140 research outputs found

    Research Reports: 1997 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 33rd consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama in Huntsville and MSFC during the period June 2, 1997 through August 8, 1997. Operated under the auspices of the American Society for Engineering Education, the MSFC program was sponsored by the Higher Education Branch, Education Division, NASA Headquarters, Washington, D.C. The basic objectives of the program, which are in the 34th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. The Faculty Fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This document is a compilation of Fellows' reports on their research during the summer of 1997. The University of Alabama in Huntsville presents the Co-Directors' report on the administrative operations of the program. Further information can be obtained by contacting any of the editors

    Detecting Impersonation Attacks in a Static WSN

    Get PDF
    The current state of security found in the IoT domain is highly flawed, a major problem being that the cryptographic keys used for authentication can be easily extracted and thus enable a myriad of impersonation attacks. In this MSc thesis a study is done of an authentication mechanism called device fingerprinting. It is a mechanism which can derive the identity of a device without relying on device identity credentials and thus detect credential-based impersonation attacks. A proof of concept has been produced to showcase how a fingerprinting system can be designed to function in a resource constrained IoT environment. A novel approach has been taken where several fingerprinting techniques have been combined through machine learning to improve the system’s ability to deduce the identity of a device. The proof of concept yields high performant results, indicating that fingerprinting techniques are a viable approach to achieve security in an IoT system

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems
    corecore