26 research outputs found

    Partial orders and fully abstract models for concurrency

    Get PDF
    In this thesis sets of labelled partial orders are employed as fundamental mathematical entities for modelling nondeterministic and concurrent processes thereby obtaining so-called noninterleaving semantics. Based on different closures of sets of labelled partial orders, simple algebraic languages are given denotational models fully abstract w.r.t. corresponding behaviourally motivated equivalences. Some of the equivalences are accompanied by adequate logics and sound axiomatisations of which one is complete

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    UML 2.0 interactions with OCL/RT constraints

    Get PDF
    The use of formal methods at early stages of software development contributes to the reliability and robustness of the system to be constructed. Int his context, real-time system development benefits from the construction of behavioral models in order to verify the correct satisfaction of time constraints. The Unified Modeling Language (UML) is a software specification language widely used by the industry and the academia. Nevertheless, its version 2.0 lacks a formal semantics for the development of provably-correct models. In addition, its constraint specification language, Object Constraint Language (OCL), has limitations for its use in behavioral models of real-time systems. This work concerns the inter-component behavioral specification of real-time systems. Such behavior is described using the UML 2.0 Interactions language extended for the inclusion of time constraints using the OCL for Real Time (OCL/RT) language. The main problem addressed in this work is the definition of a formal semantics for the fusion of both languages. The semantics allows recognizing valid and invalid behaviors of a system with time constraints. Intended for formal verification, an analysis of the properties derived from the semantics is also done. In particular, the notions of refinement of interactions and refinement of constraints are explored. Finally, the proposal is compared with related works and its practical application is studied in order to analyze its benefits and weaknesses. This work contributes to the formalization of concepts widely used in practice and, inconsequence, to its inclusion in modeling and formal reasoning tools. More-over, the expressivity of the UML 2.0 Interactions language is augmented in order to support complex real-time constraints, not expressable until this moment

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.
    corecore