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Abstract

We consider a two class, many-server queueing system which allows for customer aban-

donment and class changes. With the objective to minimize the long-run average holding cost, we

formulate a stochastic queueing control problem. Instead of solving this directly, we apply a fluid

scaling to obtain a deterministic counterpart to the problem. By considering the equilibrium of the

deterministic solution, we can solve the resulting control problem, referred to as the equilibrium

control problem (ECP), and use the solution to propose a priority policy for the original stochas-

tic queueing system. We prove that in an overloaded system, under a fluid scaling, our policy is

asymptotically optimal as it attains the lower bound formed by the solution of the ECP.

ii



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Asymptotic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Proposed Policy and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Proofs of Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
A Some Elementary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B Tightness of stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



Chapter 1

Introduction

Each day, the healthcare industry faces an allocation problem - with limited resources and

greater demand than supply, how should patients be served? When patients arrive at a hospital,

if they cannot be immediately attended to, they are placed in a queue to wait until a healthcare

professional becomes available. However, long wait times can cause patients to become impatient and

subsequently leave the queue, or their health could deteriorate due to the lack of medical attention,

leading to a more severe condition than when they first arrived. A common approach is to prioritize

those with a more serious medical condition; however, doing so may result in worsening conditions

for less severe patients. Taking these possibilities into consideration, which patients should receive

priority when a healthcare provider becomes available?

To address this question, we propose a many-server queue with two customer classes, where

class is used to define the customer’s need for service. In the healthcare sense, these two classes

can be used to distinguish the severity of the patient’s condition, i.e. moderate (low-priority) or

urgent (high-priority). Our system has n identical servers, and class-i customers, for i = 1, 2, arrive

according to a time-homogenous Poisson process with rate λi. A class-i customer who arrives and

cannot be immediately served is placed in an infinite-capacity queue. In queue i, the duration of a

class-i customer’s service is exponentially distributed with rate µi. Customers may become impatient

and choose to abandon the queue, and the patience times of class-i customers are exponentially

distributed with rate θi. As they wait, customers may also change classes, thus moving from one

queue to another. A customer switches from class-i to class-j after an exponential amount of time

with rate ρij . We assume that the arrival processes, service times, patience times, and the times to
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change class are independent.

In this model, we consider a heavily loaded system with a high volume of arrivals and a large

number of servers. Our goal is to minimize the long-run average holding cost, where the holding

cost per unit time for a customer of class-i is given by the constant ci > 0, by efficiently scheduling

waiting customers to available servers. We do not intend to solve the control problem directly.

Instead, we construct an asymptotic framework in which the arrival rates are assumed to be O(n)

and the rates of service times, patience times, and times to change class are all assumed to be O(1).

Under an appropriate scaling, referred to as the fluid scaling, we expect that our state processes will

approach deterministic limits. Considering the equilibrium of the deterministic limits gives rise to a

simple linear program (LP) which, when solved, leads to a simple priority policy. Using the solution

of the LP, we propose a priority policy for the original queueing system. Our main result shows that

the proposed policy is asymptotically optimal under fluid scaling.

We now review some of the existing literature relevant to the current work. One closely

related work is Atar, Giat, and Shimkin [3]. In [3], a static priority rule, the so-called cµ/θ rule, is

designed to minimize the long-run holding cost for a multi-class many-server queue, accounting for

the possibility that customers may abandon the queue while waiting to be served. This rule is an

adaptation of the well known cµ-rule and assigns priority to the queue class according to the order of

their indices, ciµi/θi, where ci represents the class-i holding cost, µi is the service rate for customers

of class i, and θi is the class-i abandonment rate. In other words, when a server becomes available,

the queue with the largest ciµi/θi value is selected to be served. The distinguishing feature of our

model, compared to [3], is that we introduce the capability for customers to change classes, in either

direction, within the system - to move from, say, the low priority class to the high priority class,

or vice versa. The ability for customers to change class in such a way is an important aspect of

queueing systems due to its relevance in applications, such as call centers or, particularly, hospital

waiting rooms. In the present work, following the main idea of [3], we also develop a static priority

policy where the priority of each class depends on an index which depends on the holding cost,

service rate, abandonment rate, and furthermore the class change rate in a more complicated way.

Similar to our model, Hu, Chan, and Dong [13] consider a two class many-server queue

with abandonment, which allows customers of class 1 to move to class 2. They focus on a healthcare

setting with two different classes of patients - moderate (class 1) and urgent (class 2), and a moderate

patient who is not given proactive care may change classes to become an urgent patient. They also
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consider the simple deterministic LP and derive a similar static priority policy. Their work is not

concerned with the asymptotic optimality analysis of the priority policy. Instead, they focus on the

equilibrium analysis of the fluid system under the priority policy, and the transient analysis of the

system before reaching equilibrium state.

Scheduling plays a central role in many applications including manufacturing, computing,

service, and healthcare systems (cf. [18, 2, 6, 11, 12]). There is much literature dedicated to the study

of scheduling control of multiclass queues using fluid models. A recent tutorial work [19] considers

a general multiclass many-server queue with abandonments - more particularly, a G/GI/N + GI

queue - and develops a fluid control problem for long-run average cost functionals. In addition, in

Atar, Giat, and Shimkin [4], an ergodic cost function is considered for the same queueing system as

[3], and the same cµ/θ rule is shown to be asymptotically optimal. Fluid models are also commonly

used for time-inhomogeneous systems. In [5, 17, 10, 16], heavily loaded systems are considered, and

asymptotically optimal policies are developed, all under fluid scaling. Additionally, queueing models

with class changes have been developed for organ transplant systems. Fluid queueing models which

incorporate class changes are created for kidney and liver transplant systems to develop efficient

allocation policies in [20] and [1]. Recently, [15] models a general transplant system as a stochastic

matching queue, and develops an asymptotically optimal allocation policy under the fluid scaling.

At last, the paper [9] considers a multiclass single-serve queueing system with class change and

formulates the scheduling control problem as a Markov decision process.

The rest of the paper is organized as follows: In Section 2.1 we formulate the stochastic

processes and queueing control problem. In Section 2.2, we introduce the asymptotic framework

and implement the fluid scaling. In Section 2.3, we formulate the fluid control problem. We then

translate the fluid model into a linear program which, when solved, leads to our proposed priority

policy. Finally, Section 2.4 presents our proposed policy and main theoretic results and Section 2.5

contains proofs for those theoretic results.
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Chapter 2

Queueing Model

2.1 Problem Formulation

The queueing system considered in this thesis consists of two classes of customers, class 1

and 2, each forming their own queue. These two queues are often interpreted as a high-priority

queue and a low-priority queue. There are n identical servers who serve both classes of customers.

This system of n servers is referred to as the nth system. Let Xn
i (t) denote the number of class i

customers in the system at time t, Qni (t) the number of class i customers in the queue at time t,

and Zni (t) the number of class i customers being served at time t, where i = 1, 2. Thus, it must be

true that for every t ≥ 0, and i = 1, 2,

Xn
i (t)− Zni (t) = Qni (t) ≥ 0, (2.1)

Zn1 (t) + Zn2 (t) ≤ n, (2.2)

Zni (t) ≥ 0. (2.3)

For i = 1, 2, the external arrival process to the ith queue is assumed to be a Poisson

process with rate λni and we denote it as {Ani (t); t ≥ 0}. We assume that the service times and

patience times of customers are all independent of each other. For class i, the service times are

exponentially distributed with rate µni , and the patience times are exponentially distributed with

rate θni . Furthermore, if a customer of class i is still waiting in the queue after an exponential

amount of time with rate ρnij , he/she will move to class j, and once the customer joins class j,
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he/she becomes a customer of class j, where i 6= j. For t ≥ 0, let Dn
i (t) denote the number of class

i service completions by time t, Rni (t) denote the number of class i customers who abandon the

system by time t, and Mn
ij(t) denote the number of class i customers who have moved to class j by

time t. The processes Dn
i , Rni , and Mn

ij , i, j,= 1, 2, i 6= j, can be formulated as follows. For t ≥ 0,

Dn
i (t) = D̃n

i

(∫ t

0

Zni (s) ds

)
, (2.4)

Rni (t) = R̃ni

(∫ t

0

Qni (s) ds

)
, (2.5)

Mn
ij(t) = M̃n

ij

(∫ t

0

Qni (s) ds

)
, (2.6)

where D̃n
i , R̃ni , and M̃n

ij are independent Poisson processes with rates µni , θni , and ρnij , respectively.

Finally, the state process can be described as follows. For t ≥ 0,

Xn
i (t) = Xn

i (0) +Ani (t)−Dn
i (t)−Rni (t)−Mn

ij(t) +Mn
ji(t), for i, j = 1, 2 and i 6= j. (2.7)

Finally, we assume that the initial state Xn
i (0), the external arrival process Ani , and the Poisson

processes D̃n
i , R̃ni , and M̃n

ij are independent.

The n identical servers can serve both classes, which gives rise to a natural scheduling

problem. Namely, when both queues are nonempty, which one should the next available server

select to serve? Denote by πn a scheduling policy for the nth system. The πn is characterized by

the system processes operated under it. Thus, we let

πn = (Xn, Qn, Zn, Dn, Rn,Mn),

where Xn = (Xn
1 , X

n
2 )T , Qn = (Qn1 , Q

n
2 )T , Zn = (Zn1 , Z

n
2 )T , Dn = (Dn

1 , D
n
2 )T , Rn = (Rn1 , R

n
2 )T , and

Mn = (Mn
12,M

n
21)T . We are interested in minimizing the long run average holding cost of customers

waiting in the queues by choosing scheduling policies. More precisely, let ci ≥ 0 be the holding cost

per unit time for each class i customer. Then, the holding cost of the system at time t is given by

c1Q
n
1 (t) + c2Q

n
2 (t). Under policy πn, the average holding cost function over the time interval [0, T ]

is given by

CT (πn) =
1

T
E

(∫ T

0

c1Q
n
1 (s) + c2Q

n
2 (s) ds

)
. (2.8)
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Let Πn be the collection of all scheduling policy πn (note that policies need not satisfy any work

conservation condition) such that (Xn, Qn, Zn, Dn, Rn,Mn) is right continuous with left limits. Our

goal is to minimize limT→∞ CT (πn) by choosing πn ∈ Πn.

2.2 Asymptotic Framework

We are interested in a heavily loaded system with large customer arrival rates and a large

number of servers. The precise heavy traffic assumption is made below.

Assumption 1 (Heavy traffic condition). For i = 1, 2, let λi > 0, µi > 0, θi > 0, ρ12 ≥ 0, ρ21 ≥ 0

be constants. Then as n→∞,

λni
n
→ λi, µ

n
i → µi, θ

n
i → θi, ρ

n
12 → ρ12, ρ

n
21 → ρ21.

We also make the following initial condition.

Assumption 2 (Initial condition). For a deterministic vector x(0) ∈ R2
+, as n→∞,

Xn(0)

n
→ x(0), in probability.

In the n-th system, we introduce the fluid scaled versions of the aforementioned processes

by scaling down the original processes by the factor n.

X̄n =
Xn

n
, Q̄n =

Qn

n
, Z̄n =

Zn

n
, Ān =

An

n
, R̄n =

Rn

n
, D̄n =

Dn

n
, M̄n =

Mn

n
.

By (2.1)− (2.3), and (2.7), these scaled processes satisfy: For i = 1, 2,

X̄n
i (t) = X̄n

i (0) + Āni (t)− D̄n
i (t)− R̄ni (t)− M̄n

ij(t) + M̄n
ji(t), j 6= i, (2.9)

X̄n
i (t)− Z̄ni (t) = Q̄ni (t) ≥ 0, (2.10)

Z̄n1 (t) + Z̄n2 (t) ≤ 1, (2.11)

Z̄ni (t) ≥ 0. (2.12)
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Define the fluid scaled cost function for the n-th system under a policy πn as follows:

C̄T (πn) =
CT (πn)

n
=

1

T
E

(∫ T

0

c1Q̄
n
1 (s) + c2Q̄

n
2 (s)ds

)
. (2.13)

The fluid scaled control problem is to choose πn ∈ Πn to minimize C̄T (πn). It is useful to recall an

important result that will be used in this section.

Lemma 1 (Functional Law of Large Numbers (FLLN) for Poisson Processes). Let {N(t); t ≥ 0} be

a Poisson process with rate λ. For T ≥ 0,

sup
t∈[0,T ]

∣∣∣∣N(nt)

n
− λt

∣∣∣∣→ 0, in probability, as n→∞. (2.14)

From Lemma 1, we would expect that

Ani (t)

n
≈ λit,

D̃n
i (nt)

n
≈ µit,

R̃ni (nt)

n
≈ θit,

M̃n
ij(nt)

n
≈ ρijt,

and the fluid scaled processes approach the following deterministic limits. For i, j = 1, 2 and i 6= j,

xi(t) = xi(0) + λit− (θi + ρij)

∫ t

0

qi(s) ds+ ρji

∫ t

0

qj(s) ds− µi
∫ t

0

zi(s) ds,

xi(t)− zi(t) = qi(t) ≥ 0,

z1(t) + z2(t) ≤ 1,

zi(t) ≥ 0.

(2.15)

The equations in (2.15) will be referred to as the fluid equations, and a solution (x, q, z),

where x = {(x1(t), x2(t))T ; t ≥ 0}, q = {(q1(t), q2(t))T ; t ≥ 0} and z = {(z1(t), z2(t))T ; t ≥ 0}, is

called a fluid limit. In the next section, we will construct a control problem for the equilibrium of

the fluid limit.
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2.3 Fluid Model

2.3.1 Equilibrium Control Problem (ECP)

We consider the fluid model defined in (2.15). Corresponding to the fluid scaled control

problem to minimize (2.13), we consider a deterministic control problem which is to minimize

lim
T→∞

1

T

∫ T

0

c1q1(t) + c2q2(t)dt (2.16)

by choosing z subject to the constraints of (2.15). We note that if (q1(t), q2(t)) converges to (qe1, q
e
2)

as t → ∞, then the objective function (2.16) would converge to c1q
e
1 + c2q

e
2 (see Lemma 4 in the

Appendix). Thus, we would like to first find qe1 and qe2. This prompts us to find the equilibrium

points for the fluid model.

Now consider the derivative of xi(t) and set it equal to 0. We have for t ≥ 0,

dxi(t)

dt
= λi − (θi + ρij) qi(t) + ρjiqj(t)− µizi(t) = 0.

To find the equilibrium points for the fluid equations, let us consider the following system of equa-

tions. For i = 1, 2,

λi − (θi + ρij) q
e
i + ρjiq

e
i − µizei = 0, j 6= i,

xei − zei = qei ≥ 0,

ze1 + ze2 ≤ 1,

zei ≥ 0.

These constraints, together with the objective function c1q
e
1 + c2q

e
2, give rise to the equilibrium

control problem (ECP):

min
ze1 ,z

e
2

c1q
e
1 + c2q

e
2

s.t. λi = (θi + ρij)q
e
i − ρjiqej + µiz

e
i , i, j = 1, 2, i 6= j,

qei ≥ 0, zei ≥ 0, i = 1, 2,

ze1 + ze2 ≤ 1.

(2.17)
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2.3.2 Solving the ECP

The first constraint in (2.17) can be succinctly written in matrix form as

λ1

λ2

 =

θ1 + ρ12 −ρ21

−ρ21 θ2 + ρ21


qe1
qe2

+

µ1z
e
1

µ2z
e
2


Solving for (qe1, q

e
2)T ,

qe1
qe2

 = A

λ1

λ2

−A
µ1z

e
1

µ2z
e
2

 , where A =
1

θ1θ2 + ρ12θ2 + ρ21θ1

θ2 + ρ21 ρ21

ρ12 θ1 + ρ12

 .
Thus, the ECP is equivalent to maximizing

(c1, c2)A

µ1z
e
1

µ2z
e
2

 := b1z
e
1 + b2z

e
2 (2.18)

over ze = (ze1, z
e
2)T , where

b1 =
µ1 (c1 (θ2 + ρ21) + c2ρ12)

θ1θ2 + ρ12θ2 + ρ21θ1
> 0, b2 =

µ2 (c2 (θ1 + ρ12) + c1ρ21)

θ1θ2 + ρ12θ2 + ρ21θ1
> 0,

subject to qe1
qe2

 = A

λ1 − µ1z
e
1

λ2 − µ2z
e
2

 ≥ 0,

zei ≥ 0, i = 1, 2,

ze1 + ze2 ≤ 1.

(2.19)

Thus, the ECP is to maximize (2.18) subject to (2.19). The optimal solution is to assign priority to

the class with the larger index bi, i = 1, 2. In other words, the optimal solution is to first assign the

maximum feasible value to the zei , i = 1, 2, corresponding to the larger index max(b1, b2), and then

assign the maximum feasible value to the other zei .

Let us consider two special cases of the ECP by limiting the flexibility of our queuing system.
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1. Consider a system with no class changes, i.e. ρ12 = ρ21 = 0. This implies

b1 =
c1µ1

θ1
and b2 =

c2µ2

θ2
.

We have recovered the cµ/θ rule from Atar, Giat, Shimkin [3].

2. Consider a system where only customers in one class can change class. Without loss of gener-

ality, we consider a case where class 2 customers can change class to class 1, i.e. ρ12 = 0 and

ρ21 > 0. In this case, b1 is recovered as

b1 =
c1µ1

θ1
,

which is the same as the case without class changes, but b2 becomes:

b2 =
µ2 (c2θ1 + c1ρ21)

θ1θ2 + ρ21θ1

=
µ2c2

θ2 + ρ21

θ1 + c1
c2
ρ21

θ1

=
µ2c2

θ2 + ρ21

(
1 +

c1
c2

ρ21

θ1

)
.

It is important to note the effect that the value of ρ21 has on the value of the index b2. By

allowing for a one-directional class change, i.e. ρ21 > 0 and ρ12 = 0, the index b2 increases

compared to the case with no class change.

Example 1. We consider an example with parameters c1 = 4, c2 = 1, θ1 = 3, θ2 = 2, µ1 = 3,

and µ2 = 4. Thus, b1 = 4. Notice that the value of ρ21 affects whether class 1 or class 2 is

of priority. If we let ρ21 = 1, then b2 = 28
9 < b1 = 4, and so class 1 is of priority. However,

if we let ρ21 take on a larger value, say ρ21 = 6, then b2 = 4.5 > b1 = 4, and so class 2 is of

priority. In the healthcare context, this means that if the conditions of the class 2 (moderate)

patients worsen very quickly, then it is better to give priority to class 2.

To simplify our analysis of the ECP, we assume ρ12 = 0 and ρ21 ≥ 0. In this way, we can

solve the ECP explicitly. As mentioned earlier in the discussion of the second special case, letting
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ρ12 = 0 results in the indices b1, b2 given as

b1 =
c1µ1

θ1
, b2 =

µ2c2
θ2 + ρ21

(
1 +

c1
c2

ρ21

θ1

)
. (2.20)

Expanding (2.19), we obtain the equivalent set of constraints:

ze2 ≤
λ2

µ2
, (2.21)

(θ2 + ρ21)µ1z
e
1 + ρ21µ2z

e
2 ≤ (θ2 + ρ21)λ1 + ρ21λ2, (2.22)

ze1 + ze2 ≤ 1, (2.23)

zei ≥ 0, i = 1, 2. (2.24)

Thus, the ECP is equivalent to the optimization problem which maximizes (2.18) subject to (2.21)−

(2.23). To solve the ECP, we need to consider two cases, when b1 < b2 and when b1 > b2.

Case 1: b1 < b2

When b1 < b2, class 2 is of priority. Therefore, in order to maximize (2.18), the optimal solution is

to first assign the maximum feasible value to ze2, and then assign the maximum feasible value to ze1.

In other words, the optimal solution (z∗1 , z
∗
2) is given by

z∗1 = min

{
1−min

{
1,
λ2

µ2

}
,
λ1

µ1

}
, z∗2 = min

{
1,
λ2

µ2

}
. (2.25)

Case 2: b1 > b2

When b1 > b2, class 1 is of priority. Consider (2.22). Letting ze2 = 0, (2.22) yields

ze1 ≤
(θ2 + ρ21)λ1 + ρ21λ2

(θ2 + ρ21)µ1
=
λ1

µ1
+

ρ21λ2

(θ2 + ρ21)µ1
:= A

and letting ze1 = 0, (2.22) yields

ze2 ≤
(θ2 + ρ21)λ1 + ρ21λ2

ρ21µ2
=
λ2

µ2
+

(θ2 + ρ21)λ1

ρ21µ2
:= B

Also notice that because b1 > b2, we must have

µ1 >
µ2ρ21

θ2 + ρ21
,

11



which implies

A =
λ1

µ1
+

ρ21λ2

(θ2 + ρ21)µ1
=
λ1

µ1
+
λ2

µ2

µ2
ρ21

θ2+ρ21

µ1
<
λ1

µ1
+
λ2

µ2
,

B =
λ2

µ2
+

(θ2 + ρ21)λ1

ρ21µ2
=
λ2

µ2
+
λ1

µ1

µ1

µ2
ρ21

θ2+ρ21

>
λ1

µ1
+
λ2

µ2
.

This establishes

A <
λ1

µ1
+
λ2

µ2
< B. (2.26)

The linear program, i.e. the ECP, can be explicitly solved for (z∗1 , z
∗
2) by noting that the optimal

solution must be on one of the vertices of the feasible region. The constraints given by (2.21) - (2.24)

are simply lines bounding our feasible region. In the first quadrant, consider the three lines below:

ze1 + ze2 = 1, (2.27)

ze2 =
λ2

µ2
, (2.28)

(θ2 + ρ21)µ1z
e
1 + ρ21µ2z

e
2 = (θ2 + ρ21)λ1 + ρ21λ2. (2.29)

To determine the optimal solution to the ECP, we must analyze the intersections of these three lines.

1. The intersection of (2.27) and (2.28) is the point
(

1− λ2

µ2
, λ2

µ2

)
, denoted I1.

2. The intersection of (2.27) and (2.29) is the point
(
λ1

µ1
, λ2

µ2

)
, denoted I2.

3. The intersection of (2.28) and (2.29) is the point (α0, 1− α0), denoted I3,where

α0 =
θ2λ1 + ρ21 (λ1 + λ2 − µ2)

µ1(θ2 + ρ21)− ρ21µ2
.

The optimal solution would be one of the points I1, I2, I3, or (1, 0). We consider three parameter

regimes: λ1

µ1
+ λ2

µ2
≤ 1, λ1

µ1
+ λ2

µ2
> 1, A ≤ 1, and λ1

µ1
+ λ2

µ2
> 1, A > 1. The table below lists the optimal

solution (z∗1 , z
∗
2) for the ECP and the corresponding (q∗1 , q

∗
2) under each case.

The overloaded regime is the only case that we are interested in since it is the only one where

q∗ 6= 0. When q∗ = 0, we already have optimality, as queues are empty in any optimal solution.

12



b1 > b2
(z∗1 , z

∗
2) (q∗1 , q

∗
2)

λ1

µ1
+ λ2

µ2
≤ 1

(
λ1

µ1
, λ2

µ2

)
(0, 0)

λ1

µ1
+ λ2

µ2
> 1, A < 1 (α0, 1− α0)

(
0,

µ1µ2

(
λ2
µ2

+
λ1
µ1
−1

)
µ1(θ2+ρ21)−ρ21µ2

)
λ1

µ1
+ λ2

µ2
> 1, A ≥ 1 (1, 0)

(
λ1+

ρ21λ2
θ2+ρ21

−µ1

θ1
, λ2

θ2+ρ21

)
Table 2.1: Optimal solution of the ECP when b1 > b2.

2.4 Proposed Policy and Main Results

Throughout this section, we assume λ1/µ1 + λ2/µ2 > 1; thus, we are working with an

overloaded system. Furthermore, we require ρn12 = 0 for all n. Based on the optimal solution of the

ECP, we propose the following preemptive priority scheduling policy for the n-th system. Define

bn1 =
µn1 (c1 (θn2 + ρn21) + c2ρ

n
12)

θn1 θ
n
2 + ρn12θ

n
2 + ρn21θ

n
1

, and bn2 =
µn2 (c2 (θn1 + ρn12) + c1ρ

n
21)

θn1 θ
n
2 + ρn12θ

n
2 + ρn21θ

n
1

.

Without loss of generality, we assume bn1 > bn2 and b1 > b2. Our policy assigns priority to customers

of class 1. Denote by πn,∗ the proposed policy. Our main theoretic results are provided below.

Under the proposed policy πn,∗, we have for t ≥ 0 and i = 1, 2,

Z̄ni (t) = X̄n
i (t) ∧

[
1−

i−1∑
k=1

X̄n
k (t)

]+

,

Q̄ni (t) = X̄n
i (t) ∧

[
i∑

k=1

X̄n
k (t)− 1

]+

.

(2.30)

13



The corresponding fluid equations become

xi(t) = xi(0) + λit− µi
∫ t

0

xi(s) ∧

[
1−

i−1∑
k=1

xk(s)

]+

ds

− (θi + ρij)

∫ t

0

xi(s) ∧

[
i∑

k=1

xk(s)− 1

]+

ds

+ ρji

∫ t

0

xj(s) ∧

[
j∑

k=1

xk(s)− 1

]+

ds,

zi(t) = xi(t) ∧

[
1−

i−1∑
k=1

xk(t)

]+

,

qi(t) = xi(t) ∧

[
i∑

k=1

xk(t)− 1

]+

.

(2.31)

Theorem 1. Under the proposed policy πn,∗, we have for any T ≥ 0, as n→∞,

sup
t∈[0,T ]

∥∥(X̄n(t), Q̄n(t), Z̄n(t))− (x(t), q(t), z(t))
∥∥→ 0, in probability, (2.32)

where (X̄n, Q̄n, Z̄n) and (x, q, z) are as in (2.30) and (2.31), and as t→∞,

(x(t), q(t), z(t))→ (x∗, q∗, z∗), (2.33)

where z∗ is the optimal solution of the ECP, and (x∗, q∗) is the corresponding state process.

Let V ∗ = (c1, c2)T (q∗1 , q
∗
2) be the optimal solution of the ECP.

Theorem 2 (Asymptotic optimality). The proposed policy πn,∗ is asymptotically optimal, i.e., for

an arbitrary scheduling policy πn,

lim sup
T→∞

lim sup
n→∞

C̄T (πn,∗) = V ∗ ≤ lim inf
T→∞

lim inf
n→∞

C̄T (πn). (2.34)

2.5 Proofs of Theorems

We first present the C-tightness of the fluid scaled process in the following lemma. Its proof

can be adapted from the proof of Proposition 7.1 in [15], and thus will be omitted in this thesis.

Lemma 2. Under any scheduling policy πn, the fluid scaled process (X̄n, Q̄n, Z̄n) is C-tight.
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Proof of Theorem 1. We consider the proposed policy πn,∗. The state process (X̄n, Q̄n, Z̄n) satisfies

(2.30). From Lemma 2, (X̄n, Q̄n, Z̄n) is C-tight. Let (X̄, Q̄, Z̄) be a weak limit. Then, (X̄, Q̄, Z̄)

satisfies (2.31). From [8], there exists a unique solution to (2.31). Thus, (X̄n, Q̄n, Z̄n) converges to

the unique solution of the fluid equations (2.31) weakly, which establishes (2.32). The convergence

in (2.33) follows from Theorem 2 and Theorem 3 in [13].

Proof of Theorem 2. We first show the inequality in (2.34), and consider an arbitrary policy πn.

From Lemma 2, (X̄n, Q̄n, Z̄n) is C-tight. Let (X̄, Q̄, Z̄) be a weak limit of (X̄n, Q̄n, Z̄n) along a

subsequence {nk}∞k=1. By the Skorohod representation theorem, without loss of generality, we can

assume

(X̄nk , Q̄nk , Z̄nk)→ (X̄, Q̄, Z̄)

almost surely and uniformly over [0, T ] for T > 0. From Lemma 1, (X̄, Q̄, Z̄) satisfies the fluid

equations (2.15). Since x(0) is deterministic, the limit (X̄, Q̄, Z̄) is deterministic. Using Fatou’s

Lemma,

lim inf
n→∞

C̄T (πn) = lim inf
n→∞

1

T

∫ T

0

E
(
c1Q̄

n
1 (s) + c2Q̄

n
2 (s)

)
ds

≥ 1

T

∫ T

0

lim inf
n→∞

E
(
c1Q̄

n
1 (s) + c2Q̄

n
2 (s)

)
ds

=
1

T

∫ T

0

c1E
(

lim inf
n→∞

Q̄n1 (s)
)

+ c2E
(

lim inf
n→∞

Q̄n2 (s)
)
ds

=
1

T

∫ T

0

c1Q̄1(s) + c2Q̄2(s)ds,

where (X̄, Q̄, Z̄) is a solution of the fluid equations (2.15). Let q̄ = 1
T

∫ T
0
Q̄(s)ds and z̄ = 1

T

∫ T
0
Z̄(s)ds.

Then,

X̄i(T )

T
=
xi(0)

T
+ λi − (θi + ρij) q̄i − µiz̄i + ρjiq̄j .

From Lemma 3, X̄i(T )
T − xi(0)

T → 0 as T →∞. Let λ̃i = λi− X̄i(T )−xi(0)
T . We now have (q̄, z̄) satisfies

λ̃i − (θi + ρij) q̄i − µiz̄i + ρjiq̄j = 0.

15



From Lemma 5 in the Appendix, we have

lim inf
T→∞

lim inf
n→∞

C̄T (πn) ≥ lim inf
T→∞

1

T

∫ T

0

c1Q̄1(s) + c2Q̄2(s)ds

= lim inf
T→∞

(c1q̄1 + c2q̄2)

≥ V ∗.

We next consider the proposed policy πn,∗, and note that the equality in (2.34) follows from (2.32)

and (2.33).
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Appendix A Some Elementary Lemmas

Lemma 3. For any solution (x, q, z) of the fluid equations (2.15),

(
x(t)

t
,
q(t)

t
,
z(t)

t

)
→ (0, 0, 0), as t→∞.

Proof. Define u(t) = x1(t) + x2(t), t ≥ 0. Let α = min{θ1, θ2, µ1, µ2}. For t ≥ 0, we have

u(t) = u(0) + (λ1 + λ2)t− θ1

∫ t

0

q1(s)ds− θ2

∫ t

0

q2(s)ds− µ1

∫ t

0

z1(s)ds− µ2

∫ t

0

z2(s)ds

= u(0) + (λ1 + λ2)t− α
∫ t

0

q1(s) + q2(t) + z1(s) + z2(s)ds− (θ1 − α)

∫ t

0

q1(s)ds

− (θ2 − α)

∫ t

0

q2(s)ds− (µ1 − α)

∫ t

0

z1(s)ds− (µ2 − α)

∫ t

0

z2(s)ds

= u(0) + (λ1 + λ2)t− α
∫ t

0

u(s)ds−∆(t),

where ∆(t) = (θ1 − α)
∫ t

0
q1(s)ds + (θ2 − α)

∫ t
0
q2(s)ds + (µ1 − α)

∫ t
0
z1(s)ds + (µ2 − α)

∫ t
0
z2(s)ds.

We next define

v(t) = u(0) + (λ1 + λ2)t− α
∫ t

0

v(s)ds, t ≥ 0.

In the following, we show that v(t) ≥ u(t) for each t ≥ 0 and v(t)/t→ 0 as t→∞.

Let w(t) = v(t)− u(t). Then,

w(t) = −α
∫ t

0

w(s)ds+ ∆(t).

Let t0 = inf{t ≥ 0 : w(t) < 0}. Thus, w(t0) = 0 and ẇ(t0) < 0. We have

ẇ(t0) = −αw(t0) + ∆̇(t0) = ∆̇(t0).

However, ∆̇(t0) ≥ 0 since qi(t), zi(t) ≥ 0 for all t, i = 1, 2. Therefore, w(t) = v(t)−u(t) ≥ 0 for all t.

Now, consider v̇(t) = (λ1 + λ2) − αv(t) = −α
[
v(t)− λ1+λ2

α

]
. We define a homogenous

differential equation ˙̃v(t) = −αṽ(t). This has a simple solution given by ṽ(t) = ṽ(0)e−αt. Setting
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v̇(t) = ˙̃v(t), we have ṽ(t) = v(t)− λ1+λ2

α . So,

v(t) = ṽ(t) +
λ1 + λ2

α

= ṽ(0)e−αt +
λ1 + λ2

α

=

[
v(0)− λ1 + λ2

α

]
e−αt +

λ1 + λ2

α
,

which says v(t)/t→ 0 as t→∞.

Lemma 4. For a continuous, integrable function y(t), if limt→∞ y(t) = ye, then

1

t

∫ t

0

y(s)ds→ ye as t→∞.

Proof. For all ε > 0, there exists T > 0 such that for t ≥ T ,

|y(t)− y0| < ε.

Then,

∣∣∣∣1t
∫ t

0

y(s)ds− y0

∣∣∣∣ =

∣∣∣∣∣1t
∫ T

0

y(s)ds+
1

t

∫ t

T

y(s)ds− y0

∣∣∣∣∣
≤

∣∣∣∣∣1t
∫ T

0

y(s)ds

∣∣∣∣∣+

∣∣∣∣1t
∫ t

T

(y(s)− y0) ds+
t− T
t

y0 − y0

∣∣∣∣
=

∣∣∣∣∣1t
∫ T

0

y(s)ds

∣∣∣∣∣+
t− T
t

ε+
T

t
y0

→ ε as t→∞.

Lemma 5. The solution of the ECP is continuous in the parameters (λ, µ, θ, ρ).

Proof. This result follows from the exact solutions derived in (2.25) and Table 2.1.
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Appendix B Tightness of stochastic processes

We adapt notation and definitions from [7]. Let S be a metric space, and S be the class of

Borel subsets of S. A probability measure µ on (S,S) is said to be tight if for each ε > 0 there exists

a compact set K such that µ(K) > 1− ε. A family Π of probability measures on (S,S) is said to be

tight if for each ε > 0 there exists a compact set K such that µ(K) > 1− ε for all µ ∈ Π. A sequence

{Un(t); t ≥ 0}∞n=1 of stochastic processes is tight if the family of probability measures induced by

{Un(t); t ≥ 0}∞n=1 is tight. Furthermore, a sequence {Un(t); t ≥ 0}∞n=1 of stochastic processes is

C-tight if the sequence is tight and all weak limits are almost surely continuous.

The following theorem can be used to prove the C-tightness of (X̄n, Q̄n, Z̄n).

Theorem 3 (Theorem VI.3.26 in [14]). The sequence of stochastic processes {Xn(t); t ≥ 0} in

D([0,∞),RK) is C-tight if and only if the following two conditions hold:

(i) For any T ≥ 0,

lim
a↑∞

P

(
sup

0≤t≤T
|Xn(t)| > a

)
= 0, n ≥ 1.

(ii) For any ε > 0 and 0 ≤ t1 ≤ t2 <∞,

lim
δ↓0

lim sup
n→∞

P

(
sup

0≤t1≤t2≤t1+δ
|Xn(t2)−Xn(t1)| > ε

)
= 0.

Theorem 4 (Skorohod representation theorem). Let {µn} be a sequence of probability measures on

a metric space S such that µn converges weakly to a probability measure µ on S as n→∞. Suppose

also that µ is separable. Then there exists random variables Xn and X defined on a probability space

such that Xn has the same law as µn for all n, and X has the same law as µ, and Xn converges to

X almost surely.
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