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ABSTRACT

ON CO-OPTIMIZATION OF CONSTRAINED

SATISFIABILITY PROBLEMS FOR HARDWARE

SOFTWARE APPLICATIONS

SEPTEMBER 2011

KUNAL GANESHPURE

B.E., THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu

Manufacturing technology has permitted an exponential growth in transistor count

and density. However, making efficient use of the available transistors in the design

has become exceedingly difficult. Standard design flow involves synthesis, verification,

placement and routing followed by final tape out of the design. Due to the presence of

various undesirable effects like capacitive crosstalk, supply noise, high temperatures,

etc., verification/validation of the design has become a challenging problem. There-

fore, having a good design convergence may not be possible within the target time,

due to a need for a large number of design iterations.

Capacitive crosstalk is one of the major causes of design convergence problems

in deep sub-micron era. With scaling, the number of crosstalk violations has been

increasing because of reduced inter-wire distances. Consequently only the most severe
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crosstalk faults are fixed pre-silicon while the rest are tested post-silicon. Testing

for capacitive crosstalk involves generation of input patterns which can be applied

post-silicon to the integrated circuit and comparison of the output response. These

patterns are generated at the gate/Register Transfer Level (RTL) of abstraction using

Automatic Test Pattern Generation (ATPG) tools. In this dissertation, an Integer

Linear Programming (ILP) based ATPG technique for maximizing crosstalk induced

delay increase at the victim net, for multiple aggressor crosstalk faults, is presented.

Moreover, various solutions for pattern generation considering both zero as well as

unit delay models is also proposed.

With voltage scaling, power supply switching noise has become one of the lead-

ing causes of signal integrity related failures in deep sub-micron designs. Hence,

during power supply network design and analysis of power supply switching noise,

computation of peak supply current is an essential step. Traditional peak current

estimation approaches involve addition of peak current associated with all the CMOS

gates which are switching in a combinational circuit. Consequently, this approach

does not take the Boolean and temporal relationships of the circuit into account.

This work presents an ILP based technique for generation of an input pattern pair

which maximizes switching supply currents for a combinational circuit in the presence

of integer gate delays. The input pattern pair generated using the above approach

can be applied post-silicon for power droop testing.

With high level of integration, Multi-Processor Systems on Chip (MPSoC) feature

multiple processor cores and accelerators on the same die, so as to exploit the instruc-

tion level parallelism in the application. For hardware-software co-design, application

programming model is based on a Task Graph, which represents task dependencies

and execution/transfer times for various threads and processes within an application.

Mapping an application to an MPSoC traditionally involves representing it in the

form of a task graph and employing static scheduling in order to minimize the sched-
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ule length. Dynamic system behavior is not taken into consideration during static

scheduling, while dynamic scheduling requires the knowledge of task graph at run-

time. A run-time task graph extraction heuristic to facilitate dynamic scheduling is

also presented here. A novel game theory based approach uses this extracted task

graph to perform run-time scheduling in order to minimize total schedule length.

With increase in transistor density, power density has gone up substantially. This

has lead to generation of regions with very high temperature called Hotspots. Hotspots

lead to reliability and performance issues and affect design convergence. In current

generation Integrated Circuits (ICs) temperature is controlled by reducing power dissi-

pation using Dynamic Thermal Management (DTM) techniques like frequency and/or

voltage scaling. These techniques are reactive in nature and have detrimental effects

on performance. Here, a look-ahead based task migration technique is proposed, in

order to utilize the multitude of cores available in an MPSoC to eliminate thermal

emergencies. Our technique is based on temperature prediction, leveraging upon a

novel wavelet based thermal modeling approach.

Hence, this work addresses several optimization problems that can be reduced to

constrained max-satisfiability, involving integer as well as Boolean constraints in hard-

ware and software domains. Moreover, it provides domain specific heuristic solutions

for each of them.
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CHAPTER 1

INTRODUCTION

Moore’s law is a driver for semiconductor industry. It predicts a doubling of the

number of transistors on a chip every two years. As a result, it has become possible

to obtain an substantial increase in density and reduction in cost of modern ICs.

However, device scaling has also lead to various non-idel effects, which have escalated

test and validation complexity. Consequently, it is becoming increasingly difficult to

scale performance proportionately.

Due to decreasing process geometries and increasing operating frequencies, capac-

itive crosstalk has become one of the leading causes of circuit marginality failures

in current generation designs. Owing to a higher coupling capacitance to overall ca-

pacitance ratio, long signal nets are highly susceptible to crosstalk faults. Moreover,

a typical long signal net can also couple with many other nets leading to multiple

aggressors crosstalk scenario. It may be impossible to activate all aggressors logically

and simultaneously to constructively induce maximum crosstalk delay at the victim

net during pattern generation. Therefore, activating a maximal subset of aggressors,

weighted by actual coupling capacitance value, in close temporal proximity of the

victim net transition, is one of the main goals of pattern generation. In addition,

the above pattern generation problem also involves determining an input signal as-

signment so as to propagate the fault effect at the victim to the primary output.

Hence, this max-satisfiability problem is constrained by fault effect propagation con-

dition. In this work, novel ATPG solutions for multiple aggressor crosstalk faults for

zero and unit delay models are presented. Moreover, we also compare the magni-
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tude of crosstalk induced delay at the victim net for the above approaches. In our

solution, maximal aggressor excitation is achieved using a novel 0-1 Integer Linear

Programming (ILP) formulation, while multiple solutions for fault effect propagation

are presented. These solutions involve either a divide and conquer approach which

uses traditional stuck-at fault ATPG, or an approach involving generation of addi-

tional ILP constraints thus forming an integrated ILP formulation achieving both

maximal aggressor excitation and fault effect propagation. For unit delay model, the

effect of gate delays is taken into account by using a circuit transformation step.

As a result of voltage scaling, current generation designs in the deep sub-micron era

have become more sensitive to power supply noise. Excessive noise due to improperly

designed power supply network leads to performance and reliability issues. Hence,

it is imperative that supply network design be done carefully. Peak supply current

computation is central to power rail design and power supply switching noise analysis.

Traditionally, peak supply current is computed by adding the peak switching current

from all CMOS gates in a combinational circuit. If temporal and Boolean relationships

are taken into consideration, then there is a significant scope for improvement in this

approach. Due to logical relationship between patterns appearing at the input to

a gate in a combinational circuit, worst case switching current in a subset of gates

may prevent some other subset of gates from having the worst case. Moreover, the

switching events may be spaced out in time due to the effect of gate delays, thus

lowering the peak current. Consequently, in this work, we also take integer gate

delays into consideration. Further, it has been observed that, a faster and more

accurate solution is obtained when gate delays are taken into account, as it reduces

the size of individual problem instances to be solved. Finally, peak current waveform

generated by the proposed solver is compare against SPICE simulation to demonstrate

effectiveness of the proposed solution.
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With high level integration, Multi-Processor Systems on Chip (MPSoC) have be-

come commonplace. MPSoC hardware platform consists of multiple heterogeneous

cores communicating via a shared communication back plane. An application is

mapped to an MPSoC platform using a programming model which is based on a

Task Graph. In the task graph representation for an application, a node represents

an operation to be scheduled on a core, while the edges represent the communica-

tion between these operations. Computation and communication durations act as

weights for the nodes and edges, respectively. Moreover, each of the nodes also have

an associated type denoting the core architecture on which they can be scheduled.

A scheduling problem involving task to processor assignment to minimize the total

schedule length arises, as there may be fewer cores than tasks that may run in parallel

on an MPSoC. During hardware-software co-design, such scheduling is done statically

based on estimated execution times. Dynamic scheduling is better as static scheduling

makes a program non-portable. An embedded game theory based dynamic feedback

driven task scheduling is presented in this work. This scheduling approach is based

on real execution times extracted on the fly at run-time. As dynamic scheduling

requires the knowledge of task graph, one of the key challenges is the run-time dis-

covery of the task graph. Moreover, due to the limited computation capabilities of

the processor cores in the MPSoC, efficient low-overhead scheduling algorithms that

execute in real time are needed to be developed. Our approach is based on program

phase behavior which is used for run-time discovery of task graph. This is based on

the observation that an application executing on the MPSoC goes through multiple

phases during its lifetime. During a stable phase, an application executes the same

task graph (Phase Graph) repeatedly for a large number of iterations. Hence, the

proposed approach will detect when an application is going through a phase and ex-

tract the phase graph at run-time. This extracted phase graph will be subsequently

used for dynamic scheduling.
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Increase in transistor density has lead to a substantial increase in power den-

sity. As a result, there has been generation of regions with very high temperature

called Hotspots. Thermal hostpots are responsible for major circuit marginality re-

lated issues and adversely effect reliability and performance. In current generation

integrated circuits, Dynamic Thermal Management (DTM) techniques like frequency

and/or voltage scaling are used to eliminate hotspots by controlling power dissipation.

As these techniques are based on measurement of the current temperature followed

by action, they are reactive in nature and have detrimental effect on performance.

In this work, predictive thermal aware task migration is proposed, where we utilize

the multitude of cores available in an MPSoC to eliminate thermal emergencies. In

order to achieve this goal we propose a run-time temperature prediction technique.

This technique is used by a run-time look-ahead based branch-and-bound scheduling

heuristic which is used to eliminate thermal emergencies while minimizing schedule

length. A delay insertion technique is used to remove task execution overlaps which

cause thermal emergencies, in the case that task migration fails. Finally, we also pro-

pose an ILP based scheduling heuristic which achieves the above goals statically. The

above solutions leverage upon a wavelet based thermal modeling approach, which is

used to characterize the system thermal response.

Therefore, in this work we propose solutions to several optimization problems in

various domains, which can be reduced to constrained max-satisfiability. The con-

straints and the corresponding solutions are very much domain specific. The rest of

the document deals with each of the above problems in separate chapters. Chap-

ter 2 explains the crosstalk ATPG technique. This is followed by pattern generation

technique for maximizing power supply currents in Chapter 3. Chapter 4 presents

system level task graph extraction and dynamic scheduling. Then thermal aware task

migration is presented in Chapter 5. Finally, we conclude in Chapter 6.
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CHAPTER 2

ON ATPG FOR MULTIPLE AGGRESSOR CROSSTALK

FAULTS

2.1 Introduction

There has been a significant increase in signal integrity related failures due to

increase in switching speed and circuit density [65]. As a result of the worsening

of sidewall coupling capacitance, severe design and test related problems have been

created, which are known to be aggravated by variation in the fabrication process

[65]. One of the major causes of signal integrity related problems in deep sub-micron

technology has been attributed to capacitive crosstalk [109]. Crosstalk faults are

caused by parasitic coupling between adjacent signal nets. These kind of faults are

common in nets that have weaker drivers relative to their adjacent peers [25] [24].

Crosstalk noise can be classified into crosstalk induced glitches and crosstalk in-

duced delays and speed-ups. Crosstalk induced glitches are caused when the victim

net remains in a static state and one or more aggressor nets are switching, while

crosstalk induced speedups/delays are caused when both the aggressor(s) and victim

nets have simultaneous or near simultaneous transitions. There will be an increase in

victim net transition delay if the aggressor and the victim nets switch in the opposite

direction, while aggressors and victim switching in the same direction will lead to

victim net transition speed-up. The amplitude and the width of the glitch, delay or

speed-up introduced depends mainly, among other factors, on relative arrival times

of signal transition at the aggressors and victim nets and the amount of coupling

capacitance. Timing and functional errors can be caused because of these effects.
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Conventional crosstalk fault ATPG is done by generating patterns to sensitize the

victim node to an observable output. The delayed transition at the victim net may

or may not be observable at the primary output. This requirement is met using a set

of auxiliary conditions.

Either redesign or fault detection using test pattern generation is used to fix

crosstalk fault sites which are extracted during design validation phase. Some of the

redesign steps includes resizing drivers, rerouting signals and shielding interconnects

with power distribution nets. Redesign is expensive in terms of design effort because

of stringent area and performance requirements, and its effectiveness can be easily

offset by process variations. Moreover, overdesign can happen due to the presence

of false positives in fault site extraction. Crosstalk Fault ATPG should generate

patterns which are able to maximize the total crosstalk induced delay and propagate

the fault effect to the primary output. In order to robustly propagate and capture

the fault effect at a scan cell, maximal victim delay excitation during manufacturing

test [26] is important.

In this work, an ATPG technique to generate a vector pair which causes maximal

crosstalk induced delay increase at the victim net and propagates the fault effect

to a primary output, is presented. False positives can be removed by pruning the

fault list using the maximum delay obtained from this technique. Firstly, we present

a divide and conquer approach where maximal aggressor excitation is modeled as

an ILP formulation constrained by fault effect propagation condition, obtained from

stuck-at fault ATPG. In the second approach we provide a complete solution by

generating single ILP formulation for both maximal aggressor excitation and fault

effect propagation. In spite of having a longer execution time, this solution gives

the absolute worst case crosstalk induced delay. Zero and unit delay assumptions

are shown for each of the above solutions. Unit delay circuits are converted to zero

delay circuits using a circuit transformation technique. The results indicate that
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percentage of total capacitance that can be switched varies from 75-100% for zero

delay and 30-80% for variable delay case while propagating the fault effect to the

primary output. The fact that zero delay model tends to overestimate the impact of

crosstalk is evident from the comparison of results obtained for zero and unit delay

models. Moreover, comparison between integrated ILP formulation and divide and

conquer for both the cases show that integrated ILP formulation is consistently better

while taking a longer execution time as compared to the faster divide and conquer

solution.

Rest of the Chapter is organized in the following manner. Next Section 2.2 presents

a review of previous work. This is followed by Section 2.3 which describes the problem

statement and shows various pathological scenarios. Then Section 2.4 describes the

proposed solution. Finally results for ISCAS85 benchmark circuits are shown in

Section 2.5 and we conclude in Section 2.6.

2.2 Related Work

It has been firmly established that crosstalk noise induced errors cannot be ignored

in deep sub-micron technology [109]. A multitude of crosstalk ATPG techniques have

been studied in literature. A multiple aggressor crosstalk ATPG solution has been

proposed by Bai et al. [15]. In their technique, firstly an implication graph is used to

determine a maximal set of aggressors that could be switched under the given Boolean

constraints. This is followed by using a modified version of PODEM to determine

the pattern satisfying the worst case transitions on the feasible aggressor set and

facilitate fault propagation. Consequently, the maximal aggressor excitation problem

is divided into two independent maximization sub-problems: (i) maximal feasible

aggressor set generation and (ii) generation of pattern pair for worst case feasible

aggressor switching. Thus the final solution is sub-optimal and underestimates the

worst case crosstalk noise excitation. Moreover, the use of zero delay model gives a
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gross overestimation of maximal crosstalk noise, as will be seen from our results. An

ATPG technique for crosstalk induced glitches is presented by Lee et al. [69]. They

do not provide a solution for crosstalk induced delay. ATPG solutions for multiple-

aggressor crosstalk scenario cannot employ traditional techniques for delay testing

which have been used for crosstalk induce delay faults. The problem of generating

two-vector test which excites crosstalk induced glitches has been addressed by Chen et

al. [26]. Fault effect is propagated to an output flip-flop such that it has the maximum

amplitude. It uses static as well as dynamic signals like transition and pulse during

pattern generation. Multiple-aggressor crosstalk scenario cannot be handled by this

technique. Kundu et al. [64] present a technique for timed test pattern generation

for CMOS domino circuits. A timed ATPG based algorithm to generate patterns for

testing crosstalk induced delay faults in static CMOS circuit has been presented by

Paul et al. [83]. Even tough, both [64] and [83] consider multiple-aggressor scenario,

they employ computationally expensive circuit level timing simulations. Krstic et

al. [63] present a genetic algorithm based test generation heuristic for crosstalk

induced faults. Chen et al. [23] present a SAT based method for crosstalk ATPG.

Here functional and timing information are considered to eliminate false transition

combination for an aggressor victim pair. Shimizu et al. [97] presents a Built in

Self Test (BIST) method to detect crosstalk faults. Ganeshpure et al. [44] and [45]

present an ILP based technique for multiple aggressor crosstalk ATPG.

A crosstalk analysis methodology is presented by Zachariah et al. [65]. They do

not consider the ATPG aspect. Multiple aggressor crosstalk scenario has not been

considered in other crosstalk analysis models [47] [25].

It can be seen that most of the prior techniques either do not consider the effect

of multiple aggressors on the victim node or do not take circuit delays in account

during pattern generation process. The solutions to these problems are specifically

addressed in this work.
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2.3 Problem Statement

Crosstalk maximization, like conventional stuck-at fault ATPG, involves control-

lability and observability. The controllability and observability problems involve ag-

gressor excitation for maximal crosstalk induced delay at victim and victim fault effect

propagation, respectively. The following paragraphs explain the above two problems

in detail.

• Switching Aggressors for Victim Delay Maximization: For a victim net cou-

pled with multiple aggressors, in order to produce maximum crosstalk induced

delay at the victim, a maximal subset of aggressors must be switched in the

direction opposite (Desired Direction) to that of victim net. Because of circuit

Boolean constrains it may not be possible to switch all the aggressors in the

desired direction. Moreover, it is imperative that the maximal aggressor set and

the victim net should also switch in close temporal proximity to induce maximal

coupling noise. In order to address this max-satisfiability problem [47] [43], cou-

pling weights are assigned to each of the aggressors for both 0 → 1 and 1 → 0

switching directions. These Coupling Weights represent the noise induced at vic-

tim net due to aggressor transitions. Then, a search is performed to determine

a valid aggressor and victim switching configuration so as to maximize the total

coupling weight. The coupling capacitance between the aggressors and victim is

used to determine the coupling weights assigned to the aggressors.

• Victim Fault Effect Propagation to Primary Output: The generated pattern must

propagate the delay fault effect induced at the victim net to an observable pri-

mary output, in addition to maximal noise excitation. If the fault effect passes

through a strong driver gate, it may get attenuated. Moreover, the fault effect

may get lost if it reaches the primary output too early to meet the setup time

requirement for the output flip-flop, due to the presence of a fast path. In this
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work we assume the following: (i) the fault effect does not get attenuated appre-

ciably while passing through various gates and (ii) the delay for various paths

from the victim net to the primary output of the circuit does not have a large

variation, thus making the observability of delay fault at the output independent

of the propagation path. Current design considerations like combinational path

balancing and transistor sizing support the above assumptions.

Next, we explain the multiple-aggressor crosstalk ATPG problem with in the

Example 2.3.1 shown below.

Example 2.3.1. Consider a multiple aggressor crosstalk scenario in which the victim

net v is capacitively coupled with aggressors a1, a2, a3 and a4 as shown in Fig. 2.1.

The aggressor lines a1, a2, a3 and a4 are driven by gates n1, n2, n3 and n4, while gate

n0 drives victim net. Coupling weights are indicated by the numbers in the boxes

associated with the aggressors. The aggressors and victim switch simultaneously

because of the zero delay assumption for all the gates in the circuit. Magnitude

of coupling capacitance between various aggressors and the victim determines the

coupling weight for the aggressor net. With increase in coupling weight, the delay

impact on the victim net also increases. The sum of the coupling weights of all the

aggressors switching in the desired direction determines the total delay introduced at

the victim net. Various scenarios for crosstalk fault pattern generation are explained

in the subsequent sections.

• Scenario 1: Here a greedy approach is followed by applying the vector pair

{0, 0, 1, ↓, ↓, 1, 1} at the inputs {i1, i2, i3, i4, i5, i6, i7}. As a result the aggressor

a2 (with highest coupling weight of 100) and a3 (coupling weight = 20) are

switched in the desired direction ({a2, a3, v} = {↑, ↑, ↓}) due to the nodes i4 and

i5 transitioning from high to low. A total coupling weight of 120 = (100 + 20)

is induced at the victim. A slow-to-rise fault is induced at the input of gates n6
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Figure 2.1. Multiple aggressor crosstalk scenario under zero delay model [42]

and n5, as both aggressors a2 and a3 couple to the nets connected to these gate

inputs. By setting the input i7 to 1, we can propagate the fault effect to the

primary outputs via gate n6.

• Scenario 2: Now consider the scenario where aggressors a1, a3 and a4 are

switched in the desired direction ({a1, a3, a4, v} = {↑, ↑, ↑, ↓}), due to another

input vector pair {↓, 1, 1, ↓, ↓, 1, 1} which produces a total coupling weight of 130.

This illustrates that maximal aggressor switching cannot be achieved by using a

greedy approach. The input of gates n5 and n6 is delayed due to application of

the aforementioned pattern. It can be seen that the fault effect is squashed at

gate n5 by a controlling side input. Moreover, this pattern will not propagate

the fault effect through n6, if it has a large slack. This example illustrates that

the propagation problem is an integral part of the max-satisfiability problem

involving switching maximal aggressor weight.
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• Scenario 3: A total coupling weight of 120 is induced when the aggressors a2

and a3 switch in desired direction ({a2, a3, v} = {↑, ↑, ↓}) due to the vector

pair {1, 0, 1, ↓, ↓, 1, 1}. This fault effect can be propagated through both the

AND gates n5 and n6 as their side inputs are 1. As this pattern accomplishes

the propagation objective while creating a relatively large crosstalk effect, it is

better than the previous two. This shows that multiple aggressor crosstalk fault

test generation problem is qualitative in nature.

The importance of considering a combination of gate delays and logical constraints

for maximal aggressor switching and fault propagation is illustrated by the following

Example 2.3.2. The presence of gate delays makes the problem more constrained as

now the aggressors need to be switched in a close temporal proximity to switching

time of the victim net, while following the circuit Boolean constraints.

Example 2.3.2. A circuit with aggressors a1, a2 and a3 coupled to the victim net

v is shown in the Fig. 2.2. The coupled aggressor lines a1, a2 and a3 are driven by

gates n1, n4 and n6 while gate n5 drives victim net (v). The numbers present below

the gate names represent the associated delays. Because of integer delay values, a

net can only switch at integer times. If a pair of aggressor and victim nets switch

instantaneously in the desired direction, then the corresponding delay introduced

at the victim is indicated by the coupling weights represented by numbers in the

box associated with the aggressors. In this example we assume that, if aggressor and

victim transitions are not temporally aligned, there is no coupling and hence crosstalk

induced delay. Next, pattern generating problem for the above scenario is discussed

for various cases.

• Scenario 1 : Consider the scenario when the vector pair {↑, ↑, 1, ↓, ↑} is ap-

plied to the inputs {i1, i2, i3, i4, i5}. As a result aggressors a1 (coupling weight

= 100) and a2 (coupling weight = 130) are switched in the desired direction

({a1, a2, v} = {↑, ↑, ↓}). The total coupling weight switched under zero delay

12



Figure 2.2. Multiple aggressor crosstalk scenario under integer delay model [42]

assumption is given by 100+30 = 130. Due to delay of the gates n2 and n5, the

aggressors a1 and a2 switch at time 3 and the victim v switches at time 6, hence

nullifying impact of the aggressors on the victim. Therefore, it can be seen that,

a pattern that excites high aggressor switching in zero delay model may not do

as well under integer delay model.

• Scenario 2 : Now for the vector pair {↑, ↑, 0, ↓, ↑} = {i1, i2, i3, i4, i5}, only one

of the aggressors a3 (coupling weight = 70) is switched in the desired direction

({a3, v} = {↑, ↓}). This will be considered a sub-optimal pattern under zero

delay assumption, as it only switches a coupling weight of 70. On the contrary,

the victim has a greater impact with full coupling weight of 70, as the switching

event at aggressor a3 and victim v occur at the same time instance (at time

instance 8).

The above example shows that, an over estimation of crosstalk noise will happen

when patterns generated using zero delay model are used. Consequently, it is im-

portant to take gate delays into consideration while generating patterns in order to

maximize crosstalk induced victim delay.
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2.4 Proposed Approach

It can be seen from the previous section that maximal aggressor excitation is

intractable as it involves the solution max-satisfiability problem. Heuristic techniques

are mostly used for the solution of all intractable problems. We present various

heuristics to address this problem in the subsequent sections.

This work presents two different approaches for the solution of this problem. A

divide and conquer approach is presented in Section 2.4.3. In this approach maximal

aggressor excitation and fault effect propagation problems are solved independently.

In contrast, a single solution is developed for both maximal aggressor excitation

and fault effect propagation using an integrated ILP formulation presented in Sec-

tion 2.4.4. The integrated ILP formulation gives the absolute worst case crosstalk

induced delay at the expense of a longer execution time as compared to divide and

conquer. In order to compare the effect of gate delays on maximal noise generation,

each of the above approaches are presented for zero and unit gate delay assumptions.

In all the above approaches, ILP formulation is used for maximal aggressor excitation.

This ILP formulation and the associated modeling approach which are used to obtain

maximal aggressor switching condition, are presented in the next two sections.

2.4.1 Crosstalk Modeling

Fig. 2.4 shows a multiple aggressor crosstalk fault site consisting aggressor victim

pair (a, v) coupled by a capacitance Cc. The aggressor does not get affected by a

transition at the victim net as it is driven by a strong driver. On the contrary,

the victim net is driven by a weak driver. The wire resistance and capacitance to

ground for the victim net are given by R and Cg respectively. It is assumed that the

transitions on the aggressor and victim nets happen between voltage levels 0 and Vm,

instantaneously and simultaneously.

14



Consider an RC circuit with resistance R and capacitance Ceq connected in series.

If a unit step voltage waveform varying from 0 to Vm is applied at the input, the

voltage V (t) across the capacitor is given by the following equation.

V (t) = Vm ·
(

1− e(−t/R·Ceq)
)

(2.1)

Now the Equation 2.1 can be modified in the following way to obtain the time τ

at which V (t) = 0.5 · Vm.

τ = 0.693 ·R · Ceq (2.2)

Figure 2.3. Circuit to obtain equivalent input capacitance using Miller effect [42]

It can be seen from Equation 2.2 that τ is dependent on the capacitance Ceq. Now,

we will use Miller effect [100] in order to determine the equivalent capacitance Ceq

corresponding to various aggressor victim transition scenarios. The effect of coupling

between input and output nodes of an amplifier on its equivalent input impedance is

determined using Miller effect. A crosstalk fault site can be mapped onto an amplifier

with victim as the input node and aggressor as the output node as shown in Fig. 2.3.

The amplifier is controlled by a unit gain voltage transfer function Av, which can take

values {−1, 0, 1} depending on the direction of victim (input) and aggressor (output)

transitions. Therefore, the following equation shows the equivalent input capacitance

variation due to Miller effect.
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Ceq = Cg + (Cc · (1− Av)) (2.3)

The arrival time τ is obtained by substituting Ceq from Equation 2.3 into the

Equation 2.2 as shown below.

τ = 0.693 · R · (Cg + (Cc · (1− Av))) (2.4)

Now, we obtain the crosstalk induced delay δτ for the following cases of aggressor

and victim transitions.

• Aggressor not switching: For the reference case, where only the victim net

switches we have Av = 0 as the aggressor does not switch. The nominal arrival

time τnom is therefore given by the following equation.

τnom = 0.693 ·R · (Cg + Cc) (2.5)

• Aggressor and victim switch in opposite direction: As the aggressor and victim

nets are switching in opposite direction (Av = −1). This causes a crosstalk

induced delay of δτ > 0. The arrival time τhigh and the associated delay δτ are

given by the following equation.

τhigh = 0.693 · R · (Cg + 2 · Cc) (2.6)

δτ = (τhigh − τnom) = 0.693 ·R · Cc (2.7)

• Aggressor and victim switch in same direction: As the aggressor and victim

nets are switching in same direction, Av = 1. Moreover, δτ < 0 as the victim

transition is sped-up. Consequently, the arrival time τlow and the delay δτ are

given by the following equations.
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τlow = 0.693 ·R · Cg (2.8)

δτ = (τlow − τnom) = −0.693 ·R · Cc (2.9)

For the aggressor victim pair (a, v), a Sign Variable k and a Coupling Weight

W = 0.693 · R · Cc are introduced to simplify the effect of various scenarios for δτ

as shown in Equations 2.5, 2.7 and 2.9 and to consider the effect of capacitive

coupling, respectively. Therefore, the following equation is obtained to represent

crosstalk induced delay variation.

δτ = k ·W (2.10)

Table 2.1. Sign variable value k [42]

Cases k

Aggressor not switching 0
Aggressor and victim switch in opposite direction 1
Aggressor and victim switch in same direction -1

Definition 2.4.1. A multiple aggressor crosstalk fault site ‘XTFltSite’ in a combi-

national circuit ‘C’ is represented by a set of ‘M ’ aggressor victim pairs (ai, v) where

aggressor ‘ai’ is coupled to a victim ‘v’ through coupling capacitance ‘Ci’.

Therefore, there corresponds a coupling weight Wi = 0.693 · R · Ci and a sign

variable ki for each of the i aggressor victim pairs (ai, v). Consequently, the total

crosstalk induced delay at the victim is given by the following equation.

δτi = ki ·Wi (2.11)

An aggressor net ai, in a crosstalk fault site XTFltSite with victim v and aggres-

sors ai : (i = 0, 1, .., n), may be considered as a victim with its own set of aggressor
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Figure 2.4. Coupled (a, v) pair and associated resistance and capacitance [42]

nets bj : (j = 0, 1, ..,m), where v ∈ {bj}. The crosstalk problem becomes a large

coupled systems problem when these transitive relations are considered. The impact

of crosstalk on the aggressors has been ignored in previous crosstalk ATPG solutions

([65],[109],[25],[26],[15] ,[69] ,[64] ,[83] ,[63] ,[23] ,[43],[45],[44],[47],[97] and [102]), in

order to simplify the coupled-system problem. This coupled system scenario is not

only complex for ATPG but also for simulation due to potential cyclical dependencies.

In line with the above, this work also makes the same simplifying assumption.

Now, we determine the cumulative crosstalk induced delay ∆τ at victim due to

all the aggressor nets. This is given as the sum of the individual delays.

∆τ =
∑

i

(ki ·Wi) (2.12)

2.4.2 ILP Constraints for Combinational Circuits

In this section, we present a technique to generate Boolean functions for combina-

tional circuits [41] using ILP constraints. Clausal description of the function of the

gates [66] are used to form ILP equations of logic gates. For example, following set

of implications can be used to describe an AND gate with inputs a, b and output c:
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(a = 0) ⇒ (c = 0) (2.13)

(b = 0) ⇒ (c = 0) (2.14)

(c = 1) ⇒ (a = 1) ∧ (b = 1) (2.15)

The following equations show how we can directly generate ILP constraints for

the Boolean variables a, b and c using the implications in Equations 2.13 to 2.15 as

shown in the following equations.

(a+ (1− c)) ≥ 1 (2.16)

(b+ (1− c)) ≥ 1 (2.17)

((1− a) + (1− b) + c) ≥ 1 (2.18)

For a combinational circuit, a union of ILP constraints generated for the individual

gates form the complete set of Boolean constraints. For example, the complete set of

ILP constrains for the circuit shown in Fig. 2.5 are generated as follows.

Figure 2.5. Combinational circuit with node names [42]
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(d+ f) ≥ 1

(e+ f) ≥ 1

((1− d) + (1− e) + (1− f)) ≥ 1

(2.19)

INVERTER

{
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(a+ b+ (1− d)) ≥ 1

((1− a) + b+ d) ≥ 1

(a+ (1− b) + d) ≥ 1

((1− a) + (1− b) + (1− d)) ≥ 1

(2.21)

2.4.3 Divide and Conquer

A fast divide and conquer approach is described in this section where maximal

aggressor excitation and fault effect propagation problems are solved separately. In

this approach maximal noise generation problem is solved by using an ILP formulation

with the constrains obtained from stuck-at fault ATPG based approach used for fault

effect propagation. A circuit bi-partitioning solution is used for structurally dividing

the maximal aggressor excitation and fault effect propagation problems. In the first

case this solution is applied for zero delay model while in the second case unit delay

model is used. A circuit transformation based approach is used to account for gate

delays. In rest of this chapter, we use Zero Delay Stuck-at Framework (ZDSF) and

Unit Delay Stuck-at Framework (UDSF) to refer to zero and unit delay approaches

using stuck-at fault ATPG, respectively.

2.4.3.1 ZDSF Approach

In this approach, separate solution for max-satisfiability and fault effect propa-

gation problems are used. Fault effect propagation is achieved using stuck-at fault
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ATPG while ILP is used for maximal aggressor excitation. A circuit bi-partitioned

technique is used here to divide the above two problems and the two solutions are

applied on the separate partitions of the circuit. The approach can be divided into

the following steps, as shown below.

• Circuit Partitioning: Here the original combinational circuit is bi-partitioned such

that the output logic cone of the victim belongs to the right partition and the

input logic cones of aggressors and the victim nets belong to the left partition.

There are multiple ways to bi-partition the circuit with these constraints. It can

be observed that the cut line from bi-partitioning should pass through the victim

net. Moreover, the cut line should pass through least number of circuit nodes for

efficiency reasons which will become apparent in the subsequent discussion. For

the left partition, the cut points represent circuit outputs, while they represent

inputs for the right partition. It can be seen that the victim net itself is an input

for the right partition while it is an output to the left partition.

• Fault Effect Propagation: Fault effect generated at the victim net propagates to

the primary outputs after passing through the right partition. In this step, stuck-

at fault ATPG is invoked to generate a pattern at the input of the right partition

so as to enable fault effect propagation for a stuck-at 0 or 1 fault placed on the

victim net. The Boolean constrains corresponding to this pattern represents the

requirements for the cut points.

• Maximal Noise Generation: In this step the left partition which includes all the

aggressors is targeted for pattern generation. The set of constraints derived from

previous steps are transferred onto the outputs of the left partition. An ILP

formulation with an objective function maximizing total crosstalk induced delay

at the victim is generated for the left partition. Now, the above constraints in

conjunction with those generated at the outputs of the left partition are solved
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using an ILP solver to obtain the final input vector pair that leads to maximal

aggressor switching.

The following sections provide a more detailed explanation of the above steps.

1. Circuit Partitioning

In this phase Kernighan-Lin-Fiduccia-Mattheyses (KLFM) algorithm [40] is used

to bi-partition the original combinational circuit represented by a directed acyclic

graph G = (V,E).

Definition 2.4.2. KLFM partitions the set of vertices V , for a given directed acyclic

graph G = (V,E), into disjoint subsets U and Q so as to minimize the number of

edges {(u, q) ∈ E | u ∈ U, q ∈ Q} between U and Q.

In order to obtain an initial partition, the circuit is cut along the input to output

level of the victim net such that all the nodes with level lower than or equal to that

of the victim belong to the left partition while the nodes with level higher than the

victim belong to the right partition. This is followed by moving the aggressors and

their input cones that are part of the right partition into the left partition.

Next, the number cut points between the left and the right partitions are reduced

by invoking KLFM. It has been observed in [50] that, with a random initial cut,

KLFM algorithm gives fairly good result as compared to most other heuristics used

for obtaining the initial cut. A better solution is obtained as the number of constraints

in ILP are reduced for a smaller cut size. A comparison of results obtained with and

without the application of KLFM algorithm is presented in Table 2.2.

Thus the original circuit is partitioned into left (U) and right (Q) partitions such

that U contains the input logic cones of the aggressors and victim nets while Q

contains the victim output logic cone.
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2. Stuck-at Fault ATPG

A publicly available ATPG tool, ATALANTA [68] was used to perform stuck-at

fault ATPG on the circuit Q, to determine the input node values of the right partition

that propagate the fault effect to a primary output. There are multiple other ways

of achieving this fault propagation. [70] suggested various slack based heuristics to

guide fault propagation through longest paths. This input pattern which is generated

by ATPG for Q acts as a constraint at the output of U . The partition U may not be

able to satisfy these constraints or may satisfy them at the expense of compromising

on maximal aggressor weight. Consequently, a single test vector to constrain U may

not be optimal. However, the results for our heuristic solution shows that almost

always, a single propagation pattern is satisfied by U with very high percentage of

total aggressor weight switched.

3. Maximal Noise Generation

As the aggressors and victim net, and their input logic cones are present in the

partition U , we use it for maximal noise generation. The partition U is duplicated into

two copies U0 and U1, each representing logic values at time frames corresponding to

the first and the second input vectors respectively, in order to generate an ILP for-

mulation to represent aggressor victim switching. Thus the input vector pair 〈I0, I1〉

is generated for the copies U0 and U1 combining the vectors I0 and I1 respectively.

This is followed by renaming the node n in U to n0 and n1 in the copies U0 and U1

of the original circuit, respectively.

The outputs of partition U1 are assigned the constraints derived from stuck-at

fault ATPG. Only the inputs necessary for fault effect propagation are specified by

ATALANTA, while is sets the rest to don’t-care values. Consequently, all the outputs

of U0 and some of the node values at the output of U1 are set to don’t-cares.
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ILP equations are formulated for U0 and U1 by using the procedure explained in

Section 2.4.2. This is done for the nodes in the input logic cones of the aggressors,

victim and the cut nodes that are not assigned don’t-care values by stuck-at fault

ATPG. In the ILP formulation, the Equation 2.12 acts as the objective function with

a goal of maximizing the total number of aggressors switching in the opposite direction

to the victim net. The final test vector pair 〈I0, I1〉 is obtained from the solution to

this objective function. The generation of this objective function is explained next.

After circuit transformation, the aggressor victim pairs (ai, v) in U are renamed

to (a0i , v
0) and (a1i , v

1) in the partitions U0 and U1 respectively. In order to indicate

switching at the aggressor and victim nets, we define Boolean variables ξi and ξ which

are TRUE when ai and v switch, respectively. We can interpret this conditions as

aggressor and victim having different logic values in U0 and U1. This is represented

by using an XOR gate in the following way.

ξi = (a0i ⊕ a1i ) (2.22)

ξ = (v0 ⊕ v1) (2.23)

In order to indicate that the aggressor ai and victim v have different initial values

in U0, we define another Boolean variable ψi.

ψi = a0i ⊕ v0 (2.24)

In order to indicate the scenario where the aggressor and victim switch in the

opposite direction, we set the Boolean variable χi to TRUE. Consequently, χi is

TRUE only when ai is switching (ξi = TRUE) and v is switching (ξ = TRUE)
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and they start from different initial values (ψi = TRUE). These implications are

represented in the following set of constraints shown below.

χi = ξi ∧ ξ ∧ ψi (2.25)

In order to indicate the condition that the aggressor and victim are switching

in the same direction, we define a Boolean variable πi. Thus, when ai is switching

(ξi = TRUE) and v is switching (ξ = TRUE) and they start from the same initial

value (ψi = FALSE), the variable πi is set to TRUE. These conditions are given by

the following set of constraints.

πi = ξi ∧ ξ ∧ ψi (2.26)

Consequently, the following set constraints are obtained for the sign variable ki.

ki = (χi − πi) (2.27)

The objective function maximizing crosstalk induced delay for an aggressor victim

pair (ai, v) with coupling weight Wi is obtained by substituting ki in Equation 2.12.

max

{

∆τ =
∑

i

((χi − πi) ·Wi)

}

(2.28)

2.4.3.2 UDSF Approach

In this approach test patterns are generated considering the effect of gate delays.

The approach is divided into the following steps:

• Circuit Transformation: A time domain transformation of the circuit is used to

incorporate unit delay model. As a result, the original circuit is transformed
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such that there is a one to one correspondence between the gate outputs in the

transformed circuit Z and the arrival times of the original circuit C represented

by the graph G = (V,E).

• Fault Effect Propagation: Similar to the ZDSF approach, in this step, stuck-at

fault ATPG is invoked by placing a stuck-at 0 or stuck-at 1 fault on the victim

line to generate an input pattern that propagates the fault effect at the victim

to the primary outputs.

• Maximal Noise Excitation: Here, Boolean functions of logic gates are used to

formulate ILP constraints as explained in Section 2.4.2. The ILP formulation is

further constrained by using the input pattern derived from stuck-at fault ATPG.

This is followed by the generation of an objective function that maximizes the

total crosstalk induced delay at the victim. Thus, ILP constraints are generated

for both the logic circuit and the maximal aggressor weight objective. Finally, an

ILP solver is used to solve simultaneous logic constraints in order to maximize

aggressor switching and consequently generate the final test vector pair.

Our approach is based on the assumption that the delay introduced by the vector

pair will be large enough to not get subsumed in timing slacks and always causes an

error at the output.

1. Circuit Transformation:

In order to obtain the transformed circuit Z, a time frame expansion is done to

represent the circuit switching activity in the presence of unit gate delays [75]. Fig. 2.6

shows the example of C17 ISCAS85 benchmark circuit. The possible signal arrival

times are represented at the node outputs. The delay of all the possible paths from

input to a node is used to generate the list of arrival times for the node.
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For example, the signal arrival times for the node n23 are given by {t0, t2, t3}.

Here the initial logic value is set at time t0, signal arrival from the paths i2→ n16→

n23 and i7 → n19 → n23 is represented by the time t2 and that from the paths

i3→ n11→ n16→ n23 and i6→ n11→ n16→ n23 leads to the arrival time t3.

Fig. 2.6 also shows the resultant expanded circuit. It can be seen that each of the

gates is replicated as many times as the number of all the possible signal arrival times

in the original circuit. Time-slots are assigned to the gates corresponding to each of

the above signal arrival times. A time-slot represents the start of a time duration at

which a gate output transitions to a new logic value. Consequently, the final logic

value after the signal transition is represented by the logic value of a gate appearing

at a particular time-slot. The set of all the integer times, corresponding to time-slots

at which a particular gate n transitions, is given by T imeSlotn. The gate inputs

for each of the replicas appearing at a particular time-slot are connected to the gate

outputs appearing in the previous time-slot. The maximum time-slot in Z at which

a particular gate n appears is denoted by the variable MaxTimeSlotn. The primary

inputs I corresponding to the first and the second input vector can only appear in

the time-slot 0t (I0)and 1t (I1). Consequently, final input vector pair is given by the

combination 〈I0, I1〉.

For example, the gate n23 is replicated thrice, hence appearing in the time-slots

0t, 2t and 3t corresponding to the arrival times {t0, t2, t3}. These replicated gates

are renamed to n230, n232 and n233 in Z. The gates n162, n192 and n161, n191

supply inputs to the gate n233 and n232, respectively. Moreover, for the gate n23,

by definition, T imeSlotn23 = {2, 3} and MaxTimeSlotn23 = 3. Primary inputs in

Z corresponding to the first and second vectors are I0 = {i10, i20, i30, i60, i70} in

time-slot 0t and I1 = {i11, i21, i31, i61, i71} in time-slot 1t, respectively.

Therefore the gate n23 attains an initial value at time-slot 0t represented by n230

on application of the initial vector to the inputs I0. Now, due to the application
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of the second vector to the inputs I1, the gate n23 either transitions at time t2 and

attain a new logic value represented by n232, and/or transitions again at time t3 to

attain a new logic represented by n233.

Now, in order to maximize crosstalk, the aggressor and victim transitions at var-

ious time-slots have to be determined. In order to indicate these transitions, the

aggressor and victim outputs at various time-slots are XORed. In our case ξ1 and ξ2

are high when the victim transitions at time-slot 1t and 2t, respectively. The Boolean

variables ξ1 (ξ2) are used to indicate a transition from initial value v0 (v1) to the final

value v1 (v2). Consequently, ξ
1
i and ξ

2
i are used to represent the same for the aggressor

a1i and a2i . We can easily extend the zero delay model to general integer delays by

adding unit delay buffers.

2. Stuck-at Fault ATPG:

To determine the input vector that propagates the fault effect at the victim to

the primary outputs, stuck-at fault ATPG was performed on the transformed circuit

using the stuck-at fault ATPG tool, ATALANTA [68]. For the victim net appearing

at the V ictimTimeSlot, T in Z, a stuck-at 0 fault is placed. Pseudocode 2.1 explains

how the value of T is determined. A fault effect generated at the victim can be

propagated to a primary output in multiple ways. As mentioned earlier, [70] propose

various slack based heuristics to guide fault propagation through longest paths. In the

transformed circuit Z, inputs I1 are assigned the input pattern generated by stuck-at

fault ATPG while the input I0 are set to don’t-cares. Only the inputs necessary for

fault effect propagation are specified by ATALANTA, while it sets the rest to don’t-

cares. The complete input vector pair 〈I0, I1〉 which maximizes the total aggressor

weight, corresponding to the victim switching at T is generated by specifying the

above input values as constraints to the ILP formulation.
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Figure 2.6. Circuit transformation for unit gate delays [42]
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3. Maximal Noise Generation:

The difference between the arrival time of transitions at aggressor and victim nets

is known as Relative Arrival Time. This time determines the magnitude of coupling

between a pair of aggressor and victim nets. Based on the relative arrival time,

a Scaling Factor ri parameter is used to proportionally scale the coupling weight

Wi. The range of relative arrival times of the aggressor and victim transitions for

which crosstalk noise is induced at the Vitim net is represented by the WindowSize

parameter. It has been previously shown that, the effect of difference in arrival

times of aggressor and victim transitions on crosstalk induced delay can be effectively

modeled by using a window based approach. For a crosstalk fault site, the total

crosstalk induced delay at the victim net has been characterized by Sasaki et al. [95]

[94] using circuit simulation. SPICE simulations are performed for a crosstalk fault

site consisting of coupled aggressor and victim nets in order to calculateWindowSize

and scaling factor r. Fig. 2.7 shows our experimental setup for evaluating the above

parameters. In the above figure, it can be seen that the aggressor is driven by a large

inverter (4 times the minimum size) while the victim is driven by a minimum sized

inverter. A standard load consisting of 4 minimum sized inverters is connected at

the outputs driving both the victim and aggressor nets. The nominal arrival delay

for the victim transition is measured by switching only the victim net. Now, the

victim and aggressors are made to transition in the opposite direction by applying

the required inputs. The transition arrival time of the aggressor is varied in a range

starting from a time before the victim starts transitioning to that after the victim

transition ends. The increase in victim net delay with respect to the nominal arrival

time is measured for each of the aggressor arrival times. The variation of crosstalk

induced delay increase is shown in the Fig. 2.8. This delay increase shown in the figure

has been normalized with respect to the maximum value. Delay is discretized to a

value that is equal to the propagation delay of a minimum sized inverter loaded with
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equivalent input capacitance of four minimum sized inverters. This discretization

interval is called Unit Delay Interval. Now the set of scaling factors r is obtained

by sampling the normalized delay increase curve at discrete time instances separated

by unit delay intervals. The Fig. 2.8 also shows that WindowSize is determined

using the total number of points for which r 6= 0. In this case a WindowSize of 5 is

obtained corresponding to non-zero values of scaling factor r.

Figure 2.7. Experimental setup for calculatingWindowSize and scaling factor r [42]

We use a triangular approximation for the delay impact on victim relative to the

time when signal transition occurs at the aggressor, for the solution presented in this

work. Please note that such delay is a function of the waveform of the current injection

through coupled capacitance. A triangular approximation of current provides a first

order approximation in Taylor series expansion of a more complex waveform [59].

We use a triangular model for this work because it has been used by many authors

previously. Consequently, it should be noted that our solution approach itself is

agnostic to the shape of the delay waveform used here. The scaling factor values for

various aggressor victim arrival time differences corresponding to a WindowSize of

6 is shown in Fig. 2.9.
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Figure 2.8. Variation of victim delay increase with the difference between victim
and aggressor arrival times (Coupling capacitance = 20fF) [42]

For input logic cone of the victim net in the V ictimTimeSlot = T and aggressor

nets in the time-slots within theWindowSize duration of the victim net, we generate

a set of ILP constraints. Moreover, additional constraints for maximal aggressor

excitation are constructed in the following manner.

Consider an aggressor victim pair (ai, v) within a crosstalk fault site XTFltSite.

The aggressor and victim names ai and v are renamed to ati and vt, after circuit

transformation.

For the Victim net at the V ictimTimeSlot = T obtained from Line 3 of Pseu-

docode 2.1, the ILP constraints presented here in the Line 5 of Pseudocode 2.1.

Let victim transitioning at time-slot T and ith aggressor transitioning at time-slot

x ∈ {T imeSlotai :| T − x |< (WindowSize/2)} within WindowSize of the victim

32



Figure 2.9. Triangular approximation to determine the WindowSize [42]

transition, be represented by the Boolean variables ξT and ξxi , respectively. Therefore

we obtain the following set of constraints.

ξxi =
(

axi ⊕ ax−1
i

)

(2.29)

ξT =
(

vT ⊕ vT−1
)

(2.30)

In order to indicate different final values of the aggressor axi in the xth time-slot

and the victim vT at the T th time-slot, a set of Boolean variables ψx
i are set to TRUE.

This constraint is represented by the following equation.

ψx
i =

(

axi ⊕ vT
)

(2.31)

In order to indicate the aggressor axi in the xth time-slot and the victim vT at the

T th time-slot, switching in the opposite direction, we define a Boolean variable χx
i .

Hence, if axi is switching (ξxi = TRUE) and vT is switching (ξT = TRUE) and they
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have different final values (ψx
i = TRUE), we set χx

i to be TRUE, This condition is

represented in the following equation.

χx
i = ξxi ∧ ξT ∧ ψx

i (2.32)

Now, in order to indicate the condition where the aggressor and victim nets switch

in the same direction, we define a Boolean variable πx
i . If a

x
i is switching (ξ

x
i = TRUE)

and vT is switching (ξT = TRUE) and they have same final values (ψx
i = FALSE),

then we set πx
i to TRUE. These conditions are represented by the following equation.

πx
i = ξxi ∧ ξT ∧ ψx

i (2.33)

Sign factor kxi for the aggressor victim pair (ai, v) with aggressor ai switching in

time-slot x, is obtained using the following equations.

kxi = (χx
i − πx

i ) (2.34)

We define a set of real constants rxi which represent the scaling factor for various

relative arrival times as a function of | T − x | described in Fig. 2.9. The coupling

weight Wi is scaled according to the scaling factor rxi , depending on various relative

arrival times (| T − x |) of the aggressor and victim nets. For the victim in T th

time-slot, the objective (Equation 2.12) function for crosstalk noise maximization is

given by the following equation.

max

{

∆τ =
∑

i

(

∑

x

(χx
i − πx

i ) · rxi ·Wi

)}

(2.35)

Here: x ∈ {T imeSlotai :| T − x |< (WindowSize/2)}
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In order to prevent the victim in all the subsequent time-slots after the T th x ∈

{T imeSlotv : (T,MaxT imeSlotv]} from switching, additional set of constraints as

shown below are generated.

vx = vx−1 (2.36)

In order to represent the Boolean constrains of the combinational circuit, ILP

formulation is done for the input logic cone of the victim in subsequent time-slots

x ∈ {T imeSlotv : (T,MaxT imeSlotv]}.

4. Pseudocode:

The algorithm used to determine worst case pattern pair is explained in Pseu-

docode 2.1. The circuit transformation described earlier is performed in Line 1. A

for loop that iterates through all the time-slots of the victim net generating pat-

terns using stuck-at fault ATPG and ILP is shown in Line 3. For the victim net the

current V ictimTimeSlot value is determined here. The input pattern pair 〈I0, I1〉

as well as the total coupling weight switched weightSwitched are generated by the

solution to the ILP formulation shown in the Line 6. A track of the maximum value of

weightSwitched and the corresponding pattern 〈I0, I1〉max is kept by the if statement

in Lines 7-10.

2.4.4 Integrated ILP Formulation With Error Propagation

In this step, the constraints for fault effect propagation are added to those for

maximal noise generation in order to obtain a unified ILP formulation. Fault effect

propagation constraints are obtained using circuit transformation. As this solution

will produce an aggressor switching that will generate absolute maximum crosstalk

induced delay at the victim net, given enough time, this is a complete solution. In

order to compare the effect of delay on the absolute maximum crosstalk noise induced
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Algorithm 2.1 max xtalk delay(C,XtF ltSite) [42]

1: Z ← circuit xform(C)
2: maxWeightSwitched = 0
3: for all T ∈ TimeSlotv do

4: I1 ← stuck at ATPG(Z, T )
5: ILPEqns← generate ILP eqns(Z, I1)
6:

{〈

I0, I1
〉

, weightSwitched
}

← solve ILP (ILPEqns)
7: if maxWeightSwitched ≤ weightSwitched then

8: maxWeightSwitched = weightSwitched

9:
〈

I0, I1
〉

max
←
〈

I0, I1
〉

10: end if

11: end for

12: return
〈

I0, I1
〉

max

at the victim, this solution is presented for zero and unit delay assumptions. A circuit

transformation is used to take gate delays into account. In rest of this chapter, we

use Zero Delay ILP Framework (ZDIF) and Unit Delay ILP Framework (UDIF),

to refer to the zero and unit delay approaches using an integrated ILP formulation,

respectively.

2.4.4.1 ZDIF Approach

In this approach, a unified ILP formulation to solve both fault effect propagation

and maximal aggressor excitation is used in order to address the sub-optimality of

the approach presented in Section 2.4.3.1. Using this approach, we would eventually

be able to obtain input pattern that will lead to absolute worst case crosstalk induced

delay on the victim net. The following steps are used in this approach.

• Circuit Transformation for Maximal Noise Generation: In order to represent ini-

tial and final logic values, in this step, the original circuit is duplicated. This is

followed by formulation of ILP equations to represent Boolean functions of logic

gates for the input logic cones of the aggressors and victim nets.

• Circuit Transformation for Fault Effect Propagation: In order to generate ILP

equations for fault effect propagation, circuit transformation is done for the out-
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put logic cone of the victim net appearing in the circuit copy that represents the

second time-slot. This circuit transformation involves the duplication of output

logic cone of the victim net. As a result, the duplicated logic cone represents

the faulty machine while the original logic cone represents the good machine.

In order to represent the difference in the logic values between good and faulty

machines for fault propagation, a D value is generated. Hence, for each of the

gates in the duplicated fault propagation logic cones, these D values are gener-

ated by XORing the original and duplicated gate outputs. These D value are

propagated from victim net to the primary outputs by using an ILP formulation.

1. Circuit Transformation for Maximal Noise Generation:

As shown in the Fig. 2.10, the original circuit G = (V,E) is duplicated into

two copies U0 and U1, each representing one time frame corresponding to the first

and the second input vectors respectively. The input vector pair 〈I0, I1〉 is formed

by combining the input to the copies U0 and U1 correspond to pattern I0 and I1,

respectively. Moreover, a node n in G = (V,E) is renamed to n0(n1) in U0(U1).

In order to maximizes the total number of aggressors switching in the opposite

direction to the victim net we use the Equation 2.12 as the objective function. The

final test vector pair 〈I0, I1〉 is obtained from the solution to this objective function.

2. Circuit Transformation for Fault Effect Propagation:

The output logic cone of the victim net in the copy U1 is used for fault effect prop-

agation. Consequently, the output logic cone of the victim given by Γ1
v corresponding

the copy U1 is duplicated to Γ1c
v . The true and faulty logic values are represented

using original logic cone Γ1
v and the duplicated logic cone Γ1c

v respectively. Therefore,

every node n1 in Γ1
v is duplicated to form node n1c in Γ1c

v to represent true and faulty

logic values. This leads to formation of the node pair given by (n1, n1c). For the
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output logic cone of the victim net, each of the above pairs (n1, n1c) are XORed to

generate a set of D values denoted by n1d.

The victim node n11 in original circuit is duplicated into n110 in the copy U0

and to n111 in U1, as shown in Fig. 2.10. The corresponding set of original and

duplicated output logic cones for victim in U1 consists of the nodes given by Γ1
n11 =

{n161, n191, n221, n231} and Γ1c
n11 = {n161c, n191c, n221c, n231c}, respectively. The D

values generated using the above pair of nets is given by
{

n161d, n191d, n221d, n231d
}

.

ILP formulation for the victim net is done for the input, output and side input

logic cone in U1 and the input logic cone in U0. Moreover, ILP formulation for the

victim is also done for input logic cone in U0 and U1. This formulation done for

maximal aggressor excitation and fault effect propagation is explained next.

The aggressor victim pair (ai, v) in the original circuit are renamed to (a0i , v
0) and

(a1i , v
1) in the circuit copy U0 and U1, respectively, after performing the first circuit

transformation. For both the copies of the circuit, ILP formulation for maximal

aggressor excitation is performed in the same way explained in Section 2.4.3.1.

The above set of constraints are augmented by the fault effect propagation con-

strains. The output logic cone of the victim net v is duplicated in the copy U1. For

the output logic cones in Γ1, let Λ1 be the set of all the nodes and Λ1
o be the set of

all the primary output nodes. Similarly, let Λ1c and Λ1c
o be the set of all the nodes

and the set of all the primary outputs in the output logic cone Γ1c, respectively. In

Fig. 2.10 for Γ1 these set of nodes are given by Λ1 = {n161, n191, n221, n231}, Λ1c =

{n161c, n191c, n221c, n231c} and Λ1d = {n161d, n191d, n221d, n231d}, respectively. Sim-

ilarly, we have the set of primary outputs Λ1
o = {n221, n231}, Λ1c

o = {n221c, n231c}

and Λ1d
o =

{

n221d, n231d
}

.

Therefore D values Λ1d are given by the following equations.
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Figure 2.10. Circuit transformation for fault effect propagation in the absence of
gate delays [42]

Λ1d = (Λ1 ⊕ Λ1c) (2.37)

Λ1d
o = (Λ1

o ⊕ Λ1c
o ) (2.38)

39



When, at least one of the gate inputs, which are a part of the output logic cone

of the victim net, has a D value and all the other inputs are set to non-controlling

values, aD value is generated at a gate output. As a result, the following implication is

observed for a gate with output D value Λ1d and inputs Λ1d
i : Λ1d ⇒

(

Λ1d
1 ∨ Λ1d

2 ∨ ...
)

.

Therefore fault propagation from the D values at the output Λ1d to the inputs Λ1d
i

can be enabled by using the following equation.

(

1− Λ1d
)

+
∑

i

(

Λ1d
i

)

≥ 1 (2.39)

Now we need to propagate this D value generated at the victim node to at-least

one of the primary outputs Λ1d
o . Consequently, the following constraint is generated,

for the set of primary outputs Λ1d
o in the output logic cone of the victim net.

∑

Λ1d
o ≥ 1 (2.40)

2.4.4.2 UDIF approach

In this approach the zero delay assumption is remove and test patterns are gener-

ated for unit gate delay model. Moreover, a complete solution consisting of a unified

ILP formulation for both maximal aggressor excitation and fault effect propagation

is presented here. Consequently, we will be able to obtain input pattern that leads

to absolute worst case crosstalk induced delay on the victim net, provided the ILP

formulation is run for enough time. The following steps are involved in this approach.

• Circuit Transformation for Gate Delays: Circuit transformation is done on the

original circuit to take the effect of unit gate delays into account.

• Circuit Transformation for Fault Effect Propagation: In order to generate con-

ditions for fault effect propagation, circuit transformation is performed for the

output logic cone of the victim appearing at a particular time-slot.
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• ILP Formulation: An ILP formulation presented in Section 2.4.2 is used to rep-

resent the Boolean constrains generated by the above circuit transformations.

Finally, an objective function maximizing the delay induced at the victim net is

formed. A solution to the above ILP formulation gives the final vector pair.

1. Circuit Transformation for Gate Delays:

The time domain expansion presented in Section 2.4.3.2 is used here. Thus, gate

delays are taken into account by transforming the original circuit C into a new ex-

panded circuit Z.

2. Circuit Transformation for Fault Effect Propagation:

In this phase, fault effect propagation is achieved by using true and faulty logic

values obtained by duplicating the output logic cone of victim net switching at time-

slot V ictimTimeSlot = T in the transformed circuit Z.

The set of nodes in the output logic cone ΓT of the victim appearing at the

time-slot T (represented by ΛT and ΛT
o ) are duplicated to form ΛTb and ΛTb

o in ΓTb,

respectively. As explained in Section 2.4.4.1, the corresponding D values generated

are ΛTd and ΛTd
o in ΓTd.

3. ILP Formulation:

An ILP formulation for the Boolean constrains generated by the above circuit

transformations is done in the following way.

ILP formulation for maximal aggressor excitation is performed in the same way

explained in the Section 2.4.3.2, for a crosstalk fault site with the aggressor victim

pair (ai, v).

As presented for ZDIF approach in Section 2.4.4.1, the set of fault effect propa-

gation constraints are generated for output logic cone ΓT of victim in time-slot T .
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An algorithm similar to the one presented in Pseudocode 2.1, is used here to

obtain vector pair 〈I0, I1〉. The only difference in this case is in the Line 4, where

circuit transformation for fault effect propagation is performed instead of performing

stuck-at fault ATPG. Moreover, only the transformed circuit is taken as input to

generate ILPEquns in the function generate ILP eqns() appearing in the Line 5.

2.5 Results

The results below are obtained by running crosstalk ATPG on all ISCAS 85 bench-

mark circuits. A post-processing step after RC extraction from a physical layout is

ideally required to generate the crosstalk fault list. Crosstalk fault extraction has

been addressed in the following previous works [65] [102]. For the purpose of experi-

mentation we use a randomly generated fault list as our main focus in this work is on

crosstalk ATPG. We note that, a list of extracted faults can easily just be substituted

here. However, a randomly generated fault list suffices for ATPG analysis. Every

node in the circuit is selected with equal probability in order to obtain the aggressor

and victim nets for a crosstalk fault site. The maximum number of aggressors per

victim is limited to ten in keeping with previous observations on Intel circuits [65].

A value selected randomly between 1 and 0 is used for the coupling weight Wi.

In the following experiments GNU Linear Programming Kit (GLPK) [5] was used

for solving the ILP equations and ATALANTA [68] was used for stuck-at fault ATPG.

The GLPK ILP solver was run with a maximum time limit of 1000 seconds. GLPK

may not generate a solution or may potentially produce a sub-optimal solution, in

case of a timeout. In ZDSF approach, if the pattern generated by stuck-at fault

ATPG at the inputs of the right partition causes a conflict in the left partition, a

solution is not found. We use ‘−’ to mark the cases where no solution is found in

the tables reported here. Results are generated for a WindowSize of 6 for the UDSF

and UDIF cases.
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A Dell PowerEdge 2800 server with 2.8GHz Dual Core Intel Xeon Processor, 2MB

L2 cache and 2GB RAM is used as a platform for these experiments.

M is the total number of aggressors in a crosstalk fault site in the following tables.

The sum of coupling weights of all the aggressors is given by ∆τm which represent the

worst case crosstalk induced delay that could be generated at the victim net, if all the

aggressors simultaneously switch in the desired direction. The number of aggressors

which switch in the desired direction and the corresponding crosstalk induced delay

are given by as and ∆τ , respectively. Moreover, the percentage of ∆τm induced at

the victim is given by %∆τ = (∆τ/∆τm) · 100. Finally the column titled time shows

the total execution time in seconds for execution of the tool.

Section 2.5.1 presents results for divide and conquer approach. This is followed

by the results for integrated ILP formulation in Section 2.5.2. Finally, both results

are compared in Section 2.5.3.

2.5.1 Divide and Conquer

The results for divide and conquer approaches explained earlier are presented in

this section. The results for ZDSF approach are presented first. the effectiveness of

KLFM min-cut algorithm is studied here. Finally, the results for UDSF are presented.

2.5.1.1 ZDSF Approach

The result for ZDSF approach with and without applying KLFM min-cut algo-

rithm are compared in Table 2.2. For both the cases a large %∆τ value is obtained

as ZSDF is able switch almost all the aggressors in the desired direction. Moreover,

The effectiveness of min-cut algorithm is apparent, as results are obtained for more

number of circuits with consistently smaller execution times.

For example, we are able to switch all the aggressors in the direction opposite to

the victim net, for big circuits like c7552 and c5315. Moreover, for a large circuit like

c7552, the min-cut approach generates result while the one without min-cut just fails.
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Table 2.2. Results for ZDSF approach on ISCAS85 benchmark circuits [42]

Ckt M ∆τm
With Min-cut Without Min-cut

as ∆τ %∆τ time as ∆τ %∆τ time

c17 4 2.78 3 2.20 79.14 0.175 3 2.20 79.14 1.664
c432 4 2.27 3 1.94 85.46 0.771 3 1.94 85.46 7.21
c499 6 2.90 6 2.90 100.00 0.839 6 2.90 100.00 6.021
c880 3 1.39 3 1.39 100.00 0.911 3 1.39 100.00 7.656
c1355 2 1.19 1 0.78 65.55 1.291 1 0.78 65.55 11.106
c1908 9 4.42 8 4.33 97.96 162.132 8 4.33 97.96 99.267
c2670 5 1.38 - - - 2.183 - - - 0.841
c3540 5 2.75 - - - 0.744 - - - 2.13
c5315 9 5.80 9 5.80 100.00 14.382 9 5.80 100.00 95.914
c6288 6 1.90 - - - 1011.589 - - - 1041.286
c7552 5 3.16 5 3.16 100.00 26.395 - - - 3.891

For the circuit c5315, min-cut approach generates the input vector pair in one fifth

of time as compared to the approach without min-cut and switches all the aggressors

in the opposite direction to the victim net.

2.5.1.2 UDSF Approach

Table 2.3 shows the effect of the %∆τ obtained for unit delay model for the UDSF

approach. The overestimation obtained in the UDSF case is evident from the fact

that %∆τ is much reduced as compared to ZDSF case.

2.5.2 Integrated ILP Formulation With Error Propagation

Results for the integrated ILP formulation explained earlier are presented in this

section. The results for ZDIF approach is presented firstly. This is followed by those

for UDIF approach.

2.5.2.1 ZDIF Approach

The results for the ZDIF approach, where single ILP formulation was done for

maximal aggressor excitation and fault effect propagation considering zero delay
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Table 2.3. Results for UDSF approach on ISCAS85 benchmark circuits [42]

Ckt M ∆τm as ∆τ %∆τ time

c17 4 2.78 3 1.59 57.19 0.167
c432 4 2.27 3 1.30 57.27 14.317
c499 6 2.90 4 2.21 76.21 3001.403
c880 3 1.39 3 1.29 92.81 8043.739
c1355 2 1.19 0 0.00 0.00 0.265
c1908 9 4.42 2 0.80 18.1 1398.481
c2670 5 1.38 1 0.27 19.57 2078.042
c3540 5 2.75 2 0.97 35.27 16159.618
c5315 9 5.80 5 1.95 33.62 1001.569
c6288 6 1.90 - - - 2.667
c7552 5 3.16 - - - 4251.22

model are presented in Table 2.4. It can be seen that a maximal amount of total

coupling weight is switched by the patterns obtained here.

Table 2.4. Results for ZDIF approach on ISCAS85 benchmark circuits [42]

Ckt M ∆τm as ∆τ %∆τ time

c17 4 2.78 2 1.64 58.99 0.328
c432 4 2.27 4 2.27 100.00 1.772
c499 6 2.90 6 2.90 100.00 1.075
c880 3 1.39 3 1.39 100.00 0.988
c1355 2 1.19 2 1.19 100.00 20.399
c1908 9 4.42 8 4.33 97.96 122.645
c2670 5 1.38 5 1.38 100.00 33.715
c3540 5 2.75 4 2.34 85.09 1006.875
c5315 9 5.80 9 5.80 100.00 2.165
c6288 6 1.90 - - - 1074.57
c7552 5 3.16 5 3.16 100.00 95.216

2.5.2.2 UDIF Approach

Results for UDIF case, where single ILP formulation is used for maximal aggressor

excitation and fault effect propagation, are presented in Table 2.5. It can be seen
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that, a large fraction of maximum delay ∆τm is switched by the ILP formulation.

Comparing these results with ZDIF approach shows that this switched weight is still

less than that obtained from ZDIF.

Table 2.5. Results for UDIF approach on ISCAS85 benchmark circuits [42]

Ckt M ∆τm as ∆τ %∆τ time

c17 4 2.78 3 1.67 60.07 0.131
c432 4 2.27 3 1.30 57.27 6012.964
c499 6 2.90 5 2.79 96.21 5013.876
c880 3 1.39 3 1.29 92.81 16008.455
c1355 2 1.19 - - - 1671.375
c1908 9 4.42 7 2.08 47.06 27191.043
c2670 5 1.38 1 0.17 12.32 5217.54
c3540 5 2.75 - - - 34389.516
c5315 9 5.80 6 2.72 46.9 1000.995
c6288 6 1.90 - - - 12140.493
c7552 5 3.16 - - - 3006.121

2.5.3 Comparison

The %∆τ value for all the above approaches is compared in Fig. 2.11. It can be

seen that, as compared to the zero delay approach, the unit delay approach generates

smaller delay. This shows the importance of delay model for crosstalk ATPG and the

over estimation obtained from the zero delay model. The crosstalk fault list can be

pruned by using the above observation by removing the fault sites that do not violate

a critical path in the circuit. Moreover, as compared to divide and conquer approach,

the integrated ILP formulation consistently does better. The sub-optimality of the

divide and conquer approach is evident from the above observation.

It can be seen that no solution is obtained for the circuit C6288, in the above

tables. This benchmark circuit is a 32-bit multiplier, which is a known nemesis for

many SAT solvers [66].
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Figure 2.11. Comparison between various approaches for multiple aggressor
crosstalk ATPG [42]

2.5.4 Scalability

The proposed solution is highly scalable, as will be seen in this section. Crosstalk

ATPG performance, resulting size of the test set and ability to handle non-unit gate

delays are some of the factors used to evaluate scalability of the proposed approach.

2.5.4.1 Performance

The number of ILP equations determine the scalability of the solution. The like-

lihood of finding an exact solution increases with reduction in the number of ILP

constraints. The cone of logic needed to formulate justification and propagation con-

ditions for the crosstalk faults as shown in Fig. 2.12, which in turn relates to logic

depth, determines the number of equations. Modern designs tend to have a shallow

logic depth which is typically 6-8 levels of logic gates [51]. Due to non-linear increase
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in gate delay with transistor stack height in CMOS circuits, the number of fanins is

limited. It has been seen that [88] the number of fanins in CMOS gates is limited to

4. Hence for a circuit with logic depth l and fanin of f , the number of gates in a logic

cone is of the order of O
(

f l
)

. The worst case size of such logic cone is of the order

of O
(

l · f l
)

when unit delay model is considered. The logic depth tends to be much

greater in ISCAS circuits. The logic depth for C3540, for which we had the worst case

run-time, is 47. Modern circuits tend to have a greater run-time as the logic cone of

interest is correspondingly much larger than expected logic cone size. An interesting

observation that can be made here is that the run-time actually decreases for circuits

such as C7552 where the total gate count was larger but the logic depth was smaller.

This is because of the reasons described here.

Figure 2.12. Input and output logic cones used for ILP formulation [42]
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2.5.4.2 Test Compression

Test compression is another benefit of the proposed approach. The scenario where

the bits in a test vector are unspecified works best for test compression. The logic cone

of interest, in a multi-million gate circuit, includes only a small fraction of the inputs.

The inputs outside the cone of interest remain unspecified as they are not included in

the ILP formulation. Thus, the test cubes have all the necessary characteristics for

good compression. Moreover, Xs can be unmasked through simulation process, even

for the inputs included in the ILP formulation which get fully specified during ILP

solution. A procedure to extract Xs for a set of specified inputs is described in [93].

2.5.4.3 Beyond Unit Delay

Unit delay buffers can be used to easily convert an integer delay circuit into an

equivalent unit delay circuit. For example, we can insert two buffers between gate

output and its fanouts for a NAND gate with an integer delay of 3 units. Please note

that the number of equations in our formulation will not increase as a result of this

transformation. Similarly we can extend this solution to circuits with real delays that

can be normalized to have equivalent integer delays.

2.6 Conclusion

Various ATPG techniques to generate a two pattern test for multiple aggressor

crosstalk faults is presented here. This problem involving generation of input pattern

pair for maximizing delay at the victim net in the presence of multiple aggressors is

a max-satisfiability problem which is known to be intractable. Essentially, in all our

solutions presented here, we approach max-satisfiability problem using ILP formu-

lation. The solution to fault propagation problem is either obtained independently

through circuit partitioning or by using an integrated ILP formulation. Results show

that integrated approach produces better quality solution while partitioning based

approach is faster as the number of equations is fewer.
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Moreover, the effect of gate delays on the maximal weight switched is also studied

here. Circuit transformation is done in order to account for gate delays. This can

be extended to arbitrary integer gate delays by adding unit delay buffers. Moreover,

floating delays may be scaled and approximated as integer delays without any loss of

generality of the solution. A comparison with zero delay case shows that zero delay

case results in a gross overestimation of the maximum crosstalk in the circuit. The

importance of gate delays in crosstalk ATPG is evident from the above observation.

Finally, as we only consider the input and output logic cones for ILP formulation,

our approach is shown to be highly scalable for modern circuits which are known to

have a small logic depth.
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CHAPTER 3

A PATTERN GENERATION TECHNIQUE FOR

MAXIMIZING SWITCHING SUPPLY CURRENTS

CONSIDERING GATE DELAYS

3.1 Introduction

The design of power and ground rails so as to ensure reliability and performance

of VLSI circuits is one of the major challenges in current generation integrated cir-

cuit design. A degradation in the switching speed of CMOS circuits, as a result of

voltage droop in the power rails, can be attributed to a poorly designed power de-

livery network [18]. Long term reliability problems are caused by excessive current

flow through metal conductors as a result of an increased electromigration rate [18].

The power delivery network may be insufficiently matched to demand without proper

analysis. Moreover, excessive current through die-package interface can cause thermal

meltdown of solder bumps [33].

Therefore, accurate current estimation through power supply lines in very impor-

tant. There are two major components to the total power supply current: (i) current

due to switching of CMOS gates; and (ii) the CMOS leakage current. CMOS leakage

current has gained attention in the literature [58] as it has been steadily rising due

to increased sub-threshold and gate oxide leakages. This work presents an Integer

Linear Program (ILP) based pattern generation technique to create worst case (best

case) current draw from power supply rails. By appropriately setting the optimization

cost functions, this generic technique can be applied to static, dynamic or composite

currents. In this work we limit our discussion to dynamic current only. One of the

most important part of the problem specification process is defining the cost function.
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Figure 3.1. Piece wise linear approximation of supply current waveform [57]

In this work, our main focus is solely on the current drawn, during transitions in

gate outputs, from the power supply rails. Multiple current conduction paths between

supply and ground rails are formed when this current flows through various parasitic

capacitances of interconnect lines and output load(s).

For example, for an inverter output switching from 0→ 1, current flows through

the PMOS transistor. The intrinsic gate/drain capacitance of the CMOS gate and

the input capacitance of fanout gates are charged by this current flowing through this

PMOS. Moreover, this current may flow partially through the coupling capacitors

to other interconnect lines and eventually to other gates, as these fanout lines are

capacitively coupled with other switching and non-switching lines. However, we can

use Kirchoffs law to focus on the currents drawn by transistors within a gate, without

having to consider coupling currents separately.

The power supply current which flows through the p− tree (n− tree) transistors,

during 0 → 1 (1 → 0) transition at gate output, charges the output capacitance.

For a combinational circuit with n primary inputs, the possible set of input patterns

is defined by using a vector of 6-valued logic given by l → l (low to low), l → h
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(low to high), h→ l (high to low), h→ l → h (high to low to high) and l → h→ l

(low to high to low). The glitches that could possibly occur within a single clock

period under the assumption of unit delay model are represented by h→ l → h and

l → h → l. For various input patterns, Transient Current Waveforms are drawn at

the contact points. The transient current waveforms at each contact point can be

described by using a Piece-Wise Linear (PWL) function with a peak current value

of Ipeak (Fig. 3.1). In order to perform accurate estimation of maximum current

waveform at every contact point, we need to determine the set of current waveforms

corresponding to all possible input patterns.

For a circuit with n primary inputs, since each input can assume one of the six

logic states: l → l, h → h, l → h, h → l, l → h → l and h → l → h, we need

to simulate for a total number of 6n input vectors. As the number of simulations

which must be performed in order to find the maximum current is exponential in the

number of inputs to the network, estimating maximum current for a large CMOS

logic network is computationally intractable. Thus, peak current maximization can

be mapped to constrained max-satisfiabilty which is NP −Hard.

In this work, a two pattern test is generated assuming unit delay model for the

gates as explained in detail in Section 3.3.3. As a result, there is a set of time-slots

associated with every gate representing the time at which it could possibly switch. At

a given time-slot, when the biggest subset of gates appearing at that time-slot switch,

so as to cause a maximal supply rail current while obeying Boolean relationships, peak

current is achieved. The maximum supply rail current observed over all time-slots

represents the peak current for the entire circuit. It is important to note that, we

improve the quality of the solution further compared to zero delay model by taking

glitches into consideration with unit delay assumption.

In this work we build upon the fact that only a fraction of all the gates fall under

a specific time window when they could possibly switch, if individual gate delays are
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considered. This observation results in a significant pruning the size of individual

problem instances improving the accuracy of the solution as well as increasing the

chances that an exact solution may become feasible.

The proposed approach is presented in the rest of the chapter as follows: we

review previous work in Section 3.2. In Section 3.3 a mathematical formulation of

the peak current pattern generation problem is provided. The ILP-based proposed

approach is explained in detail in Section 3.4. This is followed by Section 3.5 where

we discuss the scalability of the proposed solution. Section 3.6 presents experimental

data and analysis on ISCAS-85 and ISCAS-89 benchmark circuits. Finally we present

conclusions in Section 3.7.

3.2 Related Work

The problems of estimating maximum current and the peak power dissipation for

a CMOS circuit are mathematically identical in nature. Moreover, they have been

addressed in literature with significant importance over the last decade. Kriplani

et al. [49] presents a pattern independent approach for supply rail current estima-

tion. This offers improvement in execution times compared to SPICE-based methods

presented in [78] and [54], but is overly pessimistic as Boolean filtering is not used.

An approach for maximum current estimation is presented by Chowdhury et

al. [28]. In this approach, the above problem is addressed by partitioning the cir-

cuit into macro modules and then applying the exact search technique or a suitable

heuristic separately on each of them to come up with the solution. However, because

of the assumption that all the macros draw their maximum currents simultaneously,

their methodology suffers from an over-estimation trend. Ganeshpure et al. presents

a pattern-dependent peak current estimation approach which employs a branch-and-

bound heuristic to incrementally modify the Boolean clause for satisfiability towards
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attaining a bounded solution [56]. In this approach Boolean filtering is considered,

but it does not take internal gate delays into account.

Jiang et al. [111] evaluate a set of different algorithms and their relative per-

formance. They reported that the ILP-with-partitioning approach provides tightest

upper bound for small circuits, while for large circuits the lower bound obtained by

the GA-based approach seems to be most effective. This upper bound obtained from

GA-based approach outperforms the other timed-ATPG and the probability-based

approaches. They also observed that for combinational circuits, the timed-ATPG,

probability-based and ILP-based approaches are only applicable, while the GA ap-

proach applies to sequential circuits as well. Chai et al. [19] present an ILP-based

algorithm using the signal correlations within a circuit, in a similar context of leakage

current minimization. Through relaxing the constraints of the integer program, they

claimed a faster solution compared to [90]. The solution resulted in a search space

explosion as ILP formulation was done by considering all the possible input combi-

nations for every gate. Moreover, internal gate delays were not taken into account

for their approach. In this work, we significantly reduce the complexity of a single

instance of the search space by considering unit gate delay model under which only

a subset of gates could possibly switch at a given time window. The unit gate delay

model is not only more realistic compared to zero gate delay model but also reduces

pessimism of the solution.

Devadas et al. [90] present a technique for the estimation of worst case power dis-

sipation in CMOS combinational circuits. In their approach the above problem was

reduced to a weighted max-satisfiability problem on a set of multi-output Boolean

functions. This is followed by using either a disjoint cover enumeration algorithm or

the branch-and-bound algorithm to solve the NP − Hard problem. However, even

under the unit gate delay assumption, for a multilevel logic circuit, the functions gen-

erated by their algorithm are fairly complex, and suffer from long execution times.
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Moreover, this approach does not provide a sub-optimal solution that can be used

as upper bounds of switching activity as it requires that the problem be solved opti-

mally. A solution which gives an upper bound of maximum transition or switching

density of individual gates for CMOS combinational circuits computed via propaga-

tion of uncertainty waveforms is presented by Najm et al. [79]. Wang et al. [107]

present a test generation based approach which tries to find test patterns that would

produce the maximum gate switching corresponding to the maximum power dissi-

pation. However, both Najm et al. [79] and Wang et al. [107] did not take gate

delays into account. Gate delays were considered by Manich et al. [75] to show

improvement in the quality of the solution when non-zero delay model is considered.

A circuit transformation-based approach which performs time-domain expansion of

a given combinational circuit to incorporate gate delays was developed in this work.

The equivalence between switching activity maximization problem and stuck-at fault-

testing problem on a transformed circuit was shown by the authors. Here maximum

weighted activity is achieved by test vectors covering a selected set of faults on the

transformed circuit. We have adhered to this circuit transformation technique to

incorporate unit gate delays in this work.

Wu et al. [87] present a statistical approach based on the asymptotic theory of

extreme order statistics. They applied probabilistic distributions of the cycle-by-cycle

power consumption and the maximum likelihood estimation in the context of peak

power maximization problem. A peak power estimation tool K2 was proposed by

Hsiao et al. [74]. It generates a specific vector sequence that produces maximum

power dissipation in both combinational and sequential circuits. Gupta et al. [48],

present a hamming distance-based approach. In this work they estimate energy and

peak current for every input vector pair. Boolean Satisfiability (SAT) and ILP based

solvers were used to conduct experiments on identifying an input pattern pair that

maximizes weighted switching activity for a CMOS combinational circuit by Sagahy-
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roon et al. [92]. They used solvers like PBS 4.0 [38], Galena [20], and MiniSAT+

[37] in addition to the commercial ILP solver CPLEX 7.0 [7] and reported exact

solution for most of the small to medium size MCNC benchmark circuits within a

reasonable time. However, when gate delays are taken into account, for very large

scale commercial designs the SAT-based formulation still may suffer from extremely

long execution time. One of our major objectives in this work, is to show that SAT

and ILP-based exact solutions may become feasible when internal gate delays of the

combinational circuit are considered.

[9] [55] show several ATPG-based approaches. They generate input vectors to

either estimate the power supply noise or in the context of delay testing. In these

approaches, delay is seen as an effect of variable IR-drop across the power supply rails.

A fault model to address the problem of vector generation for delay faults arising out

of power delivery problems has been presented in Tirumurti et al. [18].

From the above survey, it can be seen that, the previous work for calculation

of maximum currents in the power supply rails suffer from limitations such as long

execution time or weak upper/lower bounds for maximum current value. We explain

the switching current model and the gate delay models assumed in this work, in the

following sub-sections. Moreover, we also formally define the problem statement.

3.3 Problem Formulation

In this section we explain the switching current and the gate delay models assumed

in this work and formally define the problem statement.

3.3.1 Switching Current Model

In this work we use a real valued weight, known as switching weight, to represent

peak current. In order to represent the peak current through the supply lines during
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0→ 1 and 1→ 0 transition, each gate is associated with 0→ 1 and 1→ 0 switching

weights wP (g) and wN (g), respectively.

For a CMOS logic gate, the output line may charge/discharge through the load

capacitance as shown in Fig. 3.2 c. The various effective resistance and capacitances

that are a part of the equivalent circuit [110] are shown in part (b). The drain

diffusion capacitances given by CNMOS and CPMOS are contributed by the driver gate.

The capacitance to ground for the wire connecting the source and the sink constitutes

the interconnect capacitance. For the sink inverter, we have the gate capacitances of

the PMOS andNMOS transistors represented as CgPMOS and CgNMOS respectively.

The output load capacitance CGND used for transient analysis, is equal to the sum

of all the above capacitive components. Moreover, a transistor may be represented

as a switch, in a first-order simplified model. According to this model the transistor

has an ON effective resistance of RPMOS and RNMOS for the PMOS and NMOS

transistors respectively.

The output capacitance, as shown in part (c) of the Fig. 3.2 is discharged

(charged) through RNMOS (RPMOS) during a 1→ 0 (0→ 1) transition at the output

net of the driver through the loop current I(t)1→0 (I(t)0→1).

Let VDD be the supply voltage (assuming VSS = 0) and V (t) be the voltage at the

output node of the first inverter. Consequently, the output current I(t)0→1 for 0→ 1

switch is obtained from the following equation:

V (t) = VDD ·
(

1− e
(

−
t

RPMOS ·CGND

)

)

(3.1)

I(t)0→1 =
(VDD−V (t))

RPMOS
= VDD

RPMOS
· e

−t
RPMOS ·CGND (3.2)

Therefore, for a gate g corresponding to the maximum values of the switching

current Ipeak, the switching weights wP (g) and wN(g) are obtained using the following

set of equations.
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Figure 3.2. Switching current model for an inverter driving another inverter. (a) a
driver inverter driving a sink inverter (b) equivalent RC model for the driver and the
sink (c) equivalent RC circuit for 0 → 1 and 1 → 0 transition at the driver output.
[57]

wP (g) = Ipeak(0→ 1) = VDD

RPMOS
(3.3)

wN(g) = Ipeak(1→ 0) = VDD

RNMOS
(3.4)

Please note that we use a simplified first order model for the above equations.

These weights, in proposed calculation, may be obtained from simulation.

3.3.2 Peak Current Weight Extraction for Logic Gates

The peak current for gates present in the cell library is computed by SPICE

simulation [6]. The goal of peak current estimation is to switch a given gate by

applying pattern pairs in such a way that it causes worst case power supply rail current

during 0 → 1 and 1 → 0 transitions. A maximum number of parallel conduction

between VDD and VSS for either rising or falling output transition are switched due

to the application of these pattern pairs. In order to draw maximal current from
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the power supply lines, these pattern pairs should ideally switch all transistors in the

n− tree for peak 1→ 0 transition current (input pattern pair transitioning from all

ones to all zeros) and all transistors in the p− tree for peak 0→ 1 transition current

(input pattern pair transitioning from all zeroes to all ones). In order to measure the

peak value of the current waveform, a current meter is placed on the power supply

rails. The above process is repeated for a range of output loads. These loads are

set to an integral multiple of minimum sized inverter load in the same technology.

Finally, the measured peak currents are normalized with respect to the minimum

value among the cells in the library. These weights are stored in a look-up table

and a combination of gate type and the number of fan-outs are used to access them.

Multiple simulations are necessary to determine the worst case weight if it turns out

that it would be impossible to switch on all transistors of a given type due to input

signal dependencies.

3.3.3 Unit Gate Delay Model

Unit delay assumptions are used for the above pattern generation technique for

logic-level circuits. At the transistor level, pattern generation remains an elusive goal.

In Section 3.5.2 we have shown that with introduction of unit delay buffers, the unit

delay model can closely approximate the behavior of a circuit due to exact delays.

The need to consider circuit delays is explained in the following example.

Figure 3.3. An example circuit C with transition times for unit delay model [57]
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Example 3.3.1. Fig. 3.3 shows a combinational circuit C where all the gates are

assumed to have unit switching delay. The anterior vector I0 is the first input vector

of the pattern pair which was applied to the inputs prior to time 0t. At time 0t, the

input changes to the present vector I1. The lengths of all the paths arriving at the

node output obtained using the signal propagation times are shown above the signal

lines in Fig. 3.3. The propagation of input transition may produce two transitions on

gates G3, G5 and G6; and one transitions in gates G1, G2 and G4. The time at which

the gate output possibly transitions and attains a stable logic value is represented by

the time values at the gate outputs. These time values are referred to as Time-Slots.

Hence, only the gates G1, G2, G3 and G6 may switch at the time-slot 1t. Similarly,

at time-slot 2t the gates G3, G4 and G5 may switch and so on. Hence, we observe

that at the same instant of time not all gates may switch. Consequently, for each

time-slot, we may create a list of gates that may become active. From the above

example we can see that, in order to obtain a transition at a gate output we require

a pattern pair. The first pattern in this pair stabilizes a specific logic value (0 or

1) at the gate output while the second pattern defines a transition from one stable

logic value to another (possibly, even same). Our objective, in this work, is to find

a pattern pair that causes worst case peak current. Once the pattern pair is found,

HSPICE simulation can be done in order to compute the actual peak current.

From the previous work shown in [56], it can be seen that, if the two patterns of

the pattern pair are not generated concurrently, then the final solution can be sub-

optimal. This pattern pair problem is best solved with two copies of the same circuit

merged together (Fig. 3.4) to account for the correlation between two patterns to

manifest their combined effect in the final switched weight.

A gate output may experience one or more transitions for a given pattern pair as

described in the previous example, when we take internal gate delays into account.

Consequently, we may consider duplicating the circuit for n times corresponding to n
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Figure 3.4. Block diagram showing two identical copies of a circuit C placed side
by side to form a combined circuit [57]

time-slots. Hence, the circuit size can potentially increase n fold, where n is delay of

the longest path under unit gate delay model. From the above example, it is observed

that only a subset of all the gates may switch at a given time-slot. Hence, we don’t

need to consider the set of all gates switching at an individual time-slot. Instead, we

may create a copy of the circuit with only the gates that may possibly switch for each

individual time-slot.

Based on this observation, a circuit transformation is done that converts the orig-

inal circuit to an expanded circuit where individual gate are copied for every single

time-slot whenever that particular gate may become active. This circuit transforma-

tion has been used in [75] to take delay model into consideration for maximizing

the weighted switching activity in combinational circuits. If n represents the total

number of possible propagation times in the original circuit, the transformed circuit

will have n levels. Section 3.4.1, explains this circuit transformation step in further

detail. This circuit transformation is similar to the one presented in Sections 2.4.3.2

to consider the effect of delays in crosstalk ATPG. It can be seen here that, this

transformation step allows time to be modeled as space such that Boolean analysis

alone on the transformed circuit will suffice.
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3.3.4 Problem Statement

We now focus on formally defining the problem statement with the above discus-

sion on switching current and gate delay models assumed in this work.

Consider a combinational circuit C. The circuit operates over N time-slots, under

the assumption of unit delay model. Here we assume that for each gate g, there is

an associated pull-up/pull-down weight pair 〈wP (g), wN(g)〉. Here the pull-up weight

wP (g) and pull-down weight wN(g) represents the cost associated with the current

drawn from the supply rails when the output of the gate g transitions from 0 → 1

and 1→ 0 respectively.

We need to maximize the total pull-up/pull-down weight of all the gates at the

same time-slot, in order to have maximum switching activity. Therefore, at the given

time-slot, the total switching weight is given by the following equation.

W (tj) =
∑

g∈G(tj)

(wP (g) · U (g, tj) + wN(g) ·D (g, tj)) (3.5)

In the above equation, the set of gates which can switch in the given time-slot tj

is represented by the set G (tj). Now, when a gate g transitions from 0→ 1 (1→ 0)

and attains a value of 1 (0) in the time-slot tj, then the Boolean variable U (g, tj)

(D (g, tj)) is set to TRUE.

In this work, we need to find the pattern pair 〈I0, I1〉 that causes maximal switch-

ing activity for the current time-slot.

〈I0, I1〉 = pattern pair

{

max
tj∈N

(W (tj))

}

(3.6)

For example, the total weight W (2t) corresponding to the time-slot 2t, as shown

in Fig. 3.3 is found as the sum of the weights switched for the gates G3, G4 and

G5, which are targeted to switch between consecutive time-slots {1t, 2t}, {0t, 2t}

and {0t, 2t}, respectively. While keeping a track of the weight switched and the
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corresponding pattern pair obtained, this process is repeated for all the above time-

slots. The time-slot for which we obtain the maximum weight, gives the worst case

vector pair.

3.4 The Proposed Approach

As peak current estimation is an NP −Hard problem, our objective is to search

for a nearly optimal solution and record the corresponding vector pair 〈I0, I1〉. The

proposed approach consists of the following two basic steps.

• Circuit Transformation: Here a time-space transformation of the original circuit

C is done. As a result of this, time sequence of two vectors, 〈I0, I1〉 is translated

into the expanded circuit Z representing the switching of various gates. This

is followed by adding a set of 2-input XOR gates to each of the internal nodes

of the circuit in order to represent switching. These outputs of the XOR gates

represent the outputs of the expanded circuit.

• ILP Formulation: In this step and ILP based formulation is done to generate a

set of objective functions corresponding to each time-slot of the expanded circuit

so as to search for an exact solution to the maximization problem expressed in

the above Equation 3.6.

The above two steps are elaborated in the following sub-sections. This is followed

by a detailed description of the ILP-based peak current estimation algorithm (I −

PEAK) in the Section 3.4.2.

3.4.1 Circuit Transformation for Gate Delays

Manich et al. [75] have shown previously in the context of peak current estimation

that, choice of gate delay model plays an important role in peak current determina-

tion. Under the assumption of non-zero gate delay model, the problem becomes more
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realistic, because only then the temporal proximity of different gates can be consid-

ered. A set of gates will not effect the power/ground rail at a given time instant if

they do not switch within a finite time window with respect to each other. Conse-

quently, they should not be considered together to compute the peak current. This

timing filtering cannot be applied under zero gate delay model, resulting in an overly-

pessimistic measure for peak current. We assume unit gate delay model in this work

in order to address the issue of timing filtering. According to the unit delay model,

we assume that it takes 1 unit of time between 50% transition of the input to the 50%

transition of the output for any given gate. Hence, we do not consider the transport

delay to propagate an output transition of a gate to the input of its fan-out.

In order to take gate delays into account, time domain expansion is used to trans-

late a circuit structure under unit delay model to an equivalent expanded circuit

without any delays. As a result of circuit transformation, there is a one-to-one corre-

spondence between the gate replications in the expanded circuit and the correspond-

ing transitions in the original circuit. The signal transitions occurring at various

time-slots are represented by using XOR outputs in the expanded circuit. These

XOR gates are connected to the gate outputs appearing in a pair of consecutive

time-slots in the expanded circuit [75]. This circuit transformation step has been

represented by the sub-routine given by circuit xform() in the Pseudocode descrip-

tion of the I-PEAK algorithm, described in Section 3.4.2. This circuit transformation

is also used in context of generating a pattern pair maximizing total crosstalk induced

delay at the victim net in multiple aggressor crosstalk scenario [42]. A detailed ex-

planation of the above procedure is presented in Section 2.4.3.2 appearing in Chapter

2. In the following example we explaining the above time domain expansion as it is

used in our problem.

Example 3.4.1. The original circuit given in Fig. 3.3 is transformed after time

domain expansion to the circuit in Fig. 3.5, under unit delay assumption, where each
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Figure 3.5. The expanded circuit (from Fig. 3.3) after performing circuit transfor-
mation under unit delay model [57]

gate is assumed to have a unit propagation delay. Here we avoid the interconnect

delay between the output of a gate to the next stage input. The anterior vector I0 is

applied to the inputs prior to the time 0t. These anterior inputs which are applied

at the time-slot −0t for the circuit Z are shown by {I1a, I2a, I3a, I4a}, as shown

in the Fig. 3.5, while {I1p, I2p, I3p, I4p} represent the present inputs to which the
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present vector is applied after time 0t. The number of replicas of a gate in this

expanded circuit is equal to the possible propagation times listed against individual

gates in the original circuit (Fig. 3.3). The circuit Z in our case covers time-slots

{−0t, 1t, 2t, 3t}. At each instant of the expansion every gate has a replica in which

it shows activity. For example, the gate G3 has three replicas given by G3 0, G3 1

and G3 2 at various expansion instances −0t, 1t and 2t corresponding to the set

of propagation times {−0t, 1t, 2t} respectively. For the gate G3, its two inputs are

connected to the primary input I1 and the output of gate G1 in the original circuit

C. Consequently, in the expanded circuit Z, the input of G3, originally connected

to the primary input I1, is connected to the primary input I1a for the replica G3 0,

and to I1p for the replicas G3 1 and G3 2 appearing at the expansion instants 1t and

2t respectively. Similarly, the replica of the fan-in gate G1 at the previous time-slots

supply the other input for the gate G3. In the figure the color blue is used to show

the connections from fan-in gates of previous time-slots while green is used to show

that originating from present inputs.

The auxiliary XOR gates are used to compare the output signals of each gate for

any two consecutive replicas in order to detect transitions made by various internal

nodes. For the gate G3 a pair of XOR gates are assigned between G3 0 and G3 1,

and between G3 1 and G3 2, in order to represent transiting at time-slots 1t and 2t

respectively. In the figure the gates and their input connections are shown in red.

A transition at the gate output between time-slots 0t and 2t is represented by the

XOR output X5 02. For the time-slot 1t, the transitions are represented by the gate

outputs given by X1 01, X2 01, X3 01 and X6 01. Similarly, for time-slots 2t and

3t, the above transitions are represented by X3 12, X4 02 and X5 02, and X5 23

and X6 23, respectively.

It should be noted that, by adding unit delay buffers to the original circuit we

can generalize time domain expansion for arbitrary integer delays. Consequently, any
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floating point delay can be scaled and approximated as integer delays without any

loss of generality of the solution.

3.4.2 ILP Formulation

ILP formulation is done for the circuit by writing ILP equations for the logic gates

[41], in order to obtain the maximal switching activity for a given circuit. This is done

by using the clausal description of the function of the gates as developed by Larrabee

[66]. The Section 2.4.2 provides the description for how these ILP constraints can be

generated for a combinational circuit. This has been used in the context of maximal

aggressor crosstalk ATPG [42].

For switching current maximization problem, the ILP formulation consists of the

following parts:

• ILP formulation for circuit Boolean constraints.

• Constraints for switching occurring at the output of a given gate at a given

time-slot ti.

– Switching representing a 0→ 1 transition.

– Switching representing a 1→ 0 transition.

Finally, the objective function is expressed in terms of the variables used as part

of the ILP constraints.

Fig. 3.5 shows the transformed combinational Z circuit used here to explain the

ILP formulation. The circuit operates on a set of N time-slots under the assumption

of unit delay model. The list of time-slots in which a gate g appears is given by the

set Ng = {t0, t1, t2, ..., tn}. Here the initial time-slot corresponding to the time 0t

is represented by t0. As explained earlier, each gate has an associated pull-up/pull-

down weight pair 〈wP (g), wN(g)〉. The pull-up and pull-down weights wP (g) and
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wN(g) represent the switching supply current drawn when the output of the gate g

transitions from 0→ 1 and 1→ 0 respectively.

The Boolean logic value at the output of gate g in the time-slot ti is represented

by α (g, ti). In order to indicate the condition that the gate g has different logic

values in the time-slots ti and tj, we introduce the Boolean variable Xg titj. The

above variable correspond to the XOR output gates in the transformed circuit Z.

Hence, Xg ti−1ti can be calculated for a gate g switching at the time-slot ti using the

following equation.

Xg ti−1ti = α (g, ti)⊕ α (g, ti−1) (3.7)

Now, a weight of wP (g) is switched when the gate output g switches from 0→ 1.

In order for the above condition to be TRUE, we need to switch the gate g at time-

slot ti (Xg ti−1ti = TRUE) and it should have a TRUE value in the time-slot ti

(α (g, ti) = TRUE) after switching. We define a Boolean variable U (g, ti) to indicate

the above condition. Hence, we obtain the following equation.

U (g, ti) = (α (g, ti) ∧Xg ti−1ti) (3.8)

Similarly, we define a variable D (g, ti) in order to indicate the 1 → 0 switching

at the gate g.

D (g, ti) =
(

α (g, ti) ∧Xg ti−1ti

)

(3.9)

Hence, we define the objective function O (ti) which maximizes the switching

activity at ti using the following equation.

O (ti) =
∑

g∈G(ti)

(wP (g, ti) · U (g, ti) + wN (g, ti) ·D (g, ti)) (3.10)

where: G (ti) represents the set of gates that could possibly switch in time-slot ti.
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This formulation is solved for all the time-slots ti : ∀ti ∈ [1, N ] one at a time. The

final vector pair 〈I0, I1〉 is the one which produces the maximum switching current

among all the time-slots.

The Pseudocode 3.1 description of the I PEAK algorithm is presented in the

following section. The subroutine generate ILP eqns() is used for the formulation

of ILP constraints.

Algorithm 3.1 I PEAK(C) [57]

1: {Z,N} ← circuit xform(C)
2: maxWeightSwitched = 0
3: for all ti ∈ [1, N ] do
4: ILPEqns← generate ILP eqns (Z, ti)
5:

{

〈I0, I1〉, weightSwitched, Ts

}

← solve ILP (ILPEqns, TL)
6: if Ts < TL then

7: if maxWeightSwitched < weightSwitched then

8: maxWeightSwitched = weightSwitched

9: 〈I0, I1〉max ← 〈I0, I1〉
10: end if

11: end if

12: end for

13: return 〈I0, I1〉max

The I PEAK algorithm shown in the above Pseudocode, takes the original cir-

cuit C as an input and returns the pattern pair 〈I0, I1〉 which maximizes the total

switching activity at a particular time-slot. Circuit transformation is done in Line 1

to incorporate the effect of gate delays using the function circuit xform() using the

original circuit C. This generates the transformed circuit Z which goes over a set of

N time-slots. This is followed by setting the variable maxWeightSwitched to 0 in

Line 2. This variable is used to keep track of the maximum weight switched among

all the time-slots.

Now we iterate through all time-slots in the Lines 3-10. In Line 4 the ILP equations

for the transformed circuit Z at the current time-slot ti is generated. This is followed

by the solution of the above ILP formulation in Line 5 to generate an input pattern

pair 〈I0, I1〉 and the corresponding weightSwitched. It also give the duration Ts for
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which the ILP formulation was run. Gnu Linear Programming Kit (GLPK) [5] is

used for the solution of this ILP formulation for the time limit TL. Based on this

time limit there are two outcomes of the solve ILP () function:

• Success: when an optimal solution is found by the solver within the specified

time limit TL. In this case the ILP solver returns with a pattern pair 〈I0, I1〉

and the corresponding weight weightSwitched.

• Timeout: when the solver fails to find an optimal solution within the specified

time limit TL. As a result, the ILP solver may or may not return with a valid

pattern pair. In case it does return with a valid solution, the returned pattern

pair corresponds to a sub-optimal solution. We neglect this sub-optimal solution

by checking for the timeout condition.

The above mentioned timeout condition is checked in Line 6 where we compare the

returned time Ts taken by the ILP solver with the time out limit TL. In case of a time

out Ts ≥ TL. When a success is obtained, we keep a track of the pattern pair causing

worst case switching in the Lines 7 to 10. This is done by comparing the returned

weightSwitched with the maxWeightSwitched in Line 7 followed by updating the

maxWeightSwitched to weightSwitched and finally storing the corresponding vector

pair into 〈I0, I1〉max. The above process stops at the Line 12 where we have gone

through for all the time-slots ti ∈ [1, N ]. Finally the pattern pair 〈I0, I1〉max is

returned in Line 13.

The following example explains the above I PEAK algorithm in more detail.

Example 3.4.2. The transformed circuit Z, corresponding to the original circuit C,

shown in Fig. 3.5, is expanded over a set of 3 time-slots. First the ILP solution for

the gate G5 is presented here, which is later generalized for any gate in the circuit.

Now, the set of time-slot for the gate G5 is given by NG5 = {0t, 2t, 3t}. Then we do
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ILP formulation for each of these time-slots available for the circuit. Next, for the

time-slot 2t, we will explain the generation of ILP formulation.

In order for gate G5 to switch between the current time-slot 2t (for i = 2) and

the previous time-slot 0t(for i = 0), we get the following set of equations.

X5 02 = α (G5, 2t)⊕ α (G5, 0t) (3.11)

Now a 0→ 1 transition at the gate G5 is given by the following equation.

U (G5, 2t) = (α (G5, 2t) ∧X5 02) (3.12)

Similarly, for a 1→ 0 transition at the gate G5 we get the following equation.

D (G5, 2t) =
(

α (G5, 2t) ∧X5 02
)

(3.13)

Now, as shown in the Fig. 3.5 for the current time-slot 2t, the set of gates that

appear is given by G(2t) = {G3, G4, G5}. The objective function O(2t) is obtained

using the following equation.

O(2t) = wP (G5) · U(G5, 2t) + wN(G5) ·D(G5, 2t) +

wP (G4) · U(G4, 2t) + wN(G4) ·D(G4, 2t) +

wP (G3) · U(G3, 2t) + wN(G3) ·D(G3, 2t) (3.14)

Similarly, the objective functions O(1t) and O(3t) are generated by doing the

above ILP formulation for all the other time-slots at which the gate G5 appears in

Z. Finally, the maximum switching weight value and the corresponding pattern pair

obtained among all the time-slots is returned.
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3.5 Scalability

The proposed solution is highly scalable. The scalability of the approach is pre-

sented in terms of performance of the ILP-based algorithm and its ability to handle

non-unit gate delays.

3.5.1 Performance

The number of ILP equations primarily determine the scalability of the solution.

The likelihood of finding an exact solution within a specified time limit is higher for

smaller number of equations. The number of gates in a particular time-slot and their

input logic cones determine the number of equations in the ILP formulation (Fig.

3.6). As shown in Table 3.1, this usually constitutes a small fraction of the total size

of the combinational circuit.

Now, for a gate in time-slot t in a circuit with average fan-in of f , the number

of gates in the logic cone of this gate is of the order of O (f t). This worst case gate

count can be of O (n · f t), if n is the total number of gates appearing in time-slot t.

Figure 3.6. Boolean justification clauses generated only for the input logic cones of
the active gates in the time-slot t [57]

For most of the benchmark circuits, due to switching of gates in the first few levels,

peak current occurs at the initial time-slots. Moreover, the logic depth in modern
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designs tend to be typically 6-8 levels of logic gates as seen in [51]. This logic depth

for most of the circuits is also very small.

Moreover, as the number of gates in the initial time-slots is a small fraction of

the total number of gates in the circuit, n is small. Moreover, the number of fan-ins

in CMOS circuits is limited, due to non-linear increase in gate delay with transistor

stack height. Typically, this fan-in count in CMOS gates is limited to 4 [51]. This

tends to limit the size of the circuit that resides in the input cone of gates in a time-

slot. As a result, the total number of equations generated is a small fraction of the

total circuit size.

Table 3.1. Maximum number of gates used in an instance of ILP reported as a
fraction of total number of gates for ISCAS-85 benchmarks [57]

Circuit
Total Gate

Count
Maximum Gate Count

Per Instance

Maximum fraction of
total number of gates
used per instance (%)

c432 160 81 50.6
c499 202 72 35.6
c880 383 148 38.6
c1355 546 168 30.8
c1908 880 154 17.5
c2670 1193 280 23.5
c3540 1669 289 17.3
c5315 2307 496 21.4
c6288 2416 256 10.6
c7552 3512 291 8.29

It has been observed here that, incorporating unit delay model into the problem

specification significantly reduces the search space for individual instances of the

problem. This is because the entire set of gates for a given circuit gets partitioned

onto smaller sub-sets, which are listed as the active gates for individual time-slots.

A comparison between the total number of gates for different ISCAS-85 benchmark

circuits and the maximal number of gates considered for a single instance of the

ILP formulation over all such time-slots, is shown in Table 3.1. It is observed that,
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the fraction of gates that are considered for a single instance of the problem becomes

lower (Table 3.1) with the growth of circuit size. This makes the peak current pattern

generation problem particularly suitable for ILP-based exact solution approach.

Consequently, the unit-delay model assumption staggers the set of active gates

over individual time-slots in such a way that individual instances of the peak current

estimation problem tends to converge within a reasonable time.

Figure 3.7. Bi-partitioning of a large combinational logic block [57]

The ILP formulation for multi-million gate designs may still run into scalability

issues. However as shown in the Fig. 3.7, such cases may be solved by partitioning

logic between successive flip-flops stages into horizontal bands. Here, each of the
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band is solved separately using the proposed approach. Moreover, it is imperative

to minimize the number of signals crossing from one band to another. A min-cut

partitioning based heuristic can be used here. In both the partitions, the cut points

are assumed fully controllable. An overall solution is generated by aggregating the

current waveforms from individual bands. Even though the solution in this case will

not be exact, but still significantly better than the state-of-the-art solutions. It can be

seen from Table 3.2 that the absolute maximum weight before and after partitioning

differs. This is because of time-frame expansion, as the number of time-slots in which

a gate may appear in the individual sub-circuits varies based on the cut-points. This

exercise shows that (i) the solution is feasible, (ii) partitioning produces an over-

estimation of the maximum switched weight and hence is typically pessimistic, and

that (iii) after circuit partitioning pattern generation takes significantly less time than

running on the full circuit. Consequently, this partitioning based approach can be

used as a quick and approximate solution to solve an otherwise difficult problem.

Table 3.2. Comparison of switched weight for c432 benchmark with and without
bi-partitioning [57]

Parameter
Without

bi-partitioning
After bi-partitioning c432

Partition I Partition II Combined

Abs. Max. Weight 58.41 42.55 23.48 65.07
Max. Swt. Weight 40.73 31.27 18.13 49.41

Time 65094 15875

3.5.2 Beyond Unit Delay

Unit delay buffer insertion can be done in order to convert integer delay circuit

into an equivalent unit delay circuit. For example, if a NOR gate has a delay of 3,

we can insert two buffers between NOR gate output and its fan-outs. Consequently,

we can extend this solution for real delays by normalizing real delays using integer

delays and applying the above solution.
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3.6 Results

In this section, we present the results for the proposed ILP based approach followed

by those for the circuit partitioning based approach. Finally, we validate the proposed

solution with HSPICE and also provide comparison of zero and unit delay models.

3.6.1 Experimental Setup

Experiments are performed on ISCAS-85 and ISCAS-89 benchmark circuits. As

ISCAS-89 benchmarks are sequential, they are used after removing all the sequential

elements and converting them to combinational benchmark circuits. For our purpose,

the peak current weights for individual gates were randomly generated with the values

in the range from 0 to 1. The open source ILP solver GLPK [5] was used to solve

the ILP formulation. The solver was run with a time out limit of 1000 seconds set

for each of its invocations. A Dell PowerEdge 2800 server [3] with 2.8GHz dual core

IntelTM Xeon processors, 2MB L2 cache and 2GB RAM was used as a platform for

these experiments.

The experimental results for ISCAS-85 and ISCAS-89 benchmark circuits have

been presented and analyzed in the following two sub-sections. This is followed by

the validation of the proposed approach with respect to an exact solution obtained

through an accurate circuit-level field solver, such as HSPICE [6].

3.6.2 Results on ISCAS-85 and ISCAS-89 Benchmarks

The peak current data generated from the proposed ILP-based approach for

ISCAS-85 and ISCAS-89 combinational benchmark suite is presented in Table 3.3

and Table 3.4. The number of gates in the circuit are shown in Column 3. The total

number of time-slots for which a given circuit exhibits switching activity when unit

gate delay model is considered is shown in the Column 4 of the table. It can be clearly

seen that, not each and every gate in the circuit is active for every individual time

instant. Every single gate will switch at the same instant giving rise to a significantly
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pessimistic measure for peak current for a given circuit, if we do not take unit gate

delay model into account. The Boolean relationship between individual gates is not

considered in case of static measure of the peak current. Column 6 reports this mea-

sure for the circuit. Under the assumption of unit gate delay model, in Column 7 we

report the maximum peak current that could be induced for a given benchmark cir-

cuit. Boolean relationship among individual gates are also taken into account in order

to generated these values, in our proposed approach. The corresponding time-slot for

which this maximum peak current is obtained is shown in Column 5. We observe

that, a solution for all ISCAS-85 and ISCAS-89 benchmark circuits is obtained by

our peak current pattern generation tool. In generating these solutions we use a time

out limit of 1000 seconds for each invocation of the ILP solver. This exact measure of

peak current is reported as a fraction of the static maximum measure in Column 8.

It also show the increasing deviation of the static measure for peak current compared

to the exact solution with the growth of circuit size.

We make a second interesting observation by reporting, for individual circuits, the

time-slot which experiences the peak current, as shown in Column 5. It is observed

that, for all the circuits, this time instant happens to be within the first few time-

slots. As a matter of fact, this is within the first two time-slots. The reason behind

this is that, the gates in the early time-slots have very high controllabiliy [17]. This

is because most of the fan-ins of these gates are either directly connected to primary

inputs, or have at most one gate in between itself and a primary input. Consequently,

it is significantly easier to create transitions in these gates by setting appropriate logic

values at the primary inputs, as compared to the gates away from the primary inputs

by several levels of logic.

We can see that a very small percentage of maximum weight is switched for larger

ISCAS89 circuits shown in bold at the bottom of Table 3.4. For these circuits, ILP

is able to generate a pattern only in the later time-slots appearing towards the end.
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The ILP formulation is able to provide a solution, as the total number of gates in

these time-slots is very small. A pattern generation approach utilizing circuit bi-

partitioning can be preferably done for these circuits.

Table 3.3. Peak current data obtained from ILP for ISCAS-85 benchmarks [57]

Circuit
Circuit
Size

Total
time-
slots

Max.
time-
slot

Static
Max.
Weight

Max.
Weight
ILP

Relative
Max.
Weight

Execution
Time in
Seconds

Total
Memory

KB

c17 6 3 1 2.19 2.19 100 0.06 0
c432 160 18 1 58.41 40.73 69.73 65094 13704
c499 202 12 1 82.40 37.73 45.80 35707 14940
c880 383 25 1 138.43 61.06 46.06 89065 25452
c1355 546 25 1 211.16 64.24 31.86 91256 56343
c1908 880 41 2 268.60 75.85 32.41 81749 42988
c2670 1193 33 2 399.02 134.45 37.18 100199 54860
c3540 1669 48 1 568.50 64.58 16.18 123373 74630
c5315 2307 50 1 856.16 180.84 24.56 125325 778649
c5315 2307 50 1 856.16 180.84 24.56 125325 778649
c6288 2416 125 1 1362.01 140.03 10.28 1728234 333110
c7552 3512 44 1 1567.17 123.34 9.50 413397 132820

Next, we present a validation for the peak current weight switched using the

proposed approach.

3.6.3 Validation Using HSPICE

HSPICE was used to validate the result from the pattern generation approach

[6]. Firstly, logic simulation was done on the circuit using a pattern pair. During this

simulation the number of transitions for each individual time instance were counted

and recorded. The current waveform obtained through unit delay simulation model

are shown by the green curve in Fig. 3.8. Next, the same pattern pair is applied to

HSPICE [6]. Not only the current waveform but also the gate delays are generated

by HSPICE. This delay is scaled to be equal to the longest path delay in the unit

delay model. Finally the overlaid current waveform is shown in red in Fig. 3.8.

79



Table 3.4. Peak current data obtained from ILP for ISCAS-89 benchmarks [57]

Circuit
Circuit
Size

Total
time-
slots

Max.
time-
slot

Static
Max.
Weight

Max.
Weight
ILP

Relative
Max.
Weight

Execution
Time in
Seconds

Total
Memory

KB

s208 96 15 1 35.391 17.296 48.87 114 16316
s382 158 21 6 64.566 36.092 55.90 2017 49300
s386 159 10 1 47.178 30.883 65.46 3937 73640
s344 160 12 2 66.586 26.017 39.07 4588 52512
s400 162 10 1 49.159 32.482 66.08 2841 50640
s526 193 13 2 85.281 26.702 31.31 2968 44632
s510 211 10 1 84.866 46.539 54.84 3803 44160
s832 287 75 2 119.993 38.62 32.19 4630 47804
s820 289 11 1 137.15 65.427 47.70 3997 47408
s838 390 11 1 143.034 52.267 36.54 33067 39960
s713 393 57 1 139.836 55.122 39.42 65866 50968
s1238 508 25 2 198.039 52.087 26.30 17426 39964
s1196 529 23 2 217.291 52.964 24.37 19120 37632
s1494 647 60 2 226.688 112.879 49.79 13214 47128
s1488 653 18 1 287.779 54.412 18.91 13149 45608
s1423 657 18 2 291.867 73.962 25.34 53121 46448
s5378 2779 26 3 501.27 216.006 43.09 21164 85776
s9234 5597 59 58 1483.228 1.932 0.13 92324 281784

s13207 7951 60 54 1380.799 1.117 0.08 75967 272996

s38584 19253 23 2 217.291 52.964 24.37 283402 2223000
s38417 22179 57 49 4814.18 4.134 0.09 866263 1744556

As seen from the figure, the overlay shows close proximity between the two wave-

forms. This experiment shows that the actual switching behavior can be reasonably

approximated using unit delay model. Current pattern generation techniques do not

work well at the transistor level. Consequently, the result shows that patterns gener-

ated at the logic-level can be valuable in assessing actual switching currents.

3.6.4 Comparison of Zero and Unit Delay Models

In this section, we compare the effect of delay model on the worst case switched

weight. The maximum weight switched by ATPG considering unit and zero delay

models for circuits c432 and c499 is shown in the Fig. 3.10. In order to generate

results for the zero delay model, ATPG was done by duplicating the circuit into two

copies and then generating ILP formulation which would maximize the total weight
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Figure 3.8. Peak current waveform for ISCAS-85 benchmark c7552 obtained through
(a) HSPICE simulation (the red line); and (b) logic simulation based on pattern pair
obtained from proposed approach [57]

switching between the two copies. The input to the first and seconds copies represent

the initial and final patterns, respectively. Consequently, for comparison purpose, the

zero delay model can be said to be consisting of just two time-slots corresponding to

the first and the second patterns.

Hence, for the zero delay case, the absolute maximum weight for a circuit with

G gates is the weight that is switched without considering any Boolean constrains of

the circuit. In this case, each of the nodes g, is switched in the direction exciting the

higher of wP (g) or wN(g). Hence the absolute maximum weight is given by.

WZERO
max =

∑

g∈G

max {wP (g), wN(g)} (3.15)
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This absolute maximum weight obtained for zero delay case is compared to that

obtained from the unit delay case. For unit delay case, the absolute maximum weight

is calculated for every time-slot after circuit transformation. The maximum weight

for time-slot ti is given by the following equation.

WUNIT
max (t) =

∑

g∈G(ti)

max {wP (g), wN(g)} (3.16)

This summation is done for all gates g ∈ G (ti) appearing in a particular time-slot

ti. The highest of the up and down switching weights for the gate g is returned by

the max operation.

Figure 3.9. ATPG done on c432 after circuit partitioning [57]

The absolute maximum weight switched and the weight switched at first time-

slot for the zero delay case by ATPG is represented by the horizontal lines shown in
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Figure 3.10. Comparison of maximum weight obtained for zero and unit delay cases
for (a) c432 and (b) c499 [57]
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the Fig. 3.10(a) and (b). We can see that zero delay model overestimates the total

weight that can be switched for the circuit. For example, the absolute maximum

weight without considering circuit Boolean relationships for zero delay case is 106.19

(134.41) while ATPG is able to switch a weight of 76.56 (74.82) for the circuit C432

(C499). The absolute maximum weight variation is represented by the continuous

curve for unit delay case. At the time-slot 5, the maximum of this curve appears

(Time-slot 6) with a value of 58.41 (82.41). The ATPG based approach considering

unit delays is only able to switch a weight of 40 (37.38) in the first time-slot.

It can be seen that the absolute maximum weight that can be switched, for the unit

delay model, without considering Boolean relationships of the circuit varies drastically

with time-slot index. Moreover, absolute weight obtained for the zero delay case is

much higher than that obtained by ATPG. The importance of the proposed solution

is seen from the results which indicate that overall improvement is achieved both from

Boolean and temporal dependencies.

3.7 Conclusions

Accurate and efficient analysis of peak current has become a necessary element

for power delivery network design and analysis of power supply noise. Peak current

estimation is a computationally intractable problem. Moreover, as the state-of-the-art

simplified methodologies do not consider Boolean relationship among different gates

or their temporal separation from each other, they suffer from significant pessimism.

As we consider non-zero gate delay model, in this work, we obtain an improved

accuracy of the solution. Non-zero delay model helps us with accounting for the

temporal separation between individual gate transitions. Moreover, the non-zero

gate delay assumption also helps us in reducing a single instance of the problem size

by restricting the focus on only the set of active gates for a given time instant. As a

result of this reduction in problem size we are able to obtain an exact solution through
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ILP based formulation of the peak current pattern generation problem. Moreover,

the proposed delay model is shown to approximate real delay model. The proposed

model has a knack for deriving a pattern-pair that produces worst case peak current.

The final peak current may be obtained from SPICE simulation of derived patterns,

once such a pattern-pair is generated. We can further improve the quality of the

solution by considering real gate delays. This is possible, by normalizing actual gate

delays to integer values, within the framework of the proposed solution.
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CHAPTER 4

RUN-TIME TASK GRAPH EXTRACTION FOR

DYNAMIC SCHEDULING IN MPSOCS

4.1 Introduction

Multi-Processor System on Chip (MPSoC) have become prevalent due to increase

in transistor density. MPSoCs are composed of multiple processor cores that commu-

nicate via a communication back-plane. Various architectures like bus, bridged bus

or Network on Chip (NoC) may be used for the communication between cores. In

an MPSoC, each processor core may be optimized for certain functionality, such as

audio, graphics, memory or network. An MPSoC can have a combination of several

general purpose cores and various specialized cores performing functions like graphics,

multimedia, security and wireless processing [8]. The general purpose cores may be

specialized for certain type of applications or vary in performance. For example, a

combination of multiple “Synergistic Processor Elements (SPEs)” for data intensive

processing and a “Power Processing Elements” which acts as a controller for SPEs,

have been used in the IBM Cell processor [73]. The processor cores in an MPSoC

may be further differentiated by power performance characteristics rather than func-

tionality. Some of the examples include, a multiple issue speculative out-of-order core

alongside a single issue in-order instruction execution core, both capable of execut-

ing the same instructions. Therefore, for power/performance optimization, writing

applications on MPSoCs is a challenging task. An application, in SoC programming

model, is viewed as a task graph which is a directed acyclic graph. In a task graph,

a node represents a task that execute on processor and the edges represent the data
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dependencies between such tasks. Each task has an associated functionality type.

Moreover, there could be multiple tasks with the matching functionality type. A task

can only be scheduled on a processor of the same functionality type. For example, a

graphics task may only run on a graphics core. Consequently, task graph scheduling

consists of a task to processors mapping so as to minimize the total execution time

of a task graph on an MPSoC.

Static task graph scheduling is done during hardware software co-design based on

the task execution time estimates and functionality types [106]. Hence, static task

scheduling does not take dynamic behavior into account. Consequently, there is a

need for adaptability of task scheduling due to following reasons.

• Disabling some of the resources for a different market segment: Identical MP-

SoCs may be targeted to different market segments, in order to save mask

development cost and increase production efficiency. This is done, for example,

by disabling some features for the low power or low-end markets. In this case,

an MPSoC program needs to be re-optimized for each variant.

• Process Technology Migration: As a result of the process migration to a smaller

technology node, relative core performance may change. Due to the change in

feature size, there could be a change in device characteristics and interconnect

delays. As a result, the task execution time estimated at design time of an

Intellectual Property (IP) core can change considerably. Consequently, there is

a need for rescheduling tasks to optimize overall execution time.

• Process Variation: Due to the presence of process variation, there is an inherent

performance discrepancy among chips, during manufacturing. This may lead

to variation in processor performance from one die to another.
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• Long term Reliability/Performance Degradation: Aging related performance

degradations may lead to hardware failures in MPSoCs. This underscores the

importance of dynamic adaptation of task scheduling.

• Disabling cores to improve Chip Yield: Defective chips are reused by disabling

cores which are found to be faulty during test, in order to improve chip yield

during manufacturing. As these chips have a reduced performance, they can be

sold at lower price to different market segments [1].

• Hardware Design Revision: Changes in core performance can be caused due

to hardware design revisions. Such design revision may involve resource siz-

ing such as changes in instruction issue width, thus affecting sizes of re-order

buffer, cache, TLB, branch history table, etc., hence, resulting in changes in

performance.

• Hardware Software Abstraction: For product development, conventional sepa-

ration between hardware and software through an abstraction layer is highly

desired. This is because, the application designers should not have to worry

about optimizing the application for all the variations of hardware platform

on which it is running. Thus, there is a need to abstract out the variability in

the hardware performance/architecture from the application developers. At the

same time, we need to avoid idle times in cores due to poor scheduling.

• Dynamic Voltage/Frequency Scaling (DVFS): Dynamic voltage and frequency

scaling techniques are used to prevent chips from overheating so as to prevent

the creation of temperature hotspots. This reduction in voltage and frequency

leads to a decrease in core performance. There can be an increase in perfor-

mance variation among cores when local DVFS action is taken due to uneven

temperature distribution.
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This motivates the need for dynamic task scheduling as the task to processor

mapping can be adaptively changed based on the processor performance. Either the

Operating System (OS) or the hardware can be used to perform dynamic scheduling

on the fly. The following drawbacks are associated with OS based dynamic scheduling.

As the task graph is known during software development, task scheduling is eas-

ier. However, during software development phase, exposing hardware performance to

software suffers from problems mentioned earlier. Moreover, committing the hard-

ware to a fixed communication infrastructure or resource sizes reduces the degrees of

freedom for hardware designers. Therefore, hardware infrastructure details need to be

abstracted out from software development without losing the flexibility of subsequent

changes to the hardware. Consequently, our goal is to allow software development

to continue without the knowledge about hardware performance. Moreover, we need

to allow hardware designers to optimize power/performance without having to worry

about its impact on every single software application.

Thus we envision an intermediate embedded layer which separates hardware de-

sign and application development processes by optimizing the performance of a given

set of applications on a particular hardware. This layer consists of both hardware

and software components so as to enable dynamic task graph scheduling to minimize

the total schedule length. Ordinarily, the task graph must be available to this in-

termediate layer during run-time, in order to achieve the above goal. In this work,

we present a novel solution that enables run time task graph extraction from the

executing software, using the intermediate layer.

The proposed approach aims at improving the performance of an MPSoC applica-

tion on all variants of hardware while maintaining the traditional separation between

hardware and software development process, through a layer of abstraction, without

requiring either process to be informed of the internal details of the other. In order to

achieve the above goal, we proposed a solution which consisting of following steps.
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• Recognize phases in a MPSoC application at run-time through minimal archi-

tectural support

• Dynamically extract the task graph associated with each program phase

• Reschedule the task graph with minimal compute overhead to deliver overall

performance benefit

Our target platform consists of an MPSoC with asymmetric cores. We show that

the proposed approach can improve system performance with minimal changes to

the hardware and software layers, in todays systems. Some of the contributions and

features of our proposed scheme are:

• Low Cost/Overhead Phase Detection and Classification: Hardware assisted

phase detection is useful, as our scheme relies on fine-grain phase classifica-

tion within an MPSoC application. We present a new phase detection scheme

which tracks the execution frequencies of tasks in an interval. Additionally, the

computational demands of the phase are revealed by our Phase Graph Extrac-

tion (PGE) technique. This can be used for rescheduling tasks that involves

task to core mapping.

• Managing Tasks to Cores Mapping: Insulating management from the MPSoC

OS enables a system level solution which is scalable while allowing the hardware

to evolve freely. The proposed process which manages the scheduling of tasks to

cores, dynamically adapts from phase to phase as well as within a given phase.

An algorithm which performs fast computation of task scheduling decisions is

the underlying mechanism used to enable such mapping.

The proposed solution is applicable to many real applications. For example, ap-

plication program development cannot be done in an optimal way, in Android based

devices [2], for all the variants of the hardware employing different kinds of MPSoC
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hardware platforms. As our dynamic scheduling solution decouples software develop-

ment process from the hardware platform used, it is independent of the application

and the underlying hardware. In order to perform dynamic scheduling, our solu-

tion uses a concealed software layer that is akin to hypervisor which is commercially

available [81].

The idea of dynamic adaptation presented here has been used in Transmeta

CrusoeTM [61] processor. This processor is able to run X86 instructions on a con-

ventional VLIW based CPU. A software based Code MorphingTM engine, is used

here, in order to translate the CISC based X86 instructions optimally at run-time

so as to run them on a low power VLIW based CPU. Hence, depending on the cus-

tomers power/area requirements, the underlying hardware can be changed, without

any changes in the original software application.

Some of the static task graph scheduling techniques involve using Integer Linear

Programming (ILP). These techniques have been used for optimal static scheduling

with various goals [105]. However, it can be seen from our results that ILP requires

large computation resources. Thus, the gain from rescheduling will be significantly

offset by run-time of ILP. Consequently, we need a low cost solution which need not be

provably optimal as long as the net benefit is positive. Hence, non-cooperative game

theory based dynamic scheduling approach to minimize the total execution time is

presented here. This approach is network topology independent and works for buses,

bridged buses as well as for NOCs.

Our experiments show that, the proposed phase graph extraction approach can

unmask a phase graph within 200 phase graph iterations during a program phase.

Moreover, we demonstrate that our proposed scheduling algorithm can perform task

migration at run-time.

The rest of the work is organized as follows: Section 4.2 presents the previous work

in this area. The MPSoC architecture which is used in this work has been described
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in Section 4.3. Then we provide an overview of the proposed approach in Section 4.4.

Section 4.5 explains the proposed phase detection approach. This is followed by phase

graph extraction in Section 4.6 and dynamic scheduling in Section 4.7. Section 4.8

presents the experimental results and the work finally concludes in Section 4.9.

4.2 Related Work

During hardware software co-design, task graph extraction is known to be used

to perform static scheduling. Here, the application task graph is extracted from the

application code mapped to a particular hardware. In this context, various task graph

extraction techniques have been developed. Vallerio et al. [106] present a task graph

extraction tool which extracts task graph from a C program of the application. An

Abstract Syntax Tree is generated in order to extract task dependencies from the C

program. The extracted task names are used to annotate sections of the C code. Then

the code is run on the target hardware/simulator to obtain the execution times for

each tasks and amount of data transferred is also extracted. Hence, the task execution

and transfer times are determined by the target hardware platform. A methodology

to extract communication graphs from application at run-time is presented by Liu et

al. [71]. The data-flow information between multiple threads, is extracted by the tool,

by tracking their memory reads and writes. Ganeshpure et al. [46] present an on chip

task graph extraction that is done for a bus based system, where the arbiter extracts

the task graph on the fly. Their approach is only applicable to bus based MPSoC

system. Moreover, the extracted task graph is not used for dynamic scheduling.

Phase behavior of an application has been observed in the previous literature

[34][81][96]. Program phases are rooted in static structure of programs [46]. Earlier

researchers have taken advantage of this time varying behavior by performing recon-

figuration of thread to core mapping [53][76][21]. The implementation has to be low

overhead and scalable in order to make such phase detection feasible at run-time.
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A hardware phase detection scheme based on working set signatures of instructions

executed in a fixed interval of time has been presented by Dhodapakar et al. [99][35].

Moreover, a hardware based scheme using Basic Block Vectors (BBV) to track the

execution frequencies of basic blocks touched in a particular interval has been pre-

sented by Sherwood et al. [96]. They found that, a program executes every basic

block only a certain number of times in a given time interval, during a stable phase.

A hardware counter based approach for stable phase classification using an Instruc-

tion Type Vector (ITV) scheme, has been proposed by Khan et al. [81]. As, these

phase classification schemes were developed for microprocessors they do not directly

address the problem of task graph extraction for an MPSoC application. We apply

the principle of stable program phases to extract the phase graph from the applica-

tion. During a phase, a program repeatedly iterates through the same phase graph

for a large number of times. Our approach involves a combination of phase detection

and phase graph extraction.

Dynamic scheduling is performed on the extracted phase graph. Prior literature

presents various scheduling techniques [67][103][11][89][27][108][30] for MPSoCs. A

bidding based approach is used by Theocharides et al. [103] to perform run-time task

allocation. In this approach, a “bid” is send by every processor to the Task Allocation

Engine (TAE). A bid represents the amount of additional processing capability the

processor can handle. The TAE schedules ready tasks to the processors based on the

bid value and task deadlines. This technique is greedy and does not take task depen-

dencies into consideration and hence it is sub-optimal. Rao et al. [89] use the task

graph periodicity seen in multimedia applications to perform battery aware dynamic

scheduling. In order to maximize battery life, a greedy approach is used to determine

the operating voltages of the cores dynamically. Chen et al. [27] present a dynamic

scheduling algorithm to reduce the total execution time by interleaving the execution

of multiple task graphs. Wang et al. [108] present a static scheduling algorithm which
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removes the communication latencies between various tasks by interleaving consec-

utive executions of the task graph. This algorithm is only applicable to streaming

applications due to the absence of dependencies between consecutive task graph it-

erations. Cong et al. [30] present various techniques for task graph scheduling with

soft deadlines. A cooperative game theory based approach is used for energy aware

task scheduling for heterogeneous multiprocessors is proposed by Puschini et al. [11].

They provide a solution for a set of independent tasks in the presence of deadlines.

In our solution, we take the effects of execution time as well as communication times

on the total schedule by modeling the application using a directed acyclic graph.

In our approach, we use a game theory based dynamic scheduling algorithm which

generates a new improved schedule on each phase graph iteration. The algorithm

converges eventually to a schedule which gives lower phase graph execution time.

This approach does not take task graph deadlines into account. Our goal here is to

minimize the total schedule length/response time as seen by the user. We explain the

preliminaries of the system where phase graph extraction is done, in the next section.

4.3 System Description

As our phase graph extraction approach is generic, it can be used for any MPSoC

architecture. An MPSoC consisting of a set of asymmetric processor cores that com-

municate through an communication network, is used as the target platform. This is

shown in the Fig. 4.1. Each of the Processing Elements (PE) is optimized so as to

provide high throughput for a particular functionality type. It should be noted that,

we will interchangeably use the word “processor” and the acronym “PE” to represent

a processor core in an MPSoC.

The applications that are run on the MPSoC consists of a combination of multiple

phase graphs, each of them corresponding to a different stable phase.
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Figure 4.1. An example of an MPSoC with 4 PEs communicating with an NoC

Definition 4.3.1. When an application executes a sub-graph of the original task

graph repeatedly for a large number of iterations, it is said to be going through a

stable Phase.

Definition 4.3.2. When an application is going through a phase, a sub-graph within

an application task graph, which repeatedly executes for a large number of iterations,

is called a Phase Graph.

Program structures that tend to execute in loops, are responsible for phase behav-

ior of an application. The application task graph, as shown in Fig. 4.2, consists of an

Initialization Task Graph which only executes once. This is followed by one or more

phases, each of which consist of a phase graph repeating for millions of iterations.

The application is said to be showing phase behavior, during this time, and is said to

be going through a stable phase. Finally, after running through a Termination Task

Graph, which executes only once, the application may end its execution. In this work,

first we detect the presence of a stable phase, followed by extracting the associated

phase graph.

As mentioned earlier, every task in a phase graph has an associated functionality

type. This represents the kind of execution performed by the task. A given task can
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Figure 4.2. Example of an application going through a phase
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be scheduled only onto a processor with a matching functionality type. In order to

perform phase detection, we assume here that initially the processor assignment to

task is unchanging, as the application is statically scheduled. Consequently, every

task of a particular type is scheduled onto a processor of the matching type.

Figure 4.3. An example of recurring phase graph

Phase graph execution during a program phase, where the same phase graph is

executed repeatedly, is shown in Fig. 4.3. Task execution and transfer times are

represented by the numbers in boxes below the nodes and those in circle above the

edges, respectively. The processor names above the nodes, represent the phase graph

schedule and the task type is shown below the node name. The Start Node of the

phase graph is given by node t0. Nodes t5 and t6 send data back to node t0, at the

end of phase graph iteration. This starts the next iteration.

The processing elements communicate by sending data to destination PEs through

the NoC. Each processor has a local scheduler which keeps the list of all the tasks

that are scheduled onto the PE, as the task graph is statically scheduled to the
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MPSoC. This scheduler keeps a track of data received from various PEs. When input

dependencies of any of the scheduled tasks is satisfied it starts task execution.

In order to maintain a partial ordering of tasks, the scheduler also generates a set

of Lamport Time-stamp [13]. It should be noted that, we will use the word “time

stamp” to refer to the “Lamport Time-stamp” in the rest of this chapter. In order to

keep track of the time-stamp, each PE holds a counter which is incremented at the

end of every task execution. This counter value (Lamport time-stamp) is piggybacked

with the data, when a PE sends a message. On receiving a message, the PE sets this

counter to the maximum value among all the received time stamps. In case of an

overflow, this counter restart from zero.

The time-stamps for task t0 is ‘c’ as shown in Fig. 4.3. It gets incremented to

c + 1, after being transmitted to tasks t1, t2 and t3 and after the above tasks have

finished execution. A time stamp value of c + 1 and c + 2 is received by task t6,

from t3 and t4, respectively. On the receipt of these time stamps for the task t6, it

is set to the maximum value of c+ 2 and then incremented to c+ 3. At the end of a

task graph iteration, it can be seen that the time-stamp increments by a value of 4

(changing from c to c+ 4 ).

4.4 Proposed Approach Overview

Consider a statically scheduled phase graph executing on the heterogeneous MP-

SoC. In this approach, we need to extract execution phases from the application and

perform dynamic scheduling so as to minimize the task execution time. Our proposed

approach can be divided into (i) phase detection (ii) phase graph extraction and (iii)

dynamic scheduling. Next, we give a brief overview of each of the above steps.

• Phase Detection: Based on the observation that a typical application goes

through phases of execution, we perform phase graph extraction. When an

application goes through a phase, the same phase graph repeats for large num-
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ber of times. Consequently, the same application statistics are repeated, in a

given phase. In this step, phase detection is done by keeping track of these

application phase statistics. This can be divided into the following sub-steps.

– Leader Election: This one-time pre-processing is done before the applica-

tion starts running. Leader election [13] is used to identify one of the PEs

as a Leader. Any PE can act as a leader. A leader is responsible for phase

graph extraction and dynamic scheduling. A PE which is not a leader is

referred to as a Follower.

– Phase Extraction: In this step, phase detection is done by each follower

by periodically measuring the relative number of times various tasks are

executed on the PE. Destination list and execution time measured on the

PE are used to identify the task. If the same statistics are repeated for

consecutive periods, a phase is detected at the follower. On successful

detection of a local phase the follower informs the leader. A phase is

detected globally if all the followers detect a phase.

• Phase Graph Extraction: As soon as a phase is detected globally, the leader

informs all the followers by broadcasting a global phase detected message. This

causes the followers to start sending Execution Status Word (ESW) to the leader

at the beginning and end of every task execution. Task ordering and dependency

information for each of the tasks executed on the system, is represented in the

ESWs. The phase graph is extracted by the leader based on the dependency

information in the received ESWs. This step is divided into the following set of

sub-steps, as explained next.

– Data Dependency Extraction: The leader uses the input/output depen-

dency list present in each of the ESWs in order to extract dependencies

among the tasks.
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– Phase Graph Generation: This data dependency graph which was ex-

tracted by the leader in the previous step consists of multiple repetitions of

the same phase graph. The leader has to determine the start node and the

number of nodes in the phase graph, in order to extract the same. This

is extracted from the dependency graph, by the leader, using a window

based approach explained later.

– Timing Extraction: By measuring the time difference between the receipt

of the ESWs sent at the beginning and end of a task, the execution time

for the task is extracted. The of number of bytes of data transferred is

used to measure the transfer time. The execution time of a particular

task on all the other processors is determined by the leader, by scheduling

duplicated tasks on idle processors and measuring the associated execution

times. Hence, it obtains an estimate of execution times, for every task, on

various processors with matching type.

• Dynamic Scheduling: The leader performs dynamic scheduling in order to re-

duce the total execution time of the phase graph, once phase graph is extracted

successfully. We propose a novel non-cooperative game theory based approach

for this purpose. Once a new schedule is determined, the leader sends this newly

generated optimal schedule to the followers.

The next sections explains each of the above steps one by one in greater detailed.

4.5 Phase Detection

In this step, the detection of application phase behavior is done at run-time. It

consists of the following two sub-steps which are explained next in detail.
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4.5.1 Leader Election

This step is executed initially during the system boot-up. The process of phase

detection, task graph extraction and dynamic scheduling are co-ordinated by the

leader. As explained earlier, the PEs other than the leader are called followers. If a

task is scheduled on the leader, it can also act as a follower. In that case, the leader

will have to share its computation resources between system coordination and task

execution. For leader election, various algorithms are available in literature [13]. We

will not go into the depth of these algorithms in this text. Consequently, the readers

are encouraged to go through the above references on their own.

4.5.2 Phase Detection

In this step, phase detection is performed by each of the followers independently.

Once a phase is detected locally, the leader is informed by the follower. Now, the

leader keeps a track of all the followers for which a phase was detected. When all

followers have detected a phase, the leader multi-casts a phase detection successful

message. Distributed phase detection is used here, in order to minimize the total

number of additional messages needed to be transmitted. An alternate centralized

phase detection approach will only involve the leader. Consequently, in the centralized

case, a large number of messages will be transmitted to the leader. This is because,

the leader will have to keep track of every task executing on the system in order to

detect the presence of a stable phase.

The relative number of times, various tasks are executing on the follower, is tracked

using the Follower Phase Vector (FPV). Each element of the follower phase vector is

composed of Task Information and Phase Count fields. A task is identified using the

task information field which consists of a tuple of task execution time and destination

processor list. The destination processor list is the list of destination PEs for the

current task, while the task execution time is measured in terms of the number of
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execution clock cycles of the task on the follower. The count of the number of times

a given task information is generated is stored in the phase count field. A pair of task

information fields match if their execution time differ by less than 10% of the minimum

and if they have the same destination list. This threshold value is used, in order to

account for the small amount of variation in execution time of a task, each time it

executes on the processor. Suppose for a task t, the execution times corresponding to

the first and the second task executions on a particular processor is given by ex1t and

ex2t , respectively. Consequently, corresponding to the above two task executions, the

task information fields are said to match if only if their destination list match and

their time difference |ex2t − ex1t | < 10% ·min {ex2t , ex1t}. It should be noted that, task

information is not a unique task identifier. This is because two different tasks with

the same destination list and same execution time will be indistinguishable. In this

work, it is assumed that these characteristics of a task will change when a change of

phase is encountered.

A new FPV is generated at every regular intervals known as Sampling Interval.

A new FPV is generated when the time-stamp increases by an amount equal to the

sampling interval value, with respect to the end of previous sampling interval. The

newly generated FPV is compared with the previously generated FPV and the new

FPV is copied to the previous, at the end of every sampling interval. A pair of FPVs

matches, if all of their task information fields and count values match. When a pair of

FPVs match consecutively for more than Follower Phase Match Threshold, a stable

phase is detected in the application.

As soon as the follower detects a phase it informs the leader. The leader counts

the number of times phase is detected at every processor by using a Leader Phase

Vector (LPV). Each element of an LPV is formed using a processor identifier and a

counter. The ith element of LPV is incremented, if a phase is detected on the follower

PEi. The counts for the LPV elements increment, as the leader receives subsequent
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phase detected messages from the corresponding followers. If the FPVs in consecutive

sampling intervals don’t match, the follower goes through a phase transition. In that

case, it informs the leader about the end of previous phase and the leader resets all

the LPV counters. When the count values for all the non-zero elements increase above

Leader Phase Match Threshold, a global phase is detected.

Table 4.1. FPV generated for a sampling interval of 100

PE identifier PR0 PR1 PR2 PR3L

Task Info. 3:0,1,2 3:1,3 4:3 4:0 5:2,3 3:0 6:1,2
Phase Count 25 25 25 25 25 25 25

Example 4.5.1. The FPVs generated at all the PEs is shown in Table 4.1. This is

generated when the phase graph in Fig. 4.3 is run on a 4 processor MPSoC shown

in Fig. 4.1, for a sampling interval of 100. The first row represents the processor on

which the FPV is generated, while the task information and the phase count fields of

the corresponding FPV are represented in the second and third rows. Here the PE

PR3 has a dual role of a leader as well as a follower. Now PR0 is executing task

t0 with an execution time of 3 after which it transfers data to PR0, PR1 and PR2.

Hence, for PR0, the task information field is given by 3(execution time): 0(destination

PR0), 1(PR1), 2(PR2). Similarly, the task information vectors for PR1, PR2 and

PR3 can be obtained.

The number of times a particular task information is encountered between two

consecutive sampling intervals is shown by the phase count value in Table 4.1. Con-

sider the scenario where a new sampling interval has started when task t0 is executing

on PR0. At this time, the initial time-stamp value of c is temporarily stored in a reg-

ister at PR0. It can be seen that, this value increases to c+4 for the next phase graph

iteration, starting from an initial time-stamp c for the task t0. Thus the time-stamp

value increases by 4 for every phase graph iteration.

103



Now, at each of the processors, the current and the initial time-stamp values is

compared to the sampling interval. When the above difference becomes greater than

or equal to the sampling interval of 100, then end of the current sampling interval

is reached. A processor PR0 running task t0 and t1, encounters a sequence of time-

stamps {c, c+ 1}, {c+ 4, c+ 5} and {c+ 8, c+ 9} for the first, second and the third

iteration, respectively. As explained earlier, the initially stored time-stamp at the

beginning of the sampling interval is c. Now, when the time-stamp at PR0 becomes

c + 100 for which the difference ((c+ 100)− c) = 100, the sampling interval at PR0

ends. This happens at the end of 25 phase graph iterations. As tasks t0 and t1

execute once for every iteration, their corresponding phase count value increments by

1 for each of the iterations. Hence, at the end of a sampling interval, for t0 and t1,

the total phase count is 25.

Current phase vectors are compared with the previous once at the end of every

sampling interval. In this example, as the same phase vector is generated every

sampling interval (25 iterations), it can be seen that all the elements of the phase

vector match exactly. When we get 3 consecutive matches or after 75 phase graph

iterations, a follower phase is detected.

The follower phase is detected every 75 phase graph iterations, as shown by the

example in Table 4.1, after which, each of the followers send a phase detected message

to the leader. As a result, the leader increments the phase detected counter for the

corresponding processor in the LPV. The count values for all the processors in the

LPV at the end of 375 phase graph iterations becomes 375/75 = 5, corresponding to

the leader phase match threshold of 4. Consequently, leader phase is detected as this

value is greater than the phase count threshold.

For the follower phase vector, there is a limit on the maximum size. The FPV is

pruned by removing elements with smallest count values, if the size increases beyond

this limit. The size of LPV at the leader is same as the number of PEs in the system.
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Consequently, it can be seen that, a very small amount of memory is required to store

these phase vectors.

4.6 Phase Graph Extraction

Once the leader detects a phase, it informs all the followers about it. The followers

transmit dependency information of the tasks that are executing on them, to the

leader in the form of ESWs, after they receive the successful phase detection message.

These ESWs are used by the leader for phase graph extraction. The above step is

divided into the following sub-steps:

4.6.1 Data Dependency Extraction

On receiving the phase detected message, the follower starts sending ESWs to the

leader at the beginning and end of every task execution. These ESWs generated at the

beginning and end of task execution are called Start ESW and End ESW, respectively.

The start ESW contains a task identifier which consists of a combination of processor

identifier, task counter and time-stamp. Similarly, the end ESW consists of an Input

Dependency List. in addition to the task identifier present in the start ESW. The

input dependency list contains a list of task identifiers which were received by the

current task from its input dependencies. Moreover, after receiving phase found

message, each follower also starts incrementing a task counter. Whenever a new task

starts its execution on the processor, this counter is incremented. The task counter

is used for task graph extraction by the leader, as it acts as a unique identifier for

every task that is executed on the processor.

The start and end ESWs generated for task t4 from the Fig. 4.3, is shown in

Fig. 4.4. The generation of start and end ESWs at the beginning and end of t4, is

shown in part (a), while part (b) shows the format of start ESW. For t4, the start

ESW consists of the task identifier which has the processor name (PR3), task counter
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Figure 4.4. Start and end ESWs generated by task t4 (a) start and end ESW
transmission (b) start ESW format (c) end ESW format

(0) and the time-stamp (c + 2). As shown in part (c), the end ESW consists of the

task identifier concatenated with the input dependency list. This task identifier is the

same as the start ESW with the only difference that it is prefixed with an ‘E’. The

task identifiers received with the data from processors PR0, PR1 and PR2 executing

tasks t1, t2 and t3, form the input dependency list. Moreover, it also holds the

number of KiloBytes (KB) of data that is received from each processor. For example,

it receives 2KB from PR0, 1KB from PR1 and 1KB from PR2.

The Dependency List is generated by the leader as it receives these ESWs. The

nodes and the edges of this dependency list are the task identifiers of the received

ESW and the input dependency information stored in the ESWs, respectively. These

nodes of the dependency list are stored in increasing order of their time-stamps.
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4.6.2 Phase Graph Extraction

The leader extracts the start node (node t0 in Fig. 4.3) and the total number of

nodes in the phase graph (7 for task graph Fig. 4.3), in order to do phase graph

extraction, as the followers may receive phase detection packet at any intermediate

point of execution of the phase graph. Further, the phase found message may not

be received by all the followers at the same time. Therefore, the dependency list

generated at the leader will not necessarily start at the node t0. Thus, the leader

has to determine the start node, in order to extract the final phase graph. Moreover,

the total number of nodes in the phase graph, is to be also determined by the leader.

Next, the heuristics for start node and phase graph size detection are explained.

1. Start Node Extraction:

The dependency list is generated on the fly by the leader as it receives ESWs from

the follower. This is done by storing the received ESWs in the dependency list in the

increasing order of time-stamps. Moreover, a list of nodes which are candidates for

the start node are also identified. In the dependency list, a given node is a candidate

for a start node if it is the only node with its time-stamp and there are no edges

from the nodes having lower time-stamps, appearing before the given node, to those

having a higher time-stamps appearing after the given node. A TRUE value in the

Boolean field called nodeIsCandidate, stored at every node in dependency list, is

used to represent the edge condition. Start node detection is initiated only after

the leader receives 2 × extractionWeightLength ESWs (dependency list nodes), in

order to make sure that all the nodes in the input and output dependencies of a

given node have been stored in the dependency graph. In order to make sure that all

the input dependencies of the currently arriving node are present in the dependency

list, the first extractionWeightLength received nodes are skipped. Similarly, the last

extractionWeightLength of nodes from the end are skipped to make sure that all the

output dependencies of the given node have arrived. Hence, for start node detection
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as well as task graph size extraction, only a section of the dependency list starting

from extractionWeightLength and ending at extractionWeightLength nodes before

the end of the dependency list is considered. These nodes, which are present in the

above mentioned range, are called Valid Nodes.

The heuristic bool get start node(currentNodeLoc, ∗startNodeLoc) as shown in

the Pseudocode 4.1, is used for start node detection. This heuristic is called whenever

the leader receives a new ESW/node. The index for minimum time-slot, for a newly

arrived node, is determined in Line 2. We iterate through all the nodes with time-slots

between minTS and currentTS and set the nodeIsCandidate condition to FALSE,

in Lines 4-6. This step has a time complexity of O (n2), for a dependency list of size n.

The condition whether the waitCounter is higher than 2× extractionWeightLength

is checked in Line 7. Start node detection is performed in Lines 11 to 17, once this

condition is TRUE. As all the output dependencies of the node are specified, we start

from the node index i = (dependencyList.length− extractionWaitLength). Then,

the previous, current and the next time-slots are determined in Lines 12 to 14. This

is followed by, start node detection, which is done by checking if the current node is a

candidate node and whether the node is the only node in its time-slot, by comparing

the current time-slot with previous and next in Line 15. Once, the start node is

determined, phase graph size extraction is done.

2. Phase Graph Size Extraction:

The leader uses the task information field of received ESW to generate a Task

Alias. A combination of source processor identifier and the input dependency list

obtained after removing the task count and time-stamp is used to form the task

alias. Task alias is used to uniquely identify an ESW corresponding to a task when

it is received next time by the leader. Thus, there is a task alias, for every task in
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Algorithm 4.1 get start node(currentNodeLoc, ∗startNodeLoc)
Initialization:
waitCounter = 0

1: dependencyList[currentNodeLoc].nodeIsCandiate = TRUE

2: minTS = min timeStamp in all inputs(currentNodeLoc)
3: currentTS = dependencyList.timeStamp

4: for (i = 0;minTS < dependencyList[i] < currentTS; i++) do
5: dependencyList[i].nodeIsCandiate = FALSE

6: end for

7: if waitCounter < (2 ∗ extractionWaitLength) then
8: waitCounter ++
9: return FALSE

10: else

11: i = dependencyList.length− extractionWaitLength

12: previousTS = dependencyList[i− 1].timeSlot

13: currentTS = levelizedList[i].timeSlot

14: nextTS = levelizedList[i+ 1].timeSlot

15: if (dependencyList[i].nodeIsCandiate == TRUE&&previousTS < currentTS&&
currentTS < nextTS) then

16: (∗startNodeLoc) = i

17: return TRUE

18: end if

19: end if

the dependency list. The minimum period of the repetition pattern of the alias list

determines the phase graph size.

In the following Pseudocode 4.2, storedAliasLoc and newAliasLoc points to the

previously stored alias in the dependency list and to the alias corresponding to the

node which has recently become valid, respectively. Every time a new alias becomes

valid, these aliases pointed to by the two pointers are compared. The set of previ-

ously stored aliases, is compared with the newly arrived alias, to determine if a match

happens. The location of the first match after a set of mismatches, is pointed to by

firstMatchLoc. Both the storedAliasLoc and the firstMatchLoc are initialized to

the start node location startNodeLoc obtained from get start node() heuristic. Every

time a new ESW arrives at the leader after start node detection, get task graph size()

is called. We obtain storedAlias and newAlias corresponding to the storedAliasLoc
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and newAliasLoc, respectively, in Lines 1-3. The condition, if a pair of aliases

match or not, is checked in Line 4. The storedAliasLoc and firstMatchLoc are

initialized to startNodeLoc, whenever there is a mismatch between storedAlias and

newAlias values. Now, when the first match happens after a set of mismatches,

firstMatchLoc is set to newAliasLoc. This is followed by comparing the aliases

at storedAliasLoc and newAliasLoc and subsequently incrementing storedAliasLoc

whenever a match happens. Thus, in the first and the second repetition of the phase

graph, storedAliasLoc and newAliasLoc point to corresponding alias. If all the

aliases corresponding to storedAliasLoc and newAliasLoc match for storedAliasLoc

starting from startNodeLoc to firstMatchLoc− 1, then the phase graph repetition

is said to be extracted. firstMatchLoc is set to newAliasLoc as seen in Lines 8 to

10, when storedAliasLoc increments and becomes equal to firstMatchLoc. Hence,

whenever a match is detected, windoMatchCount is incremented. The above pro-

cess continues until windoMatchCount crosses windoMatchCountThreshold value

as shown in Lines 11-14. At this time, the phase graph size of (newAliasLoc −

storedAliasLoc) is obtained.

Start node determination has a complexity of O (n2) while phase graph size de-

termination heuristic has an O (n) complexity. For the dependency list, the memory

complexity is given by:

O (2× extractionWaitLength× phaseGraphSize.windowMatchThreshold) (4.1)

A phase graph is not extracted, if the phase graph size is more than the available

memory and the leader sends a message to the followers to stop generation of ESWs.

4.6.3 Timing Extraction

The task execution and transfer times are extracted by the leader, in this step.

As explained earlier, the followers start sending start and end ESWs to the leader,
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Algorithm 4.2 get phase graph size(currentNodeLoc, ∗TGSize)
Initialization:
firstMatchLoc = startNodeLoc
storedAliasLoc = startNodeLoc
windowMatchCount = 0

1: newAliasLoc = currentNodeLoc− extractionWaitLength

2: storedAlias = dependencyList[storedAliasLoc].alias
3: newAlias = dependencyList[newAliasLoc].alias
4: if (storedAlias == newAlias) then
5: if (firstMatchLoc == storedAliasLoc) then
6: firstMatchLoc = newAliasLoc

7: else

8: storedAliasLoc++
9: if (firstMatchLoc == storedAliasLoc) then

10: firstMatchLoc = newAliasLoc

11: if (windowMatchCount > windowMatchThreshold) then
12: (∗TGSize) = (newAliasLoc− storedAliasLoc)
13: return TRUE

14: else

15: windowMatchCount++
16: end if

17: end if

18: end if

19: else

20: storedAliasLoc = startNodeLoc

21: firstMatchLoc = startNodeLoc

22: end if

23: return FALSE

when it receives a phase detected message. Corresponding to each of the PEs, the

leader holds a set of timer registers. The corresponding timer register is reset, on

receipt of the start ESW. Until the end ESW is received, it starts counting the leader

clock cycles. Here we assume that, as compared to the total task execution time, the

variation of the total transmission latency of subsequent transfers from any of the

PEs to the leader is small.

The number of bytes of data which is received by the task, obtained from the

ESW, determines the edge transfer times. It is assumed that, the transfer time is

directly proportional to the number of data bytes transferred, for a uniform flit size
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of the underlying NoC. Moreover, we also assume that the latency involved in setting

up a path from source to destination is small as compared to the total transfer time.

We need to estimate the execution time of every task on all the processors of a

particular type, in order to perform dynamic scheduling. The leader can determine

execution times of every task on other processors of the same type, once the phase

graph is extracted and execution times of each task statically scheduled to a processor

is known. In each phase graph iteration, the leader schedules a copy of a given

task on every other processor of the matching type whenever they are idle. These

duplicate tasks only transfer the start and end ESWs to the leaders. Hence, no data

is transmitted on the NoC by these duplicated tasks to the destination processor list

of the task. Consequently, leader estimates execution time of the current task on all

other processors, based on the received ESWs.

4.7 Dynamic Task Scheduling

Once the task dependency information is extracted and execution times of each of

the tasks on all processors with matching types are estimated in the phase graph ex-

traction step, the leader performs dynamic scheduling. In this work, a Non-cooperative

Game Theory based approach [80] is used to minimize the total schedule length of

the phase graph. Our approach is inspired by that used by Puschini et al. [85] where

a game theory based technique was developed for the generation of frequency as-

signments for tasks so as to minimize temperature in SoCs. Next, we formulate the

dynamic task scheduling problem using a non-cooperative game theory based formu-

lation as explained next.

Consider a set of N players T = {t1, t2, ..., ti, ..., tN} who make decisions inde-

pendently. Here, each player ti has an associated type k. Moreover, there is a set

of choices represented by pi = {pi1, pi2, ..., pij , ..., piM}, corresponding to each player

type. In this case, the number of possible choices of type k is represented by M .
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For every player ti of type k, there is an associated cost corresponding to each choice

which is calculated based on the previous Game Cycle.

Table 4.2 shows the analogy between the phase graph scheduling problem and the

game theoretic approach for dynamic scheduling.

Table 4.2. Comparison between non-cooperative game theory and dynamic task
scheduling

Non-cooperative games Dynamic Phase Graph Scheduling Symbol

Players Tasks ti
Type Task Execution Type k

Choices Processors with matching type pij
Game cycle Single Phase Graph execution cycle -

Cost Function Total Schedule length Ci

Objective Minimize the total schedule length -

Definition 4.7.1. The smallest duration within which all the players ti have made

a “move” involving the selection of a choice from the set of available choices pij, is

called a GameCycle [85].

In the current game cycle, the choices are made, for each of the players ti, in such

a way that the total cost function is minimized. There is a real cost Ci, corresponding

to every player ti, which represents the cost associated with the set of choices for the

player. Let pij be the choice made by the player ti in the current game cycle and p∗ij

represents the choice made by other players in the previous game cycle. Then the

cost associated with the current choice pij is given by Ci = f
(

p∗1j, p
∗

2j , ..., p
∗

ij , ..., p
∗

Nj

)

where f : P1 × P2 × ... × PN → R. For each player, the objective of the game is to

make choices so as to minimize its cost.

Definition 4.7.2. The set of choices made by all the players, for the above non-

cooperative game, is a Nash Equilibrium if Ci {p∗1, p∗2, ..., p∗i , ..., p∗N} ≥

C {p∗1, p∗2, ..., pi, ..., p∗N} ∀pi ∈ Pi. Here, the Nash Equilibrium choices for all the players

including ti is given by p∗1, p
∗

2, ..., p
∗

i , ..., p
∗

N [85].
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From the comparison shown in Table 4.2 it can be seen that there is a set of PEs

Pi on which the task can be scheduled on to, for every task ti of type k. Whenever

a task is ready to execute, a processor is selected, which leads to the least increase

in the schedule length (Cost Ci), which is calculated based on the current choice and

the choices made by other processors in the previous game cycle. This scheduling

technique is explained in the following sub-section.

Algorithm 4.3 dynamic task schedule(currentTask, procName, startT ime)

Initialization:
sameMinV alueCount = 0
sameMinV alueLimit = 5
globalMinCost =∞
minCost = 0

1: readyTasks = find ready tasks(currentTask)
2: for all taskName ∈ readyTasks do

3: if (sameMinV alueCount > sameMinV alueLimit) then
4: procName = gen random schedule(taskName)
5: globalMinCost =∞
6: sameMinV alueCount = 0
7: else

8: procName = get sch proc(taskName, procName,&minCost)
9: end if

10: send schedule to proc(taskName, procName)
11: if currentTask == startNode then

12: minCost =∞
13: if (globalMinCost > startT ime− prevStartT ime) then
14: globalMinCost = startT ime− prevStartT ime

15: prevStartT ime = startT ime

16: sameMinV alueCount = 0
17: else

18: sameMinV alueCount++
19: end if

20: end if

21: end for

4.7.1 Dynamic Task Graph Scheduling Algorithm

The proposed game theoretic approach is explained in the Pseudocode 4.3. When

the tasks have already sent the start and end ESWs at the end of a task execution,
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the function dynamic task schedule() executes on the leader. The startT ime of the

task is determined by the arrival time of the start ESW. The find ready tasks()

function in Line 1 is used to determine the total number of tasks which become avail-

able for execution (ready tasks) at the end of execution of the current task. This is

followed by using the get sch proc() function in Line 8, to determine the processor

on which to schedule the ready tasks and then sending the schedule to the processors

using send scheduled proc() function in the Line 10. We check if the current phase

graph iteration has ended by checking if the received task is the startNode of the

next iteration, in Line 11. The difference startT ime − prevStartT ime is calculated

to measure the actual task graph execution duration and the minimum value of this

schedule length obtained is tracked by using the variable globalMinCost in the Lines

13 and 14. The number of times this globalMinCost did not change, is counted by the

sameMinV alueCount in Line 18. In order to extricate the heuristic from local mini-

mum, task perturbation is done when the minimum schedule length does not improve

with subsequent task graph iterations. In Lines 3 and 4, the new schedule processor

is determined randomly using purturb schedule() if the sameMinV alueCount has

gone above the sameMinV alueLimit value. This function generates a random num-

ber and, if the generated random number value is less than taskPurturbThreshold,

then it perturbs the task schedule. The new scheduled processor is selected randomly,

with uniform probability distribution, from the list of the available processors. More-

over, we also initialize the globalMinCost and sameMinV alueCount in the Lines 5

and 6, respectively.

Based on the schedules of all the other tasks in the previous iterations, the func-

tion get new cost() calculates the total schedule length obtained for the current task

ti corresponding to the processor choice pi. The complexity of above mentioned algo-

rithms for an extracted phase graph with n nodes andm edges are shown in Table 4.3.
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The above dynamic scheduling heuristic is executed for maxGameCycles number

of phase graph repetitions, after phase graph extraction. Among the above iterations,

the schedule with minimum total execution time is saved. Until new phase is detected,

this minimum schedule obtained from dynamic scheduling is used for subsequent

iterations in the current phase. Hence, the proposed dynamic scheduling heuristic

does NOT execute for millions of phase graph iterations. Therefore, the benefit of

the minimum schedule length obtained within this duration, is reaped for rest of all

the subsequent million phase graph iterations.

The processor assignment for the current task is determined by the get sch proc()

function, which is shown in the Pseudocode 4.4. The processor which reducesminCost

among all processors with the same type as the current task, is searched. In the Lines

2-9, we iterate through all the processors with a matching type and evaluate the new

schedule generated at each of the iterations. In Line 3, the newSchedule variable

holds the current task to processor assignment. The get new cost() function is used

to find the cost for this assignment in Line 4. This cost is obtained by calculating the

total schedule length of the phase graph for the current newSchedule. In the Lines 5

- 8, we keep track of the minimum cost and the corresponding processor assignment

using minCost and minScheduleProcName. Finally we return the new schedule for

task taskName in the Line 10. The original scheduled processor for the task, which

is initialized in the Line 1, is returned if any of the processor choices do not reduce

the minimum cost.

Table 4.3. Complexity of dynamic phase graph scheduling for a given currentTask

Function Name Complexity Comment

dynamic task schedule() O ({m+ n} · l · r) r and l is the number of ready
tasks and matching PEsget sch proc() O ({m+ n} · l)

get new cost() O (m+ n) -
purturb schedule() O (c) c is a constant
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Algorithm 4.4 get sch proc(taskName, inpProcName, ∗minCost)
1: minScheduleProcName = inpProcName

2: for all procName ∈ matchTypeProcList do

3: newSchedule = {taskName, procName}
4: newCost = get new cost(prevSchedule, newSchedule)
5: if (minCost > newCost) then
6: minCost = newCost

7: minScheduleProcName = procName

8: end if

9: end for

10: return minScheduleProcName

Figure 4.5. Phase graph hashing and search using phase history table

The captured phase graph, at the end of phase graph extraction, is stored in a

Phase History Table (PHT) as shown in Fig. 4.5.

A string of aliases stored in the dependencyList is used to form the hashing func-

tion for the extracted phase graph. The minimum schedule obtained after dynamic

scheduling is accessed using this stored value which acts as a hashing key. The ex-

tracted phase graph is compared with those stored in the PHT, in subsequent phases.

If a match is found then, instead of invoking dynamic scheduling, the stored schedule

corresponding to the matched phase graph is used. An entry of PHT is replaced
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by using least recently used policy, if there is no match. The maximum PHT size is

dependent on the available memory at the leader. In the next subsection the dynamic

scheduling heuristic is explained with an example.

4.7.2 Dynamic Phase Graph Scheduling Example

Consider the phase graph in Fig. 4.3(shown again in the Fig. 4.6-c) executing on

a 4 processor MPSoC shown in Fig. 4.1, with processor PR3 being the leader. The

square boxes below the task nodes show the nominal execution times for the tasks.

Lets assume for this example that all the tasks and cores have the same execution

type. Fig. 4.6-d shows the relative execution times for the PEs. Multiplying the

nominal time with the Relative Execution Time for the PEs gives the actual execution

time. For example, the task t4, with an execution time of 6, will take 6 units on PR0,

9 on PR1, 12 on PR2 and 15 on PR3.

A gradual decrease in total phase graph execution time with dynamic scheduling

on the 4 core MPSoC system, can be seen from Fig. 4.6-a. Task execution and

communication is represented by gray boxes and by boxes filled with crossed lines,

respectively. Dotted arrows are used to represent communication between various

tasks. The tasks which have been rescheduled, are shown by using gray boxes filled

with diagonal lines (tasks t3 and t4 in the (i+ 1)th iteration). We can see that total

phase graph schedule length decreases gradually from 48 to 29 within three phase

graph iterations, with dynamic scheduling. The scheduling decisions are made for

each of the iterations are shown in Fig. 4.6-b. When the leader receives the end ESW

for the task t0 corresponding to the startNode, dynamic task schedule() is called.

This happens, at the beginning of (i + 1)th iteration with the old scheduling length

of 48 units for the ith iteration.

In order to calculate minCost, the current task is scheduled on various processors

and the total execution time for the phase graph is measured. For example, task t4
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Figure 4.6. Dynamic scheduling for the example phase graph in Fig. 4.3 executing on
a 4 core MPSoC (a) Task execution with dynamic scheduling showing the scheduling
decisions made from iterations i to i+2 (b) Change in minCost with every scheduling
decisions and the corresponding new schedule for the task (c) The phase graph in
Fig. 4.3 shown again for convenience (d) Relative execution times of the PEs
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scheduled on processor PR0, PR1, and PR3 will lead to a total execution time of

39, 42, 45 and 48, as the execution time changes from 6, 12, 15 and 18 respectively,

keeping the scheduling for other tasks same as that in the ith iteration. Consequently,

minCost is assigned to the new minimum execution time and the processor which

gives minimum execution time (PR0 for execution time of 39) is selected. For the

(i+ 1)th iteration, this is seen in the Line 5 in the Fig. 4.6-b.

Now, the minimum execution time of 47 occurs, for task t6 in iteration (i+ 1),

when it is scheduled on processor PR0. We stick with the processor PR2 originally

scheduled for t6 in the ith iteration, as this execution time is still greater thanminCost

value of 39. The total schedule length is reduced to 29 when the task t6 is scheduled

to the new processor PR0 in the next iteration.

Run-time variations in the processor performance, can also be handled by the

proposed approach. The leader continues to measure the total execution time of the

phase graph using the received start and end ESWs, once the phase graph is scheduled

based on the minimum schedule length determined at the end of previous dynamic

scheduling. Hence, even though a new phase is not detected, if the leader notices a

change in the total schedule length of the executing phase graph, dynamic scheduling

will be invoked, once this schedule length increase crosses a certain threshold.

A new schedule with smaller schedule length is obtained by invoking this dynamic

scheduling only for maxGameCycles. Hence, dynamic scheduling will be automati-

cally invoked if there is a change in execution times of any of the tasks, without any

change in the proposed setup.

4.8 Results

In order to generate the following results, simulations were done for a 4x4 MPSoC

architecture which uses a fully connected network for communication. Each of the

processors can have one of total 6 different processor types. The number of proces-
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sors per type is randomly selected between 2 to 4. As shown in Table. 4.4, relative

execution times for the processors are generated randomly between 1 and 5. Here

we assume that network delays remain constant. The proposed phase graph extrac-

tion and dynamic scheduling techniques are generic and independent of the network

configuration. A set of 4 random benchmarks were generated using Task Graphs For

Free (TGFF) [36] which is a freely available tool that generates pseudo random task

graphs based on input parameters. Each benchmark has three different phases, each

of which is a randomly generated phase graph.

Table 4.4. Relative execution times and execution types for various processors

Processor Name Relative Exec. Time Execution Type

PR0 1 TY PE 1
PR1 2 TY PE 1
PR2 3 TY PE 1
PR3 5 TY PE 1
PR4 1 TY PE 2
PR5 2 TY PE 2
PR6 3 TY PE 2
PR7 4 TY PE 2
PR8 1 TY PE 3
PR9 2 TY PE 3
PR10 1 TY PE 4
PR11 3 TY PE 4
PR12 2 TY PE 5
PR13 4 TY PE 5
PR14 1 TY PE 6
PR15 3 TY PE 6

A random selection of the number of nodes in the phase graphs was done between

30 to 55. Moreover, the execution and transfer times of tasks was generated with

uniform probability between 80 and 120 units of time. Moreover, each of the nodes

has an average input edge count of 3 and output edge count of 2. In order to assign

the execution type to the tasks, random numbers are generated for task types between

1 and 6. Moreover, each benchmark has 3 phases repeating for randomly generated
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number of iterations. The parameters used for simulation are shown in Table 4.5.

The maximum phase graph size of 55 nodes is used to select these values.

Table 4.5. Parameters used for task graph extraction and dynamic scheduling

Comment Step Parameter Value

System
Parameters

-
Number of Processors 16

Number of Processors types 6

Phase Graph
Extraction

Phase
Detection

Follower Sampling Interval 100
Follower phase match threshold 3
Leader phase match threshold 3

Phase Graph
Extraction

extractionWaitLength 30
windowMatchCountThreshold 3

Dynamic
Scheduling

Scheduling minConstantThreshold 5

Perturbation
maxGameCycles 100

taskPurturbThreshold 0.2

4.8.1 Phase Detection

The simulation results for number of phase graph iterations required for phase

detection by the leader are shown in Table 4.6. The benchmark and the corresponding

phases are shown in Columns 1 and 2, respectively. The total number of repetitions

for each phase which is generated randomly is shown by “Max. Phase Itrs.” Column

(Column 3). The phase graph size in terms of number of nodes + edges is shown

in “PG Size” (Column 4). “Phase Ext. Itrs.” (Column 5). shows the number

of iterations required for phase detection. Number of iterations required for phase

graph extraction as a percentage of the maximum phase graph iterations is given by

“% of max. Phase Itrs.” (Column 6). It can be seen that, we can accomplish phase

detection within less than 160 phase graph iterations.

4.8.2 Phase Graph Extraction

The number of phase graph iterations required for phase graph extraction is shown

in Table 4.7. The meaning of the Columns 1-4 in the table are the same as in Table 4.5.

The total number of iterations for the phase graph extraction including those taken
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Table 4.6. Number of cycles required for phase detection

BM Phases
Max. Phase

Itrs.
PG Size

Phase Ext.
Itrs

% of max.
Phase Itrs.

BM1
PH1 2512 72 153 6.09
PH2 3852 72 136 3.53
PH3 3567 73 153 4.29

BM2
PH1 3694 74 102 2.76
PH2 3015 77 103 3.42
PH3 3198 78 136 4.25

BM3
PH1 3582 84 103 2.88
PH2 3246 92 108 3.33
PH3 3198 78 136 4.25

BM4
PH1 3852 131 71 3.53
PH2 3567 135 69 4.29
PH3 3694 138 75 2.76

for successful phase detection is shown in “PG Ext. Itrs.” (Column 5). The number

of phase graph iterations at which timing extraction is successfully done is shown in

“Timing Ext. Itrs.” (Column 6). This value includes the total number of iterations

for phase detection, phase graph extraction and timing extraction. The percentage

total number of iterations required for the complete phase detection, phase graph

extraction and timing extraction, is shown in the last column “% of max. Phase

Itrs.” (Column 7). It can be seen that, within less than 200 iterations, phase graph

extraction is accomplished.

4.8.3 Dynamic Scheduling

Game theory based dynamic scheduling is started with a randomly generated

initial schedule, after phase graph extraction. At the end of every phase graph iter-

ation (Game cycle), a new schedule is generated. We apply the dynamic scheduling

approach for a total of 100 phase graph iterations. The schedule responsible for min-

imum duration within 100 maxGameCycles, is extracted and used thereafter, in the

subsequent iterations. The results for dynamic scheduling and the improvement in

the schedule length obtained after phase graph extraction are shown in Table 4.8.
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Table 4.7. Number of phase graph iterations for phase graph extraction

BM
Name

Phases
Max.

Phase Itrs.
PG Size

PG Ext.
Itrs

Timing
Ext. Itrs

% of max.
Phase Itrs.

BM1
PH1 2512 72 162 193 7.68
PH2 3852 72 143 173 4.49
PH3 3567 73 160 190 5.33

BM2
PH1 3694 74 109 137 3.71
PH2 3015 77 109 141 4.68
PH3 3198 78 143 175 5.47

BM3
PH1 3582 84 109 141 3.94
PH2 3246 92 114 157 4.84
PH3 2512 127 74 123 3.96

BM4
PH1 3852 131 77 127 3.61
PH2 3567 135 77 129 4.47
PH3 3694 138 84 137 5.39

The meaning of Columns 1-4 are same as in the previous tables. For the randomly

generated initial schedule, “Init. Sch.” (Column 5) shows the total schedule length

(Tinit) obtained. “Min. Sch.” (Column 6) shows the minimum schedule (Tmin) ob-

tained from game theory Based Dynamic scheduling. “% Init. Sch.” (Column 7)

shows the percentage improvement in schedule length which is calculated using the

following equation.

(Tinit − Tmin) ·
100

Tinit
% (4.2)

The total number of iterations required for the end of dynamic scheduling, is shown

in “Dyn. Sch. Itr.”(Column 8). The iterations required for phase detection, phase

graph extraction and dynamic scheduling are included in this. The total number of

iterations is given by maxGameCycles + Phase detection itrs. + task graph itrs,

as game theory based dynamic scheduling is run only for 100 iterations. Finally, in

(Column 9) this count is shown as the “% max. Phase Itrs.”. From the table, we can

see that both phase graph extraction and dynamic scheduling is accomplished within

less than 300 iterations. This is much less than the millions of iterations a phase
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graph goes through. Moreover, the initial schedule length is reduced by 19% to 50%,

due to the dynamic scheduling approach.

Table 4.8. Game theory based dynamic scheduling

BM Ph.
Max.
Phase
Itrs.

PG
Size

Init.
Sch.

Min.
Sch.

%
Impr.

Dyn.
Sch.
Itrs

% of max.
Phase Itrs.

BM1
PH1 2512 72 3874 3469 10.45 293 11.66
PH2 3852 72 5173 4012 22.44 273 7.09
PH3 3567 73 4176 2890 30.80 290 8.13

BM2
PH1 3694 74 7258 5126 29.37 237 6.42
PH2 3015 77 6821 4658 31.71 241 7.99
PH3 3198 78 4835 3675 23.99 275 8.60

BM3
PH1 3582 84 6668 4995 25.09 241 6.73
PH2 3246 92 7176 4848 32.44 257 7.92
PH3 2512 127 11032 7336 33.50 223 7.18

BM4
PH1 3852 131 11535 7296 36.75 227 6.45
PH2 3567 135 10446 6923 33.73 229 7.93
PH3 3694 138 11580 7553 34.78 237 9.32

A comparison of the schedule length obtained from dynamic phase graph schedul-

ing procedure, with that obtained from static scheduling done by using ILP based

approach (adapted from [105]), Greedy and Random approaches, is shown in Fig. 4.7.

An absolute minimum schedule length is obained by solving the ILP formulation for

the static phase graph scheduling. A timeout limit of 7200 seconds was used to run

ILP for the phase graphs. In the greedy approach, the phase graph is propagated in

topological order while scheduling the ready tasks to the fastest processor available. A

ready task, in random approach, is schedule by randomly selecting a processor among

all the available processors with the matching type. As shown in the Fig. 4.7, the

random approach is repeated for 1000 iterations and the minimum schedule length

obtained is reported. The total schedule length obtained from the above approaches

is compared in the bar chart shown in the figure. The line (right Y axis) shows the

phase graph size for various benchmarks in terms of nodes+edges.
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Figure 4.7. Comparison of minimum schedule length obtained from ILP, game
theory, greedy and random approaches

It can be seen that the minimum schedule length obtained for most of the phases

in the benchmarks, from dynamic schedule, is very close to that obtained from static

scheduling done using ILP based absolute minimum. For most of the benchmarks,

ILP based scheduling gives a timeout and thus no solution is obtained for these bench-

marks as represented by the missing red bars corresponding to the ILP approach.

The Table 4.9 shows the time in seconds required to evaluate the final schedule

length. A 1.86 GHz dual core machine with Intel Core 2 CPU and 2MiB cache, was

used to run the simulations. It can be seen that ILP (Last Column) does not give

any results as it times out for most of the cases (shown by italic times). Moreover, it

takes a large amount of time, as compared to game theory based approach, to obtain

an optimal result, for BM1 PH2 and BM2 PH3. The proposed game theory based

approach produces a solution close to that obtained from ILP for all the benchmarks,

as shown in Column 6. The solution is obtained from the game theory based approach
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Table 4.9. Time in seconds for various approaches

BM
Name

Phases
Task
count

Greedy
based

Random
approach

Game
theory

approach

ILP based
approach

BM1
PH1 72 0.01 150.07 15.25 7211.35
PH2 72 0.02 144.79 13.66 87.93
PH3 73 0.01 263.25 12.8 7201.90

BM2
PH1 74 0.02 103.89 9.1 0.33
PH2 77 0.01 139.43 11.9 1.00
PH3 78 0.06 200.29 15.46 127.50

BM3
PH1 84 0.04 225.63 15.91 7201.51
PH2 92 0.07 306.45 22.35 4.34
PH3 127 0.7 527.68 34.95 7202.00

BM4
PH1 131 0.27 492.43 34.74 4.17
PH2 135 0.06 567.91 33.87 4.10
PH3 138 0.25 765.87 40.11 7210.37

is faster than ILP, in all the cases. Consequently, for large benchmarks, the proposed

approach is guaranteed to generate a solution, while the ILP times out for most

cases. As compared to other approaches, the random simulation based approach

(Column 5) takes much longer time and also gives the worst final schedule time among

all the approaches. Morover, it can be seen that the greedy approach (Column 4)

is the fastest but is sub-optimal for large phase graphs. Hence, we can conclude

that, a good tradeoff between computational time and quality of the final schedule

is obtained from the proposed game theory based approach. As compared to the

greedy and random heuristics, our dynamic scheduling approach consistently gives a

smaller schedule length. Moreover, dynamic scheduling converges much faster (100

iterations) as compared to the random simulation (1000 iterations).

The schedule length variation with game cycles (phase graph iterations) during

dynamic scheduling for BM3 PH3 is shown in Fig. 4.8. The randomly generated

schedule of with length 11032 is used as a starting point. Next, dynamic scheduling

is used where a new schedule is generated at the end of the each iterations. The

new schedule generated by random perturbation procedure, is represented using the
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Figure 4.8. Schedule length convergence with game cycles for BM4 PH1

arrows, which is initiated when the minimum schedule length does not change for 5

consecutive phase graph iterations.

Starting from an initial schedule the dynamic scheduling approach converges very

fast to a much lower value, as seen from the above figure. The schedule is perturbed

in order to extricate the search from the local minima, when the minimum schedule

length does not change for more than 5 consecutive phase graph iterations. Per-

turbation procedure, for most of the cases, increases the schedule length (shown by

vertical arrows) to a large value which eventually converges to a much smaller value.

Finally a minimum schedule length of 7336 is obtained, at the end of 100 iterations.

In the subsequent phase graph iterations,until a new phase is detected, the schedule

corresponding to this minimum value is used.
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4.9 Conclusions

A novel technique for phase graph extraction, is presented in this work. We first

determine if an application is exhibiting a phase behavior using execution history in-

formation. This is followed by phase graph extraction with timing information. The

results show that our technique extracts a phase graph in fewer than 200 iterations

which is several orders of magnitude smaller than the millions of iterations through

which a phase graph goes through during the execution of an application. Dynamic

scheduling is performed using the extracted phase graph in order to improve perfor-

mance of subsequent iterations. In order to realize overall gain in performance, such

scheduling must be performed very fast. Towards that goal, a novel game theory

based dynamic scheduling approach is presented here. Our approach iteratively im-

proves on the previous schedule to obtain a smaller schedule length, starting from an

initial non optimal schedule. Typically in fewer than 100 iterations, the approach also

reduces the initial schedule length by 19% to 50%. We compare our approach with

ILP based static scheduling approach adapted from [105]. It is observed that, solu-

tions comparable to ILP based static scheduling are obtained from the game theory

based dynamic scheduling approach, albeit much faster. Moreover, due to the sim-

plicity of the heuristic, we can easily integrate the proposed solution into an MPSoC

with limited resources.

129



CHAPTER 5

THERMAL AWARE TASK GRAPH SCHEDULING

With device scaling, there has been a substantial increase in power density in

the deep sub-micron era. This has lead to the formation of regions with very high

temperatures known as thermal Hotspots. These thermal effects not only lead to a

degradation in reliability and performance, but also a significant increase in the total

cooling cost and worsening of non-ideal effects like leakage. It has been estimated

that increasing the power dissipation above 20 to 30 Watts increases the cooling cost

by more than $1/W [104].

High hotspot temperatures, if unchecked, will lead to reliability related failures

[72] including higher rate of electro-migration and mechanical failures due to differen-

tial thermal expansion of various regions of the IC. Moreover, increase in gate delay

and wire delay with temperature leads to performance degradation. It has been ob-

served in [12] that a 20C increase in temperature leads to 5% to 6% increase in the

Elmore delay of the circuit. Global signals like clock are most affected because of

the variation in clock skew with temperature [12]. Spatial thermal gradients across

various regions of a chip can be as large as 30C to 50C [72]. Spatial thermal gra-

dients are responsible for mechanical failures due to different dielectric expansion in

various regions of the IC. Temporal thermal gradients are generated by change in

the workload power dissipation with time. These fast temperature changes of large

magnitude lead to fatigue failure and deformation of the package [4]. Therefore, Dy-

namic Thermal Management (DTM) [16] is used in which the processor is run on a

reduced voltage/frequency when the measured temperature increases above the DTM
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threshold. This approach is reactive in nature and leads to performance reduction for

tasks executing on the processor.

Based on the above observation, it can be seen that it is important to reduce the

worst case temperatures. This work deals with run-time task graph scheduling for

MPSoCs and aims at preventing temperature increase by dynamically predicting the

temperature variation for various task schedules and performing task migration in

order to minimize the total schedule length.

The rest of the work is organized as follows: We explore the previous work in

the Section 5.1. Next, we present the preliminaries of wavelet transforms in Section

5.2. Section 5.3 gives an overview of the proposed approach. Then, each of the

proposed steps are explained in Section 5.4 and Section 5.5. Section 5.6 presents

the ILP formulation for temperature aware scheduling. Then results are presented in

Section 5.7. Finally we conclude in Section 5.8.

5.1 Related Work

Various techniques for thermal aware scheduling and thread migration are pre-

sented in literature. Some of these techniques are proactive in nature [60][77][29][22],

where temperature prediction is done to perform thread migration or DVFS, while

others [32][31][85] are reactive in nature. Reactive techniques leads to faster thermal

gradients, higher temperatures and performance loss. Most of the proactive tech-

niques are more efficient but have much higher hardware/software cost.

Thermal aware thread migration for heterogeneous multiprocessors has been done

by Khan et al. in [60] using an intermediate operating system layer known as Micro-

visor. It maintains several data structures for thermal management and predicts

the thermal mapping for the next epoch of computation based on the thread specific

thermal demands. When micro-visor predicts a thermal hotspot, a preemptive thread

migration is done. This technique uses very simple models for temperature prediction
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where the future temperature is linearly extrapolated based on the current and the

past temperature increase.

Coskun et al. in [32][31] present temperature aware task scheduling for MPSoCs.

In [32] an ILP based thermal aware static scheduling approach is presented for various

objectives of minimizing thermal hotspot temperatures, balancing thermal hotspots

and energy consumption, and minimizing total energy. The solution of ILP formu-

lation provides the required voltage and frequency settings for DVFS which is used

for thermal management. The ILP based static scheduling approach is extended to

static-dynamic policy [31] which is applied during run-time for the cases where the

workload deviates from the statically estimated task graph. The task graphs consid-

ered in this approach are very small. Its a known fact that ILP does not scale very

well for scheduling medium sized task graphs.

Dick et al. in [22] do ILP based temperature aware scheduling for hard real time

deadlines. A single ILP formulation is done not only to represent the task graph

dependency constraints but also for the package thermal constraints. As a steady

state thermal model is used for the ILP formulation, they do not consider the ef-

fect of transient temperature variation. They also present a dynamic task scheduling

technique based on temperature prediction. Static slack estimation is done for tasks

and each ready task is scheduled to the processor which minimizes slack while pre-

venting a thermal emergency. This approach is greedy in nature and hence is non

optimal, as it does not search the available solution space. If a ready task cannot

be scheduled without preventing thermal emergencies, delay insertion is done where

a binary search based technique is used for calculation of task delay which will pre-

vent thermal emergency. This technique is computationally expensive as it involves

repeated delay insertion and thermal evaluation until the minimum delay preventing

a thermal emergency is found.
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Puschini et al. in [85] [86] present a non-cooperative game theory based approach

for temperature aware run-time frequency assignment for processors while maintain-

ing synchronization between the tasks. Here, each of the processors are players and

they individually choose their actions independently so as to optimize their local set

of goals. Following this strategy eventually leads to a global optimization. Tem-

perature and synchronization are used as matrices to build the preference functions

of processors. As their technique is reactive in nature, there is a lag between the

temperature measurement and the corresponding action. In addition to this, they

use a simplified thermal model to perform thermal simulation, which does not take

transient temperature into account.

Murli et al. in [77] use convex optimization based method for temperature con-

trol. This technique is proactive in nature and controls core temperature while sat-

isfying performance constraints of applications. Dynamic frequency scaling is used

for thermal management where the core frequency assignments are made so that the

maximum temperature does not go above the threshold until the next frequency as-

signment is done. It consists of an offline phase where thermal analysis is done for

various frequencies and starting temperatures, and a convex optimization problem is

solved to obtain a table of frequency assignments. In the on-line phase, the above

generated table of frequency assignments is used to periodically perform DFS to pre-

vent thermal emergencies. The offiline phase in this technique is compute intensive,

as it requires the solution of convex optimization problem.

Reda et al. [29] propose a thermal prediction method based on program phase

identification. They have an offline phase where the performance counter measure-

ments are used to perform principle component analysis to capture the phase infor-

mation for the application. This is followed by use of k-min clustering to obtain

the global phase locations in the observed measurements. The above data is used

to train a state-space model which captures the relation-ship between temperature,
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performance counters and operating frequencies. At run-time, phase identification is

done and the learned state-space model is used in conjunction with the temperature

reading from thermal sensors to predict the future temperature and initiate DVFS

based on the temperature prediction. The size of the tables generated from the offline

phase can be very large. Moreover the offline phase is application dependent and time

consuming as it involves solution to k-min clustering which is NP −Hard.

Ayoub et al. present a predictive thread migration for thermal management [14]

in multicore processors. They use the band limited property of temperature variation

to perform temperature prediction based on the previously measured temperatures.

Temperature spectral limited bandwidth is used to estimate the predictor coefficients

during design time. The temperature prediction in conjunction with workload charac-

terization is used by the Operating System (OS) scheduler to perform thermal aware

task scheduling. The OS scheduler only looks at the current set of ready tasks and

does not perform look-ahead, as a result the final schedule obtained is not optimal.

Thus it can be seen that most thermal aware task scheduling algorithms are greedy

or perform dynamic thermal management using DVFS. While DVFS causes perfor-

mance degradation and as will be seen in the results, task migration becomes more

effective with increase in the number of cores in an MPSoC. Moreover, thermal aware

task migration is usually done in a greedy fashion which leads to a suboptimal solu-

tion. In addition to dynamic scheduling, the static solutions presented in the above

techniques do not take transient thermal behavior into account. Moreover, in case of

predictive techniques, offline pre-characterization required for temperature prediction

step is compute intensive as it requires the solution of some optimization problem.

In this work we present (i) a run-time temperature prediction technique (ii) a

run-time look-ahead based branch-and-bound scheduling heuristic which thermally

evaluates various schedules using directed search to minimize the total schedule length

(iii) finally a delay insertion technique to remove task execution overlaps leading to
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thermal emergencies. The above solutions are leveraged by a wavelet based thermal

modeling approach which does an application independent pre-characterization of the

thermal system.

Ferzli et al. [39] have proposed a wavelet based technique to obtain a stimulus that

causes worst case voltage droop at a given node in a power supply network. Current

fluctuations generated by switching of logic gates are represented using wavelets. This

is used to determine the worst case stimulus by using an ILP formulation. As under-

lying logical dependencies are not considered in this approach, the traces generated

here are not functional.

Based on the above work Srinivasan and Ganeshpure [91] proposed a wavelet

based thermal modeling approach to generate an input workload which maximizes the

hotspot temperature at the target location. This approach is based on the fact that

an application goes through stable phases during which its power dissipation remains

constant. This thermal modeling approach is used to characterize the response of

chip/heat sink thermal system to generate a set of temperature response values. These

pre-characterized values are used by an ILP based technique to generate a combination

of extracted workload phases which maximizes temperature at the target location.

Based on this work, we use wavelet based technique for characterizing the thermal

behavior of the system and for temperature prediction to enable task migration. In

the next section we provide preliminary introduction to wavelet transforms.

5.2 Preliminaries

Wavelet transforms are used to represent the frequency components of an arbitrary

waveform using a set of time limited functions known as wavelets. A wavelet can be

scaled in order to increase its amplitude or shifted in time. These wavelets form a set of

orthonormal basis functions for which the shift and scale values (wavelet coefficients)

are obtained by using wavelet transform. The number of wavelet coefficients required
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to represent the waveform depends on type of the wavelet and the characteristics of

the input waveform. A large transform value is obtained at a particular shift if the

shape of the wavelet matches with that of the input waveform at that particular time

shift. In our work, Haar [10] wavelets are used to represent power dissipation at

various processors. This is based on the assumption that the power dissipation of a

task remains constant during its execution. A Haar wavelet Ψkδ(t) is a pulse defined

by a pulse width parameter ‘δ’, and a time shift ‘k’ as shown in Fig. 5.1. This pulse

varies in time from k ·δ to (k+1) ·δ with an amplitude of 1/
√
δ. The above technique

is adapted from work by Srinivasan and Ganeshpure [91] which deals with generation

of an input workload so as to maximize temperature at target location.

Figure 5.1. A Haar power wavelet with a scale ‘δ’ and a time shift ‘k · δ’ [91]

Ψkδ(t) =
1√
δ
· ψ
(

1− k · δ
δ

)

(5.1)

It will be explained in the subsequent sections, how the power waveform is repre-

sented using a linear combination of shifted and scaled Haar power wavelets. A Haar

wavelet which has 1W of power and duration δ is called a Unit Power Wavelet. The

next section gives an overview of the proposed approach.
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5.3 Proposed Approach Overview

Here we propose a greedy branch-and-bound search based heuristic for thermal

aware scheduling. Our approach consists of a (i) pre-characterization stage, where the

thermal behavior of the system is characterized using wavelet analysis and the power

dissipation information is determined for the tasks in the task graph, and (ii) run-time

stage where dynamic task migration is initiated to mitigate thermal emergencies. The

above steps shown in the Fig. 5.2 are explained in brief below.

Figure 5.2. Pre-characterization and run-time stages in the proposed dynamic ther-
mal aware task migration technique [91]

• Pre-characterization: This stage involves characterizing the thermal response of

the processor die/package system using wavelet transforms. We use Haar wavelet

to represent power dissipated at various Processing Elements (PEs). It should be

noted that, we will interchangeably use the word “processor” and the acronym

“PE” to represent a processor core in an MPSoC. The MPSoC is characterized

by applying a Haar wavelet pulse of unit power value at each of the PEs one at
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a time and obtaining the corresponding temperature variation at all the other

PEs. This temperature response at various PEs for the current power source

corresponding to the application of the power wavelet is stored in a Thermal

Response Table, as shown in the central part of Fig. 5.2. In addition to this, the

power dissipation of all the tasks in the task graph is also pre-characterized on

various PEs using simulation and signal activity measurement. As a result, we

obtain a Power Estimation Table, which holds the power dissipation estimates

obtained for tasks scheduled on various processors. Therefore, at the end of pre-

characterization we obtain (i) the thermal response table modeling the thermal

behavior of the system and (ii) power estimation table for the task execution on

various processors, generated from simulation. These are used in the run-time

stage to perform dynamic thermal aware task scheduling.

• Run-time: In this step, we perform dynamic scheduling based on temperature

prediction by using the thermal response tables generated in the pre-characterization

stage. In our approach, dynamic scheduling is initiated only when a thermal

emergency is predicted in the originally scheduled task graph. The search for

a schedule continues until either a minimum schedule which prevents thermal

emergencies is found, or if it fails to get such a schedule. In case of failure, de-

lay insertion is initiated as a fallback action to eliminate thermal emergencies.

Consequently, the run-time stage consists of the following steps:

− Temperature Prediction: In this step, we predict the temperature vari-

ation of the executing task graph by determining the set of tasks which

are deemed to be executed in the future known as Future Tasks. A

set of L future tasks is extracted from the task graph and inserted

into the Look-ahead List. The power values for these tasks estimated

in the pre-characterization stage are used for temperature prediction.

138



The temperature profile at each of the PEs is represented using a lin-

ear combination of scaled and shifted versions of the thermal responses

stored in the thermal response table. This future temperature profile at

the end of execution of each of the L future tasks is generated at regular

intervals to check for thermal emergencies. When a thermal emergency

is predicted, dynamic task migration is initiated.

− Task Migration: A branch-and-bound heuristic is used for dynamic task

scheduling so as to eliminate thermal emergencies while minimizing the

total schedule length. The tasks in the look-ahead list are arranged in

topological order and the branch-and-bound heuristic schedules each of

these tasks onto the fastest processor which does not lead to a thermal

emergency. If a solution is found for all the tasks in the look-ahead list

or if none of the processor choices prevent thermal emergencies, then

back tracking is done and branch-and-bound continues searching for an

alternate schedule. The fact that branch-and-bound does not stop, even

after a valid schedule is generated, prevents the search from being stuck

in local minimum.

− Delay Insertion: In the case if branch-and-bound based task migration

fails to find a valid schedule eliminating thermal emergencies, delay

insertion is initiated in order to reduce temperature by removing task

overlap. The thermal response table is used to determine the delay

required to eliminate the temperature effect of one task on the other.

In the next sections we will explain each of the above steps in more detail:
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5.4 Pre-characterization Stage

In this step, the thermal response of the system is characterized using wavelet

transforms. This is done by applying a unit power wavelet to various PEs on the

MPSoC and measuring the temperature at every other PE. This process is repeated

for all PEs one by one to generate a thermal responses table. The response at time

t on PE pj2 due to a unit power wavelet applied at the PE pj1 at time τ is denoted

by Φj1j2 (t− τ). Fig. 5.3 shows the thermal response for a unit power wavelet applied

to a particular PE. The simulation time is divided into discrete time intervals which

are integral multiples of the width of the unit power wavelet ‘δ’. Consequently,

the temperature response is also sampled at same discrete time intervals. The total

number of samples taken for the temperature response is known as Thermal Response

Length. For a thermal response length ofW samples, the total duration of the thermal

response is given by W · δ and is measured from the start time of the application of

unit power wavelet. The following Table 5.1 shows the thermal response table for an

MPSoC with three processors.

Table 5.1. Thermal response table for an MPSoC with three PEs

Unit power wavelet
applied at ..

Thermal response
measured at ..

Thermal response
values t ∈ W

PR0
PR0 φ00(t)
PR1 φ01(t)
PR2 φ02(t)

PR1
PR0 φ10(t)
PR1 φ11(t)
PR2 φ12(t)

PR2
PR0 φ20(t)
PR1 φ21(t)
PR2 φ22(t)

For an MPSoC with P PEs and a thermal response length of W sampled tem-

perature values, the number of elements in the thermal response table is O (P 2 ·W ).

The duration of unit power wavelet determines the size of thermal response table.
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Figure 5.3. Input power wavelet and corresponding temperature response values

For each thermal response, the number of samples W increases linearly with the re-

duction in the power wavelet duration δ and so does the size of the thermal response

table. Consequently, higher the number of samples taken, the more accurate is the

temperature prediction. Moreover, for the same duration of the unit power wavelet, a

larger W improves the accuracy of temperature prediction, but also increases its time

complexity. In the subsequent text, the thermal response for a unit power wavelet as

seen in Fig. 5.3 will be graphically represented by using a triangle.

In addition to characterizing the thermal behavior of the die package system, we

also estimate the power dissipated for each of the tasks on various PEs of the MPSoC.

This can be easily done by statically extracting the task graph for the application

(Vallerio et al. [106]), followed by using an architecture simulator like SESC [82]

to execute the task and finally measuring the power dissipated using a power model

like Cacti [98]. This generates the power estimation table, which consists of a list of

power estimates, dissipated by a task on the corresponding set of PEs with matching

execution types.
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Next, we explain the run-time stage, which uses the greedy branch and-bound

heuristic for dynamic thermal aware task migration utilizing the thermal response and

the power estimation tables, extracted in the present step, for temperature prediction.

5.5 Run-time Stage

Task scheduling for minimizing schedule length is an known NP − Hard prob-

lem [105] [62]. The proposed branch-and-bound heuristic is based on a combination

of look-ahead, task scheduling and temperature prediction to evaluate each of the

scheduling decisions for the presence of thermal emergencies. The thermal response

and power estimation tables generated during pre-characterization stage are used for

temperature prediction. All the aspects of the proposed branch-and-bound heuristic

are explained in detail in subsequent sections starting from temperature prediction.

5.5.1 Temperature Prediction

Our temperature prediction approach is based on the Linear Time Invariance [84]

property of the thermal system.

Definition 5.5.1. A system with a transfer function h and a response given by

y(t) = h (x (t)) is linear time invariant if and only if any time shift (or scaling) of the

input x(t) leads to the equivalent shift (or scaling) of the output y(t). Therefore, the

properties given by the following set of equations are valid.

Linearity Property: y (t) = h (S · x (t)) (5.2)

Time Invariance Property: y (t− τ) = h (x (t− τ)) (5.3)

Based on the known duality between heat flow and electric current, the thermal

system consisting of the package and die can be represented by an RC network [52].

According to this duality, heat flow is analogous to flow of current and temperature is
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analogous to node voltage. Moreover, thermal properties of the material, like thermal

conductance and heat capacity, are analogous to electrical resistance and capacitance

respectively. Consequently, the thermal system consisting of a die and heat sink can

be represented using a finite element thermal RC network, where the input is a set of

current sources representing the power dissipated at various units and the outputs are

node voltages corresponding to the temperature at various locations. This Thermal

RC Network can be modeled as a low pass filter which has a linear time invariance

property [91][84]. Hence, according to the Definition 5.5.1, the temperature response

of a time shifted (or scaled) unit power wavelet can be obtained by doing an equal

amount time shifting (or scaling) of the original thermal response. We utilize this

property for temperature prediction by representing the input power trace as a linear

combination of shifted and scaled power wavelets.

Figure 5.4. Representation of power dissipation profile and the corresponding tem-
perature variation for a task ti by using shifted and scaled unit power wavelets

Fig. 5.4 shows how the power dissipation profile of a task ti can be represented as

a linear combination of the set of shifted and scaled unit power wavelets Ψτδ(t). It
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can also be seen that, time is discretized into integral multiples of unit power wavelet

duration δ. The wavelets are scaled by the power values ρti corresponding to the

estimate of the power dissipated by task ti obtained from the power estimation table.

Corresponding to each of the above shifted and scaled unit power wavelets Ψ(k+κ)δ(t),

there is a set of shifted and scaled thermal response values Φj1j2(t − τ) shown in

the middle part of Fig. 5.4. The temperature at a given time τ is equal to the sum

of all the thermal response curves with a non-zero temperature value at τ . This is

shown by the rectangles in red in the figure. The corresponding temperature values

are obtained at integral multiples of δ and, at the time τ , the temperature is given

by the red dot.

Temperature prediction is done by determining the temperature at the end of

every task execution using thermal response values. This is based on the observation

that temperature is highest and hence, thermal emergencies can only occur, at the

end time of a task execution. Firstly, we will explain how temperature measurement

is done for a pair of tasks, then we will extend the approach for the more generic case

consisting of multiple tasks.

5.5.1.1 For a pair of tasks

The thermal emergency check has to be done for each of the tasks in the task

graph. A task which is currently being evaluated for thermal emergency is called the

Target Task. For a given target task in the task graph, the target time is defined as

the time at which temperature has to be determined. This time is equal to the end

of execution time for the target task under consideration.

Definition 5.5.2. A task is said to be Thermally Overlapping at the target time, if

the thermal response of the task has a non-zero value at a given Target Time. A task

ti with start and end times given by sti and eti, respectively, is thermally overlapping

at target time tr if the following conditions are satisfied.
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(tr − eti) ≤ W (5.4)

(tr − sti) > 0 (5.5)

The temperature at target time is calculated by using a linear combination of the

thermal responses of all thermally overlapping tasks, scaled by their power dissipation.

Figure 5.5. Temperature prediction for a pair of tasks

Consider a pair of tasks ti and tk executing on the PEs PRl and PRm, and

dissipating power ρil and ρkm, respectively. This is shown at the bottom two axes

of the Fig. 5.5. Tasks ti and tk have start and end times of {sti, eti} and {stk, etk},

respectively. Our goal here is to determine the temperature for the target task ti

at the corresponding target time eti. The power dissipation profile of the tasks is

decomposed into a set of shifted and scaled power wavelets. The triangles above the

task execution are the thermal responses corresponding to various unit power wavelet

shifts. It can be seen that tasks ti and tk are thermally overlapping at the target

time of eti. The thermal responses represented in red are the set of responses with

non-zero value at eti. The temperature T l (eti) at the PE PRl executing task ti at

target time eti is the sum of the scaled thermal responses T l
i (eti) corresponding to
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the task ti and that of the response T l
k (eti) corresponding to the effect of task tk at

the target time eti. This is given by the following set of equations.

T l
i (eti) =

eti
∑

τ=eti−W

(ρil · φll (eti − τ) · αii(τ)) (5.6)

T l
k (eti) =

eti
∑

τ=eti−W

(ρkm · φlm (eti − τ) · αik(τ)) (5.7)

T l (eti) = T l
i (eti) + T l

k (eti) (5.8)

where:

αii (eti) = TRUE : τ ≥ sti (5.9)

αik (eti) = TRUE : τ ≥ stk & τ < etk (5.10)

In the above, Equation 5.6 determines the thermal effect of task ti at the target

time eti while Equation 5.7 determines that for task tk, respectively. In Equation 5.6

we use the thermal response parameters φll which represents the thermal response

of a unit power wavelet applied at processor PRl on itself, while φlm is the thermal

response on PRl due to a unit power wavelet applied on PRm. We use a set of Boolean

variables αki(τ)(αii(τ)) which are TRUE, only for the set of thermal response shifts

falling within the execution time duration of the tasks tk(ti) before the target time eti.

This is shown by constrains in the Equations 5.9 and 5.10. The total temperature is

the sum of the above two temperature effects and is given by Equation 5.8. Moreover,

we can also determine the thermal response profile by solving the Equations 5.6

to 5.10, at various target times corresponding to discrete time shifts. The top most

curve of the Fig. 5.5 shows the temperature profile at PRl. It can be seen that the

temperature, at first rises to a much higher value, at the end time of task ti, due to

a combined effect of the power dissipated on tasks tk and ti. This finally stabilizes to

a lower value at end of task tk because of the effect of task tk only. Similarly, we can
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calculate the temperature profile at the processor PRm considering the effect of both

tasks ti and tk.

5.5.1.2 Temperature Prediction for a set of N Tasks

Consider a set of N thermally overlapping tasks which are going to be executed

on an MPSoC consisting of P processors. Let ti be the target task executing on the

processor PRl and the corresponding target time is eti. In order to check if there is

a thermal emergency at the target time, we need to determine the temperature at

all the processors T l (eti). This is done by writing the Equations 5.6 to 5.10 for each

of the N thermally overlapping tasks, to generate a set of temperature parameters

T l
k (eti). Consequently, the temperature at the processor PRl at target time eti is

given by the following equation.

Figure 5.6. Thermal emergency check at end time of t1 for a set of thermally
overlapping tasks

T l (eti) =
∑

k∈N

T l
k (eti) ∀l ∈ P (5.11)
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Fig. 5.6 shows the temperature prediction for a set of four thermally overlapping

tasks executing on an MPSoC consisting of four processor cores. The current target

time is the end time of task t1. At the target time, we determine the temperature at

all the PEs by using the Equations 5.6 to 5.10. Once this is done, the target time is

shifted to the end time of task t3 and the above procedure is repeated. Similarly, the

above process is also repeated for the end times of tasks t2 and t4.

If the temperature corresponding to any of the tasks is found to be greater than

the thermal threshold then a thermal emergency is predicted. Next, we explain the

proposed branch-and-bound approach for thermal aware task scheduling.

5.5.2 Dynamic Thermal Aware Task Migration

Here we propose a look-ahead based branch-and-bound heuristic. The proposed

heuristic is predictive in nature and consists of the following steps.

5.5.2.1 Look-ahead

At the beginning of execution of a new task, a look-ahead list of L tasks, which

will be executed in the future, is generated. The size of look-ahead list is equal to

the look-ahead length parameter L which determines the complexity of the search.

This look-ahead list is arranged topologically based on the level of a task.

Definition 5.5.3. The level is a number associated with a task which is equal to the

longest path from the task to any one of the nodes in the look-ahead list for which

all the input dependencies have already been resolved.

The set of tasks with same level are arranged in the descending order of the power

estimation obtained from the pre-characterization phase. Consequently, scheduling

decisions are made in level order. For the tasks in the same level, scheduling decisions

are first made for the tasks with higher power dissipation before considering those
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with lower power dissipation. This task list is supplied to the branch-and bound

heuristic as explained next.

5.5.2.2 Branch-and-bound

Determination of task to processor assignment which minimizes total schedule

length while preventing thermal emergencies is an NP − Hard problem. Dynamic

scheduling involves solving this problem at run-time. Given the limited resources

of the processors available on the MPSoC, it is infeasible to solve this problem in

an exact fashion, within a reasonable amount of time. Various look-ahead based

greedy heuristics have been proposed for the solution of this problem in the previous

literature. These solutions are highly suboptimal, as they only look at the current set

of ready tasks to determine the schedule. Moreover, these algorithms have a tendency

of being stuck in local minimum. This is because, once a solution is found; they do

not continue searching for an alternate improved solution. Here we present a look-

ahead based branch-and-bound heuristic which comes out of the local minimum by

continuing search even after a valid solution is found. In order to reduce the size of

the search space the branch-and-bound operates only for the reduced set of tasks in

the look-ahead list with length L.

The branch-and-bound heuristic consist of a Decision List which holds the set of

tasks appearing in the look-ahead list. For each element of the decision list, there is

a list of processors of the matching type on which the particular task can be sched-

uled. The decision list generated for a look-ahead of four tasks is shown in Fig. 5.7.

There is a pointer variable called currentTaskPtr which points to the current task for

which a decision has to be made. In addition to this, there is a currentProcP tr as-

sociated with each element of the decision list, which keeps track of the proces-

sor being currently evaluated for the task. A combination of currentTaskPtr and
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Figure 5.7. Data structures used in branch-and-bound: (a) decision list and (b)
decision stack

currentProcP tr is used for selecting a task to processor schedule, represented by the

tuple {ti, pi}.

The task to processor schedule pair generated from the decision list is inserted into

the Decision Stack that holds the list of all the tasks which are already scheduled

to processors. The tasks and the processors represented by the hatched boxes in

decision list of Fig. 5.7 represent those which are currently scheduled. The boxes

with slanted lines represent the processors which have been already evaluated and

have failed the thermal emergency check. Once all the processors corresponding

to a particular task are evaluated, currentProcP tr is reset to NULL. From the

figure it can be seen that, decisions are made for the tasks t0 to t2 and the set of

tuples {{t0, PR0} , {t1, PR1} , {t2, PR2}} are pushed into the decision stack shown in

Fig. 5.7(b). Thermal emergency check is done for the set of tasks currently present

in the decision stack.

The flow chart in Fig. 5.8 shows the steps taken during the branch-and-bound

heuristic. The capital letters in the top left corner of each of the boxes are used
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here to explain the operation of the proposed heuristic. First, a task to processor

mapping is extracted from the decision list in the Step A. This location is pointed by

the currentTaskPtr and the corresponding currentProcP tr . In Step B, this tuple

is inserted into the decision stack, which is followed by thermal evaluation of all tasks

to processor mappings present in the decision stack in Step C. If a thermal emer-

gency is detected then the tuple {ti, pi} is popped from the decision stack and the

currentProcP tr at the current location is incremented to evaluate the next fastest

processor choice in the Steps D and E, respectively. If all the processor choices for

the tasks have been evaluated, then we go no to the previous task in the decision list

after resetting currentProcP tr (Step F). If there are no more tasks to be evaluated in

the decision list we report FAILURE in Step G. Otherwise, the task present in the

previous location is evaluated by decrementing currentTaskPtr (Step G). This gen-

erates another task to processor mapping corresponding to the currentTaskPtr and

currentProcP tr locations in Step A. The above loop continues until a schedule which

does not lead to a thermal emergency, is found for the current task. In that case, we go

to the next task location in the decision list by incrementing the currentTaskPtr in

Step J and selecting the first processor in the processor list of the new task in Step

N. Finally, we go back to Step A where the tuple {ti, pi} is evaluated for a thermal

emergency. A solution is found (Step K), if we reach the end of the decision list

which indicates that all the tasks in the decision list are scheduled, in which case, a

SUCCESS reported. We keep a track of the schedule which has the minimum sched-

ule length by storing it in a temporary location (Steps L and M). This is followed by

popping the decision stack and continuing search for another processor choice for the

current task (Steps D onwards).

The implementation of the procedure evaluate thermal emergency() which checks

for the presence of a thermal emergency among the current set of scheduled tasks, is

shown in the Pseudocode 5.1. It returns TRUE if thermal emergency is not found
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Figure 5.8. Flow chart representing branch-and-bound algorithm

and FALSE otherwise. The input to the function is decision stack which holds the

current set of tasks which are already scheduled. First start and end times of tasks

152



Algorithm 5.1 evaluate thermal emergency(decisionStack)

1: get task times (decisionStack, startT imeList, endT imeList)
2: for all taskIndex ∈ decisionStack.size() do
3: tT ime = endT imeList[taskIndex]
4: for all taskIndex1 ∈ decisionStack.size() do
5: sT ime1 = startT imeList[taskIndex1]
6: pName1 = decisionStack[taskIndex1]
7: temperature = 0.0
8: if thm overlap(taskIndex, taskIndex1, tT ime) then
9: for all taskIndex2 ∈ decisionStack.size() do

10: sT ime2 = startT imeList[taskIndex2]
11: eT ime2 = endT imeList[taskIndex2]
12: pName2 = decisionStack[taskIndex2]
13: tPower2 = ret task power(taskIndex2, pName2)
14: if thm overlap(taskIndex1, taskIndex2, tT ime) then
15: for wvIndx = 0;wvIndx < wvCount;wvIndx++ do

16: if ((wvIndx · tStep) ≤ (tT ime − sT ime2)) & &((wvIndx · tStep) >

(tT ime− eT ime2)) then
17: temperature+ = get wv effect(pName1, pName2, pPower2, wvIndx)
18: end if

19: end for

20: end if

21: end for

22: end if

23: end for

24: end for

25: if temperature > Tth then

26: return FALSE

27: else

28: return TRUE

29: end if

is determined using get task times(decisionStack, startT imeList, endT imeList). In

the Pseudocode, the tasks are accessed by using indexes taskIndex, taskIndex1 and

taskIndex2. In the following explanation, we would refer to a task using its index.

Hence, in order to refer to a task present at location decisionStack[taskIndex1] we

use taskIndex1. Start and end time generation is followed by checking for the pres-

ence of a thermal emergency for the end times of all the tasks in the outer loop from

the Lines 2 to 24. The current target time ‘tT ime’ for each of the tasks taskIndex

is determined in the Line 3. Now in the Lines 4 to 23 we check for each of the
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tasks among the set of thermally overlapping tasks if there is a thermal emergency

at tT ime. The condition if tasks taskIndex1 and taskIndex2 are overlapping at the

tT ime is checked by the function thm overlap(taskIndex, taskIndex1, tT ime). This

function checks for the conditions given in the Equations 5.4 and 5.5 for pair of tasks

taskIndex and taskIndex1 at target time. Now for each of the tasks we determine

the start time (sT ime1) and the processor on which it is scheduled (pName1) in the

Lines 5 and 6. The variable temperature, which stores the temperature of the task

taskIndex1 at tT ime is also initialized. In order to calculate this temperature, we

need to determine the temperature increase at tT ime due to the effect of all the other

thermally overlapping tasks. This is done in the loop present in the Lines 9 to 21.

The task which is obtained using taskIndex2 is called the overlapping task. For the

overlapping task we determine the start and end times sT ime2, eT ime2, processor

name pName2 and power dissipated tPower2. The power dissipation is obtained

from the power estimation table using the function ret task power() as shown in

Line 13. Now, the temperature at tT ime is determined using the thermal response

coefficients only if taskIndex2 overlaps at tT ime in Line 14. If they do overlap, we

iterate through all the thermal response values which overlap at the tT ime in Line 15

to 19. Once the temperature at the current task taskIndex1 is determined, it is com-

pared with the thermal threshold Tth to see if a thermal emergency is present or not. If

a thermal emergency is detected, then we return a TRUE value, otherwise a FALSE

value is returned. The overlap condition is checked in the Line 16 and the function

get wv effect() is used to determine the effect on pName1 due to power applied on

pName2 at a time shift of wvIndx. It calculates each of the terms of the summation

given in the Equations 5.6, 5.7 and 5.8. For a look-ahead length of L and a set of W

termal response values, the run-time for the above algorithm is O (L3 ·W ) making

this the most compute intensive step in the proposed branch-and-bound heuristic.

Thus the proposed heuristic generates the following outcomes:
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• Success: It returns a success if at least one schedule is found which eliminates

thermal emergencies

• Failure: A failure is reported when a schedule which causes thermal emergencies

cannot be determined after exhaustively searching all the possibilities

In case of failure, the following algorithm is used to perform delay insertion as

explained in the next section.

5.5.2.3 Delay Insertion

Thermal emergencies are caused by thermally overlapping tasks and can be elimi-

nated by removing the overlap by delaying selected tasks. Tasks are delayed such that

the thermal effect of one of the task on the other is reduced until a thermal emergency

is eliminated. The following Pseudocode 5.2 describes the function void delay tasks(),

which performs delay insertion to remove thermal emergencies. Firstly, it performs

thermal evaluation of the tasks present in the decision list. This part is given in the

Lines 2 to 23. This is similar to the the Pseudocode evaluate thermal emergency(),

which checks for thermal emergencies, with a difference that, for each taskIndex1 it

generates a list of tasks which are responsible for thermal emergency at taskIndex1.

This is followed by delaying all the taskIndex2 which cause a thermal emergency

at taskIndex1 until the thermal emergency is removed. We do not delay the tasks

taskIndex and taskIndex2. This condition is checked in the Line 27. This is fol-

lowed by the function insert task delay(taskIndex2, tT ime) which determines the

minimum amount of delay required to completely remove temperature contribution of

taskIndex2 on taskIndex1 at the target time tT ime. We keep track of the reduction

in the temperature by subtracting the removed tempContribution from temperature.

Finally, after delaying tasks we update the start and end times of all the tasks by

using update task time() function and checking for thermal emergencies using the
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updated time values. For a look-ahead limit of L and thermal response length of W ,

the complexity of the above algorithm is also O (L3 ·K).

Algorithm 5.2 delay tasks(decisionStack)

1: get task times (decisionStack, startT imeList, endT imeList)
2: for all taskIndex ∈ decisionStack.size() do
3: tT ime = endT imeList[taskIndex]
4: for all taskIndex1 ∈ decisionStack.size() do
5: sT ime1 = startT imeList[taskIndex1]
6: pName1 = decisionStack[taskIndex1]
7: temperature = 0.0
8: tempcontributionList.clear()
9: if thm overlap(taskIndex, taskIndex1, tT ime) then

10: for all taskIndex2 ∈ decisionStack.size() do
11: sT ime2 = startT imeList[taskIndex2]
12: eT ime2 = endT imeList[taskIndex2]
13: pName2 = decisionStack[taskIndex2]
14: tPower2 = ret task power(taskIndex2, pName2)
15: if thm overlap(taskIndex1, taskIndex2, tT ime) then
16: for wvIndx = 0;wvIndx < wvCount;wvIndx++ do

17: if ((wvIndx · tStep) ≤ (tT ime − sT ime2)) & &((wvIndx · tStep) >

(tT ime− eT ime2)) then
18: temperature+ = get wv effect(pName1, pName2, pPower2, wvIndx)
19: end if

20: end for

21: end if

22: end for

23: end if

24: tempContributionList.insert(taskIndex2, temperature)
25: while temperature > Tth do

26: taskIndex2 = tempContributionList.next()
27: if taskIndex2 6= taskIndex1 & &taskIndex2 6= taskIndex then

28: tempContribution = tempContributionList.next()
29: insert task delay(taskIndex2, tT ime)
30: temperature = temperature− tempContribution

31: update task times()
32: end if

33: end while

34: end for

35: end for

While executing the above branch-and-bound heuristic, there is a chance that the

temperature at processor core executing the heuristic itself increases and becomes

high. In order to prevent thermal emergencies this processor has to keep track of its
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own temperature. Branch-and-bound is terminated if the temperature comes close

to the thermal emergency threshold. In that case only delay insertion is done and

the execution of this heuristic is halted until the temperature cools down. More-

over, DVFS based thermal management techniques could be used in order to reduce

temperature by reducing the core performance and hece the power dissipation.

Next we explain the ILP formulation which is used to obtain a minimum schedule

length statically while preventing thermal emergencies.

5.6 ILP Formulation

Consider a task graph G consisting of set of tasks ti ∈ G scheduled on an MPSoC

with P processors. For the task ti executing on a processor pj the power dissipation

is given by ρij. Each of the tasks has a type, and the task can only execute on a

processor with the matching type. The problem of thermal aware scheduling consists

of determining a schedule with minimum length, which prevents thermal emergencies.

Therefore, the set of ILP constraints for the above goal, consist of the following parts.

• Formulation for schedule length minimization

• Formulation for temperature calculation in order to evaluate thermal emergen-

cies, based on current schedule

• An objective function which determines the total schedule length of the task

graph so as to minimize it.

Next we will discuss each of the above parts in detail.

5.6.1 Schedule Length Minimization

The ILP formulation for schedule length minimization is adapted from Tosun et

al. in [105]. The readers are advised to refer to the above work for details about this

ILP formulation.
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5.6.2 Thermal Evaluation

Temperature calculation is done by using the thermal response table generated in

the pre-characterization phase. In order to reduce the complexity of the formulation,

the original set of thermal response values are approximated to a smaller set of re-

sponse values. These new set of responses consists of just one base response given by

Φ(t). The base response is selected among original set of thermal responses, as the

one which has the highest maximum temperature value. Hence, the scaling values for

the base response are given by the following set of equations.

φ(t)← φkl(t) : max
t∈W
{φkl(t)} ≥ φmn(t) (5.12)

∀k, l,m, n ∈ P

All the other thermal responses are represented by scaling the base thermal re-

sponse using scaling values γkl. The scale is determined as a ratio between the maxi-

mum temperature for the corresponding original thermal response to that of the base

thermal response. Hence we have the following equation.

γkl =
maxt∈W {φkl(t)}
maxt∈W {φ(t)}

(5.13)

Thus the wavelet coefficient set is given as a combination of the base response

φ(t) and the set of scaling values γkl, representing the effect on processor pl due to

power dissipated on processor pk. This can be seen in Table 5.2 which compares the

original thermal response presented in Table 5.1 with the approximate one. Here,

each of the thermal response values φkl(t) are replaced by the corresponding scaling

factors γkl. It can be seen that, the size of the approximate thermal response table is

O (P 2 +W ) as compared to O (P 2 ·W ) for the original thermal response table. This

approximation leads to an over-estimation of temperature response. This is because,

it does not consider the delay introduced in the temperature response of processor
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PRl as compared to that at the processor PRk. Consequently, it assumes that the

temperature responses at a pair of separate locations are varying simultaneously.

Table 5.2. The thermal response table shown in Table. 5.1 is compared with the
approximate thermal response table used for ILP formulation

Unit power
wavelet

applied at
..

Thermal
response
measured

at ..

Thermal
response
values
t ∈ W

Scaling factors for approximated
thermal response values obtained
from base response φ(t) : t ∈ W

PR0
PR0 φ00(t) γ00
PR1 φ01(t) γ01
PR2 φ02(t) γ02

PR1
PR0 φ10(t) γ10
PR1 φ11(t) γ11
PR2 φ12(t) γ12

PR2
PR0 φ20(t) γ20
PR1 φ21(t) γ21
PR2 φ22(t) γ22

Suppose we need to determine the thermal response at the end time of target

task ti1 . As temperature estimation is done only at the end of task execution, the

target time for our case is the end time eti. Execution of the pair of tasks ti1 and

ti2 is thermally overlapping at the target time eti if Equations 5.4 and 5.5 are satis-

fied. Rewriting Equations 5.4 and 5.5 the thermal overlap condition is given by the

following set of equations.

eti1 − sti2 > 0 (5.14)

eti1 − eti2 ≤ W (5.15)

We define shift Boolean variables αi1i2τ which are TRUE for shift τ of the unit

power wavelet representing task ti2 , such that the thermal response overlaps at the

target time eti1 . Thus, for a pair of tasks αi1i2τ variables are generated for all the W

shifts of the wavelet response. Moreover, we define variables yi1i2τ , which are TRUE
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when Equation 5.14 is satisfied and zi1i2τ which is TRUE when Equation 5.15 is

satisfied. Therefore we have the following set of constraints.

D · (1− yi1i2τ ) + ((eti1 − sti2)− τ) ≥ 1 (5.16)

D · yi1i2τ − ((eti1 − sti2)− τ) ≥ 0 (5.17)

D · (1− zi1i2τ ) + ((eti1 − eti2)− τ +W ) ≥ 0 (5.18)

D · zi1i2τ + ((eti1 − eti2)− τ +W ) ≥ 1 (5.19)

Consequently, αi1i2τ is TRUE when both yi1i2τ and zi1i2τ are TRUE.

zi1i2τ + (1− αi1i2τ ) ≥ 1 (5.20)

yi1i2τ + (1− αi1i2τ ) ≥ 1 (5.21)

(1− zi1i2τ ) (1− yi1i2τ ) + αi1i2τ ≥ 1 (5.22)

Here, D is a large constant such that:

D > eti : ∀i ∈ G (5.23)

Now we define T ovlp
i1i2

, a set of real variables which represent the temperature at end

of task ti1 because of the overlap with task ti2 . In calculating this temperature, we

do not consider the scaling effect of power and the spatial location due to scheduling.

Therefore, we have the following equation:

T ovlp
i1i2

=

eti
∑

τ=eti−W

φ (eti − τ) · αi1i2τ (5.24)

Now, we define new set of real variables Ti1i2j2 which represent the temperature

at task ti1 when the task ti2 is scheduled on a processor pj2 . If task ti2 is scheduled
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on processor pj2 then the Boolean variable si1j2 is TRUE. Therefore, in this case, we

have Ti1i2j2 = T ovlp
i1i2

. Hence, we obtain the following equations.

(Tth · (1− si1j2) + Ti1i2j2) ≥ T ovlp
i1i2

(5.25)

(Tth · (si1j2 − 1) + Ti1i2j2) ≤ T ovlp
i1i2

(5.26)

(Tth · si1j2 + (1− Ti1i2j2)) ≥ 1 (5.27)

∀ti1 , ti2 ∈ G ∀pi1 , pi2 ∈ P

Here, Tth is the thermal emergency threshold. Now, we determine the temperature

response on all the processors at the end time of the task ti1 . In the above equations,

we have not considered the power dissipated and the spatial response scaling for any of

the tasks. Therefore, we define a real variable Tsi1j which represent the temperature

at the processor pj at the end time of task ti1 .

Tsi1j =
∑

ti2∈G





∑

pj2∈P

Ti1i2j · ρi2j2 · γj2j



 (5.28)

∀pj ∈ P (5.29)

The temperature at task ti1 is given by the variable Ti1 and is equal to the maxi-

mum value of the response among all the processors.

Ti1 ≥ Tsi1j ∀pj ∈ P (5.30)

Finally, the maximum temperature is given by Tmax as follows:

Tmax ≥ Ti1 ∀ti1 ∈ G (5.31)
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If Tth is the thermal emergency threshold, then Tmax should not exceed it. Therefore

we have the following constraints.

Tmax < Tth (5.32)

5.6.3 Objective Function

The objective function minimizes schedule length while preventing thermal emer-

gency. We define a time tfinal which is equal to the schedule length for the current

task to processor allocation obtained from the ILP formulation done for schedule

length minimization.

tfinal ≥ eti ∀ti ∈ G (5.33)

Therefore, the objective function minimizing the total schedule length is given by

the following equation.

Obj = minimize {tfinal} (5.34)

5.7 Results

In order to evaluate the proposed approach, task graphs were generated using

Task Graphs For Free (TGFF) [36]. TGFF is a freely available tool which is used to

generated pseudo-random task graphs based on the input parameters. Each task has

a base power consumption which is the amount of power consumed if it is scheduled

on the fastest processor. These power consumption values for the tasks were assigned

randomly in a range varying from 10 to 15 Watts. These values are used to generate

the power estimation table. HotSpot [101] temperature modeling tool is used here for

thermal simulation of the power trace generated from task execution. The following

Table 5.3 shows thermal parameters were used for the die package system.
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Table 5.3. Thermal parameters of the die package system in Hotspot tool

Parameter Value

Chip Thickness 600um
Substrate Convection Resistance 0.01mK/W

Substrate Heat Capacity 1750000J/m3K
Heat Sink Thermal Resistance 0.1K/W
Heat Sink Thermal Capacity 140J/K

Ambient Temperature 320K
Base Processor Frequency 2GHz
Power Sampling Interval 250us

The MPSoC floorplan used in the following experiments is show in Fig. 5.9 below,

where each of the processors has the same dimensions. This MPSoC consists of 12

processors each of which can have one of four different types. It can be seen that, all

the processors in a column have the same type. Moreover, corresponding to each of

the processors there is an associated Relative Execution Time for all the processors

in a row, which determines the amount of time and power dissipated by a task on

the particular processor. For example, consider a task taking x amount of time and

dissipating a power of p watts on processor with a relative execution time of one unit.

If this task is scheduled on a processor with a relative execution time of r, then it will

take r · t amount of time and will dissipate p/r amount of power. Therefore, it can

be seen that the processors in the row 1 and 2 are the fastest while those in the row

3 have half the performance and power dissipation. Therefore, any task migration

should move a task to a processor amongst rows 1 and 2 in order to avoid thermal

emergency and only if a thermal emergency cannot be avoided by doing so, then it

should move the task to a slower processor in the row 3.

The above mentioned floorplan is useful in evaluating proposed task migration

approach. Let there be a task causing thermal emergency, executing on any one of

the processors in the first row. Thermal emergencies are caused not only due to

the power dissipated in the given task, but also because of the power dissipated in

the neighboring tasks which are thermally overlapping with the current task. This
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Figure 5.9. MPSoC floorplan with 12 processor cores

thermal emergency can be eliminated by rescheduling it to a processor in the second

or the third row. Rescheduling the task to a processor in the second row may help

reduce the temperature by increasing the distance between the thermally overlapping

tasks, while rescheduling to a processor in the third row prevents thermal emergency

by reducing the power to half of the maximum power at the cost of a two fold increase

in execution time. A good thermal aware scheduling approach should select the former

solution most of the times and resort to the latter only if the former fails to prevent

the thermal emergency.

Next we will present results for pre-characterization and run-time stages.

5.7.1 Pre-characterization Stage

The thermal behavior of die and package is characterized in this stage. This is done

by applying a unit power wavelet at each processor and measuring the corresponding

thermal response at all the other processors. This is shown in Fig. 5.10, where the

unit power wavelet is applied to the processor PR0 at the bottom of the figure and
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the corresponding temperature variation at all the other processors is measured. The

pulse width for Haar wavelet is set to 625µs. Thus, for all the subsequent simulations,

time is discretized to 625µs. The corresponding thermal response obtained is sampled

at time instances which are integral multiples of the unit power wavelet pulse width.

This leads to the generation of the set of thermal responses φ0j(t) : ∀j ∈ p on

processor pj corresponding to the power applied at p0(t). This is repeated for all the

other processors to generate the thermal response table φij(t). Moreover, from the

figure we can see that thermal response length of W = 40 samples is used here.

Figure 5.10. Thermal response coefficients generated for a unit power wavelet ap-
plied at PR0
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5.7.2 Run-time Stage

In run-time stage, task migration is done based on temperature prediction using

thermal response table generated during pre-characterization. If a thermal emer-

gency is predicted, then branch-and-bound based heuristic is invoked to minimize

the schedule for the set of tasks in the look-ahead list, so as to eliminate the ther-

mal emergencies. The quality of the final schedule and the temperature prediction

depends on the length of the look-ahead list used in this approach.

5.7.2.1 Look-ahead Length Selection

The amount of look-ahead used for task migration determines the quality of the

final schedule. Looking ahead for a small number of tasks helps us in dividing the

scheduling problem for the whole task graph into smaller sub-problems which can

be solved with much less computational resources. Consequently, it should be noted

that the final solution obtained is sub-optimal. For a look-ahead list consisting of

L tasks, where each task can be scheduled on p processors, the complexity of task

scheduling is exponential with respect to look-ahead length. This is given by O
(

pL
)

.

This implies that the number of times evaluate thermal emergency() function is

called is given by O
(

pL + pL−1 + pL−2...
)

. For MPSoC architecture shown in Fig. 5.9

each task can be schedule on 3 processors with the matching type. As a result,

for look-ahead length of L tasks, the number of times thermal emergency check is

done is O
(

3L + 3L+1 + 3L+2...
)

. Due to limited computation capacity of each of the

processors in the MPSoC, searching for a large search space is not feasible. We make

a conservative assumption that each of the processors cannot handle more than 2000

possible calls to evaluate thermal emergency(). The maximum value of L = 6 for

which the number of calls to evaluate thermal emergency() is less than 2000.
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5.7.2.2 Temperature Prediction

In our approach, temperature prediction is done only at end times of the task

execution. Due to the limited length of the thermal responses corresponding to var-

ious tasks, there is an error induced in temperature prediction with increase with

look-ahead length. In order to evaluate the accuracy of temperature prediction, the

predicted temperature values were compared with those obtained from running the

same power trace using Hotspot. Table 5.4 shows the temperature prediction error.

Table 5.4. Temperature prediction error

Average Error 0.88
Standard Deviation 0.83

Max. Error 1.39

Temperature variation for a task graph referred to as BM6 with 30 tasks executing

on the MPSoC shown in Fig. 5.9, is shown in the Fig. 5.11. The thermal emergency

threshold is set to 380K. It can be seen that, the execution of the task graph causes

thermal emergencies at three different locations. These thermal emergencies are re-

ferred as TE1, TE2, and TE3, respectively. All the tasks in this case are scheduled

among the processors PR0 to PR3. This gives an original schedule length of 10.7

seconds. The temperature predicted at the end of task graph execution is represented

by the black step curve. The predicted values are represented using circles at the end

of the corresponding task executions. These predicted values are compared with the

actual temperature and the temperature prediction error e is calculated as a differ-

ence between the actual and the predicted temperatures. The calculated error values

are shown only for the tasks which cause thermal emergencies. It was observed that

temperature prediction is optimistic; the actual temperature could be slightly higher

than the predicted value which causes a +ve error. The inaccuracy is eliminated by

reducing the actual thermal emergency threshold by 2 degrees.
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Figure 5.11. Temperature variation for BM6 task graph with 6 number of tasks
with the corresponding temperature prediction values

5.7.3 Effect of Core Count on Task Migration

The following experiment was done in order to evaluate the importance of task

migration with increase in the total number of processors in the MPSoC. We compared

our results with Dynamic Frequency Scaling (DFS) based technique. The task graph

(BM6) with 30 tasks used in the previous experiments is also used here.

As shown in the Fig. 5.12, the number of cores in the MPSoC is varied in steps of

4 starting from 4 to 16. The relative execution time of all the processors is set to one

unit so that the task migration becomes the only reason responsible for schedule length

improvement. The initial schedule consists of assigning tasks among the processors

PR0 to PR3 which leads to the set of thermal emergencies as shown in the Fig. 5.11.
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Figure 5.12. MPSoCs with 4, 8, 12 and 16 processors represented by using the
architecture names A4, A8, A12, and A16 respectively

Branch-and-bound heuristic is run with a look-ahead limit of 6 tasks. If no solution

preventing thermal emergency is found, then delay insertion is invoked.

Table 5.5. Dynamic frequency scaling parameters

Number of Frequency Levels: 2
Frequency Level 1: Nominal Frequency
Frequency Level 2: Half of Nominal Frequency

Temperature sampling interval: 250µs
Thermal emergency threshold: 380K

DFS threshold: 378K

Table 5.5 shows the various DFS parameters used in our experiments which are

obtained based on [16]. As DFS does not predict temperature, in order to avoid

a thermal emergency, it has to be conservatively initiated at a lower temperature

of 378K as compared to the thermal threshold. The DFS approach samples the

temperature at every 250µs period and takes action if the temperature is found to
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be higher than DFS threshold. The action involves reducing the frequency to half of

the nominal frequency. As a result some tasks whose temperature is higher than the

DFS threshold but lower than thermal emergency threshold also get throttled and

their performance gets penalized. Therefore, the total schedule length obtained from

DFS can be higher than that obtained by migration.

Table 5.6 shows the schedule length variation with the number of cores. DFS gives

a schedule length of 10.735 seconds. This does not change with the number of cores

as the task schedule is static for DFS. We compare the effectiveness of task migration

and delay insertion with increase in the number of cores.

Table 5.6. Schedule length variation with the number of cores

Original Schedule length 10.70 seconds
Schedule Length from DFS 10.734 seconds
Architecture Schedule length in seconds Action Taken

A4 11.55 Delay Insertion
A8 10.95 Delay + Task Migration
A12 10.7 Task Migration
A16 10.7 Task Migration

From the table it can be seen that DFS does better for the 4 core case because

there is no scope for task rescheduling, hence the only action taken by the proposed

approach is delay insertion. This gives a large schedule length as compared to DFS.

With increase in the number of processors in the subsequent cases, a combination

of task migration and delay insertion is required which eventually gives a shorter

schedule length as compared to DFS. For the 8 core case, a combination of task

migration and delay insertion does not give a schedule length smaller than DFS.

Consequently, for the 12 and 16 core cases, as task migration is the only action taken

the total schedule length obtained reduces below that obtained from DFS. This shows

that with increase in the number of cores in an MPSoC task migration can do better

as compared to DFS based approach.
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Fig. 5.13 to 5.15 show the execution of the above task graph on the 12 core

architecture A12. Fig. 5.13 shows how dynamic frequency scaling eliminates thermal

emergencies TE1 TE2 and TE3 shown in Fig. 5.11. As a result of DFS the original

schedule length of 3.70 seconds is increased to 3.735 seconds.

Figure 5.13. Elimination of thermal emergencies using DFS

Fig. 5.14 shows how thermal emergencies are eliminated when task migration is

done. The schedule length of 3.70 seconds obtained from task migration is less than

that obtained from DFS. Fig. 5.15 shows how the tasks are rescheduled in order to

prevent thermal emergencies. The tasks that are rescheduled are shown in red boxes.

The blue boxes show the time at which various thermal emergencies occur. It can be

seen that the thermal emergency TE1 is avoided by moving the tasks t10 and t9 away

from task t7. Similarly TE2 is avoided by moving the tasks t17 away from t18 and t12.

Finally, thermal emergency TE3 is avoided by rescheduling task t24. As the resultant
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Figure 5.14. Elimination of thermal emergencies from run-time task migration

schedule length is same as the original schedule length of 10.70 seconds our proposed

approach is able to prevent thermal emergencies without schedule length increase.

5.7.4 Comparison with ILP Based Static Approach

The following experiment was done in order to compare the proposed branch-and-

bound heuristic for task migration with the exact solution obtained from ILP. The

number of nodes in the task graphs is varied randomly from 5 to 11. Gnu Linear

Programming Kit (GLPK) [5] was used to solve the ILP formulation. The branch-

and-bound heuristic was run with a look-ahead length of 6 tasks. The twelve core

MPSoC architecture with the floorplan shown in Fig. 5.9 was used here.

Fig. 5.16 shows the comparison of the schedule length obtained from the ILP based

formulation, the proposed task migration heuristic and DFS. It can be seen that the
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Figure 5.15. Effect of task migration on task execution

proposed task migration approach gives a schedule length very close to the absolute

minimum obtained from the ILP based approach. For BMi6 task migration gives a

shorter schedule length as compared to ILP. This is because of the approximation done

for the thermal response values in order to reduce the complexity of ILP formulation.

As a result of which, the ILP ends up over-estimating the temperature. Consequently,

ILP results in scheduling a task to a slower processor as it overestimates temperature

at a faster processor.

5.7.5 Comparison of branch-and-bound with DFS

The proposed branch-and-bound algorithm was run for large task graphs on the

MPSoC architecture shown in the Fig. 5.9. The original schedule was generated

by using a greedy heuristic. For greedy scheduling, the task graph was propagated
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Figure 5.16. Comparison of ILP with branch-and-bound based heuristics

topologically and the ready tasks were scheduled to the fastest processor available.

The original greedy schedule has thermal emergencies which are eliminated by running

the proposed branch-and bound heuristic with a look-ahead length of 6 tasks. The

results are compared with DFS as shown in Fig. 5.17.

It can be seen from Fig. 5.17 that the total schedule length obtained from the

proposed approach is smaller than that obtained from DFS except for the BM1, BM4

and BM9. In this case branch-and-bound gives highest schedule length. DFS does

better because the increase in task execution time gets absorbed in the available

additional slack for the tasks. For rest of the other cases DFS give a higher schedule

length than branch-and-bound.
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Figure 5.17. Comparison of schedule length for large task graphs obtained from
branch-and-bound heuristic with greedy scheduling and DFS approaches

5.8 Conclusions

With high level of integration and increased power density thermal hotspots have

become common. Hotspots can lead to reliability and performance issues and effect

design convergence. In current generation ICs, DTM techniques like frequency and/or

voltage scaling are used to control temperature by reducing power dissipation. In this

work we propose a run-time look-ahead based branch-and-bound scheduling heuristic

based on temperature prediction which is used to eliminate thermal emergencies while

minimizing schedule length. In the case that task migration fails to prevent thermal

emergency a delay insertion based technique is used to remove task thermal overlaps

among the tasks. Finally an ILP based scheduling approach which achieves the above

goals statically is also presented. The above solutions leverages upon a wavelet based

thermal modeling approach where an application independent pre-characterization of

the thermal system is done. We show that task migration becomes more effective

175



in eliminating thermal emergencies with increase in the number of processor cores in

the MPSoC as compared to DFS. Results show that temperature prediction could be

done with error within 2K. Moreover, schedule length obtained from the proposed dy-

namic scheduling approach was compared with that obtained from dynamic frequency

scaling and the proposed ILP based approach. The results show that the dynamic

task scheduling for most of the cases results in 2% to 5% smaller schedule lengths as

compared to that obtained from frequency scaling and a maximum schedule length

increase of 5% to 10% of that obtained from ILP.
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CHAPTER 6

CONCLUSIONS

Due to device scaling, there has been a substantial increase in transistor count

and density. In spite of this, extracting proportional improvement in performance

with the available transistors has become a challenging task, as a result of various

non-ideal effects arising due to shrinking geometries. These non-ideal effects manifest

themselves in terms of performance degradation and reliability problems/faults in the

design. This has lead to a substantial increase in verification/validation effort and

cost. In order to achieve timely design convergence, these faults are either fixed at

design time or tested during manufacturing time. In this work, we present heuristic

solutions for various such problems and different levels of abstractions.

One of the major causes of design convergence problems in VLSI is capacitive

crosstalk. Due to shrinking inter-wire distances with scaling, the number of crosstalk

violations has been increasing. In this work, an Integer Linear Programming (ILP)

based ATPG technique is presented in order to maximize crosstalk induced delay at

the victim net for multiple aggressor crosstalk fault scenario. We presented an inte-

grated approach which performs maximal aggressor excitation and fault propagation

using a single ILP formulation and compare it with a novel partitioning based ap-

proach which deals with the above two problems separately. The above approaches

are applied for both zero and unit delay models. The results indicate that percentage

of total capacitance that can be switched varies from 75-100% for zero delay and 30-

80% for variable delay case while propagating the fault effect to the primary output.

It has been seen from the results that a better quality solution is obtained from the
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integrated approach as compared to the partitioning based approach which is faster,

as the number of equations is fewer.

Power supply switching noise has become one of the leading causes of signal in-

tegrity related failures, as a result of voltage scaling, in deep sub-micron designs.

Traditional peak current estimation approaches involve addition of peak current as-

sociated with all the CMOS gates which are switching in a combinational circuit.

In this work, an ILP based technique for generation of an input pattern pair so as

to maximize switching supply currents for a combinational circuit in the presence

of integer gate delays, is presented. Moreover, it is observed that the non-zero gate

delay assumption not only improves the accuracy of the solution, but also helps us

in reducing a single instance of the problem size by restricting the focus on only the

set of active gates for a given time instant.

With high level of integration, Multi-Processor Systems on Chip (MPSoC) feature

multiple processor cores and accelerators on the same die. Traditional approaches

of hardware-software co-design for MPSoCs involve representing an application in

the form of a task graph and employing static scheduling in order to minimize the

schedule length. The drawback of static scheduling is that dynamic system behavior

is not taken into consideration. In order to do dynamic scheduling we require the

knowledge of the application task graph at run-time. In this work, a run-time task

graph extraction heuristic to facilitate a novel game theory based dynamic scheduling

is presented. The results show that our technique extracts a phase graph in fewer

than 250 iterations which is several orders of magnitude smaller than the millions of

iterations which a task graph goes through during the execution of an application.

Moreover, typically in fewer than 100 iterations, the proposed game theory based

dynamic scheduling approach is able to obtain a schedule length comparable to that

obtained from ILP based absolute minimum.
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Power density in modern VLSI ICs has gone up substantially, with increase in

transistor density. This has lead to the creation of hotspots, which are regions with

very high temperature. Excessive temperature at hotspots can lead to reliability and

performance issues and affect design convergence. In this work, we propose a run-

time look-ahead based task migration technique in order to utilize the multitude of

cores available in an MPSoC to eliminate thermal hotspots. Our technique is based

on temperature prediction leveraging upon a novel wavelet based thermal modeling

approach. We also present a static ILP based scheduling approach which minimizes

the total schedule length of a task graph, while preventing thermal emergencies. The

results show that the dynamic task scheduling for most of the cases results in 2%

to 5% smaller schedule lengths as compared to that obtained from frequency scaling

and a maximum schedule length increase of 5% to 10% of the absolute value obtained

from ILP based approach.

It can be seen that all the above problems involve optimization of some real phys-

ical quantity in the presence of constraints in various domains. These constraints are

in the Boolean domain for crosstalk ATPG and switching current estimation problems

at hardware level, while they involve integer and dependency constraints for dynamic

task scheduling and thermal ware scheduling problems in software level. All of the

above problems can be mapped to the class of constrained max-satisfiability problems,

which are NP − Hard in nature. This work provides and compares various heuris-

tic/exact solutions to the above problems. The results show that ILP based exact

solution leads to large computation time. Consequently, heuristic solutions provide a

good trade-off between quality of the solution and the computation complexity.
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