchy of note sequences (melodies) in an empirical and domain-general way. The paper investigates application of this approach to Folk Song, examining the results that can be obtained by treating such transforms as generative models

    Rethinking Recurrent Latent Variable Model for Music Composition

    Full text link
    We present a model for capturing musical features and creating novel sequences of music, called the Convolutional Variational Recurrent Neural Network. To generate sequential data, the model uses an encoder-decoder architecture with latent probabilistic connections to capture the hidden structure of music. Using the sequence-to-sequence model, our generative model can exploit samples from a prior distribution and generate a longer sequence of music. We compare the performance of our proposed model with other types of Neural Networks using the criteria of Information Rate that is implemented by Variable Markov Oracle, a method that allows statistical characterization of musical information dynamics and detection of motifs in a song. Our results suggest that the proposed model has a better statistical resemblance to the musical structure of the training data, which improves the creation of new sequences of music in the style of the originals.Comment: Published as a conference paper at IEEE MMSP 201

    Melody recognition with learned edit distances

    Get PDF
    In a music recognition task, the classification of a new melody is often achieved by looking for the closest piece in a set of already known prototypes. The definition of a relevant similarity measure becomes then a crucial point. So far, the edit distance approach with a-priori fixed operation costs has been one of the most used to accomplish the task. In this paper, the application of a probabilistic learning model to both string and tree edit distances is proposed and is compared to a genetic algorithm cost fitting approach. The results show that both learning models outperform fixed-costs systems, and that the probabilistic approach is able to describe consistently the underlying melodic similarity model.This work was funded by the French ANR Marmota project, the Spanish PROSEMUS project (TIN2006-14932-C02), the research programme Consolider Ingenio 2010 (MIPRCV, CSD2007-00018), and the Pascal Network of Excellence

    A probabilistic approach to melodic similarity

    Get PDF
    Melodic similarity is an important research topic in music information retrieval. The representation of symbolic music by means of trees has proven to be suitable in melodic similarity computation, because they are able to code rhythm in their structure leaving only pitch representations as a degree of freedom for coding. In order to compare trees, different edit distances have been previously used. In this paper, stochastic k-testable tree-models, formerly used in other domains like structured document compression or natural language processing, have been used for computing a similarity measure between melody trees as a probability and their performance has been compared to a classical tree edit distance.This work is supported by the Spanish Ministry projects: DPI2006-15542-C04, TIN2006-14932-C02, both partially supported by EU ERDF, the Consolider Ingenio 2010 research programme (project MIPRCV, CSD2007-00018) and the Pascal Network of Excellence
    corecore