1,922 research outputs found

    Locking of correlated neural activity to ongoing oscillations

    Full text link
    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.Comment: 57 pages, 12 figures, published versio

    Synchronization of electrically coupled resonate-and-fire neurons

    Full text link
    Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with strong electrical coupling have been shown to exhibit resonant properties, and the subthreshold fluctuations arising from resonance are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with linear subthreshold dynamics and discrete post-spike reset. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuity in the dynamics. We find that both spikes and resonant subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs

    Typical and aberrant functional brain flexibility: lifespan development and aberrant organization in traumatic brain injury and dyslexia

    Get PDF
    Intrinsic functional connectivity networks derived from different neuroimaging methods and connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive maturation. The present study employed a dynamic functional connectivity approach to determine dominant intrinsic coupling modes in resting-state neuromagnetic data from 178 healthy participants aged 8–60 years. Results revealed significant developmental trends in three types of dominant intra- and inter-hemispheric neuronal population interactions (amplitude envelope, phase coupling, and phase-amplitude synchronization) involving frontal, temporal, and parieto-occipital regions. Multi-class support vector machines achieved 89% correct classification of participants according to their chronological age using dynamic functional connectivity indices. Moreover, systematic temporal variability in functional connectivity profiles, which was used to empirically derive a composite flexibility index, displayed an inverse U-shaped curve among healthy participants. Lower flexibility values were found among age-matched children with reading disability and adults who had suffered mild traumatic brain injury. The importance of these results for normal and abnormal brain development are discussed in light of the recently proposed role of cross-frequency interactions in the fine-grained coordination of neuronal population activity

    Quantum correlations and synchronization measures

    Full text link
    The phenomenon of spontaneous synchronization is universal and only recently advances have been made in the quantum domain. Being synchronization a kind of temporal correlation among systems, it is interesting to understand its connection with other measures of quantum correlations. We review here what is known in the field, putting emphasis on measures and indicators of synchronization which have been proposed in the literature, and comparing their validity for different dynamical systems, highlighting when they give similar insights and when they seem to fail.Comment: book chapter, 18 pages, 7 figures, Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer (2017

    Dynamic Control of Network Level Information Processing through Cholinergic Modulation

    Full text link
    Acetylcholine (ACh) release is a prominent neurochemical marker of arousal state within the brain. Changes in ACh are associated with changes in neural activity and information processing, though its exact role and the mechanisms through which it acts are unknown. Here I show that the dynamic changes in ACh levels that are associated with arousal state control informational processing functions of networks through its effects on the degree of Spike-Frequency Adaptation (SFA), an activity dependent decrease in excitability, synchronizability, and neuronal resonance displayed by single cells. Using numerical modeling I develop mechanistic explanations for how control of these properties shift network activity from a stable high frequency spiking pattern to a traveling wave of activity. This transition mimics the change in brain dynamics seen between high ACh states, such as waking and Rapid Eye Movement (REM) sleep, and low ACh states such as Non-REM (NREM) sleep. A corresponding, and related, transition in network level memory recall is also occurs as ACh modulates neuronal SFA. When ACh is at its highest levels (waking) all memories are stably recalled, as ACh is decreased (REM) in the model weakly encoded memories destabilize while strong memories remain stable. In levels of ACh that match Slow Wave Sleep (SWS), no encoded memories are stably recalled. This results from a competition between SFA and excitatory input strength and provides a mechanism for neural networks to control the representation of underlying synaptic information. Finally I show that during the low ACh conditions, oscillatory conditions allow for external inputs to be properly stored in and recalled from synaptic weights. Taken together this work demonstrates that dynamic neuromodulation is critical for the regulation of information processing tasks in neural networks. These results suggest that ACh is capable of switching networks between two distinct information processing modes. Rate coding of information is facilitated during high ACh conditions and phase coding of information is facilitated during low ACh conditions. Finally I propose that ACh levels control whether a network is in one of three functional states: (High ACh; Active waking) optimized for encoding of new information or the stable representation of relevant memories, (Mid ACh; resting state or REM) optimized for encoding connections between currently stored memories or searching the catalog of stored memories, and (Low ACh; NREM) optimized for renormalization of synaptic strength and memory consolidation. This work provides a mechanistic insight into the role of dynamic changes in ACh levels for the encoding, consolidation, and maintenance of memories within the brain.PHDNeuroscienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147503/1/roachjp_1.pd

    Coordination dynamics in the sensorimotor loop

    Get PDF
    The last two decades have witnessed radical changes of perspective about the nature of intelligence and cognition, leaving behind some of the assumptions of computational functionalism. From the myriad of approaches seeking to substitute the old rule-based symbolic perception of mind, we are especially interested in two of them. The first is Embodied and Situated Cognition, where the advances in modeling complex adaptive systems through computer simulations have reconfigured the way in which mechanistic, embodied and interactive explanations can conceptualize the mind. We are particularly interested in the concept of sensorimotor loop, which brings a new perspective about what is needed for a meaningful interaction with the environment, emphasizing the role of the coordination of effector and sensor activities while performing a concrete task. The second one is the framework of Coordination Dynamics, which has been developed as a result of the increasing focus of neuroscience on self-organized oscillatory brain dynamics. It provides formal tools to study the mechanisms through which complex biological systems stabilize coordination states under conditions in which they would otherwise become unstable. We will merge both approaches and define coordination in the sensorimotor loop as the main phenomena behind the emergence of cognitive behavior. At the same time, we will provide methodological tools and concepts to address this hypothesis. Finally, we will present two case studies based on the proposed approach: 1. We will study the phenomenon known as “intermittent behavior”, which is observed in organisms at different levels (from microorganisms to higher animals). We will propose a model that understands intermittent behavior as a general strategy of biologica organization when an organism has to adapt to complex changing environments, and would allow to establish effective sensorimotor loops even in situations of instable engagement with the world. 2. We will perform a simulation of a phonotaxis task performed by an agent with an oscillator network as neural controller. The objective will be to characterize robust adaptive coupling between perceptive activity and the environmental dynamics just through phase information processing. We will observe how the robustness of the coupling crucially depends of how the sensorimotor loop structures and constrains both the emergent neural and behavioral patterns. We will hypothesize that this structuration of the sensorimotor space, in which only meaningful behavioral patterns can be stabilized, is a key ingredient for the emergence of higher cognitive abilities
    corecore