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Abstract In multi-class queueing systems, customers of different classes can enter the system. When studying
such systems, it is traditionally assumed that the different classes of customers occur randomly and inde-
pendently in the arrival stream of customers in the system. This is often in contrast to the actual situation.
Therefore, we study a multi-class system with so-called class clustering in the customer arrival stream, i.e.,
(Markovian) correlation occurs in the classes of consecutive customers. The system under investigation con-
sists of one server that is able to serve two classes of customers. In addition, the service-time distribution
of a customer depends on the equality or non-equality of its class with the class of the previous customer.
This latter feature occurs frequently in practice. For instance, execution of the same task again can lead to
both faster or slower processing times. The first case can occur when the execution of a different task entails
resetting a machine, or loading new data, et cetera. The opposite situation appears, for instance, when exe-
cution of the same task requires postprocessing (such as cooling down or reinitialisation of a machine). We
deduce the probability generating function (pgf) of the system content, from which we can extract various
performance measures, among which the mean values of the system content and the customer delay. We
demonstrate that class clustering has a tremendous impact on the system performance, which highlights the
necessity to include it in the performance assessment of any system in which it occurs.
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1 Introduction

In multi-class queueing systems, customers of different classes can enter the system. Customers of distinct
classes, for instance, correspond to data packets requiring transmission over different egress lines, vehicles
that are heading to other destinations, data packets with different priorities, jobs with other execution times,
people desiring distinct kinds of service at a call center, patients in the waiting room with different complaints,
et cetera. As multi-class systems appear frequently in practice, they have attracted a lot of attention in the
literature. However, in most studies it is standard to assume that the different classes of customers occur
randomly and independently in the arrival stream of customers into the system (see e.g. [1, 3, 8, 9, 14, 16, 22,
23] and references therein), which is often in contrast to the actual situation. In reality, there is often some
degree of interclass correlation or class clustering. In some cases, for instance, customers of the same class
have a tendency to arrive “back to back”. To see that, one can think of a network router that transmits data
from and towards various communicating processes that are running in the network. Within certain time
frames of its service, it is not unlikely that the router will transfer subsequent data packets that all originate
from the same process, i.e., packets of the same class are processed in clusters.

In some discrete-time multi-class queueing models correlation exists between the numbers of arrivals
of different classes in the same slot, but the numbers of arrivals of each class during consecutive slots are
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independent and identically distributed [15, 20, 19, 24]. Hence, in [15, 20, 19, 24], correlation is defined slot-
based, whereas our definition is customer-based, i.e., we let the classes of consecutive customers in the arrival
process be dependent, even across slot boundaries. As a result, class clustering is not adequately modelled
in [15, 20, 19, 24], whereas the opposite holds in this paper. We believe that the arrival process considered
in this paper may be more suitable for particular applications, such as in manufacturing systems or in the
scheduling of computing jobs.

In order to examine the impact of class clustering, we recently studied it in various multi-class queueing
systems [6, 7, 18, 17, 5]. In [18], a continuous-time system was considered with two classes of customers that
each have their own dedicated server and that are accommodated in one common queue. Such a system is
useful in the modeling of e.g. traffic junctions in road traffic or input queues in packet switches. In [6, 7], we
evaluated the analogous discrete-time variant of the above system, as this variant models the behaviour of
telecommunications systems more closely. In [10], it was shown that the results of [6, 7] can also be applied to
study data clustering on in-order processing systems. A system with one server, two queues, and customers
with two priority classes has been examined in [17]. The latter system can be applied to model the distinction
between data and real-time packets in telecommunications systems. Finally, in [5], a system was evaluated
with one server, one queue, and two classes of customers that require distinct service times. The latter feature
can, for instance, model the time that patients visit the doctor, as this depends on the type of complaints
they have. In all the examined systems, we have demonstrated that class clustering can have a huge influence
on the overall system performance.

The current paper is motivated by the observation that, in practice, it can occur that the service time
of a customer does not necessarily depend on its own class, but rather on the equality or non-equality of its
class with the class of the previous customer. For instance, consider software programs that run on the same
server and that require lots of program-specific data. If program P was executed during the previous run,
the necessary data will have been loaded into the cache memory, and hence execution of program P in the
current run will be faster. As a second example, we mention a specialized printing house that delivers print
work in several different formats. If subsequent customers ask for the same format, the machine can start
printing immediately. In the opposite case, some mechanical parts of the printing machine may have to be
reset, before printing can be initiated.

Based on the conclusions of the cited papers above, we have reason to believe that class clustering will
also have an important impact on the behaviour of systems where the service time of a customer depends on
the equality or non-equality of its class with the class of the previous customer. Hence, when studying the
performance of such systems, class clustering should be incorporated in order to obtain realistic results and
to be able to quantify the impact of it. This forms the topic of this paper. More specifically, we describe the
system under investigation in detail in section 2. It is a system where two classes of customers are placed
in a common FCFS queue, where class clustering is included and whereby the service time of a customer
depends on the equality of its class with the class of the previous customer. In section 3, we analyse the
system behaviour and we derive an expression for the pgf of the number of customers in the system, hereafter
referred to as the system content, both at customer departure times as at random slot boundaries. Some
special system cases are discussed in section 4. Finally, the influence of class clustering is investigated in
section 5, and some conclusions are drawn in section 6.

2 System description

We study a discrete-time queueing system with an infinite waiting room, one server, and two classes of
customers, named 1 and 2. As in all discrete-time systems, the time axis is divided into fixed-length time
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intervals that are referred to as slots in the sequel. New customers can arrive in the system at any given
(continuous) point on the time axis, but customer service times can only start and end at slot boundaries.
Customers are served according to a so-called global FCFS service discipline, meaning that they are served
in order of their arrival, regardless of the class they belong to.

The arrival process of new customers is characterized in two steps. First, the total (aggregated) number
of customer arrivals in subsequent slots is represented by a sequence of independent and identically dis-
tributed (i.i.d.) nonnegative discrete random variables with common probability mass function (pmf) e(n)
and common probability generating function (pgf) E(z):

e(n) , Prob[n arrivals in one slot] , n ≥ 0 ,

E(z) ,
∞∑
n=0

e(n)zn.

The (total) mean arrival rate, that is the (total) mean number of arrivals per slot, is then given by

λ , E′(1) .

Secondly, the occurrence of class 1 and class 2 customers within the total arrival stream is governed by
a customer-class correlation model. This implies that we account for the possibility of interclass correlation,
or class clustering in the arrival process. Customers of any given class may (or may not) have a tendency to
“arrive back-to-back”. Consequently, the classes of two consecutive customers may be non-independent. In
this study, we consider a discrete-time first-order Markov chain to model correlation between the classes of
two consecutive customers. The transition probabilities of the Markov chain are defined as (see Fig. 1)

α , Prob[tk+1 = 1|tk = 1];β , Prob[tk+1 = 2|tk = 2] , (1)

with tk the class of customer k. The steady-state probabilities of finding the Markov chain in state 1 respec-

1 2

1− α

1− β

α β

Fig. 1. Two-state Markov chain of the customer classes.

tively 2 are equal to [11, 13]

π1 , lim
k→∞

Prob[tk = 1] =
1− β

2− α− β , π2 , lim
k→∞

Prob[tk = 2] =
1− α

2− α− β .

They can be interpreted as the fractions of class 1 and class 2 customers in the arrival stream. The steady-
state correlation coefficient γ (−1 ≤ γ ≤ 1) of the Markov chain, referred to as the interclass correlation in
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the sequel, is defined as

γ , lim
k→∞

E [tktk+1]− E [tk] E [tk+1]√
var[tk] var[tk+1]

= α+ β − 1 .

It represents the amount of correlation between the classes of two consecutive customers in the arrival stream
(in the steady-state). Positive values of γ correspond to situations in which at least one customer class has
a tendency to cluster. Negative values of γ typically imply (strongly) alternating customer class arrivals.
In case γ = 0, and consequently α = 1 − β, the classes of consecutive customers are independent, and
consequently, uncorrelated. This corresponds with the situation that is traditionally (implicitly) assumed in
literature.

The service process of the customers is characterized by means of two possible service-time distributions.
The service time, or service requirement of a customer indicates the number of slots that is needed to fully
serve that customer. Concretely, we assume that the service time of a customer depends on its own class and
on the class of the previous customer. If both classes are the same, the pmf of the service time is given by

a(n) , Prob[n slots needed to serve customer k|tk = tk−1] , n ≥ 1 ,

otherwise, the pmf is given by

b(n) , Prob[n slots needed to serve customer k|tk 6= tk−1] , n ≥ 1 .

The corresponding pgfs are denoted by

A(z) ,
∞∑
n=1

a(n)zn , B(z) ,
∞∑
n=1

b(n)zn .

The mean service times for customers following a same-class customer or a customer of the opposite class
are given by

µA , A′(1) , µB , B′(1) .

3 System analysis

In this section, we first present an analysis of the total number of customers in the system at customer
departure times. An expression is derived for the pgf of this number (under steady-state conditions) and a
method is described that can be used to determine the two remaining unknowns in the expression. Next,
we also provide an expression for the pgf of the system content and the average system content at random
slot boundaries. All given derivations are valid for arbitrary choices of the pgfs E(z), A(z) and B(z), and
for arbitrary α and β values.

3.1 System equations at customer departure times

In this subsection, we establish system equations that capture the behaviour of the system content at
customer departure times. To that end, we introduce the variable uk, the total number of customers in the
system immediately after the service completion of the k-th customer. Due to the assumptions presented
in section 2, the sequence of couples {(tk,uk)} constitutes a discrete-time Markov chain. As was described
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time 

uk+1 uk > 0 

departure of 

customer k 

departure of 

customer k+1 

gk+1 

Fig. 2. Relationship between uk and uk+1 when uk > 0.

above, the state transitions for the sequence {tk} are governed by Equation (1). For the quantities {uk}, we
obtain two recursive equations that cover the complete set of situations that is depicted in figures 2 and 3:

uk+1 = uk − 1 + gk+1 , if uk > 0 ,

uk+1 = hk+1 , if uk = 0 . (2)

In these equations, gk+1 stands for the (total) number of arrivals in the system during the service time of
customer k + 1. The quantity hk+1 is defined as

hk+1 , gk+1 + fk+1 ,

with fk+1 indicating the number of customer arrivals in the arrival slot of customer k+1, but after customer
k + 1 (in case customer k + 1 enters an empty system).

time

uk+1uk = 0

departure of 
customer k

departure of 
customer k+1

arrival of 
customer k+1

hk+1

fk+1 gk+1

Fig. 3. Relationship between uk and uk+1 when uk = 0.
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As fk+1 represents the number of additional arrivals in a slot with at least one arrival, its pmf f(n) and
pgf F (z) can be found as

f(n) , Prob[n additional arrivals|at least 1 arrival] =
e(n+ 1)

1− E(0)
, n ≥ 0 ,

F (z) , E[zfk+1 ] =

∞∑
n=0

f(n)zn =
E(z)− E(0)

z[1− E(0)]
, (3)

irrespective of whether customer k + 1 is of the same or different class as customer k. For the pgfs of the
quantities gk+1 and hk+1, the equality of the customer classes of two consecutive customers does make a
difference. Taking into account that we are considering an i.i.d. aggregated arrival process, which implies
that fk+1 and gk+1 are mutually independent, we find that

GA(z) , E [zgk+1 |tk+1 = tk] = A(E(z)) , HA(z) , E
[
zhk+1 |tk+1 = tk

]
= F (z)A(E(z)) ,

GB(z) , E [zgk+1 |tk+1 6= tk] = B(E(z)) , HB(z) , E
[
zhk+1 |tk+1 6= tk

]
= F (z)B(E(z)) .

3.2 System content at customer departure times

One of our intentions is to provide expressions for the performance measures of the queueing system under
so-called steady-state conditions. This means that we assume that, after an initial transient phase, our system
is operating in a stable regime. It is well-known [4, 21] that for any work-conserving queueing system stability
is guaranteed as soon as the average amount of work entering the system per slot (often referred to as the
work load ρ) is strictly less than the amount of work that can be delivered by the server per slot. In our
model, considering a single server without interruptions, the stability condition thus boils down to

ρ , λE [c] < 1 ,

with c the service time of an arbitrary customer. Using the law of the total expectation, E [c] can be expanded,
yielding

E [c] = πAµA + (1− πA)µB , (4)

where πA denotes the steady-state probability that two consecutive customers belong to the same class:

πA , lim
k→∞

Prob[tk = tk−1]

= απ1 + βπ2 =
1− β

2− α− βα+
1− α

2− α− β β .

If we rework Equation (4), substituting α and β in terms of γ, π1, and π2, another, more interesting
expression for ρ can be found that links the work load directly to the amount of interclass correlation in the
arrival process:

ρ = λ[µA + 2(1− γ)(µB − µA)π1π2] . (5)

As could have been anticipated, we find that in case of ultimate positive customer class correlation (γ = 1),
the work load reduces to λµA. Moreover, this also holds for single-class systems where α or β are equal to 1,
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because in that case either π1 or π2 equals 0. It is also true if µA = µB . If γ equals -1, i.e., if the customer
class changes with every customer arrival, π1 and π2 are both equal to 0.5, and the work load reduces to
λµB , also as expected.

Assuming that the stability condition is met, we define joint steady-state probabilities for the Markov
chain {(tk, uk)} as

p1(i) , lim
k→∞

Prob[tk = 1, uk = i] , p2(i) , lim
k→∞

Prob[tk = 2, uk = i] ,

for all i ≥ 0. The corresponding partial pgfs are equal to

P1(z) ,
∞∑
i=0

p1(i)zi , P2(z) ,
∞∑
i=0

p2(i)zi ,

while the steady-state pgf P (z) of the total system content at customer departure times is given by

P (z) = P1(z) + P2(z) . (6)

Relying on the balance equations of the Markov chain, it is now possible to establish two linearly inde-
pendent equations for the partial pgfs P1(z) and P2(z). For customers of class 1, we get

p1(j) = lim
k→∞

Prob[tk+1 = 1, uk+1 = j]

=

∞∑
i=0

lim
k→∞

Prob[tk = 1, uk = i]Prob[tk+1 = 1, uk+1 = j|tk = 1, uk = i]

+

∞∑
i=0

lim
k→∞

Prob[tk = 2, uk = i]Prob[tk+1 = 1, uk+1 = j|tk = 2, uk = i] (7)

= α

∞∑
i=0

p1(i) lim
k→∞

Prob[uk+1 = j|uk = i, tk = 1, tk+1 = 1]

+(1− β)

∞∑
i=0

p2(i) lim
k→∞

Prob[uk+1 = j|uk = i, tk = 2, tk+1 = 1] .

Taking the z-transform of (7) yields:

P1(z) = α

∞∑
i=0

p1(i) lim
k→∞

E [zuk+1 |uk = i, tk = 1, tk+1 = 1] (8)

+(1− β)

∞∑
i=0

p2(i) lim
k→∞

E [zuk+1 |uk = i, tk = 2, tk+1 = 1] .
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The expectations in the above equations can be further developed using the system equations in (2):

lim
k→∞

E [zuk+1 |uk = i, tk = 1, tk+1 = 1] = lim
k→∞

E
[
zi−1+gk+1 |tk = 1, tk+1 = 1

]
= zi−1GA(z) , for all i ≥ 1 , (9)

lim
k→∞

E [zuk+1 |uk = 0, tk = 1, tk+1 = 1] = lim
k→∞

E
[
zhk+1 |tk = 1, tk+1 = 1

]
= HA(z) , for i = 0 , (10)

lim
k→∞

E [zuk+1 |uk = i, tk = 2, tk+1 = 1] = lim
k→∞

E
[
zi−1+gk+1 |tk = 2, tk+1 = 1

]
= zi−1GB(z) , for all i ≥ 1 , (11)

lim
k→∞

E [zuk+1 |uk = 0, tk = 2, tk+1 = 1] = lim
k→∞

E
[
zhk+1 |tk = 2, tk+1 = 1

]
= HB(z) , for i = 0 . (12)

Substitution of (9), (10), (11) and (12) in equation (8) finally leads to a first linear equation between P1(z)
and P2(z):

P1(z) = αP1(0)HA(z) +
αGA(z)

z
(P1(z)− P1(0))

+(1− β)P2(0)HB(z) +
(1− β)GB(z)

z
(P2(z)− P2(0)) ,

or, reworked in terms of the arrival pgf E(z) and service-time pgfs A(z) and B(z):

(z − αA(E(z)))P1(z) = (1− β)B(E(z))P2(z) + αA(E(z))(zF (z)− 1)P1(0)

+(1− β)B(E(z))(zF (z)− 1)P2(0) . (13)

Along the same lines, a second linear equation can be found starting from the balance equations for class
2 customers:

(z − βA(E(z)))P2(z) = (1− α)B(E(z))P1(z) + βA(E(z))(zF (z)− 1)P2(0)

+(1− α)B(E(z))(zF (z)− 1)P1(0) . (14)

Equations (13) and (14) can be solved for the unknown partial pgfs P1(z) and P2(z). Using the results and
Equation (3) to expand Equation (6), we then obtain a first expression for the pgf P (z):

P (z) =
P (0)(E(z)− 1)

1− E(0)

z(pAA(E(z)) + pBB(E(z)))− αβA(E(z))2 + (1− α)(1− β)B(E(z))2

z2 − z(α+ β)A(E(z)) + αβA(E(z))2 − (1− α)(1− β)B(E(z))2
, (15)

where we have introduced the following definitions for the quantities pA and pB :

pA ,
αP1(0) + βP2(0)

P (0)
, pB ,

(1− α)P1(0) + (1− β)P2(0)

P (0)
. (16)

Given that P (0) = P1(0) + P2(0), these quantities can be seen as conditional probabilities

pA = lim
k→∞

Prob[tk+1 = tk|uk = 0] , pB = lim
k→∞

Prob[tk+1 6= tk|uk = 0] ,
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the conditional probabilities that a new customer entering an empty system (in regime) belongs to the same
or the opposite class respectively as the last customer that was served by the system.

Expression (15) still contains three unknowns that need to be determined: P (0), pA and pB . The proba-
bility P (0) can be found by imposing the normalization condition on the pgf P (z), i.e. P (1) = 1. Using de
l’Hôpital’s rule to solve the equation, we obtain that

P (0) =
(1− E(0))(1− ρ)

λ
. (17)

In order to derive expressions for pA and pB , two linear equations in pA and pB are established. The first
one simply states that

pA + pB = 1 . (18)

To obtain the second equation, we will prove that the denominator of P (z) has exactly two zeroes inside the
closed complex unit disk {z ∈ C : |z| ≤ 1}. Due to the analytic property of pgfs inside the unit disk, those
zeroes, one of which is equal to 1, must also be zeroes of P (z)’s numerator. The combination of the zero
distinct from 1 and the analytic property of pgfs will produce the second equation.

In what follows, we prove that the denominator of P (z) has 2 zeroes inside the closed complex unit disk.
In many papers, the denominator equals zn − X(z), with n a positive integer, X(z) a pgf and X

′
(1) < n

(this condition generally is equivalent with the stability condition). As it is not difficult to prove by means
of Rouché’s theorem ([2], [21]) that the (more general) function zn − KX(z) (with K ≤ 1) has exactly n
zeroes in the closed complex unit disk, application of Rouché’s theorem is straightforward in most papers,
and is therefore often omitted. Unfortunately, in the current paper, the denominator of P (z) (see equation
(15)) has a more intricate form, and it is therefore more difficult to prove that it has 2 zeroes inside the
closed complex unit disk. We present the proof in the following theorem:

Theorem 1. The denominator of P (z) (equation (15)) has two zeroes in the closed complex unit disk.

Proof. The germ of our approach is to structure the denominator of P (z) as f1(z)f2(z)− g(z), with

f1(z) , z − αA(E(z)) ,

f2(z) , z − βA(E(z)) ,

g(z) , (1− α)(1− β)B(E(z))2 .

Note that these are all analytic functions inside the closed complex unit disk, and that f1(z) and f2(z) belong
to the class of functions for which it is straightforward to prove by means of Rouché’s theorem that they
contain one zero inside the closed complex unit disk. As a result, f1(z)f2(z) contains 2 zeroes inside the
closed complex unit disk. We now prove that

|f1(z)f2(z)| > |g(z)| ,
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on the contour |z| = 1 + ε, with ε a (very) small increment larger than 0. We can write that∣∣∣∣ g(z)

f1(z)f2(z)

∣∣∣∣ = |B(E(z))|2
∣∣∣∣ 1− α
z − αA(E(z))

∣∣∣∣ ∣∣∣∣ 1− β
z − βA(E(z))

∣∣∣∣
= |B(E(z))|2

∣∣∣∣∣∣
G1

(
A(E(z))

z

)
z

∣∣∣∣∣∣
∣∣∣∣∣∣
G2

(
A(E(z))

z

)
z

∣∣∣∣∣∣ ,
with

G1(z) ,
1− α
1− αz ,

and

G2(z) ,
1− β
1− βz ,

pgfs of geometric distributions with parameters α and β respectively. Next, let us consider values of z satisfying
|z| = 1 + ε. First, we have

|B(E(z))|2 ≤ B(E(1 + ε)))2

=
(
1 + εµBλ+O(ε2)

)2
= 1 + ε2µBλ+O(ε2) .

Next, it holds that ∣∣∣∣∣∣
G1

(
A(E(z))

z

)
z

∣∣∣∣∣∣ ≤
G1

(
A(E(1+ε))

1+ε

)
1 + ε

=
G1

(
1+εµAλ+O(ε2)

1+ε

)
1 + ε

= 1 + ε

[
−1 + (−1 + µAλ)

α

1− α

]
+O(ε2) ,

where we have invoked G
′

1(1) = α/(1− α) and 1/(1 + ε) = 1− ε+O(ε2). Analogously, we find∣∣∣∣∣∣
G2

(
A(E(z)))

z

)
z

∣∣∣∣∣∣ ≤ 1 + ε

[
−1 + (−1 + µAλ)

β

1− β

]
+O(ε2) .

Combining the above results, we obtain∣∣∣∣ g(z)

f1(z)f2(z)

∣∣∣∣ ≤1 + ε

[
2µBλ− 1 +

α

1− α [−1 + µAλ]− 1 +
β

1− β [−1 + µAλ]

]
+O(ε2) .
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The coefficient corresponding to ε can be rewritten as

λ

(1− α)(1− β)
[{α(1− β) + β(1− α)}µA + 2(1− α)(1− β)µB ]− 1

(1− α)(1− β)
[2− α− β] .

As the stability condition ρ < 1 can be expressed as

λ [{α(1− β) + β(1− α)}µA + 2(1− α)(1− β)µB ] < 2− α− β ,

the coefficient corresponding to ε is strictly smaller than 0. Hence, on the contour |z| = 1 + ε, it holds that
|f1(z)f2(z)| > |g(z)|. On account of Rouché’s theorem, f1(z)f2(z)− g(z), i.e., the denominator of P (z), has
2 zeroes inside {z ∈ C : |z| ≤ 1 + ε}. Letting ε→ 0 concludes the proof. ut

For z = 1, given its factor (E(z)−1), the numerator of P (z) clearly vanishes. For the second zero however,
called ẑ from here on, the other factor in the numerator should equal 0, which yields a linear equation for pA
and pB . Solving this equation, in combination with Equation (18), we find that pA and pB can be determined
as

pA =
(α+ β)A(E(ẑ))−B(E(ẑ))− ẑ

A(E(ẑ))−B(E(ẑ))
, pB =

(1− α− β)A(E(ẑ)) + ẑ

A(E(ẑ))−B(E(ẑ))
.

Once the zero ẑ is computed (numerically), pA and pB are fixed, and as such, so is P (z).

3.3 System content at random slot boundaries

From earlier research [4], it follows that for all discrete-time queueing systems that incorporate one single
server and generally independent customer arrivals from slot to slot (with pgf E(z)), a fairly simple relation-
ship holds between the pgf P (z) of the system content at customer departure times and the pgf U(z) of the
system content at random slot boundaries, regardless of the exact characteristics of the service process and
the intra-slot details of the arrival process (e.g., single or batch arrivals, when do customers arrive within
the slot, etc.). This relationship is

P (z) =
E(z)− 1

λ(z − 1)
U(z) . (19)

As the examined model belongs to the class of systems that is described above, relationship (19) in
combination with Equations (15) and (17) leads to the following expression for the pgf of the system content
at random slot boundaries:

U(z) =
(1− ρ)(z − 1)[z(pAA(E(z)) + pBB(E(z)))− αβA(E(z))2 + (1− α)(1− β)B(E(z))2]

z2 − z(α+ β)A(E(z)) + αβA(E(z))2 − (1− α)(1− β)B(E(z))2
. (20)

From this expression, various interesting performance measures can be derived, one of which is of course
the mean system content E [u] at random slot boundaries. The latter can be determined as E [u] = U ′(1).
After long and tedious calculations, we find that

E [u] = ρ+
λ2C ′′(1) + E′′(1)C ′(1)

2(1− ρ)
+ 2λ(µA − µB)π1π2 +

pBλ(µB − µA)

1− γ

+
(1− γ)λ2(µB − µA)2π1π2(1− 4π1π2)

1− ρ , (21)
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with C ′(1) and C ′′(1) the first two derivatives at z = 1 of the pgf C(z) of the service time of an arbitrary
customer:

C(z) = πAA(z) + (1− πA)B(z) .

In Equation (21), the first term ρ accounts for the average server content, or the mean number of
customers in service. The last four terms cover the mean queue occupancy, meaning the average number of
customers that are actually waiting to be served.

Higher-order moments of the system content at random slot boundaries can be obtained by computing
higher-order derivatives of the pgf U(z). By means of Little’s law (for discrete-time queues) [12], one can
determine the average delay (system time) of an arbitrary customer as E [d] = E [u] /λ. The mean waiting
time E [w] is obtained as E [w] = E [d]− E [c], where E [c] was defined in (4). We obtain

E [w] =
λ2C ′′(1) + E′′(1)C ′(1)

2λ(1− ρ)
+ 2(µA − µB)π1π2 +

pB(µB − µA)

1− γ

+
(1− γ)λ(µB − µA)2π1π2(1− 4π1π2)

1− ρ .

4 Four special cases

In this section, we study a few special examples of our general system model.

4.1 Identical service-time distributions: A(z) = B(z)

A first special model occurs when the service-time distribution of customers does not depend on the equality
of the subsequent customer classes any more, i.e., A(z) = B(z). In that case, we expect to find the behaviour
of a single-server system accommodating only one class of customers with service-time pgf A(z). After
rewriting the expression for U(z), replacing B(z) by A(z), we indeed find the well-known [4, 21] pgf of the
system content at random slot boundaries of such a model:

U(z) =
(1− ρ)(z − 1)(zA(E(z)) + (1− α− β)A(E(z))2)

z2 − z(α+ β)A(E(z)) + (1− α− β)A(E(z))2

=
(1− ρ)(z − 1)A(E(z))(z + (1− α− β)A(E(z)))

(z −A(E(z)))(z + (1− α− β)A(E(z)))
(22)

=
(1− ρ)(z − 1)A(E(z))

z −A(E(z))
.

4.2 Single-class system: α = 1, or β = 1

A second special model is one where in the steady-state regime only one class of customers enters the system.
This model corresponds to either α or β being 1. In that case, pA becomes 1, while pB = 0 (or, vice versa).
Considering a model where α = 1 and β takes on any arbitrary value, the expression for the pgf of the
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system content at random slot boundaries reduces to

U(z) =
(1− ρ)(z − 1)(zA(E(z))− βA(E(z))2)

z2 − z(1 + β)A(E(z)) + βA(E(z))2

=
(1− ρ)(z − 1)A(E(z))(z − βA(E(z)))

(z −A(E(z)))(z − βA(E(z)))
(23)

=
(1− ρ)(z − 1)A(E(z))

z −A(E(z))
,

which is again what could be expected.

4.3 Service times independent of exact customer classes: α = β

A third special system case appears when α = β. Then, the probability of encountering an arrival of the
same or the opposite class as the previous arrival becomes independent of the precise class of the previous
customer. This implies that pA and pB are equal to α and 1−α respectively (see Equation (16)). Reworking
Equation (20) yields

U(z) =
(1− ρ)(z − 1)[z(αA(E(z)) + (1− α)B(E(z)))− (αA(E(z)))2 + ((1− α)B(E(z)))2]

z2 − 2zαA(E(z)) + (αA(E(z)))2 − ((1− α)B(E(z)))2

=
(1− ρ)(z − 1)[αA(E(z)) + (1− α)B(E(z))][z − (αA(E(z))− (1− α)B(E(z)))]

(z − αA(E(z)))2 − ((1− α)B(E(z)))2

=
(1− ρ)(z − 1)[αA(E(z)) + (1− α)B(E(z))][z − αA(E(z)) + (1− α)B(E(z))]

[z − (αA(E(z)) + (1− α)B(E(z))][z − αA(E(z)) + (1− α)B(E(z))]
(24)

=
(1− ρ)(z − 1)C(E(z))

z − C(E(z))
,

with C(z), pgf of the service time of an arbitrary customer, now equal to:

C(z) = αA(z) + (1− α)B(z) . (25)

Note that expression (25) can also be written as

C(z) =
α

1−αA(z) +B(z)
α

1−α + 1
=
A(z) + 1−α

α B(z)

1 + 1−α
α

,

where α/(1 − α) represents the average number of consecutive customers of the same class, and 1−α
α the

average number of consecutive customers of different (i.e., alternating) classes.

4.4 No interclass correlation: γ = 0

A fourth interesting case occurs when the interclass correlation γ is equal to 0 (and consequently α = 1−β).
In that case, the probability of encountering a class 1 or a class 2 customer becomes independent of the class
of the previous customer.

It turns out that this independence does not result in a special expression for the pgf of the system content
at random slot boundaries, except when α = β = 1

2 , which is a particular case of the set of systems that
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was discussed above (Section 4.3). This is owed to the fact that, although γ = 0, in general the probability
of observing subsequent customers of the same or the opposite class still depends on the specific class of
the previous customer. Hence, the service time of customer k + 1 is not independent of the service time
of customer k, which is a necessary condition to find an expression of the form found in (22), (23) and
(24). Subsequent service times being non-independent can, for instance, be observed when one considers the
non-equality of the following two probabilities for the proposed system case (γ = 0):

Prob[tk+1 6= tk|tk 6= tk−1] , and Prob[tk+1 6= tk] .

While the latter probability equals 2α(1− α):

Prob[tk+1 6= tk] = Prob[tk+1 = 1|tk = 2]Prob[tk = 2]

+ Prob[tk+1 = 2|tk = 1]Prob[tk = 1]

= 2α(1− α),

the former reduces to 1/2:

Prob[tk+1 6= tk|tk 6= tk−1] =
Prob[tk+1 6= tk, tk 6= tk−1]

Prob[tk 6= tk−1]

= [Prob[tk+1 = 1|tk = 2, tk−1 = 1]Prob[tk = 2, tk−1 = 1]

+Prob[tk+1 = 2|tk = 1, tk−1 = 2]Prob[tk = 1, tk−1 = 2]]

/Prob[tk 6= tk−1]

=
α2(1− α) + α(1− α)2

2α(1− α)
=

1

2
.

The above probabilities are only equal in case α = 1/2, and consequently β = 1/2, or α = β, which is exactly
the special case that we have dealt with in Section 4.3.

5 Discussion of results and numerical examples

In this section, we revisit the results that were obtained for the general case, both from a qualitative
perspective and by means of some numerical examples. In particular, we focus on what we believe is the
most commonly occurring case, namely that where the average service time of a customer is longer when
the previous customer is of the opposite class (i.e., µA < µB). As an example, we recall the two software
programs that run on the same server and that both require lots of program-specific data. If program P was
executed during the previous run, the necessary data was loaded into the cache memory, and hence execution
of program P in the current run will be very fast.

The first interesting result was already given by Equation (5). The equation expresses the direct de-
pendency of the work load ρ (, λE [c]) on the interclass correlation factor γ. Consequently, the stability
condition,

λ <
1

E [c]
=

1

µA + 2(1− γ)(µB − µA)π1π2
, (26)
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reveals that the supremum of the achievable throughput of the presented system, denoted as λsup from here
on, and expressed in customers per slot, depends on γ. It also depends on the average service time µA, the
average service-time difference µB − µA and the fractions of class 1 and 2 customers.

Equation (26) reveals that for a fixed average service-time difference µB −µA the achievable throughput
of the system gets lower as µA increases: longer average service times µA and µB lead to a lower average
number of customers that can be served per time slot. If the difference µB − µA increases (by increasing
µB), λsup decreases as well, because the mean service time for customers following customers of the opposite
class is increased.

For fixed average service times µA and µB , we find that λsup is lowest when π1π2 reaches it maximal value,
i.e., for π1 = π2 = 1

2 . If one class of customers enters the system more often than the other (π1 > 0.5 > π2
or π2 > 0.5 > π1), consecutive customers will be of the same class more often, implying that the average
service time of an arbitrary customer decreases, or that the throughput of the system increases.

When π1, π2, µA and µB are fixed, the throughput decreases when the classes of consecutive customers
alternate more frequently, i.e., when γ becomes smaller. The worst-case scenario occurs when γ = −1 meaning
that the classes of subsequent customers differ all the time. The best case scenario occurs for γ = 1, when
only one class of customers enters the system.

A second interesting result was given by Equation (21). It provides an expression for the average system
content at random slot boundaries:

E [u] = ρ+
λ2C ′′(1) + E′′(1)C ′(1)

2(1− ρ)
+ 2λ(µA − µB)π1π2 +

pBλ(µB − µA)

1− γ

+
(1− γ)λ2(µB − µA)2π1π2(1− 4π1π2)

1− ρ . (27)

The expression clearly indicates the influence of the different system parameters on the mean system
content at random slot boundaries. The first two terms of Equation (27) correspond to the classical terms
that constitute the expression for the average system content at random slot boundaries of a system with
no interclass correlation and a service-time pgf C(z). The other three terms in the expression can be fully
attributed to the presence of class clustering in the arrival process. Note that this last part depends on the
service-time distributions A(z) and B(z) through the difference of their mean values only.

It is not surprising to see that the mean system content depends on the first two moments of the aggregated
arrival process (represented by the quantities λ, E′′(1) and ρ = λE[c]) and on the first two moments of the
service times (represent by the quantities C ′(1), C ′′(1), µA, µB and ρ = λC ′(1)). Furthermore, as we
anticipated, the mean system content goes to infinity as soon as the work load ρ approaches its limiting
value 1.

It is also worth noting that it is premature to conclude from Equation (27) that the average system
content raises without bound when the interclass correlation factor γ is 1. When γ = 1, and consequently
α = β = 1, Equation (16) indicates that the numerator of the fourth term of Equation (27) vanishes too, as
pB = 0. In fact, when γ = 1, one resides in a single-class system (see also Section 4.2), implying that the
average system content will not rise endlessly as long as the stability condition is obeyed.

In Figures 4-6, we present numerical results for two-class queueing systems dealing with an aggregated
Poisson arrival process (i.e., E(z) = eλ(z−1)) and the following pgfs of the service times for both customers
following a customer of the same class and customers following a customer of the opposite class respectively:

A(z) = z; B(z) =
z

µB + (1− µB)z
. (28)
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Fig. 4. Mean system content versus the mean arrival rate λ, for Poisson arrivals, A(z) and B(z) given by
(28), µB = 9, π1 = π2 = 0.5 and several interclass correlation factors.

Hence, the service of customers following a customer of the same class only requires one time slot and in the
opposite case the service time is geometrically distributed with mean value µB . Figure 4 shows the mean
system content versus λ for different values of γ, in a system where µB = 9 and both classes of customers
occur with the same a priori frequency (i.e., π1 = π2 = 0.5).

One can observe that the average number of customers each system can deal with depends heavily on
the amount of interclass correlation: the more positive that correlation, the more customers can be served
per time slot. In terms of average system content this implies that the system occupancy raises rapidly for
systems with a negative interclass correlation.

In Figure 5, we examine the impact of the fractions of class 1 and class 2 customers in the arrival stream
on the average system content. The figure depicts the mean system content versus λ, in a system where
µB = 9, and with a fixed interclass correlation of 0.

The figure mainly shows that having two classes of customers instead of one strongly affects the mean
system content. If only one class of customer occurs, the average system content is much lower, because every
arriving customer only requires one time slot to be served. As soon as two different classes of customers enter
the system, the average system content increases considerably. As we reasoned before, based on Equation (26),
the exact fraction of class 1 and class 2 customers influences the achievable throughput of the system.

In a third plot (Figure 6), we present the mean system content of a system that is facing a positive
interclass correlation of 0.5 and an equal amount of class 1 and class 2 customers. The mean service time
µB is varied.

As could have been anticipated, we see that the average system content increases when µB increases. If
the interclass correlation factor is fixed, a longer service time for customers that are not of the same class
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Fig. 5. Mean system content versus the mean arrival rate λ, for Poisson arrivals, A(z) and B(z) given by
(28), µB = 9, γ = 0 and various fractions of customer classes in the arrival stream.

as the previous customer implies more arriving customers during that service time, and consequently, more
customers waiting in the system to be served.

In order to verify how the modeled systems behave when µA is higher than µB , we have also examined
some examples for that case. This case appears, for instance, when execution of a certain task requires
postprocessing (such as cooling down or reinitialisation of a machine). Intuitively, we expected to see the
opposite system behaviour as the one that was visualized in Figures 4-6: we anticipated higher average
system contents and a smaller stability region for (1) systems with more positive interclass correlation, (2)
systems where the fractions of the two customer classes are more balanced and (3) systems where the value
of µA is increasing. All our expectations were met. To give the reader an example, we present one more plot
(Figure 7) in which the mean system content versus λ for different values of γ is depicted, for a system where
µA = 3 (geometrically distributed service times), µB = 1 and π1 = π2 = 0.5.

6 Conclusions and future work

In this paper, we have analysed the performance of a system where the service-time distribution of a customer
depends on the equality or non-equality of its class with the class of the preceding customer. The major
contribution is that we have incorporated class clustering in our model. Although it was intuitively clear
that class clustering can have a huge impact, this feature was traditionally overlooked in literature. We
have included it in the model, hence providing a more accurate and realistic system analysis. In addition, it
enables us to quantify the influence of class clustering. We believe that our model can be more suitable for
particular applications, for instance in manufacturing, as compared to traditional multi-class models.
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Fig. 6. Mean system content versus the mean arrival rate λ, for Poisson arrivals, γ = 0.5 and π1 = π2 = 0.5;
A(z) and B(z) are given by (28).

There are a number of possible extensions to this work. First, the pgf of the customer delay can be of
interest. A possible approach could be linking the delay of consecutive customers, as this might make it
possible to deal with the class clustering feature. Also, considering more customer classes is an interesting
topic for future research. This could require a matrix-analytic solution method, but the amount of numerical
work might become considerable. Another possible extension is considering correlation between the total
numbers of arrivals during consecutive slots. A possibility might be to model this is a batch-Markovian
arrival process. Finally, it would be interesting to compare the results of this paper with results for an
analogous model with another scheduling policy than FCFS. The main challenge in that regard is that the
class of the last customer that left the system might not provide enough information about the class of the
next customer in service, as this customer might not necessarily be the one that arrived after the customer
that has just departed.
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Fig. 7. Mean system content versus the mean arrival rate λ, for Poisson arrivals, A(z) = z
µA+(1−µA)z with

µA = 3, B(z) = z, π1 = π2 = 0.5 and several interclass correlation factors.
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