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Abstract

For a two-station multiclass queueing network in heavy traffic, we assess the im-
provement from scheduling (job release and priority sequencing) that can occur relative to
Poisson input and first-come first-served (FCFS) sequencing. In particular, simple upper
bounds are derived on the optimal objective function value (found in Wein 1989a) of a
Brownian control problem that approximates (via Harrison’s 1988 model) a two-station
queueing network scheduling problem in heavy traffic. When the system is perfectly bal-
anced, the Brownian analysis predicts that optimal scheduling will reduce the long run
expected average number of customers in the network by at least a factor of four relative
to the Poisson input, FCFS sequencing policy that achieves the same throughput rate.

When the system is not perfectly balanced, the corresponding factor is slightly smaller

than two.
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1. Introduction and Summary

In recent years, queueing networks have become a primary mathematical model of
manufacturing systems, and thus the job-shop scheduling problem, for which there exists
a vast literature, can be viewed as the problem of scheduling a multiclass queueing net-
work. The two most important issues faced in scheduling problems are to find an effective
scheduling policy, and to assess the improvement in performance that will take place. In
particular, one would ideally like to find an optimal scheduling policy, and then measure
the increase in performance of this policy relative to the currently used policy. By schedul-
ing policy, we mean both a customer release policy (when are customers released into the
network or shop) and a priority sequencing policy (which customer should be served next
at each station in the network).

In this paper, we attempt to assess the improvement from scheduling that can occur
relative to the commonly assumed policy of Poisson input, which represents a lack of sys-
tematic control over arrivals, and first-come first-served (FCFS) sequencing, which is often
used in job shops. This assessment is made for a multiclass queueing network consisting
of two single-server stations. Following Kelly’s (1979) terminology, we consider a network
populated by a variety of different types of customers, where each customer type has its

own arbitrary route through the network. Then a different class of customer is defined
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for each combination of type and stage of completion along its route. In the context of
a job-shop, each customer type corresponds to a different type of product that can be
processed at the shop, and each customer class corresponds to a particular operation for
a particular product type.

It will be assumed that each server has its own exponential service time distribution,
and thus all customers, regardless of class, have the same service time distribution at a
given station. Denote the desired throughput rate (number of departures per unit of time)
of type j customers by A;, for j = 1,...,J, and let A= ZJ{__I Aj be the total throughput
rate. It is well known (see Baskett et al. 1975) that under the policy of Poisson input
(customers of type j arrive according to independent Poisson processes with rate A;, for
Jj =1,...,J) and FCFS sequencing, the long run expected average number of customers in

the system is

P1 P2
L= + 1.1

where p; is the traffic intensity, or server utilization, for station ¢, which can be easily
calculated from the arrival and service rates, and the routing information.

Unfortunately, there exist no exact results for scheduling two-station multiclass queue-
ing networks. However, Harrison (1988) has developed a Brownian network model that
allows one to approximate a queueing network scheduling problem by a control problem
involving Brownian motion. This model was formulated under the balanced heavy loading

conditions that there exists a large integer n such that
V(1 = p;) is of moderate size for ¢ =1,2. (1.2)

A representative example is to choose n = 100 when p; = p; = .9. The Brownian
control problem is more tractable than its conventional counterpart, and Wein (1989a)
has solved a Brownian control problem that approximates a scheduling problem for a more
general version (for example, each class has their own general processing time distribution)

of the two-station network described above. The scheduling problem was to choose a
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customer release policy (the timing was controllable, but the type of entering customer
was deterministically chosen according to the fractions Aj,j = 1,...,J) and a priority
sequencing policy (which class of customer to serve next at each station) to minimize the
long run expected average number of customers in the network subject to the constraint
that the long run expected average throughput rate was greater than or equal to A. In
Wein (1989b), the solution to this Brownian control problem was interpreted in terms of
the original queueing system in order to develop an effective scheduling policy. Readers are
referred to that paper for a description of the motivating factory scheduling problem, and
definitions of the workload regulating release policy and the workload balancing sequencing
policy, which is based on dynamic reduced costs from a linear program.

This paper calculates simple upper bounds on the long run expected average number
of customers in the network under the optimal solution of the idealized Brownian model,
which we denote Aby L,pt. These bounds are calculated under the assumption that all

service times are exponential. The main results are

P1 .
Lopt < —— if p1 = p2, 1.3
and
pi ,
Lopt _<__ {2%(T—Lp:)’ if P1 7’—' p2- (14)

These bounds offer both optimistic and pessimistic news with respect to the improve-
ments provided by scheduling. On the optimistic side, inequalities (1.1) and (1.3) imply
that the idealized Brownian solution cuts L by at least a factor of four relative to the
Poisson, FCFS case. Thus scheduling can offer a dramatic improvement in system perfor-
mance. When p; # p2, (1.1), (1.2), and (1.4) suggest that L is cut by at least a factor that
is slightly smaller than two. We believe the relative difference between these two cases
has more to do with the quality of the derived bounds than with any inherent difficulty in

obtaining scheduling improvements in the unbalanced case.
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On the pessimistic side, we have not been able to eliminate the (1 — p) term in the
denominator of (1.3) and (1.4), which is omnipresent in steady state queueing theoretic
results for open networks. In fact, Loy = K/(1 — p) for the balanced case, and the factor
of K is bounded above by p/2 in the derivation to follow, leading to (1.3). Thus, it appears
that scheduling can offer only a linear improvement in performance, and that scheduling

is unable to prevent a queueing system from becoming unstable when p > 1.

The bound in (1.3) does not provide a rigorous justification of the existence of a
scheduling policy that will reduce L by at least a factor of four. The model development
in Harrison (1988) contains a persuasive verbal argument, but lacks a heavy traffic limit
theorem claiming that a sequence of queueing network scheduling problems converges to the
limiting Brownian control problem as the network approaches heavy traffic. Although an
optimal solution to the two-station Brownian control problem is found in Wein (1989a), the
interpretation of this solution in (1989b) is based on intuition gained from existing heavy
traffic limit theorems, and no attempt is made to rigorously justify this interpretation with
a weak convergence result. However, related weak convergence results have been obtained
by Kushner and Ramachandran (1989), Martins and Kushner (1989), and Kushner and
Martins (1989) in the context of queueing network control problems, where the service
rates, arrival rates, and routing probabilities can be controlled. They prove the convergence
of the controlled processes to a controlled reflected diffusion process, the convergence of
the associated costs, and the convergence of the optimal value function of the queueing

system to the optimal value function of the limit process.

We believe that bounds (1.3)-(1.4) offer a rough estimate for the impact that schedul-
ing can have on two-station queueing networks satisfying the balanced heavy loading con-
ditions (1.2). This belief is partially based on the fact that the slackness in the bound
counteracts the possible inability of the proposed policy to achieve L,,; when the system
is not in extremely heavy traffic. Although extensive numerical results have not been

performed, a simulation study was undertaken in Wein (1989b) on a two-station network
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where p; = p3 = .9, and the proposed scheduling policy achieved a mean sojourn time (with
a 95% confidence interval) of 38.6(+0.9) at a mean throughput rate of A = .127(+.001).
This network was not of product form under Poisson input and FCFS sequencing, because
different customer classes possessed different exponential processing time distributions,
and thus bound (1.3) does not necessarily apply. However, simulating Poisson input and
FCFS sequencing for this problem yields a mean sojourn time of 159.0(+7.0) at a mean
throughput rate of A = .127(£.000). Since, 159.0/38.6 = 4.12, these simulation results

certainly display the improvement in performance suggested by (1.3).

The next section reviews the result for Loy, in the more general network problem
considered in Wein (1989a). In Section 3, inequalities (1.3) and (1.4) are derived under

the exponential processing time assumption.

2. Optimal Performance in the Brownian Network

In this section, we state the results in Wein (1989a) for the optimal long run expected
average number of customers in the network. Unlike the Poisson input, FCFS sequencing
case in equation (1.1), L,,: depends on the detailed routing structure of the particluar
network, and on the first and second moments of the various service time distributions. The
queueing network is indexed by single-server stations ¢ = 1,2, customer types j = 1,...,J,
and customer classes k = 1, ..., K. Recall from Section 1 that the desired throughput rate
of type j customers is Aj, and A = ZLI is the desired total throughput rate. Since a
different class of customer is defined for each combination of customer type and stage of
completion, we have K > J. Furthermore, J of the K classes correspond to the first stage
of some customer type’s route. Let gx = A;/ X if class k is the first stage of customer class
j’s route, for j = 1,...,J, and let g = 0, otherwise. Then define Ay = gz}, so that A
represents the average number of class k customers that must flow through the network

per unit of time in order to satisfy the throughput rate constraint.
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Each customer class is served at a particular station s(k), and has its own general
service time distribution with mean m; and variance 3%. Define the 2 x K resource con-

sumption matrix A = (A;) by

Ay = { 1, ifi=s(k), (2.1)

0, otherwise.
A customer of class k, upon completion of service at station s(k), turns into a class j
customer with probability Pg;, and exits the network with probability 1 — Z£1 Py, in-
dependent of all previous history. The K x K Markovian switching matrix P = (P%;) has
spectral radius less than one, so that all customers eventually exit the network. Notice
that the matrix P consists of all zero and one entries, since we are assuming deterministic
routes. The assumption of deterministic routes is only for expositional convenience; see
Kelly (1979) and Harrison (1988) for the inclusion of probabilistic routing, for events such

as rework or scrap. Define the K x K input-output matrix R = (Ry;) by
Rij =mj ' (8 — Pjr), (2.2)

where 6;; = 11if j =k, and 6z = 0 otherwise.
Since the routing matrix P is transient, the matrix R is invertible, and there exists a

unique nonnegative K—vector g = (f;) satisfying the flow balance equations
A = RS, ‘ (2.3)

where A\ = (Ay,..., k). We interpret fj as the average fraction of time that server s(k)
must devote to serving class k customers in order to satisfy the throughput constraint with

equality. Let the traffic intensities (p1, p2) be defined by

K
pPi = ZAik,Bka for ¢ = 1,2, (2.4)
k=1

so that p; is the average utilization of server 7 if the throughput rate constraint holds with

equality. Thus, the server utilizations in (2.4) are precisely the same values as appear in

(1.1) for the Poisson, FCFS case.



Now define the 2 x K workload profile matrix M = (M;x) by
M = AR™'. (2.5)

The value of My is interpreted as the expected remaining processing time at station ¢ for
a customer of class k until that customer exits the network. Without loss of generality,

suppose the customer classes are indexed so that

 Jax, (p2 My — p1 Mak) = pa M1y — p1May > 0, (2.6)
and
121,1%11( (p2Myx — prMar) = paMya — p1Maa < 0. (2.7)

Now define the positive coefficients hy and hy by

1

hy =
! p1Mag — pa My’

(2.8)

and
1

hy = .
2 p2 My — p1 M2y

(2.9)

Finally, recalling that n is the system parameter defined in the balanced heavy loading
conditions (1.2), define

= vn(p1 — p2), (2.10)
£ =vnpi(1 - p1), (2.11)

0= [f;l], (2.12)

and the K x K matrix ¥ = (¥;), where

K
Ti= Z[ﬁkmzlpkj(éjl — Py) + Brmy 'sE R, Rux)- (2.13)
k=1

The matrix ¥ is the covariance matrix of a K —dimensional Brownian motion process

imbedded in the limiting Brownian control problem derived in Harrison (1988). We should
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note that Harrison presents two possible versions of the covariance matrix ¥, and (2.13)
is the more “refined” version proposed in equation (11.6) of that paper. Finally, the
K —dimensional Brownian motion is redyced to a one-dimensional Brownian motion that

has drift x in (2.10) and variance o2, where
0% = oTMEMTp. (2.14)

To repeat, the queueing network scheduling problem is to dynamically release cus-
tomers (subject to a specified entering class mix) and sequence customers in a two-station
queueing network to minimize the long run expected average number of customers in the
network subject to achieving a long run expected average throughput rate of at least \.

The optimal objective function value in the approximating Brownian control problem is

denoted by f(a*) in Wein (1989a), and by (7.3), (7.19), and (7.20) of that paper,

a*) = o I (h1 + h2)p2(1 = p1)
fla) = (2/1(/01 - Pz)) [hlm(l Pl (hlm(l —p1) + h2p1(1 — Pz))

(h1+ h2)p1(1 — p3)
thapi(1=p)ln (hlﬂz(l —p1) +hapr(1 - Pz))] ’ (215

if p1 # p2. By (9.14) of Wein (1989a), it follows that

0.2
f(a) = geat?

= ———— if p; = po. 2.16
4§(h1+h2) i m P2 ( )

The Brownian approximation is based on a rescaling of the basic processes by the
system parameter n. In particular, if Q(t) is the number of class k customers in the
original queueing network at time ¢, then Z;(t) is the number of class k customers in the

Brownian network at time ¢, where

Zu(t) = Q"(\/_:t), for > 0. (2.17)

Since the objective function leading to f(a*) was in terms of a long run average criterion,

it follows that
Lopt = v/nf(a*). (2.18)
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This is the long run expected average number of customers in the queueing system under

an optimal release and sequencing policy, as predicted by the Brownian model.

3. Derivation of the Upper Bounds

In this section, we specialize the results in Section 2 to the case where the service

time distributions are exponential. The results do not rely on the fact that each class at a

given station has the same service time distribution. However, this assumption is needed

in order to obtain a product form network, and hence (1.1). We start by simplifying the

variance o2.

Lemma 1. If all service time distributions are exponential, then

K K
o?=2 Zﬂk(plek - P1M2k)(P2A1k - P1A2k) - Z /\k(le2k - P2M1k)2-

k=1 k=1

Proof. By (2.2) and (2.13), ¥ can be written as

JI_Z[ﬂkmk Pij(81 — Pu) + Bemy ' simy (8k; — Prj)mg (611 — Prr)]-

k=1
Since the service times are exponential, s2 = m2 for k =1, ..., K, and

K
Ejl = Z[ﬂkmilpkj(fsjl — Pkl) + ﬂkm,:l(ékj — ij)(5kl — sz)].

k=1

Let T' = MEMT, so that for i,j = 1,2,

s=1 t=1 k=1
K K K

= Z ﬂkaI Z Z 13Pka(6st Pkt)M]t
k=1 s=1 t=1

9
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Observe that (2.5) implies

K
ZMis(&ca — P )=Aumy fori=1,2, andk=1,... K. (3.7)

s=1

Thus, the second term on the right side of (3.6) is

K K K K
ZﬂkMZI [Z Mio(bks — Pks)} [Z My (bxe — sz)} = ZﬂkmkAikAjk, (3.8)
k=1 a=1 t=1 k=1

which equals zero by (2.1). The first term on the right side of (3.6) can be expressed as

Thus,

Z ﬂkmk Z Z Mtsts(6 t— Pkt)M)t (39)
s=1 t=1
— Z Brmy ! [Z M;, Py, M, — Z Z M,ststtM,t] (3.10)
s=1 s=1 t=1

- Zﬂkmk [Z M:sts 38 (Mzk - zkmk)(M]k - ]kmk)] by (37)7 (311)
k=1

= Zﬂk(MukA ik + MjxAix) + ZMzk [z Bsm ' Poy — Bemy ]Mjk

=1 =1
- Z BrmiAirAji, (3.12)
k=1
K K
=Y Be(MirAje + MjxAie) = Y MueMje, by (2.1) and (2.3). (3.13)
k=1 k=1
K
Tij =) Be(MuAje + MjxAie) = > MuheMje, fori,j =1,2. (3.14)
k=1 k=1

Finally, 02 = ¢”T, by (2.14) and the definition of T, so

o? =2p} ZﬂkAllek - p3 Z A ME — p1pa Z Br(MixAgr + Moy Asr)

k=1 =1 k=1

+ p1p2 Z A Mix Mar, + 23 Z Br Aok Mak — pf Z MM,

k=1 k=1 k=1
K K
— p1p2 Z Br(Mir A2k + Max A1x) + p1p2 Z Ar My Moy, (3.15)
k=1 k=1
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Collecting terms yields (3.1) 1§

In the next lemma, the quantity 6% is bounded from above. First, let us define

Mk = P2Mlk — P1M2k, for k= 1,...,K. (316)
Lemma 2.
0’2 S 2p1p2(M1 - Mz) (317)
Proof.

K K K
0? =23 BiMiprArx — 2 BeMipiAsk — ) AeME, by (3.1) and (3.16), (3.18)

k=1 k=1 k=1
K ) K .
< 2p, Z BrA1x My —2p, Z BrAzx My, (3.19)
k=1 k=1
K K
<20 M1 Y BrArk —2p1 M3 ) BrAak, by (26) —(2.7), (3.20)
k=1 k=1
< 2p1p2(My — My), by (2.4). 1 (3.21)

Now we are ready to prove inequalities (1.3) and (1.4).

Proposition 3.

P1
L _
Pt =901

L
- p1)

5 lf P1 = p2. (322)

Proof. By (2.11), (2.16), and (2.18), we have

0’2h1h2
4p1(1 — p1)(h1 + h2)’

Lopt = if p1 = pa (3.23)

By (2.8)-(2.9),
hby 1
h1+h2 B Ml—M2.

(3.24)
Thus, by Lemma 2 and (3.24),

2p}(M; — M)
4p1(1 = p1)(My — M)’

(3.25)

Lopt =

__ M
=525y 1 (3.26)
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Proposition 4.

pi .
< e . .
Lopt_{gggg(l_pi), if p1 # p2 (3.27)

Proof. By (2.10), (2.15), and (2.18), it follows that
2

___ o o (h1 + h2)p2(1 — p1)
P 2p1 — pa)? [h1p2(1 Pl (h1p2(1 —p1) + hapa(1 - Pz))

(h1+ h2)p1(1 = p2)
thap(l=p2)ln (hlpz(l = p1)+hepr(1- Pz))] ' (3:28)

By (2.8)-(2.9), this can be expressed as

o? [_Pz(l'“Pl)ln( (M; — M)p2(1 — p1) )

2(p1 = p2)? M, Mzpi(1 = p2) — Mipa(1 = p1)

4 ed=p2) (Mz — M1)pr(1~ p2) (3.29)
M, M2P1(1*P2)—MIP2(1 -] | '

Notice that the argument inside the In(-) terms in (3.20) are positive, by (2.6)-(2.7). Since

L

Lopt =

In(z) <z —1 for £ > 0, we have

L= [_pz(l —p1) My(p2 — p1)
" 2o = p2)? M, M;pi(1 — p2) — Mipa(1 — p1)
+ p1(1 — p2) _ My(p2 — p1) ’ (3.30)
M, M2p1(1 = p2) — Mip2(1 — p1)
__ v ( _ (p1 = p2)’ (3.31)
2(p1 = p2)* \ My pa(1 — p1) — Mapy(1 = p2)’
2
=— G , (3.32)
2[Mypz(1 — p1) — M2p1(1 = p2)]
< 2ppa(My = My) , by Lemma 2. (3.33)
2[Mypy(1 = p1) — M2pa(1 — p2)]
Suppose p; > p2. Then
2 1, — M.
Lope < ——20102(M1 = My) : (3.34)
2[M1p2(1 = p1) — Mapa(1 — p1)]
P1
= ) 3.35
s (3.35)
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Similarly, if p2 > p1, then

2P1P2(Ml - Mz)

Lopt S — - , (3-36)
2[M1p1(1 — p2) — Map1(1 — p2)]
P2
— ' 3.37
— (3.37)
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