10 research outputs found

    Building and Evaluating Open-Vocabulary Language Models

    Get PDF
    Language models have always been a fundamental NLP tool and application. This thesis focuses on open-vocabulary language models, i.e., models that can deal with novel and unknown words at runtime. We will propose both new ways to construct such models as well as use such models in cross-linguistic evaluations to answer questions of difficulty and language-specificity in modern NLP tools. We start by surveying linguistic background as well as past and present NLP approaches to tokenization and open-vocabulary language modeling (Mielke et al., 2021). Thus equipped, we establish desirable principles for such models, both from an engineering mindset as well as a linguistic one and hypothesize a model based on the marriage of neural language modeling and Bayesian nonparametrics to handle a truly infinite vocabulary, boasting attractive theoretical properties and mathematical soundness, but presenting practical implementation difficulties. As a compromise, we thus introduce a word-based two-level language model that still has many desirable characteristics while being highly feasible to run (Mielke and Eisner, 2019). Unlike the more dominant approaches of characters or subword units as one-layer tokenization it uses words; its key feature is the ability to generate novel words in context and in isolation. Moving on to evaluation, we ask: how do such models deal with the wide variety of languages of the world---are they struggling with some languages? Relating this question to a more linguistic one, are some languages inherently more difficult to deal with? Using simple methods, we show that indeed they are, starting with a small pilot study that suggests typological predictors of difficulty (Cotterell et al., 2018). Thus encouraged, we design a far bigger study with more powerful methodology, a principled and highly feasible evaluation and comparison scheme based again on multi-text likelihood (Mielke et al., 2019). This larger study shows that the earlier conclusion of typological predictors is difficult to substantiate, but also offers a new insight on the complexity of Translationese. Following that theme, we end by extending this scheme to machine translation models to answer questions traditional evaluation metrics like BLEU cannot (Bugliarello et al., 2020)

    Linguistic Competence and New Empiricism in Philosophy and Science

    Get PDF
    The topic of this dissertation is the nature of linguistic competence, the capacity to understand and produce sentences of natural language. I defend the empiricist account of linguistic competence embedded in the connectionist cognitive science. This strand of cognitive science has been opposed to the traditional symbolic cognitive science, coupled with transformational-generative grammar, which was committed to nativism due to the view that human cognition, including language capacity, should be construed in terms of symbolic representations and hardwired rules. Similarly, linguistic competence in this framework was regarded as being innate, rule-governed, domain-specific, and fundamentally different from performance, i.e., idiosyncrasies and factors governing linguistic behavior. I analyze state-of-the-art connectionist, deep learning models of natural language processing, most notably large language models, to see what they can tell us about linguistic competence. Deep learning is a statistical technique for the classification of patterns through which artificial intelligence researchers train artificial neural networks containing multiple layers that crunch a gargantuan amount of textual and/or visual data. I argue that these models suggest that linguistic competence should be construed as stochastic, pattern-based, and stemming from domain-general mechanisms. Moreover, I distinguish syntactic from semantic competence, and I show for each the ramifications of the endorsement of a connectionist research program as opposed to the traditional symbolic cognitive science and transformational-generative grammar. I provide a unifying front, consisting of usage-based theories, a construction grammar approach, and an embodied approach to cognition to show that the more multimodal and diverse models are in terms of architectural features and training data, the stronger the case is for the connectionist linguistic competence. I also propose to discard the competence vs. performance distinction as theoretically inferior so that a novel and integrative account of linguistic competence originating in connectionism and empiricism that I propose and defend in the dissertation could be put forward in scientific and philosophical literature

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF

    K + K = 120 : Papers dedicated to László Kálmán and András Kornai on the occasion of their 60th birthdays

    Get PDF

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF

    Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Fifth Italian Conference on Computational Linguistics (CLiC-­‐it 2018). This edition of the conference is held in Torino. The conference is locally organised by the University of Torino and hosted into its prestigious main lecture hall “Cavallerizza Reale”. The CLiC-­‐it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after five years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Seventh Italian Conference on Computational Linguistics (CLiC-it 2020). This edition of the conference is held in Bologna and organised by the University of Bologna. The CLiC-it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after six years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges

    Approches Neuronales pour la Reconstruction de Mots Historiques

    Get PDF
    In historical linguistics, cognates are words that descend in direct line from a common ancestor, called their proto-form, andtherefore are representative of their respective languages evolutions through time, as well as of the relations between theselanguages synchronically. As they reflect the phonetic history of the languages they belong to, they allow linguists to betterdetermine all manners of synchronic and diachronic linguistic relations (etymology, phylogeny, sound correspondences).Cognates of related languages tend to be linked through systematic phonetic correspondence patterns, which neuralnetworks could well learn to model, being especially good at learning latent patterns. In this dissertation, we seek tomethodically study the applicability of machine translation inspired neural networks to historical word prediction, relyingon the surface similarity of both tasks. We first create an artificial dataset inspired by the phonetic and phonotactic rules ofRomance languages, which allow us to vary task complexity and data size in a controlled environment, therefore identifyingif and under which conditions neural networks were applicable. We then extend our work to real datasets (after havingupdated an etymological database to gather a correct amount of data), study the transferability of our conclusions toreal data, then the applicability of a number of data augmentation techniques to the task, to try to mitigate low-resourcesituations. We finally investigat in more detail our best models, multilingual neural networks. We first confirm that, onthe surface, they seem to capture language relatedness information and phonetic similarity, confirming prior work. Wethen discover, by probing them, that the information they store is actually more complex: our multilingual models actuallyencode a phonetic language model, and learn enough latent historical information to allow decoders to reconstruct the(unseen) proto-form of the studied languages as well or better than bilingual models trained specifically on the task. Thislatent information is likely the explanation for the success of multilingual methods in the previous worksEn linguistique historique, les cognats sont des mots qui descendent en ligne directe d'un ancêtre commun, leur proto-forme, et qui sont ainsi représentatifs de l'évolution de leurs langues respectives à travers le temps. Comme ils portent eneux l'histoire phonétique des langues auxquelles ils appartiennent, ils permettent aux linguistes de mieux déterminer toutessortes de relations linguistiques synchroniques et diachroniques (étymologie, phylogénie, correspondances phonétiques).Les cognats de langues apparentées sont liés par des correspondances phonétiques systématiques. Les réseaux deneurones, particulièrement adaptés à l'apprentissage de motifs latents, semblent donc bien un bon outil pour modéliserces correspondances. Dans cette thèse, nous cherchons donc à étudier méthodiquement l'applicabilité de réseaux deneurones spécifiques (inspirés de la traduction automatique) à la `prédiction de mots historiques', en nous appuyantsur les similitudes entre ces deux tâches. Nous créons tout d'abord un jeu de données artificiel à partir des règlesphonétiques et phonotactiques des langues romanes, que nous utilisons pour étudier l'utilisation de nos réseaux ensituation controlée, et identifions ainsi sous quelles conditions les réseaux de neurones sont applicables à notre tâched'intérêt. Nous étendons ensuite notre travail à des données réelles (après avoir mis à jour une base étymologiquespour obtenir d'avantage de données), étudions si nos conclusions précédentes leur sont applicables, puis s'il est possibled'utiliser des techniques d'augmentation des données pour pallier aux manque de ressources de certaines situations.Enfin, nous analysons plus en détail nos meilleurs modèles, les réseaux neuronaux multilingues. Nous confirmons àpartir de leurs résultats bruts qu'ils semblent capturer des informations de parenté linguistique et de similarité phonétique,ce qui confirme des travaux antérieurs. Nous découvrons ensuite en les sondant (probing) que les informations qu'ilsstockent sont en fait plus complexes : nos modèles multilingues encodent en fait un modèle phonétique de la langue, etapprennent suffisamment d'informations diachroniques latentes pour permettre à des décodeurs de reconstruire la proto-forme (non vue) des langues étudiées aussi bien, voire mieux, que des modèles bilingues entraînés spécifiquement surcette tâche. Ces informations latentes expliquent probablement le succès des méthodes multilingues dans les travauxprécédents
    corecore