325 research outputs found

    Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime. Asymptotics of the stationary distribution

    Get PDF
    We consider a heterogeneous queueing system consisting of one large pool of O(r)O(r) identical servers, where rr\to\infty is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin-Whitt sense, namely the nominal utilization is 1a/r1-a/\sqrt{r} where a>0a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Qr()Q^r(\infty). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r)O(\sqrt{r}) on both Qr()Q^r(\infty) and the number of idle servers. The bounds are uniform w.r.t. parameter rr and the service policy. In particular, we show that lim suprEexp(θr1/2Qr())<\limsup_r E \exp(\theta r^{-1/2}Q^r(\infty))<\infty. Therefore, the sequence r1/2Qr()r^{-1/2}Q^r(\infty) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit Q^()\hat{Q}(\infty) of r1/2Qr()r^{-1/2}Q^r(\infty) has a sub-Gaussian tail. Namely E[exp(θ(Q^())2)]0E[\exp(\theta (\hat{Q}(\infty))^2)]0.Comment: 21 page

    Computing stationary probability distributions and large deviation rates for constrained random walks. The undecidability results

    Full text link
    Our model is a constrained homogeneous random walk in a nonnegative orthant Z_+^d. The convergence to stationarity for such a random walk can often be checked by constructing a Lyapunov function. The same Lyapunov function can also be used for computing approximately the stationary distribution of this random walk, using methods developed by Meyn and Tweedie. In this paper we show that, for this type of random walks, computing the stationary probability exactly is an undecidable problem: no algorithm can exist to achieve this task. We then prove that computing large deviation rates for this model is also an undecidable problem. We extend these results to a certain type of queueing systems. The implication of these results is that no useful formulas for computing stationary probabilities and large deviations rates can exist in these systems

    Instability in Stochastic and Fluid Queueing Networks

    Full text link
    The fluid model has proven to be one of the most effective tools for the analysis of stochastic queueing networks, specifically for the analysis of stability. It is known that stability of a fluid model implies positive (Harris) recurrence (stability) of a corresponding stochastic queueing network, and weak stability implies rate stability of a corresponding stochastic network. These results have been established both for cases of specific scheduling policies and for the class of all work conserving policies. However, only partial converse results have been established and in certain cases converse statements do not hold. In this paper we close one of the existing gaps. For the case of networks with two stations we prove that if the fluid model is not weakly stable under the class of all work conserving policies, then a corresponding queueing network is not rate stable under the class of all work conserving policies. We establish the result by building a particular work conserving scheduling policy which makes the associated stochastic process transient. An important corollary of our result is that the condition ρ1\rho^*\leq 1, which was proven in \cite{daivan97} to be the exact condition for global weak stability of the fluid model, is also the exact global rate stability condition for an associated queueing network. Here ρ\rho^* is a certain computable parameter of the network involving virtual station and push start conditions.Comment: 30 pages, To appear in Annals of Applied Probabilit

    On the Improvement From Scheduling a Two-Station Queueing Network in Heavy Traffic

    Get PDF
    For a two-station multiclass queueing network in heavy traffic, we assess the improvement from scheduling (job release and priority sequencing) that can occur relative to Poisson input and first-come first-served (FCFS) sequencing. In particular, simple upper bounds are derived on the optimal objective function value (found in Wein 1989a) of a Brownian control problem that approximates (via Harrison's 1988 model) a two-station queueing network scheduling problem in heavy traffic. When the system is perfectly balanced, the Brownian analysis predicts that optimal scheduling will reduce the long run expected average number of customers in the network by at least a factor of four relative to the Poisson input, FCFS sequencing policy that achieves the same throughput rate. When the system is not perfectly balanced, the corresponding factor is slightly smaller than two

    Scheduling Control for Many-Server Queues When Customers Change Class

    Get PDF
    We consider a two class, many-server queueing system which allows for customer abandonment and class changes. With the objective to minimize the long-run average holding cost, we formulate a stochastic queueing control problem. Instead of solving this directly, we apply a fluid scaling to obtain a deterministic counterpart to the problem. By considering the equilibrium of the deterministic solution, we can solve the resulting control problem, referred to as the equilibrium control problem (ECP), and use the solution to propose a priority policy for the original stochastic queueing system. We prove that in an overloaded system, under a fluid scaling, our policy is asymptotically optimal as it attains the lower bound formed by the solution of the ECP

    Integrated performance evaluation of extended queueing network models with line

    Get PDF
    Despite the large literature on queueing theory and its applications, tool support to analyze these models ismostly focused on discrete-event simulation and mean-value analysis (MVA). This circumstance diminishesthe applicability of other types of advanced queueing analysis methods to practical engineering problems,for example analytical methods to extract probability measures useful in learning and inference. In this toolpaper, we present LINE 2.0, an integrated software package to specify and analyze extended queueingnetwork models. This new version of the tool is underpinned by an object-oriented language to declarea fairly broad class of extended queueing networks. These abstractions have been used to integrate in acoherent setting over 40 different simulation-based and analytical solution methods, facilitating their use inapplications
    corecore