859 research outputs found

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Self-optimizing Uplink Outer Loop Power Control for WCDMA Network

    Get PDF
    The increasing demands for high data rates, drives the efforts for more efficient usage of the finite natural radio spectrum resources. Existing wideband code division multiple access (WCDMA) uplink outer loop power control has difficulty to answer to the new load on air interface. The main reason is that the maximum allowed noise rise per single user is fixed value. In worst case uplink load can be so high that all services, including conversational service, could be blocked. In this paper investigation has been performed to present correlation of main system parameters, used by uplink outer loop power control, to uplink load. Simulation has been created and executed to present difference in current implementation of uplink outer loop power control against proposed changes. Proposed solution is self-optimizing uplink outer loop power control in a way that maximum allowed noise rise per single user would be dynamically changed based on current uplink load on cell

    A use case of low power wide area networks in future 5G healthcare applications

    Get PDF
    Abstract. The trend in all cellular evolution to the Long-Term Evolution (LTE) has always been to offer users continuously increasing data rates. However, the next leap forwards towards the 5th Generation Mobile Networks (5G) will be mainly addressing the needs of devices. Machines communicating with each other, sensors reporting to a server, or even machines communicating with humans, these are all different aspects of the same technology; the Internet of Things (IoT). The key differentiator between Machine-to-Machine (M2M) communications and IoT will be the added -feature of connecting devices and sensors not only to themselves, but also to the internet. The appropriate communications network is the key to allow this connectivity. Local Area Networks (LANs) and Wide Area Networks (WANs) have been thought of as enablers for IoT, but since they both suffered from limitations in IoT aspects, the need for a new enabling technology was evident. LPWANs are networks dedicated to catering for the needs of IoT such as providing low energy consumption for wireless devices. LPWANs can be categorized into proprietary LPWANs and cellular LPWANs. Proprietary LPWANs are created by an alliance of companies working together on creating a communications standard operating in unlicensed frequency bands. An example of proprietary LPWANs is LoRa. Whereas cellular LPWANs are standardized by the 3rd Partnership Project (3GPP) and they are basically versions of the LTE standard especially designed for machine communications. An example of cellular LPWANs is Narrowband IoT (NB IoT). This diploma thesis documents the usage of LoRa and NB IoT in a healthcare use case of IoT. It describes the steps and challenges of deploying an LTE network at a target site, which will be used by the LoRa and NB IoT sensors to transmit data through the 5G test network (5GTN) to a desired server location for storing and later analysis.Matalan tehonkulutuksen ja pitkänkantaman teknologian käyttötapaus tulevaisuuden 5G:tä hyödyntävissä terveydenhoidon sovelluksissa. Tiivistelmä. Pitemmän aikavälin tarkastelussa matkaviestintäteknologian kehittyminen nykyisin käytössä olevaan Long-Term Evolution (LTE) teknologiaan on tarkoittanut käyttäjille yhä suurempia datanopeuksia. Seuraavassa askeleessa kohti 5. sukupolven matkaviestintäverkkoja (5G) lähestytään kehitystä myös laitteiden tarpeiden lähtökohdista. Toistensa kanssa kommunikoivat koneet, palvelimille dataa lähettävät anturit tai jopa ihmisten kanssa kommunikoivat koneet ovat kaikki eri puolia samasta teknologisesta käsitteestä; esineiden internetistä (IoT). Oleellisin ero koneiden välisessä kommunikoinnissa (M2M) ja IoT:ssä on, että erinäiset laitteet tulevat olemaan yhdistettyinä paitsi toisiinsa myös internettiin. Tätä kytkentäisyyttä varten tarvitaan tarkoitukseen kehitetty matkaviestinverkko. Sekä lähiverkkoja (LAN) että suuralueverkkoja (WAN) on pidetty mahdollisina IoT mahdollistajina, mutta näiden molempien käsitteiden alle kuuluvissa teknologioissa on rajoitteita IoT:n vaatimusten lähtökohdista, joten uuden teknologian kehittäminen oli tarpeellista. Matalan tehonkulutuksen suuralueverkko (LP-WAN) on käsite, johon luokitellaan eri teknologioita, joita on kehitetty erityisesti IoT:n tarpeista lähtien. LP-WAN voidaan jaotella ainakin itse kehitettyihin ja matkaviestinverkkoihin perustuviin teknologisiin ratkaisuihin. Itse kehitetyt ratkaisut on luotu lukuisten yritysten yhteenliittymissä eli alliansseissa ja nämä ratkaisut keskittyvät lisensoimattomilla taajuuksilla toimiviin langattomiin ratkaisuihin, joista esimerkkinä laajasti käytössä oleva LoRa. Matkaviestinverkkoihin perustuvat lisensoiduilla taajuuksilla toimivat ratkaisut on puolestaan erikseen standardoitu 3GPP-nimisessä yhteenliittymässä, joka nykyisellään vastaa 2G, 3G ja LTE:n standardoiduista päätöksistä. Esimerkki 3GPP:n alaisesta LPWAN-luokkaan kuuluvasta teknologiasta on kapea kaistainen IoT-teknologia, NB-IoT. Tässä diplomityössä keskitytään terveydenhoidon käyttötapaukseen, missä antureiden mittaamaa tietoa siirretään langattomasti käyttäen sekä LoRa että NB-IoT teknologioita. Työssä kuvataan eri vaiheet ja haasteet, joita liittyi kun rakennetaan erikseen tiettyyn kohteeseen LTE-verkon radiopeitto, jotta LoRa:a ja NB-IoT:a käyttävät anturit saadaan välittämään mitattua dataa halutulle palvelimelle säilytykseen ja myöhempää analysointia varten. LTE-radiopeiton rakensi Oulun yliopiston omistama 5G testiverkko, jonka tarkoitus on tukea sekä tutkimusta että ympäröivää ekosysteemiä tulevaisuuden 5G:n kehityksessä

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    corecore