
A probabilistic approach to melodic similarity

José F. Bernabeu, Jorge Calera-Rubio, José M. Iñesta, David Rizo

Dept. Lenguajes y Sistemas Informáticos, University of Alicante, Spain
{jfbernabeu,calera,inesta,drizo}@dlsi.ua.es

Abstract. Melodic similarity is an important research topic in music
information retrieval. The representation of symbolic music by means
of trees has proven to be suitable in melodic similarity computation,
because they are able to code rhythm in their structure leaving only pitch
representations as a degree of freedom for coding. In order to compare
trees, different edit distances have been previously used. In this paper,
stochastic k-testable tree-models, formerly used in other domains like
structured document compression or natural language processing, have
been used for computing a similarity measure between melody trees as a
probability and their performance has been compared to a classical tree
edit distance.

1 Introduction

Music pieces can be represented by symbolic structures such as strings or trees
containing the sequence of notes in the melody. A melody has two main dimen-
sions: rhythm (duration) and pitch. In linear representations, both pitches and
durations are coded by explicit symbols, but trees are able to implicitly represent
time in their structure (the shorter a note the deeper it is in the tree), making
use of the fact that note durations are multiples of basic time units in a binary
(sometimes ternary) subdivision. This way, trees are less sensitive to the codes
used to represent melodies, since only pitch codes are needed to be established
and thus there are less degrees of freedom for coding.

In this paper, the problem of comparing symbolically encoded (e.g. MIDI or
MusicXML) musical works is addressed. For it, we will represent melodies as trees
and we will measure their similarity as a probability of being the same melody. In
order to compare trees, different edit distances have been previously used [1, 2].
Here we will learn probabilistic k-testable tree models [3], a generalization of
the k-gram models, that are easy to infer from samples and allow incremental
updates. They can be used for data categorization if a model is inferred for each
class and the new samples are assigned a probability by each model taking a
maximum likelihood decision. This approach is going to be tested in this work
for cover version identification as a benchmark to study its feasibility, but it can
be applied to other music information retrieval (MIR) scenarios with little, if
any, adaptation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16368411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Melody tree representation

For representing the note pitches in a monophonic melody s as a string, symbols
σ from a pitch representation alphabet Σp are used: s ∈ Σ∗

p , s = σ1σ2...σ|s|.
In this paper, the interval from the tonic of the song modulo 12 is utilized as
pitch descriptor (Fig. 1(a)): Σp = {p ∈ N | 0 ≤ p ≤ 11} ∪ {‘−’}. This way, in
‘G Major’, any pitch ‘G’ is mapped to 0. This alphabet permits a transposition
invariant representation. Rests are represented by a special label ‘–’.

In the proposed approach, each melody bar is represented by a tree, t ∈ TΣp

(the set of trees that can be made with the labels in Σp). The level of a node
in the tree determines the duration it represents (see an example in Fig. 1(b)).
The root (level 1) represents the duration of the whole bar, the two nodes in
level 2 the duration of the two halves of a bar, etc. In general, for a binary
meter, nodes at level i represent duration of a 1/2i−1 of a bar (1/3i−1 for a
ternary meter). Therefore, during the tree construction, nodes are created top-
down when needed and guided by the meter, to reach the appropriate leaf level
to represent a note duration (notes are split to accomodate node durations). At
that moment, the corresponding leaf node is labeled with the pitch representation
symbol, σ ∈ Σp. Once the tree has been built, a bottom-up propagation of
the pitch labels is performed to label all the internal nodes. The rules for this
propagation are based on a melodic analysis [4]. All the notes are tagged either
as harmonic tones for those belonging to the current harmony at each time,
or as non-harmonic tones for those ornamental notes. Harmonic notes have
always priority for propagation and when two harmonic notes share a common
father node, propagation is decided according to the metrical strength of the
note (the stronger the more priority), depending on its position in the bar and
the particular meter of the melody. Note that each bar may have a diferent
time signature. Notes have always higher priority than rests. Eventually, all the
internal nodes are labeled, yielding the tree ti that codes the i-th bar of the
melody (see Fig. 1(b)). This process is repeated for all the bars in the melody.

��
0

�
44

�
2

�
2

��

(a) Original melody. The fig-
ures below the score are the
labels in Σp (interval from
tonic mod 12).

4

4 0

4 2

4 4 2 2

(b) Corresponding tree.

Fig. 1: Tree representation of a single measure. Labels are pitch classes relative to tonic
(C major in this case).

At this point, all the bar trees: t1, t2, ..., t|M |, where |M | is the length of the
melody in bars, are linked to a common root, building up a forest, σ(t1t2...t|M |) ∈

textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:27:27
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:28:28
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:15:15
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:11:11
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:26:26
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:4:4
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:23:23
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:21:21
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5.ly:18:19:19
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:16:16
textedit:///Users/drizo/cmg/investigacion/congresos/ssspr2008/stochastic/analysis/ohsusanna_bar5-defs.ly:7:11:11

TΣp
, where that common root is labeled with the root of the first tree, corre-

sponding to the first harmonic tone of the melody, after the melodic analysis
performed for the label bottom-up propagation.

3 Methods

Stochastic models based on k-grams predict the probability of the next symbol in
a sequence depending on the k−1 previous symbols. They have been extensively
used in natural language modeling and also some works on MIR [5, 6].

From a theoretical point of view, k-gram models can be regarded as a prob-
abilistic extension of locally testable languages. A string language L is locally
testable if every string w can be recognized as a string in L just by looking at
all the substrings in w of length at most k. These models are easy to learn and
can be efficiently processed [7].

In the case of locally testable tree languages, as described by Knuutila [8],
the concept of k-fork, fk, plays the role of the substrings and the k-root, rk, and
k-subtrees, sk, play the role of prefixes and suffixes. For any k > 0, every k-fork
contains a node and all its descendents lying at a depth smaller that k. The k-
root of a tree is its shallowest k-fork and the k-subtrees are all the subtrees whose
depth is smaller than k. So, to infer a deterministic finite-state tree automaton

(DTA) A = (Q,Σ,∆,F) that recognizes a k-testable tree language T from a
sample S is computed as:

◮ Q = rk−1(S) ∪ rk−1(fk(S)) ∪ sk−1(S) (set of states);
◮ Σ = Σp = {p ∈ N | 0 ≤ p ≤ 11} ∪ {‘−’} (alphabet);
◮ F = rk−1(S) (subset of accepting states);
◮ add to ∆ (set of transitions) a transition

• δ(σ, t1, ..., tm) = σ(t1, ..., tm) for every t = σ(t1, . . . , tm) ∈ sk−1(S);
• δ(σ, t1, ..., tm) = rk−1(σ(t1, ..., tm)) for every t = σ(t1, . . . , tm) ∈ fk(S).

In a stochastic classification task, a sample is assigned to the class that max-
imizes the probability of generating it. For a new melody represented as a tree
to be classified in a particular class of melodies, we need to infer a probabilis-
tic DTA for each class, Cj , from correctly classified melodies. For this purpose,
one should note that the likelihood of the sample is maximized if the stochastic
model assigns to every tree in the sample a probability equal to the relative
frequency of the tree in the sample [9]. So, we only need to count the number of
k-forks, (k − 1)-subtrees and (k − 1)-roots. If we store the probabilities as the
quotient of two counters, the automaton can be updated incrementally (one for
transitions in ∆ and other for states in Q).

Once the probabilistic DTAs for the different classes have been inferred and
the probabilities estimated (see [3] for the details), a melody M is classified in
the class Ĉ that maximizes the likelihood

Ĉ = arg max
j

l(M |Cj) (1)

where the likelihood of the melody for each class is computed with

l(M |Cj) = ρ[2](σ|Cj)

|M |∏

i=1

π[k](ti|Cj) (2)

where ρ[2](σ|Cj) is the probability of the root of the forest, σ, for the model
k = 2, for class Cj . Using k = 2 means that only the label of that common root
is utilized, this way avoiding the probability of a given melody to belong to a class
depends on its number of bars (its length). The other term in the equation is the
conditional probability of the new melody for class Cj , calculated by multiplying
the probabilities π[k] of all the bars of a given melody where π[k](ti|Cj) is the
product of the probabilities of the transitions utilized to process the tree ti (i-th
bar of the melody M) for the used model k.

The problem occurs when parsing a tree the system finds a transition not
seen in the training set. To solve this problem a smoothing method is applied.
The approach used in this paper is the backing-off technique.

Backing-off methods have been extensively studied for string models [9]. The
underlying idea is to discount some probability mass to the seen events and
distribute it among the unseen events. For it, models with 1 ≤ k ≤ K are
needed. The smaller the k value, the more general the model is. The aim is
always to compute the probability of a transition with the K model. If it does
not have the needed transition then the k−1 model is utilized. If necessary, this
process is repeated until the k = 1 model is used. This is a base model that never
assigns null probabilities and therefore is able to recognize any tree through its
component nodes (see [3] for the details).

4 Experiments and results

In our experiments, we try to identify a problem melody using a set of different
variations played by musicians. For that, we use a corpus consisting of a set of
420 monophonic 8-12 bar themes of 20 worldwide well known tunes of different
musical genres1. For each song, a canonic version was created using a score editor
and synthesized. The audio files were given to three amateur and two professional
musicians who listened to the songs and played them on MIDI controllers (real-
time sequencing them) 20 times with different embellishments and capturing
performance errors. This way, for each of the 20 original scores, 21 different
variations have been built (all of them with 4/4 meter signature).

The results using the proposed maximum likelihood technique were compared
to those obtained for the same data in [10], where for each target melody, classical
tree edit distances to all the prototypes were computed and the 1-NN rule was
applied for taking the decision. The edit distance was computed according to
Selkow’s algorithm [2] with insertion, deletion and substitution costs set to 1.

1 The MIDI data set is available upon request to the authors.

A 3-fold cross-validation scheme was carried out to perform the experiments,
obtaining average success rates and dispersions (max−min /4) . Values for K =
{2, 3, 4} were utilized (see Table. 1).

Tree edit dist. K = 2 K = 3 K = 4

82.0 ± 0.2 85.7 ± 0.5 93.3 ± 0.5 86 ± 2

Table 1: Average success rates for the three-fold experiments and comparison with tree
edit distances.

These results show that stochastic k-testable methods clearly improve the
results of the classical tree edit distance. Note that the dispersions calculated
from the cross-validation experiments are very low, so the improvement is very
significant, specially for K = 3. K = 2 is a more general, and therefore less
discriminative, model and K = 4, although a priori more powerful, is conditioned
for the low cardinality of the training set. The higher the number of different
probabilities to be inferred, the more data needed, so the melodies available in
our variation data set are not enough for this model to outperform K = 3.

Fig. 2 shows the success rates taking into account the first n most probable
classes (songs) for different values of K. Note that, considering the first 4 classes,
the query melody was successfully identified more than a 97% of the times with
K = 3. Therefore, we can say that the correct song usually was among the first
solutions proposed by the system.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20

P
re

ci
si

on
 a

t n

n

K=2 K=3 K=4

Fig. 2: Success rates as a function of the number of classes (songs) retrieved as the most
probable ones.

5 Conclusions

In this paper, stochastic k-testable tree-models, formerly used in other domains
like structured document compression or natural language processing, have been
applied for computing the similarity between two melodies represented by trees.

This similarity is given as the probability of a song to belong to a class made
up of different variations of that song as they were performed by a number of
players.

Our goal was to identify a melody from a set of different variations and, in
order to evaluate the proposed method, its performance has been compared to
the same task and data but using a classical tree edit distance.

The results improved those obtained using the tree edit distance, show-
ing that this probabilistic models are suitable for the classification of tree-
represented music data. The high degree of variations may lead the edit distance
to wrong decisions, but this probabilistic models deal better with noisy data.

This is an initial attempt, so we are persuaded that these promising results
can be improved by adjusting discount parameters of the back-off model or using
different and more sophisticated discount methods. Also other music categoriza-
tion problems like genre or style classification will be explored.

Acknowledgements

This work is supported by the Spanish Ministry projects: DPI2006-15542-C04,
TIN2006-14932-C02, both partially supported by EU ERDF, and the Consolider

Ingenio 2010 research programme (project MIPRCV, CSD2007-00018).

References

1. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing 18 (1989) 1245–1262

2. Selkow, S.M.: The tree-to-tree editing problem. Inf. Process. Lett. 6 (1977) 184–186
3. Rico-Juan, J.R., Calera-Rubio, J., Carrasco, R.C.: Smoothing and compression

with stochastic k-testable tree languages. Pattern Recognition 38 (2005) 1420–
1430

4. Illescas, P.R., Rizo, D., Iñesta, J.M.: Harmonic, melodic, and functional automatic
analysis. In: Proc. of the 2007 International Computer Music Conference. Volume I.
(2007) 165–168

5. Downie, J.S.: Evaluating a Simple Approach to Music Information Retrieval: Con-
ceiving Melodic n-grams as Text. PhD thesis, University of Western Ontario (1999)

6. Doraisamy, S., Rüger, S.M.: A polyphonic music retrieval system using n-grams.
In: Proc. of ISMIR. (2004)

7. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and ap-
plication to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 12 (1990) 920–925

8. Knuutila, T.: Inference of k-testable tree languages. In: Bunke (Ed.), Proccedings
of the International Workshop on Structural and Syntactic Pattern Recognition.
(1993) 109–120

9. Ney, H., Essen, U., Kneser, R.: On the estimation of small probabilities by leaving-
one-out. IEEE Trans. Pattern Anal. Mach. Intell. 17 (1995) 1202–1212

10. Habrard, A., Iñesta, J.M., Rizo, D., Sebban, M.: Melody recognition with learned
edit distances. LNCS 5342 (2008) 86–96

