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Introduction 

This thesis adresses the formal semantics of programming and specification 
languages for concurrent discrete event systems. Moreover it is concerned with 
various applications of such semantics. 

A formal semantics is a mapping that relates to each program or 
specification in a language a computational structure (or a class of structures) 
in some semantic, mathematical domain. The intention is that a semantical 
object related to a program or specification models the behaviour of a com­
puter system that executes the program, resp. the behaviour of a system that is 
described in the specification. 

Both programming and specification languages are designed with some for­
mal or intuitive semantics in mind. The distinguishing feature of a program­
ming language however is that either there exists a physical machine which can 
realise a behaviour structure associated to a language element (with a high pro­
bability), or, at least, we know how to build such a machine in principle. For 
a fixed semantics, a programming language must be executable. For a 
specification language on the other hand, this is not required. It is hard to 
establish the exact boundary between programming and specification 
languages. Clearly a lot of languages can be and have been implemented. 
There are also languages for which we do not know how to implement them. 
Finally, given the existence of undecidable problems and assuming the 
Church-Turing thesis, some languages can never be implemented. In general 
however, certain parts of a specification language will always be executable. 

In this thesis I will model systems in terms of the events that they generate 
in time. I will restrict attention to systems that are discrete in the sense that at 
any moment the set of events that have occurred is finite. Often the systems 
that will be considered consist of a number of components, each of them gen­
erating events independently or concurrently. Examples of concurrent discrete 
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event systems are parallel computers, operating systems, telephone switching 
systems, distributed database systems and delay insensitive circuits. 

The first section of this introduction contains a discussion of the aim and 
scope of semantic theories. I will list some of the questions which in my view 
should motivate research on semantics and point out a number of areas where 
semantic theories have contributed. Then I will sketch briefly, in Section 2, 
the main ingredients of the semantic theory for concurrency as it has been 
developed over the last ten years. In Section 3, I will present an overview of 
the contents of this thesis. Referring to the first section, I will indicate what 
are the questions that will be addressed in the thesis. Section 2 will allow me 
to position my work within the theory of concurrency semantics. 

1. AIM AND SCOPE OF SEMANTIC THEORIES 

1.1. Language design. Formal semantics can be useful in the design of a 
language. In the case of functional and logic programming one could even say 
that the semantics, as mathematical theories, existed before the programming 
languages, and that these languages were created in an attempt 'to implement 
their semantics'. 

A typical situation which occurs during language design is that implemen­
tors as well as (future) users want to introduce in a language lots of features 
which (1) are easy to implement, (2) often allow for short and fast programs, 
(3) do not fit at all in the semantic model of the language. Often in such a 
case, a semanticist will oppose incorporating this type of features in the 
language because they will lead to unstructured programs whose correctness is 
very hard to prove. As argued by AMERICA [3], it is a good rule of thumb to 
say that there is a problem in the language design whenever the description of 
a language feature that is considered to be inessential requires a special adap­
tation of the overall semantic model used to describe the language. A typical 
example is the goto-statement in languages like Pascal. In many cases however 
the gain in efficiency and practical usefulness obtained by extending a 
language with features that are outside the semantic model is so immense that 
they are just added, whether the semanticists appreciate it or not. The success 
of languages like LISP and Prolog for instance is due to a large extent to the 
imperative features which they incorporate. Therefore, only certain parts of 
real-life languages will have a neat underlying semantic theory. The job of the 
semanticist here is to help the language designer to make these parts as large 
as possible (without restricting the general expressiveness of the language too 
much), and to explain to programmers why they should try not to use certain 
constructs. 

Informal language definitions as one can find in manuals are sometimes 
imprecise, ambiguous or incomplete. This can be ruled out by a formal 
language definition. One may hope that when persons who write language 
manuals base their work on a formal language definition, this will lead to a 
clearer and more systematic exposition. It is wrong to bother a user with all 
the details of a language implementation. If the language is provided with an 
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operational semantics, then (ideally) a simple and intuitive presentation of the 
abstract machine model underlying this semantics, can be used to explain the 
language to a user. 

1.2. Correctness of programming language implementations. A formal semantics 
will often present us with a rather abstract view of the behaviour of a program. 
It is exactly this abstractness which makes it possible to reason about pro­
grams and their correctness. Eventually, of course, the aim of writing pro­
grams is to run them on a computer, i.e. a concrete, physical machine. All rea­
soning at the level of the abstract, mathematical semantics would be com­
pletely useless if there would not be a strong relationship between the 
mathematical semantics of a program and what happens in physical reality 
when the program is executed on a computer. If one has proved a program 
correct with respect to the mathematical semantics, then one wants to be quite 
sure that the output of the computer will be correct when running the pro­
gram. In the case of current high level programming languages a semantics 
often provides a very abstract view of what goes on during execution of a pro­
gram, and there is a huge distance between this view and what actually goes 
on in the machine. I think that a good theory of semantics can and should 
play a crucial role in bridging the gap between the two views. Often it will be 
necessary to provide, instead of a single mathematical semantics, a whole 
sequence of semantics for a language, ranging from a 'fully' abstract semantics 
used for reasoning about programs, to a semantics that relates to a program a 
mathematical object, a description of a machine that in its behaviour closely 
resembles the physical machine that will have to execute the program. It is 
part of a theory of semantics to establish the behavioural relationships between 
consecutive semantics in the sequence. I would like to stress that this is a 
mathematical activity. Establishing the relation between the machine model 
underlying the last semantics of the sequence and the physical machine is a 
task for physicists and the people who build the machines. Ideally, there is a 
strong mutual influence between semanticists and machine builders. The 
semanticists should tell the machine builders which abstract machines have 
nice computational properties and are worth implementing. On the other 
hand the machine builders have to tell the semanticists what type of machine 
models can be realised physically, and whether or not the models of the 
semanticists adequately describe the behaviour of computer equipment. In a 
time when on the one hand programming languages are based on increasingly 
more abstract concepts, and on the other hand the architectures of the 
machine on which these programs have to run become increasingly more com­
plicated, a large effort is needed in the field of semantics to establish the 
behavioural relationships between the abstract models and the physical 
machines. That these relationships are by no means trivial, and sometimes 
even absent, will be illustrated in the section of this thesis which deals with the 
semantics of the language POOL. 

Ideally, an abstract semantics provides a standard which can be used to say 
whether or not a physical machine correctly implements a language. At 
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present however, a rigorous proof that the behaviour of a physical machine is 
correctly modelled by some abstract semantics is completely out of scope in 
most cases. Only in particular instances (I am thinking of the implementation 
of the language occam on the transputer) it seems a feasible exercise right now. 
But even though a complete proof of correctness of an implementation is not 
feasible in most cases, it is possible to prove correctness of certain crucial 
parts. Research in the area of 'comparative concurrency semantics' has pro­
vided us with a lot of insight in the various possible behavioural relations 
between abstract machines. 

It would be nice if, starting from a formal semantic model of some language, 
one could generate efficient implementations automatically. Unfortunately this 
does not seem to be feasible at the moment. However, in some cases it is pos­
sible to generate prototype implementations based on a formal semantics. Such 
prototypes can be useful in the language design phase. 

Assuming that a machine correctly implements a language relative to some 
abstract semantics, this semantics in tum can be used to increase efficiency. If 
a user has written a program P 1 and wants to execute this, then one may exe­
cute instead any program P 2 which is semantically equivalent with P 1. In par­
ticular one may choose P 2 in such a way that it is more efficient than P 1 (fas­
ter, less use of storage capacity, etc.). 

1.3. Notions of implementation and proof systems. In the previous section I dis­
cussed the notion of implementing a programming language on a physical 
machine and the idea of showing that such an implementation is correct with 
respect to a mathematical semantics. I argued that often it is wise to introduce 
a number of intermediate mathematical semantics. In a natural way this leads 
to the introduction of an implementation relation between the elements of the 
various semantic domains. Often we have that two semantic mappings, an 
abstract and a concrete one, both map programs into the same semantic 
domain. In such cases we have to define an implementation relation on the 
semantic domain itself. Typically, such an implementation relation will be a 
pre-order, i.e. a transitive and reflexive relation. This type of implementation 
relation turns out to be extremely important, not only for proving correctness 
of machine implementations of programming languages. Given a notion of 
implementation for a specification language, one may try to establish that a 
specification which is not in the class of executable specifications, can be 
implemented (in the mathematical sense) by some member of the language 
which is in this class. 

Specification languages which are not fully executable can still be very 
important, basically because of the connection with the stepwise refinement 
method. This method advocates a system construction route that starts with 
some high level, declarative, nonexecutable (or merely inefficient) specification, 
goes via a number of intermediate development steps which are provably 
correct with respect to some implementation relation, and ends with an 
efficiently executable program. The stepwise refinement method naturally 
leads to mixing programming parts with (nonexecutable) specification parts. 
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An important part of semantical theories should be (and is) devoted towards 
defining sensible notions of implementation, and the development of proof sys­
tems and associated decision procedures for establishing these implementation 
relations. The idea that all programs should be developed rigorously, using a 
stepwise refinement method, or should be verified formally is absurd, mostly it 
is just not worth the effort, but some programs are used in such critical appli­
cations (space shuttles, banking systems, etc.) that a large effort for proving 
correctness is justified. Even though much can still be improved, semantic 
theories have contributed substantially in this area. Typical issues which play a 
role here are the soundness and completeness of proof systems: all provable 
statements should be true and moreover any true statement that can be formu­
lated in the language of the proof system should be provable. In designing 
implementation notions and proof systems, the semanticist is in interaction 
with the programmers and system designers. The semanticists should provide 
these people with simple, sound and complete proof systems which are still 
expressive enough for capturing important intuitions and proving relevant pro­
perties. Now and then a semanticist should reveal a serious bug in a system 
that has not been verified rigorously, thus stressing the importance of a more 
systematic approach to design and verification of programs. 

Summarising, I sketched in this section a picture of a semanticist as someone 
who plays a role intermediate between the designers of a language, the imple­
mentors and the users (system designers and programmers). The semanticists 
produces mathematical theory which helps these people in doing their job. In 
the next section I want to say more about the internal structure of semantic 
theories. 

2. INGREDIENTS OF SEMANTIC THEORIES FOR CONCURRENCY 

Below I list some important ingredients of semantic theories for programming 
and specification languages for concurrent discrete event systems. Here I 
profited from a similar listing which occurs in [23]. 

2.1. System models, semantic domains of computation structures. Many different 
semantic domains for modelling concurrent systems have been proposed. Just 
to give an idea, a few of them will be listed, together with some basic refer­
ences: 

(labelled) transition systems [21]. 
Petri nets [30]. There are many variants: C/E systems, PIT nets, safe 
nets, high-level Petri nets, timed Petri nets, etc. 
Event structures [35]. Again there are many variants: prime e.s., stable 
e.s., e.s. with binary conflict, etc. 
Mazurkiewicz traces [25]. 
1/0 automata [22]. 
De Bakker-Zucker processes (7). 
Aczel's process domain of non-well-founded sets [I]. 
The failure set model of (11 ). 
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Sometimes these models are equivalent, they just give different representations 
of what is essentially the same system behaviour. Often however, one model 
captures more features of system behaviour than another. In Petri nets for 
instance, one can describe that two events are causally independent (or con­
current). Independence of events is not a primitive notion in labelled transi­
tion systems. Similarly, labelled transition systems preserve the branching 
structure o( a process, whereas this information is not fully preserved if one 
describes a system by a failure set. 

2.2. Behavioural equivalences and notions of implementation. The semantics of 
concurrent and reactive systems is inherently more complex than for non­
reactive systems. For non-reactive systems, it is clear what the observable 
behaviour of a system is: an input/ output pair, leading to a semantic descrip­
tion of a system as a (partial) function, or in the nondeterministic case, a rela­
tion. For concurrent/reactive systems, there is no single, canonical notion of 
observable behaviour, but rather a multiplicity of such notions, leading to a 
multiplicity of behavioural equivalences: given a set A of observable proper­
ties, one can define an equivalence ~ on the semantic domain by: 

p~q iff for any A EA : p satisfies A <=> q satisfies A. 

Often the relationship between two semantic domains can be characterised 
in terms of some (behavioural) equivalence: the elements of one semantic 
domain represent equivalence classes of the elements of another semantic 
domain. 

Behavioural equivalences on a semantic domain form an important category 
of implementation relations. In fact this is the only type of implementation 
relations that will be considered in this thesis. Often it is argued that an 
implementation relation should not be symmetric: besides providing the service 
required by the specification, an implementation may do much more. The 
main reason why I have been able to prove correctness of implementations 
using a symmetric notion of implementation is that I considered languages 
with a built-in abstraction mechanism: this mechanism allows to disregard 
those behavioural aspects of an implementation which do not occur in the ser­
vice specification. At present I do not know whether it is feasible to use sym­
metric implementation relations for the verification of larger systems. 

2.3. Programming and specification languages with interpretations in semantic 
domains. We are faced with an almost infinite amount of programming and 
specification languages for concurrent systems. One can try to classify these 
languages by looking at the programming or specification paradigm they 
adhere to ( object oriented, functional and logic programming, data flow com­
putation, etc.). For each particular paradigm there will be a certain amount of 
semantic theory dealing with the peculiarities of that paradigm. For instance, 
in logic programming one will study the issue of resolution, in object-oriented 
programming one tries to understand what an 'object' is, etc. 

Besides semantic theory that is specific to a single paradigm, there is also 
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theory dealing with concurrent languages in general. One can try to say some­
thing general about how to map a language to a semantic domain, how to give 
a compositional semantics, etc. Milner had the idea that for a proper under­
standing of the basic issues concerning the behaviour of concurrent systems it 
could be helpful to look for a simple language, with 'as few operators or com­
binators as possible, each of which embodies some distinct and intuitive idea, 
and which together give completely general expressive power' [27). Besides 
Milner's calculi CCS and SCCS [26, 27), several other calculi have been 
developed with this idea in mind, such as TCSP [19), MEIJE [4] and ACP [8, 9). 
These calculi are all very similar and this supports the idea that indeed some 
fundamental notions have been discovered. Work by DE SIMONE [31 , 32) more­
over supports the claim that these languages have a 'completely general expres­
sive power'. This expressiveness makes that the languages are not fully execut­
able and therefore are to be viewed as specification languages rather than as 
programming languages. 

Starting with an example in [26), several high-level languages have been 
translated to CCS-like calculi. Inevitably, some of the structural properties of 
high-level languages get lost in such a translation. Often however, the rich 
semantic theory which is available for the basic calculi makes such translations 
really worth the effort. 

2.4. Proof systems for showing implementation relations and semantic equivalence. 
It turns out that, at least for the basic calculi, most semantic equivalences and 
implementation relations can be characterised by means of simple ( often even 
equational) axiomatisations. Of course one can always try to establish 
behavioural equivalence of two expressions at the level of the semantic 
domain. For a number of reasons however, I think that often it is advanta­
geous to carry out verifications on the syntactic rather then the semantic level. 
I will come back to this issue in Section 3.2. 

2.5. Property languages with satisfaction relations. When reasoning about 
semantic objects, there is a need for languages that can be used to express that 
a semantic object has a certain property. Such languages will be called property 
languages. In general, a property language is just a set of logic formulas. 
Further we have that the computational structures which form the semantic 
domain of programs can serve as models (in the logical sense) for the formulas. 
A semantical object (and hence a program) may or may not satisfy some for­
mula. Some well known property languages are: temporal logic, Hennessy­
Milner logic and trace logic. Sometimes, a single language can serve as a pro­
perty language as well as a specification language. Consider, as an example, 
trace logic. A labelled transition system or a Petri net may or may not satisfy a 
certain trace formula. But on the other hand, working in a semantic model of 
trace sets, a trace formula can be interpreted as a trace set (namely the set of 
traces for which the formula holds). 
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2.6. (Compositional) proof systems for property languages. Given a property 
language and an associated satisfaction relation, it is useful to have a proof 
system for proving that a semantic object denoted by some program or 
specification satisfies a certain formula. These proof systems should preferably 
be compositional: it should be possible to prove a property of a composite sys­
tem from properties of its components. 

2. 7. Comparative concurrency semantics and classification of properties. The 
incredible amount of available semantic models and behavioural equivalences 
asks for a systematic approach. Within the field of semantics, the discipline of 
comparative concurrency semantics aims at the construction of a lattice of pro­
cess semantics, ordered by a relation 'makes at least as many identifications 
as'. Moreover the various features which can be described in a certain process 
semantics are to be identified. This will facilitate the task of finding an 
appropriate semantics for a given application. 

Any semantics provides an answer to the following basic question: 'When 
do two expressions have the same meaning?' Often however, the ways in which 
two semantic mappings are defined are so completely different, that at first 
sight it is not clear at all that they both give the same answer to the above 
question. A comparative concurrency semantics should therefore try to 
characterise what is essentially a single semantics, in as many ways as possible. 
Below some of the possibilities are listed: 
l . A characterisation in terms of equivalence classes of concrete semantic 

objects which somehow reflect the 'operational' behaviour associated to a 
program or specification. 

2. A more abstract explicit representation, i.e. an interpretation in a seman­
tic domain whose elements are not equivalence classes of some concrete 
domain. When the interpretation is moreover compositional and fixed 
point theory is used to deal with recursion in the language, this type of 
semantics is often called 'denotational'. 

3. An algebraic characterisation of semantic equality: two terms are equal if 
their identity can be proved by means of given algebraic laws. 

4. A logic characterisation. Two expressions are semantically equal iff certain 
concrete semantic objects associated to them satisfy the same properties. 

5. A characterisation in terms of a 'button pushing scenario'. To each 
expression an abstract machine is associated. Two expressions are con­
sidered semantically equal iff an experimenter, given a repertoire of exper­
iments (like pushing buttons) and a set of possible observations (like read­
ing a terminal screen), cannot observe any difference between the 
machines. 

6. A characterisation in terms of a simple observation criterion and a 
language for which the semantics is 'fully abstract'. If Obs (p) denotes the 
set of observations one can do on expression p in some language L, then 
an equivalence ~ on L is 'fully abstract' with respect to Obs iff: 

p~q <=> for all L-contexts C[]: Obs(Cfp])=Obs(C[q]). 
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7. A characterisation by means of abstraction homomorphisms (see for 
instance (12)). 

3. OVERVIEW OF WORK IN THIS THESIS 

Besides the introduction, this thesis consists of the following six papers: 
I. (with Jan Friso Groote). Structured operational semantics and bisimulation 

as a congruence, Report CS-R8845, Centrum voor Wiskunde en Informa­
tica, Amsterdam, 1988. Submitted to Information and Computation. An 
extended abstract appeared in: Proceedings ICALP 89, Stresa (G. 
Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), LNCS 
372, Springer-Verlag, pp. 423-438, 1989. 

2. (with Rob van Glabbeek). Modular specifications in process algebra. This 
paper is obtained by leaving out the sections on 'curious queues' from the 
paper: Modular specifications in process algebra - with curious queues, 
Report CS-R8821, Centrum voor Wiskunde en Informatica, Amsterdam, 
1988. Submitted to Theoretical Computer Science. An extended abstract 
appeared in: Algebraic Methods: Theory, Tools and Applications (M. 
Wirsing & J.A. Bergstra, eds.), LNCS 394, Springer-Verlag, pp. 465-506. 

3. Two simple protocols, to appear in: Applications of process algebra, 
(J.C.M. Baeten, ed.), 1990, pp. 23-44. 

4. Some observations on redundancy in a context, Report CS-R8812, Centrum 
voor Wiskunde en Informatica, Amsterdam, 1988, to appear in: Applica­
tions of process algebra, (J.C.M. Baeten, ed.), 1990, pp. 237-260. 

5. Process algebra semantics of POOL, Report CS-R8629, Centrum voor 
Wiskunde en Informatica, Amsterdam, 1986, to appear in: Applications of 
process algebra, (J.C.M. Baeten, ed.), 1990, pp. 173-236. 

6. Determinism - (event structure isomorphism = step sequence equivalence), 
Report CS-R8839, Centrum voor Wiskunde en Informatica, Amsterdam, 
1988. Submitted to Theoretical Computer Science. 

These papers can be read independently, except that papers 3, 4 and 5 use the 
language and axioms of ACP.,. as presented in paper 2. 

Below I will comment on the papers separately. It is not my aim to give a 
complete overview of the results that have been obtained. Each paper has ar. 
introductory section where the results of that particular are summarised and 
also a comparison is made with related work. 

3.1. Structured operational semantics. The first paper in this thesis was written 
last. It is concerned with a certain type of conditional rules, used for defining 
transition system semantics of (programming) languages. About ten years ago, 
the semantics of concurrency was generally considered to be a difficult issue 
and for many languages one did not know how to obtain a simple and intui­
tively convincing semantics. But then suddenly these conditional rules 
appeared. Since then, nobody can claim any more that it is difficult to give at 
least one (operational) semantics to any programming language used in prac­
tice: with these rules it has become more or less trivial. It seems that the idea 
of using conditional rules for giving semantics to concurrent programming 
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languages arose first in Edinburgh. Toe first publication I know of on seman­
tics of parallelism in which the rules occur is a paper by HENNESSY & PLOTKIN 
(18] from 1979. Clearly, Plotkin was the one who most emphatically stressed 
the importance of the rules. Anyway, by now they are used widely and cer­
tainly form the most popular way to give an operational semantics to parallel 
programming languages. Therefore it was a bit surprising that there was 
almost no general, theoretical work on 'Plotkin style rules'. Notable exceptions 
were the Ph.D. Thesis of DE SIMONE [31] (see also [32]) and a recent paper by 
BLOOM, ISTRAIL & MEYER [10]. Together with Jan Friso Groote, I studied the 
question if it would be possible to know, just by looking at the form of the 
rules used for describing a certain language, various basic properties of the 
induced transition system semantics. In the first paper of this thesis this prob­
lem is addressed and it is shown that indeed the general form of the condi­
tional rules already determines many key properties such as whether or not 
bisimulation is a congruence, the effect of adding new language constructs and 
rules on the semantics, and the nature of a fully abstract model determined by 
the operational rules. 

Maybe one reason why semanticists have paid almost no attention to a gen­
eral theory of Plotkin style rules is the fact that they are so simple to use. 
Because semanticists do not like to deal with trivialities, they tend to spend 
only a very small amount of their time on giving a Plotkin style operational 
semantics for a particular language; after that they rush forward to more 
difficult questions, like compositionality and full abstractness. I hope that the 
first paper of this thesis convinces people that it is worthwhile to spend a sub­
stantial amount of time on operational semantics. If one selects semantic rules 
carefully (and this is not a trivial task) then compositionality, full abstraction 
and all the rest may follow more or less automatically. 

3.2. Modular specifications in process algebra. In Section 2, I pointed out that 
there are many different types of process semantics. In general, there is no 
clear reason to prefer one type of semantics over another: what is optimal 
depends on the particular application one has in mind. Besides the variety in 
process semantics, there is also a huge variety in languages. In order to deal 
with this combined complexity, I will employ in this thesis, as much as possi­
ble, an algebraic, axiomatic approach, that is I prefer to reason about pro­
grams and specifications on the level of syntax, using (infinitary, conditional) 
equations, instead of working on the level of semantics, i.e. in terms of the 
semantic objects associated to expressions. In my view, the advantages of this 
approach are the following: 
l. Toe use of an algebraic, axiomatic approach is highly organising and uni­

fying. As described in Section 2.7, there are many different ways to give 
semantics to languages. Often the only meaningful way to compare 
different semantics is to look which expressions are identified in each of 
them. It is exactly this crucial information that can be expressed by means 
of axioms. Often it occurs, and this is very illuminating to see, that the 
difference between two process semantics, which have been defined by 
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different people, at different places, in a completely different style, can be 
characterised in terms of one or two simple axioms. 

2. Results from mathematical logic and the theory of abstract data types can 
be used. That this is not just a theoretical possibility, is illustrated in the 
second paper, where some nontrivial results from the field of universal 
algebra are used to solve certain semantic problems in concurrency. 

3. System verifications can be done independent of a particular model. If 
one has proved correctness of say a communication protocol, using a cer­
tain set of axioms, then one knows that the protocol will be correct with 
respect to all models of these axioms. Thus system verifications become 
reusable. 

Of course the algebraic approach also has disadvantages. There are many 
important issues in concurrency which cannot be dealt with algebraically. If 
one places too much stress on algebra, then one will tend to disregard the 
other issues, and this endangers the applicability of the theory. Let me give 
some examples. 
I. Binding of variables is needed if one wants to describe value passing 

between processes. In this thesis I use binding of variables as a kind of 
notation, which is not formally present in the language, just because I 
want to stay in the realms of algebra. This is not the type of solution that 
one would like to see in a full-grown methodology. 

2. I think that property languages are very important, also for establishing 
implementation relations in more advanced applications. Property 
languages do not really fit into an algebraic/axiomatic framework. 

3. A next weak point of the algebraic methodology is that almost all relevant 
decision procedures can be described best on the semantic level. In this 
thesis I present some system verifications, but I do not present any algo­
rithms which could be used to let a computer do these verifications also. 
It is just completely unclear how one could do such a thing in an alge­
braic way. It should be noted here that the algebraic approach allows one 
to do certain verifications which certainly could not be done by any exist­
ing (model based) tool. Most computer tools are developed for doing 
finite state verifications. As soon as the state space becomes infinite, or if 
one wants to verify some very generic statement like that the implementa­
tion of a programming language is correct, tools crash immediately. 

4. At present there are no convincing axiomatisations for non-interleaved 
models. Maybe this explains why people advocating an algebraic, 
axiomatic approach to concurrency mainly work in the setting of inter­
leaving, even when they agree that non-interleaved models are interesting. 

The axiomatic theory, which is presented in the second paper, is essentially 
the Algebra of Communicating Processes (ACP) of BERGSTRA & KLoP (8, 9] 
augmented with a number of operators and axioms to make specification and 
verification of larger systems feasible. The main contribution of this paper is a 
structured presentation of operators and axioms using a notion of module. A 
module is a small collection of operators and axioms describing some feature 
of concurrency. Modules can be combined in various ways using module 
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operators. 
In a rather strong sense the axioms as presented in the second paper 

correspond to what is called rooted-T-bisimulation equivalence in [6] and weak 
bisimulation congruence in [28). The idea is that, whenever possible, 
verifications are carried out using the laws of (rooted-T-)bisimulation seman­
tics. If this turns out not to be possible, then one can always add some laws. 
The motivation for doing things in this way is that: (1) mathematically, 
bisimulation is a very pleasant notion, it is a natural first behavioural abstrac­
tion from transition systems; (2) the axioms which capture bisimulation seman­
tics are simple; (3) at least for finite state systems, deciding bisimulation is 
easy, this in contrast with all (interesting) equivalences which identify more; 
(4) roughly speaking, bisimulation semantics is the most refined semantics in 
which nontrivial system verifications are possible. Doing it with fewer laws is 
not feasible at the moment, often there is no need to use more laws. 

Currently, some work is done on axiomatising even finer equivalences. First, 
there is the work by VAN GLABBEEK & WEIJLAND [ 17) on the branching bisimu­
/ation, which is a variant of the semantics that underlies the axioms in this 
thesis but gives a more subtle treatment of the silent step ,,._ Second, there is a 
paper by DARONDEAU & DEGANO [14) which contains a very good idea about 
how to axiomatise non-interleaved equivalences. I am convinced that, when the 
ideas of both papers have been worked out, many system verifications can be 
performed in these more discriminating semantics. 

Clearly however, there are cases where the interleaving bisimulation seman­
tics already does not work because it makes unnecessary distinctions between 
processes. One of these cases will be discussed in the paper about POOL. 

3.3. Two simple protocols. In the third paper of this thesis, simple versions of 
the alternating bit protocol and the positive acknowledgement with retransmis­
sion protocol are specified and verified in the framework of ACP. These exam­
ples together with many other similar case studies (see for instance [5]) clearly 
show that it is possible and also useful to describe and analyse small systems 
in terms of process algebra. Certain features are dealt with in a slightly ad hoc 
way (for instance: fairness by means of the so-called Koomen's Fair Abstrac­
tion Rule, and time-outs using a priority operator) but generally speaking I 
think that the modelling is reasonably convincing. A more serious problem is 
how this type of verifications can be scaled up so that they become useful for 
'real' applications. 

To begin with, there is a problem with the language that I used. I tend to 
view ACP as a kind of assembly language for concurrency. In order to give 
precise and structured specifications of larger systems it becomes necessary to 
have higher level, more sophisticated languages. Candidates are LOTOS [20) or 
the ACP-based PSF [24), but personally I think that these proposals are far 
from ideal. In the first place they do not provide the flexibility and expressive­
ness that I would like to have, in the second place system verification becomes 
highly problematic as soon as you start to use the specification constructs that 
these languages have on top of say the ACP framework as presented in the 
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second paper of this thesis. For instance, in LOTOS as well as PSF it is 
allowed to input a value over an infinite data type. There is almost no theory 
about deciding behavioural equivalence of expressions that contain such a con­
struct. 

But also when using the ACP axioms, verification becomes difficult when the 
systems under consideration grow larger. In [34), I described a case study deal­
ing with the verification of a one bit sliding window protocol. This protocol is 
not trivial (in fact I managed to discover a small error in the description of the 
protocol in [331) but when compared with many existing protocols it is small in 
size and complexity. For me this case study was very instructive. It showed 
that the ACP axioms basically allow for one type of verification only: brute 
force state space exploration using the expansion theorem. The verifier can 
bring in some cleverness by first expanding and minimizing certain subexpres­
sions (a technique called local replacement in [341). Still this is not the way in 
which one would like to reason about protocols: it is rather boring, provides 
not much insight and takes a lot of time. Machines are good in brute force 
calculations and they don't mind doing boring work. However, the 
phenomenon of combinatorial state space explosion will make that, when the 
protocols become a bit larger, also computers will not succeed in exploring all 
the states. 

If one looks for some time at a protocol like the one bit sliding window pro­
tocol as presented in [34), one just 'sees' that it is correct: one has constructed 
a chain of arguments which somehow makes one believe in the correctness of 
the protocol. What one would like to have is a formal verification technique 
that allows one to formalise these arguments rather directly so that one can 
check whether the reasoning is correct. A first and very modest step towards 
such a verification technique is described in the fourth paper in this thesis. 

3.4. Redundancy in a context. When I was involved in the extensive calcula­
tions of [34), it occurred to me that at a number of places it would help a lot if 
I could just drop certain summands in a process algebra expression. Intui­
tively, it was obvious that these summands could be omitted because they 
corresponded to behaviours of components in the system that could never be 
realised due to the context in which these components were placed. The sum­
mands were so to say redundant in the given context. When I tried to formal­
ise the intuitive reasoning for showing redundancy of summands, it turned out 
that in all cases that I considered this could be achieved using properties of the 
sets of traces of processes. I proved the soundness of a rule saying that one can 
omit a certain summand in a process expression if the trace sets of some 
subexpressions have certain properties. In order to make this rule practically 
useful in verifications, I needed a property language for expressing that the 
traces of a process have some property, together with a proof system. Here I 
used a many-sorted first-order predicate logic, which is called trace logic. It 
was employed before by many others (see for instance [13, 29,361). In the 
fourth paper the idea of using trace logic for proving behavioural equivalence 
of process expressions is worked out and its usefulness is illustrated by means 
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of a verification of a small workcell architecture. 

3.5. Process algebra semantics of POOL The main case study in this thesis is 
reported in the fifth paper. There I describe a translation of the Parallel 
Object-Oriented Language POOL to the ACP language. Moreover some results 
are obtained about the correctness of implementations of POOL. There are a 
couple of remarks on the paper that I would like to make here. 

One of the main ideas behind the translation from POOL to ACP was that 
it would provide us with a large number of semantics for POOL, one for each 
interpretation of the ACP language. In the paper it is pointed out that the 
Koomen's Fair Abstraction Rule from ACP does not give one the right notion 
of fairness for POOL. Since no other fairness notion was available for process 
algebra at the time at which the paper was written, the issue of fairness was 
left as an open problem. Recently much work has been done on giving seman­
tics to ACP-like languages using Petri nets (see for instance [15, 16, 29]). Now 
I claim that the notion of place fairness, which is well known for Petri nets, 
gives exactly the right notion of fairness for POOL if we use the ACP transla­
tion given in this thesis together with an interpretation of ACP in the domain 
of Petri nets in the style of [15, 29] (In (16] only finite processes are discussed.) 

In the paper on POOL I prove that a semantical description of POOL (as 
defined in [2]) based on handshaking communication between objects, is 
incompatible with an implementation where message queues are used. Since 
any implementation of POOL will use message queues, and moreover the 
language designers really want users to think about communication between 
objects in terms of handshaking, this result meant that there was an error in 
the language design. The error was due to the most complex construct in the 
POOL language, namely the 'select statement'. This select statement was a ter­
rible construct anyhow, in the paper no less than three pages are needed to 
describe its semantics. For these reasons the select statement has been 
removed altogether in a more recent offspring of the POOL-family of 
languages. Instead this language contains a 'conditional answer statement'. 
The questions now is whether the new version of the language can be correctly 
implemented using queues. My conjecture is 'Yes', but this still requires a 
proof. I think that at this moment the proof techniques within the process 
algebra formalism are sufficiently strong to tackle this nontrivial but important 
problem. 

3.6. Deterministic event structures. In computer science there is the extremely 
useful distinction between functional behaviour and performance. The idea is 
that for a given (distributed) system one first studies whether it is functionally 
correct, and only when this has been shown (ideally), one moves to questions 
concerning its time/space complexity. The axioms that are used in the previous 
chapters of the thesis correspond to what is often called interleaving semantics. 
In interleaving semantics the actions of different components in a parallel sys­
tem are interleaved. A typical equation valid in interleaving semantics is 
allb=a·b+b·a: if one considers the parallel composition of actions a and b, 
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either first a occurs and then b, or b occurs first followed by a. So any intui­
tion that allb is 'faster' than a·b +b·a or that in allb the a and the b are 
'causally independent' whereas in a·b + b·a there are causal links, cannot be 
captured in interleaving semantics in terms of primitive notions. Therefore, 
interleaving semantics may be appropriate for dealing with functional 
behaviour, but it is not really suited for analysing performance. I think that 
one important reason why non-interleaved semantics for languages with con­
currency are interesting is that they may help to solve this problem. 

A well-known system model that can be used for giving non-interleaved 
semantics is the model of event structures. In [35), WINS.KEL gives an exposi­
tion of the theory of event structures where he also describes how CCS-like 
languages can be interpreted on the domain of event structures. Now it is 
interesting to look for behavioural equivalences on event structures that still 
preserve features like real-time behaviour, causality and branching time. A 
multitude of equivalences have been proposed over the last years and it is a 
topic of current research to classify these equivalences and find out which are 
the most interesting ones. The concluding paper of this thesis is a contribution 
to this area. I prove that for an important class of processes, namely the deter­
ministic ones, almost all of the non-interleaved equivalences that have been 
proposed in the literature coincide. More specifically, I will show that step 
sequence equivalence and event structure isomorphism agree on the domain of 
deterministic event structures. Since step sequence equivalence, which makes a 
lot of identifications and is almost an interleaving equivalence, can be axioma­
tised easily, this result can be used to obtain an algebraic characterisation of 
event structure isomorphism for deterministic systems. 
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In this paper we are interested in general properties of classes of transition sys­
tem specifications in Plotkin style. The discussion takes place in a setting of 
labelled transition systems. The states of the transition systems are terms gen­
erated by a single sorted signature and the transitions between states are 
defined by conditional rules over the syntax. It is argued that in this setting it is 
natural to require that strong bisimulation equivalence is a congruence on the 
states of the transition systems. A general format, called the tyftl tyxt format, is 
presented for the rules in a transition system specification, such that bisimula­
tion is always a congruence when all the rules fit this format. With a series of 
examples it is demonstrated that the tyftl tyxt format cannot be generalized in 
any obvious way. Another series of examples illustrates the usefulness of our 
congruence theorem. Briefly we touch upon the issue of modularity of transi­
tion system specifications. It is argued that certain pathological tyftl tyxt rules 
(the ones which are not pure) can be disqualified because they behave badly 
with respect to modularisation. Next we address the issue of full abstraction. 
We characterize the completed trace congruence induced by the operators in 
pure tyft/ tyxt format as 2-nested simulation equivalence. The pure tyft/ tyxt for­
mat includes the format given by DE SIMONE (t 984, 1985) but is incomparable to 
the GSOS format of BLOOM, ISTRAIL & MEYER (1988) . However, it turns out that 
2-nested simulation equivalence strictly refines the completed trace congruence 
induced by the GSOS format. 

Key Words and Phrases: Structured Operational Semantics (SOS), transition 
system specifications, compositionality, labelled transition systems, bisimulation, 
congruence, process algebra, tyftl tyxt format, modularity of transition system 
specifications, full abstraction, testing, nested simulations, Hennessy-Milner 
logic, De Simone format , GSOS format. 
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1. INTRODUCTION 
PLOTKIN (1981,1983) advocates a simple method for giving operational seman­
tics to programming languages. The method, which is often referred to as SOS 
(for Structured Operational Semantics), is based on the notion of transition sys­
tems. The states of the transition systems are elements of some formal 
language that, in general, will extend the language for which one wants to give 
an operational semantics. The main idea of the method is to define the transi­
tions between states by, what we call a Transition System Specification (TSS): a 
set of conditional rules over the syntax of the language. 

In recent years a large number of (concurrent) languages have been provided 
with an operational semantics using Plotkin's approach. Therefore it might be 
worthwhile to develop a general theory of structured operational semantics: to 
establish a hierarchy of 'formats' of transition system specifications and to 
investigate the expressiveness and nice properties of each format. We think 
that it is possible to develop such a general theory: many important properties 
of transition system specifications can be derived by just looking at the syntac­
tic form of the rules. A general theory of SOS will be useful for several rea­
sons. Firstly, certain results will become reusable so that one does not have to 
prove them for each individual language separately. Secondly, a general theory 
of SOS may lead to a better understanding of the relations between languages 
that have been provided with a semantics using the approach. Thirdly, one 
may hope that a general theory helps people in giving good operational seman­
tics: if one knows that certain types of rules have bad properties, then one will 
try not to use them. Surprisingly, there are not so many papers that contain 
general results on SOS. We are only aware of the work of DE SIMONE 
(1984,1985) and BLOOM, ISTRAIL & MEYER (1988). 

The aim of this paper is to contribute to the general theory of structured 
operational semantics. We start from the requirement that strong bisimulation 
equivalence should be a congruence for the operators in a transition system 
specification. We then show how this requirement leads naturally to a certain 
format of rules, which we call the tyft!tyxt format. Next we analyze the pro­
perties of the tyft!tyxt format and make comparisons with related work. 

In order to facilitate analysis, we restrict our attention to a specific type of 
transition systems: transitions are labelled and as states we have ground terms 
generated by a single sorted signature. This is an important subcase: the 
operational semantics of languages like ccs (MILNER, 1980), TCSP (OLDEROG 
& HOARE, 1986), ACP (VAN GLABBEEK, 1987) and MEIJE (BOUDOL, 1985) has 
been described in essentially this way. However, there are also many examples 
of transition system specifications where the set of states is not specified by a 
single sorted signature, for instance the semantics for CSP as presented by 
PLOTKIN (1983) and the semantics for POOL of AMERICA, DE BAKKER, KOK & 
RUTTEN (1986). We hope that the insights derived from our analysis of a basic 
case will somehow generalize to more general settings. 



1. Introduction 21 

I.I. Bisimulation as a congruence. A fundamental equivalence on the states of a 
labelled transition system is the strong bisimulation equivalence of PARK 
( 1981 ). Strong bisimulation equivalence seems to be the finest extensional 
behavioural equivalence one would want to impose, i.e. two states of a transi­
tion system which are strongly bisimilar cannot be distinguished by external 
observation. This means that from an observational point of view, the transi­
tion systems generated by the SOS approach are too concrete as semantical 
objects. The objects that really interest us will be abstract transition systems 
where the states are bisimulation equivalence classes of terms, or maybe some­
thing even more abstract. If bisimulation is not a congruence then the function 
that computes the transitions associated to a phrase from the transitions asso­
ciated to its components, depends on properties of the transition system which 
are generally considered to be irrelevant, such as the specific names of states. 
Hence we think that a transition system specification which leads to transition 
systems for which bisimulation is not a congruence should not be called struc­
tured: possibly it is compositional on the level of (concrete) transition systems 
but it is not compositional on the more fundamental level of transition systems 
modulo bisimulation equivalence. 

This brings us to the first main question of this paper which is to find a for­
mat, as general as possible, for the rules in a transition system specification, 
such that bisimulation is always a congruence when all the rules have this for­
mat. We proceed in a number of steps. 

In Section 2 of the paper definitions are given of some basic notions like sig­
nature, term and substitution. Section 3 contains a formal definition of the 
notion of a transition system specification (TSS). In Section 4 it is described 
how a TSS determines a transition system. Moreover the fundamental notion 
of strong bisimulation is introduced. The real work starts in Section 5, where 
we present a general format, called the tyft!tyxt format, for the inductive rules 
in a TSS and prove that bisimulation is always a congruence when all rules 
have this format (and a small additional requirement is met). With a series of 
examples it is demonstrated that this format cannot be generalized in any 
obvious way. 

Section 6 contains some applications of our congruence theorem. We think 
that our result will be useful in many situations because it allows one to see 
immediately that bisimulation is a congruence. Thus it generalizes and makes 
less ad hoc the congruence proofs in (MILNER, 1983), (BAETEN & VAN GLAB­

BEEK, 1987) and elsewhere. If the rules in a TSS do not fit our format then 
there is a good chance that something will be wrong: either bisimulation is not 
a congruence right away or the congruence property will get lost if more 
operators and rules are added. 
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1.2. Modularity of transition system specifications. Often one wants to add new 
operators and rules to a TSS. Therefore, a very natural and important opera­
tion on TSS's is to take their componentwise union. Given two specifications 
P O and P 1, let PO EB P I denote this union. A desirable property to have is that 
the outgoing transition of states in the transition system associated to P O are 
the same as the outgoing transitions of these states in the extended system 
P 0 $P 1• This means that P 0 EBP 1 is a 'conservative extension' of P 0 : any pro­
perty which has been proved for the states in the old transition system remains 
valid (for the old states) in the enriched system. In Section 7 we show that, 
except for certain rules which are not 'pure', tyft!tyxt rules behave fine under 
modularisation. Fortunately, non-pure rules are quite pathological and we have 
never seen an application in which they are used. 

1.3. Trace congruences. A central idea in the theory of concurrency is that 
processes which cannot be distinguished by observation, should be identified: 
the process semantics should be fully abstract with respect to some notion of 
testing (DE NICOLA & HENNESSY, 1984). Natural observations that one can 
make on a process are its (completed) traces. A trace of a process is a finite 
sequence of actions that can be performed during a run of the process. A trace 
is completed if it leads to a state from where no further actions are possible. 
Two processes are (completed) trace congruent with respect to some format of 
rules if they yield the same (completed) traces in any context that can be built 
from operations defined in this format. The first main result of Section 8 is a 
characterization, valid for image finite transition systems, of the completed 
trace congruence induced by the pure tyft!tyxt format as 2-nested simulation 
equivalence. On the domain of image finite transition systems, 2-nested simula­
tion coincides with the equivalence induced by the Hennessy-Milner logic for­
mulas (HENNESSY & MILNER, 1985) with no [] in the scope of a o. Conse­
quently the two trees in Figure 1, which are not bisimilar, cannot be dis­
tinguished by operators defined with pure tyft!tyxt rules. Also in Section 8, we 
characterize the trace congruence induced by the pure tyft!tyxt format as simu­
lation equivalence. 

1.4. Comparison with related work. In Section 9 we give an extensive com­
parison of our format with the format proposed by DE SIMONE (1984,1985) 
and the GSOS format of BLOOM, ISTRAIL & MEYER (l 988). Roughly speaking, 
the situation is as displayed in Figure 2. The GSOS format and the pure 
tyft!tyxt format both generalize the format of De Simone. The GSOS format 
and our format are incomparable since the GSOS format allows negations in 
the premises, whereas all our rules are positive. On the other hand we allow 
for rules that give operators a lookahead and this is not allowed by the GSOS 
format. A simple example in (BLOOM, ISTRAIL & MEYER, 1988) shows that the 
combination of negation and lookahead is inconsistent in general. The point 
where the two formats diverge is characterized by the rules which fit the GSOS 
format but which contain no negation. We call the corresponding format posi­
tive GSOS. 
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a 

FIGURE I. Pure tyftltyxt congruent but not bisimilar 

pure tyftltyxt GSOS 

~/ 
positive GSOS 

I 
DE SIMONE format 

FIGURE 2 

From results of DE SIMONE (1985) and BERGSTRA, KLOP & OLDEROG (1988) 
it follows that the completed trace congruence that corresponds to the format 
of De Simone coincides with failure equivalence. BLOOM, ISTRAIL & MEYER 
(1988) proved that the completed trace congruence induced by the GSOS for­
mat can be characterized by the class of Hennessy-Milner logic formulas in 
which only F may occur in the scope of a []. LARSEN & SKOV (1988) in turn 
showed that the equivalence induced by this class of logical formulas can be 
characterized as 2/ 3-bisimulation equivalence. From these results we can con­
clude quite directly that the pure tyftltyxt format can make more distinctions 
between processes than the GSOS format: 2-nested simulation refines 2/3-
bisimulation. Now, interestingly, it turns out that the completed trace 
congruence induced by the positive GSOS format is also 2/3-bisimulation 
equivalence. So although it may be the case that in the general GSOS format 
can be used to define certain operations which cannot be defined using positive 
rules only, the use of negations in the definition of operators does not intro­
duce any new distinctions between processes! 
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The notion of testing associated with the (positive) GSOS format allows one 
to observe traces of processes, to detect refusals and to make copies of 
processes at every moment. Our format allows one in addition to test whether 
some action is possible in the future: operators can have a lookahead. This can 
be seen as a weak form of global testing (ABRAMSKY, 1987). 

A notable difference between the GSOS format and our format is that the 
GSOS format always leads to a computably finitely branching transition rela­
tion whereas our format does not necessarily do so. We argue that, even 
though finiteness and computability are very desirable properties, the state­
ment of BLOOM, lSTRAIL & MEYER ( 1988) that any 'reasonably structured' 
specification should induce a computably finitely branching transition relation, 
is too strong and discards a large number of interesting applications. 
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2. PRELIMINARIES 
In this paper we will work with a very simple notion of a signature. Only one 
sort is allowed; there are only function symbols and no predicate symbols; 
there is no overloading and no recursion construct. Throughout this paper we 
assume the presence of an infinite set V of variables with typical elements 
x,y,z, ... 

2.1. DEFINITION. A (single sorted) signature~ is a pair (F,r) where: 
F is a set of function symbols disjoint with V, 
r:F-N is a rank function which gives the arity of a function symbol; if 
/EF and r(f)=O then/is called a constant symbol. 

2.2. DEFINITION. Let ~=(F,r) be a signature. Let WC V be a set of variables. 
The set of ~-terms over W, notation T(~. W), is the least set satisfying: 

Wc;;T(~,W), 
if /EF and t1,--,t,(J) ET(~, W), then /(t1,- -, t,(f))ET(~. W). 

T(~, 0) is abbreviated by T(~) and T(~. V) is abbreviated by T(~); elements 
from T(~) are called closed or ground terms, elements from T(~) are called 
open terms. Var(t) CV is the set of variables in a term t ET(~). 

2.3. DEFINITION. Let ~=(F,r) be a signature. A substitution a is a mapping in 
v-T(~). A substitution a is extended to a mapping a:T(~)-T(~) in a stan­
dard way by the following definition: 

a(f(t1,•-,t,(f))) = f(a(ti), .. ,a(t,(f))) for JEF and t 1, .. ,t,(f)ET(~). 
If a and p are substitutions, then the substitution a0 p is defined by: 

a0 p(x) = a(p(x )) for x EV. 
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2.4. NoTE. Observe that we have the following identities: 

a0 p(t) = a(p(t)) t ET(~) 

a(t) = t for tET(~) 

3. TRANSITION SYSTEM SPECIFICATIONS 
In this section a formal definition is given of the notion of a transition system 
specification. Also the notion of a proof of a transition from such a 
specification is defined. 

3.1. DEFINITION. A transition system specification (TSS) is a triple (~,A,R) with 
~ a signature, A a set of labels and R a set of rules of the form: 

{t; ~t;' Ii E/} 

t ~t' 

where I is an index set, t;,t;',t,t' ET(~) and a; ,a EA for i El. If r is a rule in the 
format above, then the elements of {t; ~t;' Ii E/} are called the premises or 
hypotheses of r and t ~t' is called the conclusion of r. A rule of the form 

~ , is called an axiom, which, if no confusion can arise, is also written as 
t t 

t ~t'. An expression of the form t ~t' with a EA and t,t' ET(~) is called a 
transition (labelled with a). The symbols cf,,i/J,X, ·· will be used to range over 
transitions. The notions 'substitution', 'Var' and 'closed' extend to transitions 
and rules as expected. 

3.2. DEFINITION. Let P =(~,A,R) be a TSS. A proof of a transition 1/J from Pis 
a well-founded, upwardly branching tree of which the nodes are labelled by 
transitions t ~t' with t,t' ET(~) and a EA, such that: 

the root is labelled with 1/J, 
if x is the label of a node q and {Xi Ii E/} is the set of labels of the nodes 

d. 1 b h h . 1 { cf,; Ii EJ} . R d b . . uect y a ove q, t en t ere 1s a rue m an a su st1tut10n 
cf, 

a:V-T(~) such that x=a(ct,) and x.; = a(cf,;) for iE/. 
If a proof of 1/J from P exists, we say that 1/J is provable from P, notation Pf- 1/J. 
A proof is closed if it only contains closed transitions. 

3.3. LEMMA. Let P =(~,A,R) be a TSS, let a EA and let t,t' ET(~) such that 
Pf- t ~t'. Then t ~t' is provable by a closed proof 
PROOF. As Pf- t ~t' there is a proof tree T fort ~t'. Define the substitution 
a: V-'» T(~) by a(x)=t for all x EV (in fact, any closed term will do). Apply­
ing a to all transitions in the proof Toft ~t' yields a tree T' containing only 
closed transitions. Now one can easily check that T' is a proof oft ~t'. □ 

TSS's have been used mainly as a tool to give operational semantics to (con­
current) programming languages. As a running example we therefore present 
below a TSS for a simple process language. 
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3.4. ExAMPLE. Let Act= { a,b,c, .. } be a given set of actions. We consider the 
signature ~(BPA6) (Basic Process Algebra with 8 and t:) as introduced in 
VRANCKEN (1986). ~(BPA6) contains constants a for each a EAct, a constant 8 
that stands for deadlock or inaction, comparable to NIL in CCS and STOP in 
TCSP, and a constant t: that denotes the empty process, a process that ter­
minates immediately and successfully. It is comparable to SKIP in TCSP and 
skip in CCS. Furthermore the signature contains binary operators + (alterna­
tive composition) and · (sequential composition). As labels of transitions we take 
elements of Act ,; = Act U { V}. Here V (pronounce ' tick') is a special symbol 
used to denote the action of successful termination. At the end of a process 
this action indicates that execution has finished. 
Define the TSS P(BPA6) as (~(BPA6),Act ,;,R(BPA6)) where R(BPA6) is 
defined below in Table I. In the table a ranges over Act ,;, unless further res­
trictions are made. Infix notation is used for the binary function symbols. 

I. 

3. 

5. 

a~t: a=l=v' 

x~x' 
x+y~x' 

x~x' 
xy ~x'y 

a=l=v' 

2. 

4. 

6. 

y~y' 
x+y~y' 

x~x' y~y' 
xy~y' 

TABLE I. The rules of R(BPA6) 

One can easily check that the tree in Figure 3 constitutes a proof of the transi­
tion {t:·(a +b))·c ~ec from P(BPA6). 

/ 
a+b~t: 

/ 
t:·(a+b)~t: 

+ 
(t:"(a +b))·c ~t:·c 

FIGURE 3 

a~t: 
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3.4.1. REMARK. Even though similar semantic interpretations have been given 
to (extensions of) ~(BPA6) at a number of places, the rules of Table 1 seem to 
be new. VRANCKEN (1986) does not use inductive rules to give semantics to 
BPA6. Instead, operations are defined directly on process graphs. In (BAETEN & 
VAN GLABBEEK, 1987) there are no transitions labelled with V. Instead, a 
unary termination predicate ,!. is used. The analogue of our rule 6 in their set­
ting is: 

x,!., y~y' 

xy~y' 

Such a rule does not fit in the framework of this paper. We have chosen not to 
deal here with predicates like ,!. because the additional complexity would dis­
tract attention from the main issues in this paper. Moreover, a unary predicate 
p (x) can always be coded in our setting by adding a new label ap and rules 
such that: 

p(x) <=> 3y: x ~Y-

We think that it will not be too difficult to extend the framework of this paper 
with predicates. 

3.5. E.xAMPLE. Our next example shows that the range of applications of TSS's 
is not restricted to the area of operational semantics: every Term Rewriting 
System (TRS) can be viewed as a TSS. Unfortunately, it seems that the inter­
section of the class of TSS's which correspond to TRS's and the class of TSS's 
for which bisimulation is a congruence is of no interest. A Term Rewriting Sys­
tem (TRS) is defined as a pair (~0 ,R 0) with ~o a signature and R 0 a set of 
reduction or rewrite rules of the form r :(t,s) with r the name of the rewrite rule 
and t,s ET(~0). Here, t contains at least one function symbol and 
Var(s)C Var(t). 
A TRS (~0,R 0) can be viewed as a TSS (~,A,R). Take ~=~0 as the signature 
and define the alphabet A as the set of all names r of rules r:(t,s)ER 0 . R con­
tains for every r: (t,s)ER 0 a rule: 

t~s 

and for every function symbol fin ~ rules: 

x~ 
f (X1, -- ,X, .. ,Xr(j))~f (x J, •• ,y , .. ,Xr<J)) 

to allow reductions in contexts. One can easily prove that there is a one step 
rewrite 1➔r s in the TRS (see (KLoP, 1987) for a definition) iff the correspond­
ing TSS proves t ~s. 
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4. TRANSITION SYSTEMS AND STRONG BISIMULATION EQUIVALENCE 

An operational semantics makes use of some sort of (abstract) machines and 
describes how these machines behave. Often one takes as machines simply 
nondeterministic automata in the sense of classical automata theory, also 
called labelled transition systems (KELLER, 1976). 

4.1. DEFINITION. A (nondeterministic) automaton or labelled transition system 
( LTS) is a structure (S,A, ➔) where: 

S is a set of states, 
A is an alphabet, 
➔CS XA XS is a transition relation. 

Elements (s,a,s')E➔ are called transitions and will be written as s ~s'. The 
intended interpretation is that from state s the machine can do an action a and 
thereby get into states'. 

4.1.1. REMARK. Often transition systems are provided with an additional fourth 
component: the initial state. For our purpose it has some small technical 
advantages to work with transition systems that do not contain this ingredient. 
All considerations of this paper can trivially be extended to transition systems 
with initial state. 

The notion of strong bisimulation equivalence as defined below is from PARK 
(1981). 

4.2. DEFINITION. Let <t=(S,A, ➔) be a labelled transition system. A relation 
R CS XS is a ( strong) bisimulation if for all s, t with s R t: 
I. whenever s ~s' for some a and s', then, for some t', also t ~t' and 

s'R t', 
2. conversely, whenever t ~t' for some a and t', then, for some s', also 

s~s' ands'Rt'. 
Two states s,t ES are bisimilar in cP., notation <t:s ~ t, if there exists a bisimtila­
tion containing the pair (s,t). Note that bisimilarity is indeed an equivalence 
relation on states. 

4.3. DEFINITION (TSS's, transition systems and bisimulation). Let P =(~,A,R) 
be a TSS. The transition system TS(P) specified by Pis given by: 

TS(P) = (T(~),A,➔p), 

where relation ➔P CT(~)XA X T(~) is defined by: t~p t' ~ Pr t ~t'. 

We say that two terms t,t' ET(~) are (P-)bisimilar, notation t ~pt', if 
TS(P):t ~ t'. We write t ~ t' if it is clear from the context what P is. Note 
that ~P is also an equivalence relation. 
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4.4. Ex.AMPLE. For the TSS P(BPA~) of Example 3.4 we can derive the identi­
ties (a)-(e) below. In (f) it is shown that the left distributivity of · over + does 
not hold in bisimulation semantics. Like in regular algebra we will often omit 
the · in a product x :Y and we take · to be more binding than +. 

(a) t:t: ~ t: (d) bt: ~ b 
(b) b ~b+b (e) t:b ~ b 
(c) (t:a +t:b)(c(d8)+8) ~ (a((c+8)d)+b(c(d+d))')J> (f) ab+ac ~a(b+c) 

The parts of the automaton belonging to (a),(b),(c) and (f) are drawn in Figure 
4-6. A dotted line indicates that a pair of states is in the bisimulation relation. 
Furthermore, a state is always related to itself. In showing that two states are 
related, only the states that can be reached from these states are relevant and 
therefore only these states are drawn. 

b b+b 

(( 
b 

v 

FIGURE 4. Examples 4.4(a) and 4.4(b) 

In Figures 5/6 two separate automata are drawn instead of a combined one, to 
make the pictures clearer. 

(a((c +8)d)+b(c(d +d)))l, 

(t:(c(d +d)))l, 

C 

.. . ' :;. . .. (t:(d +d))l, 

d 

FIGURE 5. Example 4.4(c) 

In Figure 6 the states a(b +c) and t:(b +c) in the right transition system can­
not be related to any of the states in the left transition system. 
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£b 

ab+ac 
a ? -

? .... 

........ ... .. 
. . .. .......... .. ....... . 

v' 

FIGURE 6. Example 4.4(f) 

5. COMPOSITIONAL TRANSITION SYSTEM SPECIFICATIONS 

a(b+c) 

a 

b 

v' 

TSS's do not always generate automata for which strong bisimulation is a 
congruence. A number of examples will follow in the sequel. But if the rules in 
TSS satisfy the format below (and an additional small technical requirement is 
met), strong bisimulation will turn out to be a congruence. 

5.1. DEFINITION. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. A 
rule in R is in tyft format if it has the following form: 

{ ti ~Yi Ii El} 

f(x1, ••,Xn)~t 

with I an index set, fEF, r(j)=n, xi (l~i,s;;;;n) andyi (iEl) are all different 
variables from V, ai,a EA and ti,t ET(~) for i El. 

A rule in R is in tyxt format if it has the following form: 

{ti ~Yi Ii El} 

x~t 

with I an index set, x,yi (i El) all different variables from V, ai,a EA and 
ti,t ET(~) for i El. Pis in tyft!tyxt format if every rule in R is either in tyft for­
mat or in tyxt format. A transition system (f. is called tyft!tyxt specifiable if 
there exists a TSS Pin tyft!tyxt format with &,=TS(P). 

5.2. Norn. Observe that there does not have to be any relation at all between 
the premises and the conclusions in a rule satisfying our format. In fact our 
format explicitly requires the absence of certain relations between occurrences 
of variables in the premises and in the conclusion. Note that not only the TSS 
P(BPAs) of Example 3.4 is in tyftltyxt format, but also any TSS obtained 
from P(BPA8) by dropping some rules. The transition system specifications 
related to term rewriting systems (see Example 3.5) are in general not in 
tyftltyxt format. 
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5.3. Ex.AMPLE. Below we describe a TSS that models a simple typewriter that 
can be used to type strings and that has the option to delete the last character 
of the typed string using 'backspace'. The signature consists of the binary func­
tion symbol * denoting concatenation, and constant symbols A ( empty string) 
and a,t, .. ,y,z. As alphabet we take A ={a,t, .. ,y,z,~}. Here, ~ stands for a 
backspace. Rules for the typewriter can be given as follows: 

x~x•a for aE{a,t, .. ,y,z} 

a ~A for a E {a,t, .. ,y,z} 

x•a~x for aE{a,t, .. ,y,z} 

This description of the typewriter is not in tyft!tyxt format, because the lhs of 
the last axiom contains two function symbols. A TSS for the typewriter in 
tyftltyxt format is more involved. We need an auxiliary label empty, which 
denotes that an expression consists of the empty string. We also need more 
rules: 

a~A 

x~x' 
y•x a)y•x' 

x~x' y~y' 
x•y~x' 

for a E { a,t, .. ,y,z} 

for a E {a,t, .. ,y,z} 

for eE{empty,~} 

We come back to this example in Section 5.11.2. 

5.4. Wellfoundedness. A TSS with the rule: 

f(x,y2)~Y1 g(x',y1)~Y2 

x~x' 

can be in tyft!tyxt format. However, we have a circular reference. In generaly 1 

will depend on j(x,y2) and thus on Y2 while Y2 depends on g(x',y 1) and thus 
on y 1 • We will exclude this type of dependencies, as they give rise to compli­
cated TSS's. For this purpose the notion of a dependency graph is introduced. 

5.4.1. DEFINITION. Let P=(~,A,R) be a TSS. Let S={t;~t;'liEJ} be a set 
of transitions of P. The dependency graph of Sis a directed (unlabelled) graph 
with: 

Nodes: U Var(t; ~t;'), 
i e / 

Edges: { <x,y >Ix E Var(t;), y E Var(t;') for some i El}. 
A set of transitions is called wellfounded if any backward chain of edges in the 
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dependency graph of these transitions is finite. A rule is called wellfounded if 
the set of its premises is so. Finally, a TSS is called wellfounded if all its rules 
are well-founded. 

5.4.2. ExAMPLE. The dependency graph of the set of premises of the rule in 
Section 5.4 is given in Figure 7. The rule is not well-founded since the graph 
clearly contains a cycle. 

I\ 
X Yi Y2 x' 

~ 
FIGURE 7 

5.5. DEFINITION. Two TSS's P and P' are transition equivalent if 
TS(P) = TS(P'). 

Hence, two TSS's are transition equivalent if they have the same signature, the 
same set of labels and if the sets of rules determine the same transition rela­
tion. The particular form of the rules is not important. In Example 3.4 for 
instance, we can replace rule 6 of Table I by the rule: 

x~8 y~y' 
xy~y' 

The resulting TSS P'(BPA8) is transition equivalent to P(BPAa). This is 
because whenever P(BPA8) proves a transition of the form t ~t', t' will be 
syntactically equal to 8. Observe that P'(BPA8) is not in tyft!tyxt format. We 
will come back to this in Section 5.13. 

When dealing with closed terms, only the tyft format is necessary and the tyxt 
format is not needed. This is what the following lemma says. 

5.6. LEMMA. Let P =(~,A,R) be a (wellfounded) TSS in tyftltyxt format. 
Then there is a transition equivalent (wellfounded) TSS P'=(~,A,R') in tyft for­
mat. 
PROOF. Let ~=(F,rank). Define R' by: 

every tyft rule of R is in R ', 
for every tyxt rule rER and for every function symbol fEF, r1 is in R', 
where rf is obtained by substituting f(x 1 , •. ,Xrank(f)) for x in r with 
{x 1 , .• , Xrank(f ) } ~ V- Var(r) . 

If the old tyxt rules were well-founded, then the new rules will be well-founded 
too and in tyft format. Suppose that t ~t' is a transition in TS(P). Then, by 
definition of TS (P) and Lemma 3.3, there is a closed proof from P of this 
transition. Now one can easily see that this is also a proof fort ~t' from P'. 
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A similar argument gives that every transition of TS(P') is also a transition of 
TS(P). □ 

5. 7. DEFINITION. Let P =(~,A,R) be a TSS and let r be a rule in R. A vari­
able in Var(r) is called free if it does not occur in the left hand side of the 
conclusion or in the right hand side of a premise. 

5.8. DEFINITION. Let P =(~,A,R) be a TSS. A rule rER is called pure if it is 
well-founded and contains no free variables. The TSS P is pure if all its rules 
are pure. 

5.9. LEMMA. Let P =(~,A,R) be a welljounded TSS in tyft!tyxt format. Then 
there is a transition equivalent pure TSS P' =(~,A, R ') in tyft format. 
PROOF. By the previous lemma we can assume that Pis in tyft format. Replace 
every rule with free variables by a set of new rules. The new rules are obtained 
by applying every possible substitution of closed terms for the free variables in 
the old rule. If the old rules were well-founded and in tyft format then the 
new rules will be pure and in tyft format. Now, every closed proof T for a 
transition t 1 ~t2 from Pis also a proof for t 1 ~t2 from P' and vice versa. 

□ 

We now come to the first main theorem of this paper. It says that strong 
bisimulation is a congruence for all operators defined using a well-founded 
TSS in tyftltyxt format. 

5.10. THEOREM. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. If 
Pis welljounded and in tyft!tyxt format then strong bisimulation is a congruence 
for all function symbols, i.e. for all function symbols fin F and all closed terms 
u;,V;ET(~) (1-.;i..;r(f)): 

Vi U; ~p V; ~ f(u1, --, Ur(j)) ~p f(v1, --,V,(j))-

Before we commence with the proof of this theorem, we present a number of 
examples which show that the condition in the theorem that the TSS is in 
tyftltyxt format cannot be weakened in any obvious way. At present, we have 
no example to show that the condition that the TSS is well-founded cannot be 
missed: we just have not been able to prove the theorem without it. However, 
non-well-founded TSS's are quite pathological and we know of no application. 
In Section 7 it will be shown that non-well-founded rules are ill-behaved with 
respect to modularisation. 

5. J J. COUNTEREXAMPLES. 

5.11.1. ExAMPLE. The first example shows that in general the variables in the 
source of 
the conclusion must all be different. The crucial part of the example is a rule 
that one could call a syntactical tester. In case of the alternative composition, it 
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tests whether the left and right argument of the + are syntactically identical. 
The TSS which we have in mind, is obtained by adding to P(BPAa) the 
axiom: x + x ~«5. We then have a ~ a£, but a+ a ~a+ a£ as a and a£ are 
not syntactically equal. 

5.11.2. ExAMPLE. In general, not more than one function symbol may occur in 
the source of the conclusion. Take the TSS P(BPA~) extended with the axiom 
ab ~8. As in Example 4.4(b) b ~ b + b, but in the new situation we do not 
have any more that ab ~ a(b + b) as a(b + b) cannot do an initial ok­
transition. Another example illustrating this point is obtained by adding the 
axiom x+(y+z)~8 to P(BPA6). Again we have b ~ b +b, but now it is 
not the case that b +(b +b) ~ b +b. 

As a last example of this kind we mention the typewriter of Section 5.3. The 
first iecification is not in tyft!tyxt format, because it contains the axiom 
x•a ~x with * and a function symbols. Now >..•a~ a but a•(>..•a) ~a•a. 
Bisimulation is a congruence for the tyft!tyxt version of the typewriter. The 
reader may also check that the identities >..•t ~ t•>.. ~ t and 
(s•t)•u ~ s•(t•u) with s,t,u closed terms over the signature, hold for the 
second version of the typewriter but not for the first version. 

5.11.3. ExAMPLE. Our next example shows that in the right hand side of a 
premise, function symbols are not allowed to occur. We can add prefixing 
operators a:(-) to P(BPA6) for each a EAct and define the operational meaning 
of these operators with rules: 

a:x ~x. 

If we now add moreover the rule: 

x~8 
a:x~8 

we have problems because a:a:8 ~a:a:(8+8) even though 8 ~ 8+8. 

5.11.4. ExAMPLE. The variables in the right hand sides of the arrows in the 
premises must in general be different. This is shown by adding the rule: 

x~y x'~y 
x·x'~8 

to P(BPAU. Now a~ a£, but aa ~(a£)a. 

a=/=-./ 

5.11.5. ExAMPLE. If variables in the left hand side of the conclusion and the 
right hand side of the premises coincide, problems can arise too. Add the rule: 

x~ 
x+y~8 

to P(BPAa) and observe that££~£, but a+££ ~a+£. 
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5.12. We now will prove Theorem 5.10. 

PROOF. Let ~=(F,r) be a signature and let P=(~,A,R 0 ) be a well-founded 
TSS in tyft!tyxt format. We have to prove that ~P is a congruence. Let 
RC T(~)X T(~) be the least relation satisfying: 

~pCR, 
for all function symbols/in F and terms u;,V; (1..;;;;,s;;;r(f)) in T(~): 

'f/i u;R V; ~ f(u1,--,u,,J>)Rf(v1 ,••,v,(f))-

It is enough to show R C~P because then R =~p and it follows from the 
definition of R that ~P is a congruence for all / in F. In order to prove 
R C~p it is enough to show that Risa bisimulation. For reasons of symmetry 
it is even enough to show only one half of the transfer property: if u R v and 
u~p u' then there is a v' such that v~p v' and u' R v'. If u R v then by 
definition of R either u ~P v or, for some function symbol f in F: 
U==f(ui, .. ,u,(f)) and v-==-f(v 1, . . ,v,(J)) with u;R v; for all i. As ~P trivially 
satisfies the transfer property, only the second option needs to be checked. 
Summarizing, we have to prove the following statement: 

Whenever Pl-- f(u 1, •• ,u,(f))~u' and u; RV; for 1..;;;;,s;;;r(f) then there is a v' 
such that Pl-- f(v 1, •• ,v,(f))~v' and u'R v'. 

Lemma 3.3 says that there is a proof T of f(u 1, •• ,u,(J))~u' that only con­
tains closed transitions. We will prove the statement with ordinal induction on 
the structure of T. Lemma 5.9 allows us to assume throughout the proof that 
the rules in R 0 are pure and in tyft format. 

Let r be the last rule used in proof T, in combination with a substitution o. 
Assume that r is equal to: 

{t;~y; liEJ} 

f(x 1,--,X,<f))~t 

It follows that: 1) f=f 
2) o(x;)=u; for 1..;;;;,s;;;r(f) 
3) a(t)=u' 

Our aim is to use the rule r again in the proof of/( v 1 , •• , v ,if)) ~v' for some v' 
by finding a proper substitution o' . Consider the dependency graph G of the 
premises of r . Because r is tyft, each node in G has at most finitely many 
incoming edges. Because G is well-founded we can define for each node x of G, 
depth(x)EN as the length of the maximal backward chain of edges (use 
Konig's lemma). Define 

X = {x;II..;;;;,s;;;r(f)} 

Y = {y; liEJ} 

Yn = {yEYldepth(y)=n} for n;;;;.O 
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Observe that for any variable x EX: depth (x) = 0, and that the sets Yn form a 
partition of Y. We will define a substitution a' that satisfies the following pro­
perties: 

a'(x;)=v; 

a(y)R o'(Y) 

Pf- o'(t;~y;) 

for },s;;;_i,s;;;.r(f) 

foryEXU Y 

foriE/ 

(I) 

(2) 

(3) 

Substitution o' will be constructed in a stepwise fashion. To begin with we 
define: 

o'(x;) = V; for },s;;;_i,s;;;,r(f) 

o'(y) = o(y) foryEV-(XU LJ Yn) 
n>O 

We still have to define o' on U n >O Yn . As soon as o' has been defined for all 

variables in XU YOU · · · U Y m (m ;;..O), we can state the following properties 
a(m) and fJ(m ) : 

a(m): a(y)R o'(y) for yEXU Y 0 U · · · U Ym 

/J(m): Pf- o'(t;~y;) fory;EY0 U · · · UYm 

One can easily check that a(O) and /J(O). Let n >0. Suppose that o' has been 
defined already for all variables in XU Y O U · · · U Yn _ 1 in such a way that 
properties a(n -1) and fJ(n -1) hold. We show how to define o' on all vari­
ables of Yn such that a(n) and fJ(n) hold. This is sufficient for completing the 
definition of a o' that satifies properties 1-3: property I is met by definition, 
property 2 and 3 follow because o' satisfies properties a(n) resp. fJ(n) for all 
nEN. 
Pick an elementy*EYn. There is a unique iE/ withy*=y;. Becausey;EYn 
and ruler is pure, Var(t;)!;;;XUY0 U · · · UYn - l· Now use that o' satisfies 
a(n-1) to obtain that for all variablesyEVar(t;): o(y)Ro'(y). Next we use 
the following 

FACT. Let t ET{~) and let p,p': v-T(~) be substitutions such that for all x in 
Var(t): p(x)R p'(x). Then p(t)R p'(t). 
PROOF. Straightforward induction on the structure of term t using the 
definition of R. □ 

We obtain that o(t;)R o'(t;). Since also P f- o(t;)~o(y;), we can distinguish, 
by definition of R, between two cases: 
I) o(t;) ~P o'(t;). In this case we can find a wET{~) such that Pf- o'(t;)~w 

and o(y;)R w. We then define o'(y*)=o'(y;)=w. 
2) There is a function symbol g in F and there are terms w1, w/ for 

},s;;;_J,s;;;,r(g) such that: 

o(t;)= g(w 1, •• , w,(g)), 
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o'(t;)=g(w 1', •• ,w,(g{) and 

wiR w/ for l~j~r(g). 
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But now we can apply the induction hypothesis which gives that we can 
find a w such that Pf- g(w 1', •• ,w,<g>')~w and o(y;)R w. We define 
o'(y*)=o'{y;)=w. 

In the same way we can define o' for the other elements of Yn. It is not hard 
to see that after this a(n) and /J(n) hold. 
Let for i El, T; be a proof of o'(t; ~y;). Construct a proof T' with root 
o'(f (x 1 , .. ,x,<f>) ~t) and as direct subtrees the proofs T; (i E/). Define 
v'=o'(t). Clearly T' is a proof for f(v 1, •• ,v,,J>)~v'. Since for all xEVar(t): 
o(x)R o'(x) (use that r is pure), it follows by an application of the previously 
stated fact that o(t)R o'(t) or, equivalently, u' R v'. □ 

5.13. The implication in Theorem 5.10 cannot be reversed. So given a TSS for 
which bisimulation is a congruence, this TSS need not be well-founded and in 
tyftltyxt format. This is obvious because for any TSS, a transition equivalent 
TSS can be obtained by adding all derivable transitions as rules. And if 
bisimulation is a congruence for the one it is a congruence for the other. If one 
starts from a well-founded TSS in tyftl tyxt format, the result will in general 
not be tyft!tyxt. For instance, in the case of P(BPA6) one adds the rule 
a·(x +y)~t:·(x +y). 

Even after removing derivable rules, a TSS for which bisimulation is a 
congruence need not be well-founded and in tyftltyxt format. The TSS 
P'(BPA6) described in Section 5.5 contains no derivable rules and is not in 
tyftltyxt format. But, as observed in that section, it is transition equivalent to 
the TSS P(BPA6) which is in tyftltyxt format. Hence, bisimulation equivalence 
is a congruence. 

It is worth noting that if one adds new operators and rules to P'(BPA6), the 
congruence property can get lost, even if the rules for the new operators are 
tyft. In order to see this, consider the TSS obtained by adding to P'(BPA6) 
encapsulation or restriction operators au for H CAct and the tyft rules: 

x~x' 
au(x)~au(x') 

aflH 

We then obtain a~ a(b)(a), but a·b ~a(bJ(a)·b. 
The examples above do not rule out the following weakened variant of the 

reverse implication of Theorem 5.10: if P is a TSS for which bisimulation is a 
congruence, then TS(P) can be specified by a well-founded TSS in tyft!tyxt 
format. Below we present a TSS that eliminates this variant of the reverse 
implication. Consider the TSS P that has constant symbols a,b and 8, a 
binary function symbol f, labels a,b,c and rules: 
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b~8 

f(a)~8 
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The last rule is not tyft!tyxt, but it is not hard to see that ~P is a congruence. 
We claim that there exists no TSS in tyft!tyxt format that is transition 
equivalent to P. In order to prove this claim, it is, by Lemma 5.6 and the 
proof of Lemma 5.9, sufficient to show that no TSS P' in tyft format and 
without free variables in the rules can be transition equivalent to P. Suppose 
there would be such a P'. Since P' 1- /(a)~8, there is a closed proof T of 
f (a)~8 such that only the root of Tis labelled with /(a)~8. The other 
nodes in T are labelled with either a ~8, b ~8 or b ~8. Let r be the last 
rule used in T, in combination with a substitution o. Rule r must be of the 
form: 

{t; ~t;' Ii El} 

f(x)~t 

It is not hard to see that for i El, t; must be equal to x , a or b. Clearly 
o(x)=a. Let o' be the same as o except that o'(x)=b. Let iEl. Then 
o'(t; ~t;') is either a ~8, b ~8 orb ~8. Moreover o'(t)=8. Thus we can 
construct a proof from P' of transition / (b) ~8 by taking r as a last rule 
with substitution o' and appending proofs of a ~8, b ~8 and b ~8 on top 
of that at the appropriate places. Contradiction. 

Also in this case we have that adding tyft rules may destroy the congruence 
property (take the axiom a ~8). 

5.14. REMARK. The examples of Section 5.13 show that there is another reason 
for using TSS's in tyft!tyxt format, namely their extensibility, without 
endangering congruence properties. It seems that, whenever a TSS contains a 
non tyftl tyxt rule, we can extend this TSS ( except for some trivial cases, for 
instance if the non tyft!tyxt rules are derivable) with a number of tyft rules in 
such a way that for the resulting TSS bisimulation is not a congruence. 

6. SOME APPLICATIONS 

In this section we give some examples of TSS's and applications of the 
congruence theorem. 

6.1. The silent move. In process algebra it is current practice to have a con­
stant '-r' representing an internal machine step that cannot be observed. In 
order to describe the 'invisible' nature of -r, the notions of observation 
congruence (MILNER, 1980) and rooted--r-bisimulation (BERGSTRA & KLoP, 
1988) have been introduced. As observed by VAN GLABBEEK (1987) it is not 
necessary to introduce a new notion of bisimulation: one can just work with 
the standard notion of strong bisimulation if one is willing to add some Plot­
kin style rules that capture the notion of a hidden, internal machine step. 
Below we assume that -r is an element of the set Act of actions that figures as a 
parameter of the TSS P(BPA6). The TSS P(BPA;8 ) is obtained by adding to 
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P(BPAl) the rules of Table 2 (aEActv)-

7. Q~'T a=f=v 

8. X~l l~Z 
x~z 

9. X~l l~Z 
x~z 

TABLE 2. Rules for the silent move ,-

One possible interpretation that one can give to a transition t ~t' (a=l=-r) is 
that the system that is modelled can evolve from state t to state t' during a cer­
tain positive time interval in which an occurrence of action a can be observed. 
Then t ~t' means that no action can be observed during such an interval. 
Rule 8 and 9 can be viewed as logical consequences of this interpretation. It is 
consistent with the interpretation of transitions and the rules of Table I and 
Table 2 to assume that execution of a process a takes a positive amount of 
time; the observation of the action a however takes place at the beginning. 
Rule 7 says that when the action a is observed, the process a that executes this 
action may still perform some internal activity before it terminates successfully. 

The TSS P(BPA;6) is in pure tyftltyxt format. Thus strong bisimulation is a 
congruence. One can prove that the theory BPA;6 , as presented in Table 3 (a 
ranges over Act), is a sound and complete axiomatisation of the model induced 
by the TSS P(BPA;6) modulo strong(!) bisimulation. 

x+y=y+x Al a,-= a 
x +(y +z) = (x +y)+z A2 'TX+ X = 'TX 
x+x = x A3 a(,-x +y) = a(,-x +y)+ax 
(x +y)z = xz +yz A4 
(xy )z = x(yz) AS 
x +8 = x A6 
8x = 8 A7 
EX = X AS 
Xt: = x A9 

TABLE 3. The axiom system BPA;6 

Tl 
T2 
T3 

This means that, if ~,.-6 denotes rooted-,--bisimulation (i.e. observation 
congruence), we have the following situation: 

P(BPA;6) 1= s ~ t <=> P(BPAl) 1= s ~,.-6 t <=> BPA;c5 1- s = t. 

In Figure 8- IO we give three examples corresponding to the ,--laws of MILNER 
(I 980). In Figure 8 two separate transition systems are drawn. In Figures 8 
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and 10 a may not equal -r. In Figure 9 the relevant states of -r+t and -r are 
drawn, as the equation -r+t=-r is equivalent to the axiom TI. It is left to the 
reader to check that the transition systems are strongly bisjmilar. 

a OT 

T T 

f 

v' 
T 

8 
v' 

8 
FIGURE 8 (a = a-r) 

-r+E T 

FIGURE 9 (-r+E = -r) 

FIGURE 10 (a(-rx +y) = a(-rx +y)+ax) 
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6.2. Recursion. There are many ways to deal with recursion in process algebra. 
One approach is to introduce a set ::: of process names. Elements of ::: are 
added to the signature of the TSS as constant s~bols. The recursive 
definitions of the process names are given by a set E = { X <==t x I XE:::} of 
declarations. Here the tx are ground terms over the signature of the TSS 
(hence, they may contain process names in :E:). If X <==t x is a declaration, then 
this means that the behaviour of process Xis given by its body tx. Formally 
this is expressed by adding to the TSS rules: 

tx~Y 

X~y 

for every declaration X<==tx. Now observe that these rules are pure tyft. Hence 
it follows that if one adds recursion to a well-founded TSS in tyftltyxt format 
in the way described above, bisimulation remains a congruence. 

A slightly different way of dealing with recursion is followed by OLDEROG & 
HOARE (1986) and HENNESSY (1988). Here axioms X ~tx appear saying that 
by some internal activity, a process name can expand to its body. Also this 
type of rules satisfy our format. 

6.3. The state operator. In many cases where operational semantics of a 
language is defined using Plotkin style rules, values play a role (see for instance 
(AMERICA ET AL., 1986) and (PLOTKIN, 1983)). Here, states of the transition 
system are generally con.figurations, i.e. pairs <t, a> of a process expression t 
and a valuation a. In this section we argue that it is often possible to give 
inductive rules for these languages within the tyft!tyxt format using the 
extended state operator A0 of BAETEN & BERGSTRA (1988). 
We will add the state operator to the setting of BPA;6 of Section 6.1. Let S be 
a set of states. For each aES we add a function symbol A0 to the signature. 
An expression A0 (t), represents a process that transforms the state a during 
successive transitions of t as specified by a function effect :S XAct XAct-s 
while influencing the actual labels of the transitions of t as specified by a func­
tion action :Act X s-2Act. action (a,a) defines the set of actions that can be per­
formed by A0 (t) if t performs an a. effect(a,a,b) defines the resulting state if 
A0 (t) actually transforms under b Eaction (a, a). Note that the extra argument b 
is necessary as the action function defines a set of possible actions that can be 
performed by Ao(t). The environment may determine which action from this 
set actually will occur. The functions effect and action are inert for -r, i.e. 
action(-r,a)={-r} and effect(a,-r,a)=a for every aEAct. The rules for the state 
operator are (aES; a,bEAct): 

Ao(x) 2..) Aeffect(o,a,b)(x') 

x~x' 
A

0
(x) ;;,)A0 (x') 

b Eaction (a, a) 

Clearly the above rules are pure tyft, so bisimulation will be a congruence. As 
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a typical application we consider a small subset of CSP. Actions in Act are of 
the form -r, g !e, g?v or [v: =e] where v ranges over a set 'V of program vari­
ables and e ranges over natural number expressions built from 'V, constants for 
the natural numbers and the usual operations such as +, - , X. g !e means 
'write the value of expression e to channel g, g?v means 'read a value from 
channel g and assign this value to v' and [v:=e] means: 'assign the value of 
expression e to v'. We assume the presence of an interpretation function [·] 
that, given a valuation a of the variables, yields for each expression a natural 
number. A£, state space S we take all valuations in 'V-N. Let a[nlv] be the 
valuation a except for the fact that variable v is mapped on n. Now we can 
define the functions action and effect as follows : 

action(a,g!e) = {g![e]°} 
action(a,g?v) = {g?njnEN} 
action (a, [v: =e ])= {-r} 

effect(a,g!e,g!n) = a 
effect(a, g?v, g?n) = a[nlv] 
effect(a,[v:=e),-r) = a[[e] 0 /v) 

Function effect is inert in the cases that are not specified. As an example con­
sider a process that is capable of reading a value from channel g I and sending 
the square of that value to channel g 2 : 

Ao(g 1?v·[w: =v Xv)·g 2 !w) 

A particular sequence of transitions of this process is: 

A0 (g 1 ?v·[w: =v Xv ]·g2!w)~Ao(3/vJ(£·[w: =v Xv ]·g2 !w) ~ 

Ao(3lv, 9/w](£·g2 !w) ~Ao(3lv, 9lwJ(£) ~Ao(3lv, 9/w](«5) 

It is not difficult to extend the combination of BPA;6 and the state operator 
with a parallel combinator. Then, communication can be defined such that we 
have value passing between several processes. We will not give a detailed ela­
boration of this because that would go beyond the scope of this article. How­
ever, we would like to stress that in some sense the extended state operator is 
more powerful than the approach with a global state using configurations. The 
extended state operator can in a very natural way be used to model that cer­
tain data are local to some processes. 

7. MODULAR PROPERTIES OF TRANSITION SYSTEM SPECIFICATIONS 

Often one wants to add new operators and rules to a given TSS. Therefore, a 
very natural operation on TSS's is to take their componentwise union. Given 
two TSS's P 0 and P 1 we use the notation P 0 ffiP 1 to denote the resulting sys­
tem. A nice property to have in such a situation is that the outgoing transi­
tions in TS (P 0) of terms in the signature of P O are the same as the outgoing 
transitions of these terms in TS(P0 $P 1). This means that P 0 ffiP 1 is a conser­
vative extension of P O: any property which has been proved for the states in 
the old transition system remains valid (for the old states) in the enriched sys­
tem. 
In this section we study the question what restrictions we have to impose on 
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Po and P 1 in order to obtain conservativity. First we give the basic definitions. 

7.1. DEFINITION. Let ~i =(F;,r;) (i =O, 1) be two signatures such that 
JEF0 nF1 ~ r0(f)=r 1(J). The sum of ~o and ~,, notation ~0 EB~,, is the 
signature: 

7.2. DEFINITION. Let P;=(~;,A;,R;) {i=O,l) be two TSS's with ~0 EB~ 1 
defined. The sum of P 0 and P 1, notation P 0 EBP 1, is the TSS: 

P 0 EBP 1 = (~0 EB~1,Ao UA 1,Ro UR 1). 

7.3. DEFINITION. Let P;=(~;,A;,R;) (i=O, l) be two TSS's with P=P0 EBP 1 
defined. Let P=(~,A,R). We say that Pis a conservative extension of P 0 and 
that P I can be added conservatively to P O if for all s ET (~0), a EA and 
tET(~) : 

A s~t <=> P 0f- s~t. 

Note that the implication Pf- s ~t $= P 0 f- s ~t holds trivially. 

7.4. REMARK. Let P; =(~;,A;,R;) (i =O, 1) be two TSS's with P=P0 EBP 1 a 
conservative extension of P 0 . Then Pis also a conservative extension of P 0 up 
to bisi.mulation, i.e. for s,t E T(~0): 

S ~p 1 <=> S ~p
0 

t. 

7.5. COUNTEREXAMPLES. We want to study the question in which cases a TSS 
P 1 can be added conservatively to a TSS P 0• However, we will restrict our­
selves to the case where both P 0 and P 1 are in tyftltyxt format. Below, 5 
examples are presented that illustrate different situations where we do not have 
conservativity. 

7.5.1. ExAMPLE. If P 1 has a rule with a function symbol that already occurs in 
~o in the lhs of the conclusion, then problems arise quite soon. If 
P 0 =P(BPAl) and P 1 contains a single rule: 

X +y~8 

then 8~p. 8+8 but not 8~P.$P, 8+8. 
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7.5.2. ExAMPLE. Conservativity can get lost if free variables occur in a premise 
of a rule in P 0 . In order to see this consider the TSS P 0 with constant symbols 
a, b, a lab~ a and rules: 

a...!!..:)a 

x...!!..:)y 
b...!!..:)y 

It is not hard to see that a ~ b. However, if we add constant symbols c,d and 
a rule c ...!!..:)d it follows that a ~ b. 

7.5.3. ExAMPLE. Conservativity can get lost also if free variables occur in the 
conclusion of a rule in P 0 . Let the signature of P 0 consists of two constant 
symbols a and b. The set of labels contains only a and there are two axioms: 

a...!!..:)a 

b...!!..:)x 

It is not hard to see that a ~P. b. However, if we add a TSS P I which con­

tains a constant symbol c and no rules, then a ~P.ff'IP, b. 

7.5.4. ExAMPLE. Conservativity up to bisirnulation can be violated if we add 
tyxt rules to a given TSS. Let P 0 consist of P(BPA8). In P 0 we have 
a ~ a + 8. This is no longer true if we add a TSS P I which contains a single 
axiomx~x. 
Another example of this kind is given by the rules 8 and 9 in Table 2 of Sec­
tion 6.1. Consider P(BPA8) to which rule 7 has been added. None of the T­

laws holds in this system. However, if rules 8 and 9 are added the T-laws do 
hold. Hence, rules 8 and 9 do not preserve conservativity up to bisirnulation. 

7.5.5. ExAMPLE. Our last example shows that non-well-foundedness of P 0 can 
disturb conservativity. Suppose P 0 consists of P(BPA8) and a circular (non­
well-founded) rule: 

x1+Y1~Y2 x2+Y2~Y1 

x1+x2~Y1+Y2 

One can easily see that 8~p. 8+8. However, adding a TSS P 1 with a single 
axiom ok ~ok makes that 8~P.ff'IP, 8+8. 

The next theorem shows that in some sense the examples above give a com­
plete overview of the situations in which we do not have conservativity. 
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7.6. THEOREM. Let P 0 =('}';;o ,Ao,Ro) be a TSS in pure tyftltyxt format and let 
P 1 = ('}';; 1 ,A 1, R 1) be a TSS in tyft format such that there is no rule in R I that 
contains a function symbol from '}';;o in the left hand side of its conclusion. Let 
P =Po EB PI be defined Then PI can be added conservatively to Po-
PROOF. We use the same type of strategy as in the proof of Theorem 5.10. Let 
P=('}';;,A,R). Let sET('}';;0), a EA and s'ET('}';;) with Pt- s~s'. Let T be a 
proof of s ~s' from P. With ordinal induction on the structure of T we prove 
that Tis also a proof of s ~s' from P 0 • Let r be the last rule which is used in 
T. Because s E T('}';;0 ) and all rules of P I are tyft and contain no function sym­
bols from '}';;0 in the left hand side of their conclusions, r must be in R O• Sup­
pose r is pure tyft (the case that r is pure tyxt is completely analogous and 
omitted). Suppose in particular that r is equal to: 

{t;~y; liEJ} 

f(x1 ,-- ,Xr<j))~t 

Let a be the substitution that relates ruler to the last step in proof T. We then 
have: 

a(f(x 1, .. ,Xr<j)))=s, 

a(t)=s'. 

Consider the dependency graph G of the premises of r . Like in the proof of 
Theorem 5.10 we define for each node x of G, depth(x)EN as the length of the 
maximal backward chain of edges. Further we define: 

X = {x; I lo;;;;io;;;;r(f)} 

y = {Y; liEJ} 

Yn = {YE Yldepth(y)=n} for n;;;i,:o 

With induction on n we prove that a(x) is in T('}';;0 ) for all xEXU Y. Because 
sET('}';;0) and a(f(x 1, .• ,Xr<j))=s, a(x)ET('}';;0) for all xEX. Let nEN and sup­
pose that o(x)ET('}';;o) for all xEXUY0 U · · · UYn - l· Lety*EYn . There is a 
unique i El with y * =y;. Because y ; E Yn and rule r is pure, 
Var(t;)~XU Y0 U · · · U Yn - l· But now we can apply the induction 
hypothesis: since s;=a(t;)ET('}';;0 ), s;' = a(y;)ET('}';;0 ) too. Since y* is chosen 
arbitrarily, o(y)ET('}';;0) for allyEYn. This finishes the induction on n so that 
we have shown that o(y)ET('}';;0) for all xEXU Y. Since Var(t)~XU Y , we 
may conclude s' = a(t)ET('}';;0 ). □ 

7. 7. In our view the counterexamples which show that the original system has 
to be pure and no rule from the added system may contain a function symbol 
of the original system in the lbs of its conclusion are quite strong. It will be 
difficult to strengthen Theorem 7.6 by weakening these constraints. Because 
modularity is an important and desirable property and because TSS's which 
are not pure are ill-behaved with respect to modularity, one might decide, for 
this reason, to call such TSS's unstructured. 
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The main reason we had for including Theorem 7 .6 in this paper is that we 
need it in the next section. It is clear that a lot more can be said about modu­
lar properties of TSS's than we have done here. 

8. TRACE CONGRUENCES 

In this section we study the trace congruences induced by the pure tyft!tyxt 
format. Intuitively, two processes s and t are (completed) trace congruent if for 
any context C[] which can be defined using the pure tyft!tyxt format, the 
(completed) traces of C[s] and C[t] are the same. It seems reasonable to 
require that, whenever new function symbols and rules are added to a TSS in 
order to build a context which can distinguish between terms, these new 
ingredients may not change the original transition system: the extension should 
be conservative. If it would be allowed to introduce new transitions in the ori­
ginal transition system, then we could add rules like: 

x~x',y~y' 
x+y I'm(s+t>)x'+y' 

and make that syntactically different terms always have outgoing transitions 
with different labels. As a result completed trace congruence would just be 
syntactic equality between terms. 
The results of the previous section show that for a TSS in tyft!tyxt format it is 
in general rather difficult to determine a class of TSS's which can be added to 
it conservatively. Consequently it is also difficult to characterize the completed 
trace congruence induced by this format. However, for TSS's in pure tyft!tyxt 
format such a class exists: by Theorem 7.6 every TSS in tyft format can be 
added conservatively to a TSS in pure tyft!tyxt format. For this reason we 
decided to work on a characterization of the completed trace congruence 
induced by the pure tyft!tyxt format and leave the general tyft!tyxt format for 
what it is. We think that this is not a serious restriction because: 

We have never seen an application of a TSS with non-well-founded rules 
or rules with free variables. 
Well-foundedness is used anyhow in the proof of Theorem 5.10. The proof 
of Lemma 5.9 shows that for every well-founded TSS in tyft!tyxt format 
there exists an equivalent TSS in pure tyft!tyxt format. 
TSS's in tyft!tyxt format that are not pure, are ill-behaved with respect to 
modularisation and therefore not much effort should be spent in proving 
theorems about them. 

8.1. DEFINITION. Let cf=(S,A, ➔) be a LTS. A state SES is a termination 
node, notation s -/-7, if there are no t ES and a EA with s -5!.)t. A sequence 
a 1 * · · · •an EA• is a completed trace of s if there are states s 0 , •• ,sn ES such that 
so =sand s0 ~s1 ~-- ~sn -/-7. CT(s) is the set of all completed traces of 
s. Two states s,tES are completed trace equivalent if CT(s)=CT(t). This is 
denoted as s =er t. 
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8.2. DEFINITION. Let 'J be some format of TSS rules. Let P =(~,A,R) be a 
TSS in 'J format. Two terms s,t ET(~) are completed trace congruent with 
respect to 'J rules, notations ~t, if for every TSS P'=(~',A',R') in 'J format 
which can be added conservatively to P and for every ~$~'-context C( ]: 
C[s] =er C[t ]. s and t are completed trace congruent within P, notation s =pt, 
if for every ~-context C( ]: C(s] =er C(t ). 

8.3. NOTE. In the sequel we will define a number of equivalence relations on 
the states of transition systems. If P =(~,A,R) is a TSS and s,t are terms in 
T(~) then, whenever we say thats and t are equivalent according to a certain 
equivalence relation, what we mean is that the states s and t of the transition 
system TS (P) are equivalent according to this relation. 

8.4. Overview of results of Section 8. ABRAMSKY ( 1987) and BLOOM, ISTRAIL & 
MEYER (1988) give Plotkin style rules to define operators with which one can 
distinguish between any pair of non-bisimilar processes. We cannot obtain this 
result with pure tyft!tyxt rules, but we will show that the notion of completed 
trace congruence with respect to pure tyft!tyxt rules exactly coincides with 2-
nested simulation equivalence for all image finite processes. What we in fact will 
prove is best illustrated by Figure 11. 

=pure tyft I tyxt 3 (IF) 4 

~e. ~e.. 

FIGURE 11 

The arrows indicate set inclusion. 'IF' stands for Image Finite and indicates 
that we need image finiteness of processes for the proofs of inclusions 3, 5 and 
6. For m EN, t+m is m-nested simulation equivalence. ~e.. is the equivalence 
induced by the set e,.. of Hennessy-Milner formulas in which no negation sym­
bol occurs nested m times or more. In the right comer of Figure 11 we have an 
auxiliary equivalence notion ~m. In Sections 8.5-8.7 these notions are made 
precise and the inclusions are proved. It immediately follows that both trian­
gles collapse for image finite transitions systems. In particular we will prove 
the following Theorem 8.4.2. 
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8.4.1. DEFINITION. An LTS ~=(S,A, ➔) is image finite if for alls ES and a EA 
the set { t Is ~ t} is finite. 

8.4.2. THEOREM. Let P =(~,A,R) be a TSS in pure tyft!tyxt format such that 
TS(P) is image.finite. Let s,tET(~). Then: 

S =pun tyft / tyxt t <=> S ~
2 t <=> S ~ e, t. 

PRooF. Direct from Theorem 8.5.8, Corollary 8.6.7 and Corollary 8.7.6 of this 
section. □ 

We are quite sure that, if one uses infinitary Hennessy-Milner logic as in 
(MILNER, 1989), the restriction of image finiteness in Theorem 8.4.2 can be 
dropped. Because we wanted to keep the presentation as simple as possible, 
we preferred to leave this generalization as an exercise to the reader. 

In Section 8.8 we show that, using the results that were needed to characterize 
the completed trace congruence for the pure tyft I tyxt format, it is easy to 
prove that the trace congruence with respect to this format coincides with 
simulation equivalence for image finite processes. 

Bloom, Istrail & Meyer have studied the completed trace congruence induced 
by tree rules. Tree rules differ from pure tyft!tyxt rules in that they may only 
have variables in the premises and there may not be a single variable in the 
left hand side of a conclusion. Hence, one could also call this type of rules 
'pure xyft rules'. They proved the following theorem (BLOOM, 1988): 

8.4.3. THEOREM (BLOOM, ISTRAIL & MEYER). Let P =(~,A,R) be a TSS in tree 
rule format such that TS(P) is image.finite. Let s,tET(~). Then: 

S =trtt rules t <=> S ~ e, t. 

This result, which is close to our characterization theorem, has not been pub­
lished. A sketch of the proof is included at the end of this section. We were 
aware of the result of Bloom, Istrail & Meyer before we proved the characteri­
zation theorem for the pure tyftltyxt format. However, all proofs in this sec­
tion are entirely our own. 

8.5. Nested simulation equivalences. 

8.5.1. DEFINITION. Let ~=(S,A, ➔) be a LTS. A relation 
R C S XS is called a simulation if it satisfies: 

whenever s Rt and s ~s' then, for some t' ES, also t ~t' and s' Rt'. 
s can be simulated by t, notation s St, if there is a simulation containing the 
pair (s,t). sand tare simulation equivalent, notation s~t, ifs St and t ss. 

Note the difference between simulation equivalence and bisimulation 
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equivalence: in the case of a bisimulation equivalence, there should be single 
relation which is a simulation relation in two directions; in the case of simula­
tion equivalence it is required that there are two simulation relations, one for 
each direction. 

8.5.2. DEFINITION. Let <t=(S,A, ➔) be a LTS and let a be an ordinal number. 
We define the relation S" CSX S inductively as follows: 

s S" t i1f for each /J<a there is a simulation relation R C(S:/)- 1 with 
s Rt. 

Two states s and t are a-nested simulation equivalent, notation s -q" t, if s S" t 
and t S"s. 

8.5.3. LEMMA. Let <i=(S,A, ➔) be a LTS. Let a,/J be ordinal numbers with 
/J<a. Let s,t ES. Then: 
0. s0 = sxs 
1. SI = S and -qi = -q 
2. S" C S/J 
3. S" C (SP) -1 
4. -q" Cc" C t/1 

- ➔ -

5. ~ C tfl 
6. s S ;;-+ 1 t ifJ there is a simulation relation R C ( S ")- 1 with s R t. 
1. if a is a limit ordinal, thens S" t ifJ for all /J<a: s S/J t. 
PROOF. Straightforward using the definitions. D 

Besides the above lemma, there are a lot of other interesting facts about nested 
simulations that one may try to prove. In particular it is interesting to see what 
are the exact relationships between nested simulation equivalences and bisimu­
lation equivalence. Below some results are presented which clarify these rela­
tionships. Since these results are a bit outside the scope of this paper, all 
proofs have been omitted. 

8.5.4. COUNTEREXAMPLE. Below we present a counterexample which shows 
that the inclusion of Lemma 8.5.3.5 is strict. In order to present the example it 
is useful (although not necessary) to introduce the summation operator~- This 
operator, which for instance occurs in (MILNER, 1989), does not fit the frame­
work of this paper because it may have an arbitrary, possibly infinite number 
of arguments. If t; (i EI) are terms, then ~ . t; is a term too. Its behaviour is 

~,el 

described by rules (for all a EA, j EI): 

t1~Y 

~ - lt;~y 
IE 

One has to assume an upperbound on the cardinality of the index set I in 
order to make the collection of terms setlike. In our framework the operator ~ 
can be coded by viewing ~ . t; as a constant. Besides the ~ operator, we will 

IE/ 

use 8 and + as in P(BPAU and prefixing operators a:(.) as in Section 5.11.3. 
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We define the following terms: 

s 0 = c:8 

t 0 = s 0 +b:8 

Sa+I = a:ta 

ta+I = Sa+I + a:sa 

If a is a limit ordinal, then: 

Sa = "'2:,/J<ad:sp 

Sa = "'2:,/J<ad:(Sa + d:tp) 

ta = Sa + d:Sa 

Below in Figure 12 a part of the transition system is displayed: 

s~ a a c 
a a 

a a c 
8 tii;io 

b 

FIGURE 12 

One can prove that for every ordinal a: sa"=.ata and sa "frta. However, 
within a fixed transition system "=.a and ~ will coincide when a is large 
enough: 

8.5.5. THEOREM. Let t:t=(S,A, ➔) be a LTS and let a be the smallest regular 
cardinal larger than the cardinality of all sets {s' Is ~s'} (a EA,s ES). Then 

This theorem implies in particular that for image finite transition systems the 
intersection for all m EN of m-nested simulation equivalence coincides with 
bisimulation equivalence. 
Another implication is that if, relative to some transition system, "=.a is 
different from ~. tsJl and t+Y are different for all /J<y..;.a. 

8.5.6. Nested simulations and completed trace equivalence. Simulation 
equivalence does not refine completed trace equivalence. Take for example the 
simulation equivalent processes a and a8+a. The completed trace sets are 
{a*Y} and {a,a•V}, respectively. However, it is not hard to see that for 
m ;;,,,2, m-nested simulation equivalence does refine completed trace 
equivalence. 
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8.5.7. LEMMA. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. If P 
is wellfounded and in tyft!tyxt format, then for all ordinals a. ~a. is a 
congruence for all function symbols in F 
PROOF. Completely analogous to the proof of Theorem 5.10. Let P be well­
founded and in tyft/tyxt format. It is sufficient to show that for all ordinals a, 
allfEF and all closed terms u;,v;ET(~) (l,s;;;ios;;;r(f)): 

'Vi U; S/ V; ==> f(u,, .. ,u,(f)) sa. f(v,, .. ,v,(f)). 

We prove this statement with induction on a. Let a be an ordinal and suppose 
the statement is proved for /3 < a. Let R CT(~) X T (~) be the least relation 
satisfying: 

Sa.CR, 
for all function symbols/in F and terms u;,V; (1,s;;;i,s;;r(f)) in T{~): 

'Vi U;R V; ==> f(u1,-•,u,(f))Rf(v1,•••Vr(J)). 

It is enouf to show RCS a.. Let {3<a. Since, by Lemma 8.5.3.3, 
Sa. C ( Sp)- , and because, by induction hypothesis, Sp is a congruence we 
have that R C(SP)- 1. In order to show RC Sa., it remains to be shown that R 
is a simulation relation, i.e. if u R v and u~p u' then there is a v' such that 
v~p v' and u' R v'. The proof of this fact can in essence be copied from the 
proof of Theorem 5.10. □ 

The next theorem states the validity of inclusion 1. 

8.5.8. THEOREM (inclusion 1). Let P =(~,A,R) be a TSS that is in pure tyft!tyxt 
format. Then: 

-.2 c-
~ - =pure tyft I tyxt· 

PROOF. Let s,tET(~) with s~2 t. Let P'=(~',A',R') be a TSS in pure tyft!tyxt 
format that can be added conservatively to P and let C [ ] be a ~EB~, -context. 
Since P(f)P' is a conservative extension of P, s~2 t within TS(PEBP'). Now 
we use that ~ 2 is a congruence for operators in pure tyft!tyxt format (Lemma 
8.5.7) and get C[s]~2 C[t]. Since ~ 2 refines completed trace congruence: 
C[s] =er C[t ]. Because P' and C[] were chosen arbitrarily this gives us: 
S =pure tyftltyxt t. D 

8.6. Testing Hennessy-Milner formulas. Next we give the definitions of 
Hennessy-Milner logic (HML) and prove the second inclusion in Figure 11. 
Most definitions are standard and can also be found in {HENNESSY & MILNER, 
1985). The notion of HML-formulas of alternation depth m seems to be new, 
although the set of HML-formulas of alternation depth 1 (the formulas 
without negation) is exactly the set 0IL of {HENNESSY & MILNER, 1985). 
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8.6.1. DEFINITION. The set e of Hennessy-Milner logic (HML) formulas (over a 
given alphabet A = { a,b, ... } ) is given by the following grammar: 

q,::=T I q,/\q, 1...,q, I <a>q,. 

Let ~=(S,A,➔) be a LTS. The satisfaction relation 1= CS xe is the least rela­
tion such that: 

s 1= T for all sES, 
s 1=q,/\i/l iff s 1=4> ands l=i/1, 
s 1= ...,q, iff not s 1= q,, 
s 1= <a>q, iff for some tES: s ~t and t 1=4>. 

We adopt the following notations: 
F stands for ..., T, 
q,Vi/1 stands for ---,(...,q,/\---,i/1), 
[ a Jq, stands for ...,<a hq,. 

It is not difficult to see that any HML formula is logically equivalent to a for­
mula in the language e' which is generated by the following grammar: 

q,::=T IF I q,/\q, I q,Vq, I <a>q, I [a)q,. 

8.6.2. DEFINITION. Let ~=(S,A,➔) be a LTS and let :JC be a set of HML for­
mulas. With ~x we denote the equivalence relation on S induced by %: 

S ~x t <=> {'vq,E:JC: S l=cp <=> t l=q,). 

We will call this relation %formula equivalence. 

We recall a fundamental result of HENNESSY & MILNER (1985): 

8.6.3. THEOREM (HENNESSY & MILNER). Let ~=(S,A, ➔) be an image finite 
LTS. Then/or all s,tES: 

s ~ t <=> s ~et. 

8.6.4. DEFINITION. Form EN define the set e,,, of HML-formulas by: 
fo is empty, 
e,,, + 1 is given by the following grammar: 

q,::=---,i/l(for i/lEf,,i) IT I q,/\q, I <a>q,. 

We leave it as an exercise to the reader to check that the equivalence induced 
by e,,, formulas is the same as the equivalences induced by the sets :JC::, and :JC!J, 
which are given by: 

:JC8='JQJ=0. 
:JC::,+ 1 is defined by: 

ct,:: =i/l(for i/lE:JC!J.) I TI FI q,/\q, I q,Vcp I <a>cp. 

:JC!J, + 1 is defined by: 
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4>:: =,/!(for t/JE'X::i) I TI FI 4>/\4> I 4>V4> I [a]4>. 

8.6.5. ExAMPLE. Consider the terms s;,t; as defined in Section 8.5.4. Define 
for O<m<w the formula CJlmE{;,, by: cp1 =<b>T/\<c>T and CJlm+l =<ahCJlm· It 
is easily checked that for i ~O: s; II CJ);+ 1 and t; 1= cp; + 1• 

8.6.6. THEOREM (Testing~ formulas). Let P 0 =(~0 ,A 0 ,R0) be a TSS in pure 
tyftl tyxt format. Then there is a TSS P 1 = (~1 ,A 1,R 1) in pure tyft format, which 
can be added conservatively to P 0, such that completed trace congruence within 
P O EB P I is included in ~ formula equivalence. 
PROOF. P I is constructed in the following way. The set A I consists of A 0 
together with 5 new labels: 

A 1 =Ao U { ok,left,right,syn,skip }. 

Signature ~ 1 contains a constant 8, unary function names a: for each a EA 1, 

and binary function symbols + and Sat. Observe that the signature is finite if 
the alphabet A 0 is finite,. For 8 and + we have just the same rules as in BPA6 
and a: denotes prefixing like in Example 5.11.3. The most interesting operator 
is the operator Sat. Its first argument is intended to be a coding of some ~ 
formula. The Sat operator tests whether its second argument satisfies the ~ 
formula which is represented by its first argument. The rules of the Sat opera­
tor are given in Table 4. In the table a ranges over A 1• Because P I is in tyft 
format, ~o n~1 = 0 and P 0 is pure tyft!tyxt, it follows with Theorem 7.6 that 
P I is a conservative extension of P O• 

x~x' 
Sat(x,y) ok)Sat(x',y) 

x~x1, Sat(x1,Y)~Y1 
X ~Xr, Sat(xr,Y)~Yr 

Sat(x,y)~y1+Yr 

x ~x', x' ~x" 
y ~y', Sat(x",y')~y" 

Sat(x,y) ok)y" 

2 

3 

TABLE 4. A test system for ~ formulas 

~ formulas are encoded using the following rules: 

Cr=skip:8, 

C+A,i, =left:C+ +right:C,i,, 

C.....q,=skip:C4,, 

C(a>♦ =.syn:a:C4,, 
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We claim that for 4>E~, Sat(C,p,t) has a completed trace ok iff t 1=4>. With this 
claim, which we will prove below, we can finish the proof of Theorem 8.6.6: 
whenever for some s,tET(.~0 EB~i) withs 1-'e,, t, then there is an~ formula 4>o 
such that s t= 4>o and t I' 4>o ( or vice versa). Using the claim this means 
Sat(C4>o,s) 'i=. CT Sat(C4>o,t). 
Before we present a formal proof of the claim, we give some intuition about 
how Sat(C,p,t) tests the formula ct, on t. If ct,= T, testing is straightforward: 
Cr=skip:8 and skip indicates to Sat that it can do an ok step (rule 1). Hence, 
Sat(skip:8,t)~Sat(8,t) and it is not hard to check that Sat(8,t) cannot do a 
next step. 
Testing of /\ and <a> is almost as straightforward as testing the formula T and 
resembles the definition of t=. The intuitive meaning of the constant symbols 
left:, right: and syn: is respectively: transform to the left/right part of a for­
mula and synchronize the next action of the coded formula and the tested pro­
cess. Testing -, contains a little trick. First, the positive part of a formula is 
tested, which possibly yields a first ok and then the negative parts are tested. 
This can give rise to another ok. For instance the test Sat(C-,♦,t) performs an 
initial ok step as its positive part is empty and then tests for the e1 formula ct, 
whether t t= ct,. If there is no negative part that holds, the test does not yield 
another ok action and there is a completed trace ok. If a negative part is true, 
the test will yield another ok step and the ok trace is extended to the trace 
ok•ok, which is not ok because now ok flMT(Sat(C,p,t)) . Next we will give a 
formal proof of the claim. 

LEMMA. Let t E T(~o EB~ 1) and let ct, E e1. Then: 
i) tt=cp ~ CT(Sat(C,p,t))={ok}, 
ii) t Ii ct, ~ CT(Sat(C.,t))= 0. 
PROOF. Induction on the structure of ct,. 
a) ct, is T. Then t t=cp. The only move of Sat(C,p,t) is Sat(C,p,t)~Sat(8,t) 

and Sat(8,t) has no outgoing transitions. Both implications hold. 
b) ct, is 4>1 /\4>2 . If t t=cp then H</>1 and H4>2 . By induction 

CT(Sat(C,p,,t))={ok} and CT(Sat(C♦,,t))={ok} . Since all outgoing 
transitions of Sat(C,p,t) are proved using rule 2 in Table 4, one can easily 
see that CT(Sat(C,p ,t))= { ok }. If on the other hand t Ii 4> then either t Ii 4>1 
or t Ii 4>2. Hence by induction either CT(Sat(C♦, ,t))= 0 or 
CT(Sat(C♦,,t))= 0 . Thus Sat(C,p,t) can have no outgoing transitions and 
CT(Sat(C,p,t))= 0 . 

c) 4> is <a>ct,'. If t t= ct, then there is a t' such that t ~t' and t' t= ct,'. By induc­
tion CT(Sat(C,p,,t'))={ok} . Outgoing transitions of Sat(C,p,t) can only 
be proved using rule 3 and inspection of this rule allows us to conclude 
that CT(Sat(C,p,t))={ok}. If tl'ct, then for all t' with t~t', t ' lict,'. 
Hence by induction CT(Sat(C,p,,t'))= 0 . But this implies 
CT(Sat(C,p,t))= 0 since rule 3 cannot be applied. D 
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tl=q, <=> okECT(Sat(C♦ ,t)). 

PROOF. =>) Induction on the structure of ct,. 
a) q, is -,"1, "1Ee1. We have t~"1- By the lemma above, CT(Sat(C,i,,t))=0. 

By rule I: Sat(C♦,t)~Sat(C,i,,t). Hence ok is in CT(Sat(C♦ ,t)). 
b) q, is T. Rule 1 gives Sat(Cr,t)~Sat(8,t)~ . Hence 

ok ECT(Sat(C♦,t)). 

c) cf, is ct,1 /\<f>i. Since t l=cp we also have t 1=ct,1 and t l=<f>i. By induction 
okECT(Sat(C♦,,t)) and okECT(Sat(C♦,,t)). Since all outgoing transi­
tions of Sat( C ♦• t) are proved using rule 2, one can easily see that 
ok ECT(Sat(C♦,t)). 

d) cJ>=<a>q,'. Since tl=<a>q,', there is at' such that t~t' and t'l=cf,'. Induction 
gives that okECT(Sat(C♦,,t')). Hence there is a termination node t" such 
that Sat(C♦,,t')~t". Now an application of rule 3 gives that 
ok ECT(Sat(C♦,t)). 

~) Induction on the structure of ct,. 
a) q, is -,"1, "1Ee1. If Sat(C.,t) does a move, then the last rule applied in the 

proof must have been rule 1 and the transition must be 
Sat(C♦,t)~Sat(C,i,,t). Because okECT(Sat(C♦,t)), Sat(C,i,,t) can have 
no outgoing transitions. Since "1Ee1, the lemma allows us to conclude that 
t ~ "1- Hence t l=cf,. 

b) cp is T. Since t 1= T the implication holds. 
c) cp is q,1 /\<f>i. If Sat(C.,t) does a move then the last rule applied in the 

proof of this transition must have been rule 2. Since okECT(Sat(C♦,t)), 

it must be that okECT(Sat(C♦,,t)) and okECT(Sat(C♦,,t)). But this 
means that we can apply the induction hypothesis to obtain t 1= q,1 and 
t 1= <f>2. Hence t 1= q,. 

d) q, is <a>q,'. If Sat(C.,t) does a move then the last rule applied in the proof 
must have been rule 3. So, because okECT(Sat(C♦,t)), there are t' ,t" 
with t ~t', Sat(C♦,,t')~t" and t" a termination node. This implies 
that okECT(Sat(C♦,,t')). By induction t't=cp'. Hence tl=cf,. □ 

This completes the proof of Theorem 8.6.6. □ 

8. 6. 7. COROLLARY (inclusion 2 ). Let P be a TSS in pure tyft I tyxt format. Then: 

=pure tyftltyxt C ~e,• 

8. 7. In this section it will be shown that the inclusions 4, 5 and 6 hold. As an 
immediate corollary it follows that inclusion 3 holds. 
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8. 7.1. THEOREM (inclusion 4). Let ci= (S,A, ➔ ) be a LTS. Then for all s, t ES 
and mEN: 

s~m t ~ s ~e,. t. 

PROOF. Suppose thats s_mt and sl=q, for some q>Ef;... We prove tt=q, with 
induction on m. The case m =0 is trivial. So suppose m >0. We prove t 1=q, 
with induction on the structure of q,. 
a) q, is -,iJt, 1/tEf;.. _ 1• By definition of s S. mt we have t S. m - Is. Application 

of the induction hypothesis gives t II 1/t and hence t 1= q,. 
b) q, is T. In this case t 1= q, trivially holds. 
c) q, is q,1 /\4>2. From s l=q, it follows that Hq,1 ands l=<f>i. By induction nq,1 

and t 1= "'2. Hence, t 1= q,. 
d) q, is <a>q,'. There exists ans' such that s~s' and s'1=q,'. Since s s_mt, 

there exists an m-nested simulation R containing (s,t). Hence, for some 
t'ES, t~t' and s'Rt'. Sos' s_mt'. By induction t'1=q,' and thus tl=q,. □ 

We define 1v.m and ~ as auxiliary notions. Roughly speaking, s ~ t means 
that s and t are m-nested simulation equivalent to depth n. 1v.m is the intersec­
tion of 1v. :' for all n. 

8.7.2. DEFINITION. Let ci=(S,A,➔) be a LTS. Define for m,n EN relations 
£;.::' C SXS by: 

s £;.(rt always, 
s £;.~ t always, 
s £;.::' :N t i1f t £;.::' + 1 s and whenever s ~s' then there is a t' such that 
t ~t' ands'£;.::' +1 t'. 

We write: 
s ~ t if s £;.::' t and t £;.::' s, 
s1v+m t if for all n: s~ t, 
s f;. mt if for all n: s £;.::' t. 

8.7.3. LEMMA. Let m,nEN. Then £;.::'+ 1 C £;.::' and1v+:'+1 C~­
PROOF. Straightforward simultaneous induction on m and n. □ 

8.7.4. THEOREM (inclusion 5). Let ci=(S,A,➔) be a LTS which is image finite. 
Then for all s,tES and mEN: 

s~e,.t ~ s1v+mt. 

PROOF. Suppose that s g_ mt. With induction on m we show that there is a 
q,Ef;.. such that s 1=q, but t II q,. It cannot be that m =0. So take m >0. Since 
s rJ. mt, there must be an n such that s g_ :' t. With induction on n we show that 
there exists a q, such that s 1= q, but not t 1= q,. 
It cannot be that n = 0. Take n >0. If t g_ :' - Is then we can find, by induction 
hypothesis, a 1/tEf;.. - I such that t 1= 1/t and s II iJt. Hences l=-,iJt (the formula -,iJt is 
in f;..) and t II -,iJt. If, on the other hand, t £;.::' - 1 s, then it must be that for 
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some a EA and s' ES with s --1!.)s' we have that for all t' with t --1!.)t': 
s'g;:'_ 1 t'. Now a first possibility is that there is not' such that t--1!.)t'. In this 
situations 1= <a>T, t Ii <a>T and we are done. The other possibility is that there 
is a nonzero, but due to the image finiteness, finite number of states t 1, •• , tP 

that can be reached from t by an a-transition. Since s' g;:'_ 1 t; for I:,;;;:,i:,;;;:,p, we 
have by induction that there are q>; El;,, such that s' 1= q>; and t; Ii q>;. Consider 
the !;,,-formula 4>=4>1 /\. . /\<f>p- Since s' 1=4> and t; Ii q>, s 1= <a><f> and t Ii <a><f>. □ 

8.7.5. THEOREM (inclusion 6). Let it=(S,A, ➔) be a LTS which is image finite. 
Then for all s,t ES and m EN: 

S t:;;m I ~ S ~m I. 

PROOF. Suppose that sr;;.m t. With induction on m we prove thats Sm t. The 
case m =0 is trivial. So suppose m >0. We prove that r;;.m is an m-nested simu­
lation relation. Whenever v r;;. m w then for all n, v .<;;.;:' w. Hence by definition of 
r;;.m, w_r;;.;:-- 1v for all n. Thus w_r;;.m-J V and by induction W sm-l V. So the 
relation _r;;. m is contained in the relation (Sm - J )- 1• It remains to be shown 
that _r;;. m is a simulation relation. Suppose v r;;. m w and v --1!.)v'. Since for all 
n >0, v .<;;.;:' w there is for each n a Wn such that w --1!.)wn and v' .f.::'- 1 wn. Due 
to the image finiteness there must be a w • that occurs infinitely often in the 
sequence w 1, w2 , .•.. Because for all n f.::'-i ;2 .<;;.::' by Lemma 8.7.3, we have 
that for all n >0, v .<;;.;:' _ 1 w • and therefore v _r;;. mw •. This concludes the proof 
that _r;;. m is an m-nested simulation. □ 

8.7.6. COROLLARY. Let it=(S,A, ➔) be a LTS which is image finite. Then/or 
all s,t ES and m EN: 

PROOF. Immediate from Theorems 8.7.1, 8.7.4 and 8.7.5. □ 

8.8. Trace congruence. Using the above results, we can easily characterize the 
'trace congruence' induced by pure tyft!tyxt rules as simulation equivalence or 
e1 formula equivalence (for image finite LTS's). We just repeat the argumenta­
tion above for trace congruence instead of completed trace congruence. First 
the notion of trace congruence is defined. 

8.8.1. DEFINITION. Let it=(S,A,➔) be a LTS. A sequence a 1• •• *anEA* is a 
trace of s if there are states s 1 ,s2,--,sn ES such that s ~s 1 ~-- ~sn. T(s) 
is the set of all traces of s. Two states s,tES are trace equivalent if T(s)=T(t). 
This is denoted s =T t . 
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8.8.2. DEFINITION. Let 'ff be some format of TSS rules. Let P =(~,A,R) be a 
TSS in 'ff format. Two terms s,tET(~) are trace congruent with respect to 'ff 
rules, notation s=f, if for every TSS P'=(~',A',R') in 'ff format which can be 
added conservatively to P and for every ~$~'-context C[]: C[s]=rC[t]. 

8.8.3. THEOREM. Let P = (~,A,R) be a TSS in pure tyftltyxt format such that 
TS(P) is image finite. Let s,tET(~)- Then: 

S =Jure tyftltyxt t ~ s~t ~ s ~ e, t. 

PROOF. In fact most of the work has already been done. The equivalence of~ 
and ~ e, follows from Corollary 8.7.6. The implications =Jure tyft ttyxt t ~ s~t 
follows by Lemma 8.5.7 and the observation that simulation equivalence 
refines trace equivalence. The reverse implication can be proved using the same 
test system as in the proof of Theorem 8.6.6. □ 

8.9. Characterization theorem for tree rules. The characterization Theorem 8.4.3 
for tree rules of Bloom, Istrail & Meyer follows from Theorem 8.5.8, Corollary 
8.7.6 and the following Theorem 8.9.1. In fact this combination gives a result 
which is even stronger than the result of Bloom, Istrail & Meyer as we allow 
more general rules in the original system and our test system is finite if the 
alphabet of the old system is finite (they did not look at finite test systems for 
Bi formulas). The next theorem also strengthens Theorem 8.6.6 because now 
only tree rules are used. But, as the proof of this theorem is rather tricky, we 
liked to give the simpler variant first. 

8.9.1. THEOREM. Let P 0 =(~0,A 0,R 0) be a TSS in pure tyftltyxt format. Then 
there is a TSS P 1 = (~ 1 ,A 1 ,R 1) in tree rule format, which can be added conser­
vatively to P 0, such that completed trace congruence within PO EB P I is included in 
Bi formula equivalence. Moreover, if alphabet A O is finite, then the components of 
PI are finite too. 
PROOF (sketch). The alphabet A I consists of A 0 together with 8 new labels: 

A 1 =Ao U { ok,ko, left,right,size,neg, o,i}. 

~ 1 contains 8, + and prefix-operators a: for every a EA 1• In R I we find the 
usual rules for these operators. Furthermore ~ 1 contains binary operators lln 
which model parallel composition with synchronisation of actions in a set 
H c;A 1• For these operators R I contains rules (a EA 1 ): 

x~x' 

x~x',y~y' 
x Ill{)' ~x'III{)'' 

y~y' 
afl.H 

a EH 

Next ~ 1 contains a binary operator Sat which tests whether its second 
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argument satisfies the ei formula which is encoded using the rules below. 
Further it contains the auxiliary operators Context, skip -i and ok-to-ko. The 
rules in R I for these operators are displayed in Table 5 (where a EA 1 ). If A 0 

is finite then clearly A 1, ~ 1 and R I are finite too. 

x~x' 
Sat (x,y) ~8 Context (x,y) ~ Context (x' ,skip -i (y )) 

Sat(x,y)~Sat(x1,y)ll{o1c}Sat(x,,y) 

x ~x' ~x", y ~y' 
Sat(x,y)~Sat(x",y') 

x size)x', x ~x" 

Sat(x,y)~Context(x',Sat(x",y)) 

x~x' 
Context (x,y) o1c) ok -to -ko (y) 

x~x'~x" 
skip-i (x) ~x" 

x~x' 
ok -to -ko(x) ko) 8 

TABLE 5. A test system for ei formulas with tree rules only 

Let the mapping s:e1-N be given by: 

s(n=o 
s(q,/\iJ!)= 1 +s(q,)+s(i/1) 

s(<a>q,)= 1 +s(q,) 

and let the ~ 1 terms Sn (n ;;;i:O) be given by: 

S 0 =ok:8 

Sn+1=i:Sn 

ei formulas are coded as follows: 

Cr=ok:8 

C4>/\,/, =left:C4> +right:C,i, 

C ~ =size:Ss(4>) +neg:C4> 

C<a>4>=o:a:C4> 

We will now briefly explain the way in which the above construction works. 
We have the following claim: 

CLAIM. Let q,Eei and tET(~0EB~1). Then n4> ifJ Sat(C4>,t) has a completed 
trace with an ok action but without a ko action. 

It is not hard to see that the above claim is correct in case q,Ee1. This is a 
direct consequence of the next lemma which can be proved easily by means of 
induction on the structure of q,: 
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LEMMA I. Let q,Ee1 with s(q,)=n and let tET(l:oEBl:1)- Then: 
tt=q,~ {in•ok} C CT(Sat(C+,t)) C {in•ok}U{imll..;;m..;;n}, 
t ~ q, ~ CT(Sat(C+,t)) C { im I I ,s;;m ..;;n }. 

The problem is what to do with negations. The key idea of our solution is that 
if one applies the skip-i operator s(q,) times on Sat(C+,t), the trace set of the 
resulting process consists of ok if t 1e q, and will be empty otherwise. So what we 
have to do is to place s(q,) times a skip-i operator around Sat(C+,t) in a struc­
tured way and next apply a renaming of ok into ko. This is of course done 
using the binary operator Context. The first argument of this operator gives 
instructions on how to build a context around the second argument. In case a 
formula -,q, has to be tested, our construction works in such a way that (after 
some i-steps) always an ok step will be generated, whereas a subsequent ko 
action is generated only when the tested process satisfies q,. One can prove the 
following lemma: 

LEMMA 2. Let q, E e1 with s( q,) = n and let t ET (l:0 EB l: 1 ). Then: 
t t,q, ~ CT(Context(Sn,Sat(C♦,t))) = {in•ok•ko }, 
t ~ q, ~ CT(Context(Sn,Sat(C♦ ,t))) = {in•ok}. 

Using Lemma 2, the Claim can be proved with straightforward induction on 
the structure of q,. Theorem 8.9.1 is an immediate consequence of the Claim. 

□ 

9. COMPARISON WITH OTHER FORMATS 
In this section we will give an extensive comparison of our format with the for­
mats proposed by DE SIMONE (1984,1985) and BLOOM, ISTRAIL & MEYER 
(1988). First both formats are described. 

9.1. DEFINITION. Let l:=(F,r) be a signature and let A be a set of labels. A 
De Simone rule (over l: and A) takes the form : 

where: 

{xi ~Yi Ii EJ} 
f(x 1, •• ,x1)~t 

/EF and r(f)=I, 
IC {l, .. ,I}, 
x 1 , •. ,x1 and Yi (i El) are distinct variables, 

Let for I..;;i..;;I x;'=yi if iEI and x;'=xi otherwise. 
tis a term in T(l:,{x 1', .. ,x,'}) in which each x;' occurs at most once. 

Clearly the De Simone format as presented above is included in our tyft!tyxt 
format. One should note however that De Simone assumes in addition that the 
set of labels is an (infinite) commutative monoid. Moreover he includes 
(unguarded) recursion in the language together with the standard fixed point 
rules. 
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9.2. DEFINITION. Let "};=(F,r) be a signature and let A be a set of labels. A 
GSOS rule (over"}; and A) takes the form: 

{x; ~Yi} 11:,;;;;;,i:,;;;;;,I, J:,;;;;;,j:,;;;;;,m;} U {x; ~ 11:,;;;;;,i:,;;;;;,I, J:,;;;;;,j:,;;;;;,n;} 

j(x1, ·•,X1)~t 

where the variables are all distinct, /EF, l=r(f), m;,n;;;;i,,O, a;j,bii EA and tis a 
term in T("};,{x;,yijl J:,;;;;;,i:,;;;;;,I, J:,;;;;;,j:,;;;;;,m;}). 

A GSOS rule system is a triple ("};,A,R) with "}; a signature, A a set of labels 
and R a set of GSOS rules over "}; and A. 

We should mention here that the above definition is simplified in order to 
make comparison possible and only gives an approximation of the notion of a 
GSOS rule system as it is defined by BLOOM, ISTRAIL & MEYER (1988). There 
a GSOS rule system contains some additional ingredients for dealing with 
guarded recursion and there are a number of finiteness constraints. The feature 
which distinguishes GSOS rules from the other rules in this paper is the possi­
bility of negative premises. This makes that it is not immediately clear how 
(and if) a GSOS rule system determines a transition relation. 

9.2.1. DEFINITION. Let ("};,A,R) be a GSOS rule system. A transition relation ➔ 

c T("};)XA X T("};) aw~es with the rules in~ if: 
- - Whenever an mstalltlation by a substitutlon a of the premises of a rule is 

true of the relation, then the instantiation of the conclusion by a is true as 
well. 
Whenever t ~t' is true, then there is a ruler and an instantiation a such 
that t ~t' is the instantiation of the conclusion of r by a, and the instan­
tiations of the premises of r by a are true. 

It is not hard to show that for any GSOS rule system, there is a unique transi­
tion relation which agrees with the rules. If a GSOS rule system only contains 
positive rules then it is a TSS according to our definition. Moreover in this 
case the unique transition relation which agrees with the rules according to the 
definition above is just the same relation as the one defined in Definition 3.2 
using the notion of proof trees of transitions. 
The following example from BLOOM, ISTRAIL & MEYER (1988) shows that in 
general the GSOS format cannot be combined consistently with the tyft!tyxt 
format. There are 4 operators in the signature: /, g, c and d. We have an action 
a and the following rules: 

x~y y~z 
f(x)~d 

x~ 
g(x)~d 

c~g(f(c)) 
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There is no transition relation which agrees with these rules. In particular, f (c) 
can move iff it cannot move. 1 

9.3. ExAMPLEs. Below we list some examples that illustrate the differences 
between the formats. 

9.3.1. Global closure properties. Rules in tyxt format fit neither De Simone's for­
mat nor the GSOS format. One could say that tyxt rules, like for instance the 'T 

rules of Table 2, express certain 'global closure properties', a form of opera­
tional behaviour which is in general independent of the particular function 
symbol at the head of a term. 

9.3.2. Contexts. Often it is very useful to have function symbols in the left 
hand side of a premise. However, this is not allowed by the De Simone or 
GSOS format. In Section 6.2 we saw that these rules can be used to model 
recursion. Also in the system of Table 4 for testing {:z formulas, this type of 
rules play an important role. In (BAETEN & VAN GLABBEEK, 1987), operators 
f.x are described that erase all actions from a set K <;;;Act. We can add these 
operators to P(BPA6) together with the following rules from (BAETEN & VAN 
GLABBEEK, 1987): 

x~y 
aflK 

X ~y f.x(y)--4z 

f.x(x)--4z 
aEK 

The same type of trick can also be used to describe the 'atomic version opera­
tor'. This operator was introduced by DE BAKKER & KOK (1988) for giving 
semantics to concurrent Prolog. Here we will give our own variant of this 
operator, using our own notation. The interested reader who wants to know 
how this type of operators can be used to give semantics to concurrent Prolog 
is referred to (DE BAKKER & KOK, 1988). Take as starting point the signature 
of BPAl . But as labels of transitions we now don't take elements of Act ...;, but 
elements of the set of finite sequences over Act ...;. Write a for the sequence 
consisting of the single symbol a EA ct ...;. With ao' we denote the concatenation 
of the sequences a and a'. The set of rules of the TSS contains the rules of 
R(BPA6) (but now the labels should be interpreted as sequences!) and more­
over the following rules: 

I. In (GROOTE, 1989), it is investigated in which cases a specification in 'ntyftlntyxt' format is 
consistent. A general method, based on the stratification technique in logic programming, is 
presented to show consistency of sets of rules. It is shown that various results from this paper ex­
tend smoothly to a setting where rules may contain negative premises. 
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x~y [y]~z 
[x]~z 

The rules express that only successful sequences, i.e. sequences ending on v', 
can happen in the scope of an atomic version operator. The rules are in tyft 
format. Hence, strong bisimulation is a congruence in this setting. 

9.3.3. Lookahead. All operators defined with the De Simone or GSOS format 
have a lookahead of at most I. Hence the following operator, which can be 
viewed as the inverse of the split operator of VAN GLABBEEK & V AANDRAGER 
(1987), cannot be defined: 

combine (x) ~combine (z) 

Other examples of operators with a lookahead are the £x and the atomic ver­
sion operator as described above. As a last example we mention the abstraction 
or hiding operator from ACPT (here/ <;;;;Act): 

x~x' 
7)(X) ~1°J(x') 

x~x' 
1"I(x) ~1"I(x') 

a El 

afl/ 

If we add these rules to the system P(BPA;6 ) as described in Section 6.1, then 
we can derive: 

'T(i)(i·a)~'T{i)(f.). 

Observe that the rules that contain a function symbol 'TJ all have a lookahead 
of I (i.e. the length of the maximal path in the dependency graphs of the rules 
is I). As operators on transition systems the 'TJ have an unbounded lookahead, 
due to the presence of tyxt rules with a lookahead of 2 in P(BPA;6 ). 

9.3.4. Copying. In contrast to De Simone's format, the GSOS format and also 
our format can describe operators which copy their arguments. The system call 
fork of UNIX (1986) is a typical example of an operation that one would like to 
describe using copying. One can think of a rule like: 

fork (x) ~parent (x )llchild (x ). 

Below we present another example where copying occurs naturally. It describes 
an operational semantics of the natural numbers which is based on the idea of 
counting: the process associated to an integer expression performs as many 
actions as the value which is denoted by this expression under the standard 
interpretation. We consider the signature containing a constant symbol 0, a 
unary function symbol succ and binary function symbols + and X. There is 
only one transition label, namely I. The operational semantics of the operators 
is described by the following rules: 

succ( x) ----4 x 
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x-4x' 
x+y-!.)x'+y 

SOS and bisimulation as a congruence 

y-!.)y' 

x+y-½x+y' 

X -4x' y -!.)y' 

x xy-!.)(x'Xy')+(x'+y') 

Observe that two expressions denote the same value under the standard 
interpretation iff they are bisimilar. 

9.3.5. Branching. The ability to copy arguments is not the only difference 
between De Simone's format and the GSOS format. A rule like: 

x~x', x~x" 
f(x)~f(x') 

fits De Simone's format but not the GSOS format. In this rule we see a 
branching in the dependency graph at node x . 

9.3.6. Catalysis. A similar example is obtained if we add to P(BPA~) the fol­
lowing rule which fits the GSOS format: 

x~x', y~y' 
Cat (x,y) ~ Cat (x,y') 

Here we have a situation, not allowed by De Simone's format, where a poten­
tial ok-action of the first component makes it possible for the second com­
ponent to proceed. But when it proceeds the first component remains 
unchanged. Hence, one can view the first component as a catalyst of the 
second component. 

9.3.7. Priorities. In (BAETEN, BERGSTRA & KLoP, 1986) an operator is intro­
duced to describe priorities in ACP, whereby some actions have priorities over 
others in a non-deterministic choice. The operator turns out to be quite 
interesting and has been used in a number of applications. In (BAETEN, BERGS­
TRA & KLoP, 1986) the operator is defined using equations, but if one uses 
Plotkin-style rules then it is inevitable to use negative hypotheses. 

Consider the GSOS rule system P(BPA~) and assume that the set Act v' of 
labels is finite. Assume furthermore that a partial order > is given on Act ..; 
such that V is not in the ordering. Now we can add a unary operator (} to the 
rule system, with for each a EA v' a rule: 

x~x', 'vb>a: x~ 
8(x)~8(x') 

The rule expresses that in the scope of a 8-operator an a action can occur 
unless an action with a higher priority is possible. CLEAVELAND & HENNESSY 
( 1988) describe priorities using tyxt rules with negative hypotheses. Another 
example of an operator that is defined using rules with negative premises is the 
broadcast operator as described by PNuEu (1985). 
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9.4. Completed trace congruences. The differences between the formats 
presented thus far can be understood also if we look at the completed trace 
congruences which they induce. In Section 8 we saw that the trace congruence 
induced by (variants) of the pure tyft!tyxt format coincides with 1:z formula 
equivalence. 
The main theorem which De Simone proved about his format is that all opera­
tors defined using his type of inductive rules can also be defined by MEuE­
SCCS 'architectural' expressions. Similar results have not yet been proved for 
the GSOS or the tyft!tyxt format. Now it is a standard result that the com­
pleted trace congruence induced by languages like MEIJE-SCCS, ACP, CSP, 
etc., coincides with failure equivalence (=F) (see for instance (BERGSTRA, KLOP 
& OLDEROG, 1988)). Hence the completed trace congruence induced by De 
Simone's format is failure equivalence (it is not too difficult to give a direct 
proof of this fact). 
BLOOM, ISTRAIL & MEYER ( 1988) characterized the completed trace congruence 
induced by their format in terms of the equivalence corresponding to the fol­
lowing set of formulas : 

9.4.1. DEFINITION. The set 6D of denia/1 (HML) formulas (over a given alphabet 
A = { a,b, ... }) is given by the following grammar: 

cp: : = T I cp/\cp I [a ]F I <a>cp. 

9.4.2. THEOREM (BLOOM, ISTRAIL & MEYER). Let P =(~,A,R) be a GSOS rule 
system such that the associated transition system is image finite. Then: 
=Gsos = ~ uj)• 

Some additional insight is provided by the following characterization of denial 
equivalence which is due to LARSEN & SKOU (1988). 

9.4.3. DEFINITION. Let /i=(S,A,➔) be a LTS. A relation R c;;,S X S is a 213-
bisimulation, also called a ready simulation, if it satisfies: 
I. whenever s Rt ands ~s' then, for some t' ES, also t ~t' ands' Rt', 
2. whenever s Rt and t ~t' then, for some s'ES, also s ~s'. 
Two states s,t ES are 213-bisimilar (or ready simulation equivalent) in Ii if there 
exists a 2/3-bisimulation containing the pair (s,t) and a 2/3-bisimulation con­
taining the pair (t,s). 

1. The formulas as defined in (BLOOM, ISTRAIL & MEYER, 1988) were called limited modal formu­
las and may also contain F and V. However, it is easily proved that this addition does not in­
crease the distinguishing power. 
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9.4.4. THEOREM (LARSEN & SKOU). Let ~= (S,A, ➔) be an image finite LTS. 
Then two states are 213-bisimilar just in case they satisfy exactly the same denial 
formulas. 

It is a trivial exercise to show that: 

~
2 C ~213 C =F C =cT 

The examples of Figures 13, 14 and 15 show that these inclusions are strict. 

a 

b 

FIGURE 13. Completed trace equivalent but not De Simone congruent 

a 

b b 

C d C d 

FIGURE 14. De Simone congruent but not GSOS congruent 

9.4.5. Testing denial formulas. The question arises whether all features of the 
GSOS format are really needed in order to test denial formulas. In particular it 
is interesting to know whether the negative premises add anything to the 
discriminating power of the format. Surprisingly, as was first observed by Roe 
v AN GLABBEEK ( 1988), this is not the case: GSOS congruence coincides with 
positive GSOS congruence. Below we present a system in positive GSOS for­
mat for testing denial formulas. The system is simpler than the original system 
of Rob van Glabbeek. Moreover our system has the advantage of being finite 
in case the alphabet of the old system is finite. 
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a 

b 

C d C d 

FIGURE 15. GSOS congruent but not pure tyft!tyxt congruent 

9.4.6. THEOREM. Suppose we have a TSS P 0 =("}:.o ,A 0 ,Ro) in GSOS format. 
Then there exists a TSS P 1 =("}:.i,A i,R 1) in GSOS format with all premises 
positive and non-branching, which can be added conservatively to P 0, such that 
completed trace congruence within P O EB P I is included in denial equivalence. 
Moreover, if alphabet Ao is finite, then the components of P I are finite too. 
PROOF. The set A I consists of A O together with 6 new labels: 

A 1 =Ao U { ok,ko,left,right,[],o }. 

Signature "}; 1 contains a constant 8, unary function names a: for each a EA 1, 

and binary function symbols +, II, Sat, Satn, Sat O and Sat right· The rules for 
13, a: and + are as usual. II is just arbitrary interleaving. The Sat operator tests 
whether its second argument satisfies the denial formula which is represented 
by its first argument. The rules for the II-operator and the various Sat­
operators are given in Table 6. In the table, a ranges over A 1• One can check 
that P I can be added conservatively to P O• 

x~x' 
Sat(x,y)~Satu(x' ,y) 

x~x' 
Sat(x,y)~Sat 0 (x',y) 

Sat (x,y) :Ji/4Sat (x',y )II Sat righ1(x,y) 

x~x' 
xl[y ~x'l[y 

x~x' y~y' 
Satu(x,y)~8 

Sat 0 (x ,y) ok)Sat(x',y') 

x~x' 
Satrigh1(x,y) right)Sat(x',y) 

y~y' 
xl[y~xl[y' 

TABLE 6. A test system for denial formulas 

Denial formulas are encoded using the following rules: 
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Cr=8 

C♦/\,S, =left:C♦ +right:C,s, 

CiaJF=[]:a:8 

C<a>♦ =o:a:C♦ 

SOS and bisimulation as a congruence 

CLAIM. Let t ET (l:0 EB l:1) and let q, be a denial formula. Then t 1= q, ifJ 
Sat(C.,t) has a completed trace with as many ok's as q, has <a>'s, and no ko. 
PROOF. Rather straightforward induction on the structure of(/,. □ 

9. 4. 7. Comparison of testing abilities. The notion of testing which underlies 
CCS/CSP/ ACP, and hence De Simone's format, is well-known (see for 
instance (DE NICOLA & HENNESSY, 1984) and (BERGSTRA, Kl.OP & OLDEROG, 
1988)): these languages allow one to observe traces, deadlock and to block 
actions from a certain moment onwards. This makes it possible to detect 
refusals indirectly: one concludes that a certain action can be refused after an 
initial trace because deadlock occurs if all the other actions are blocked. The 
construction in the proof of Theorem 9.4.6 clearly shows which notion of test­
ing underlies the (positive) GSOS format: the format allows one to observe 
traces of processes, to detect refusals and to make copies of processes at every 
moment. In the general GSOS format refusals can be observed directly: one 
can define a context which performs an ok step if its argument cannot do a 
certain action. In the positive GSOS format refusals can also be observed, but 
only indirectly. The key feature which distinguishes the positive GSOS format 
from the De Simone format is the capacity to make copies of processes at 
every moment. Observe that the only rule in Table 6 that does not fit De 
Simone's format is the rule dealing with the left action. In this rule the x and y 
are copied. In many situations copying is a natural operation which can be 
realised physically by for instance a core dump procedure. 

The construction in the proof of Theorem 8.9.1 shows that the additional 
testing power needed to bring one from denial equivalence to ~ formula 
equivalence only consists of the ability to see whether some action is possible 
in the future: there should be operations with a lookahead (in fact the proof of 
Theorem 8.9.1 shows that a lookahead of 2 is already enough). Using operators 
with a lookahead one can investigate all branches of a process for positive 
information and one can see whether a certain tree is possible. In particular 
one can see whether there exists a branch in which a certain action is present. 
In the same way as one can observe in De Simone's format that a certain 
action is refused because deadlock occurs when the other actions are blocked, 
one can conclude in the tyft!tyxt format that a tree is refused. The ability to 
see in the future of a process can be considered as a weak form of global test­
ing. Global testing is the same as what MILNER (1981) calls controlling the 
weather conditions. ABRAMSKY (1987) describes global testing as: "the ability 
to enumerate all (of finitely many) possible 'operating environments' at each 
stage of the test, so as to guarantee that all nondeterministic branches will be 
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pursued by various copies of the subject process". Because an operator with 
lookahead is not capable to see negative information (like the absence of some 
action) directly, and because it is also not able to force that all nondeterminis­
tic branches are pursued by some number of copies, lookahead does not give 
one the full testing power of global testing. Since global testing is needed in 
order to distinguish between processes which are not bisimilar, this explains 
why the fully abstract semantics induced by our format is still below bisimula­
tion equivalence. Global testing in the above sense seems very unrealistic as a 
testing ability and in direct conflict with the observational viewpoint of con­
current systems. Recently however, LARSEN & SKou (1988) have pointed out 
that if one assumes that every transition in a transition system has a certain 
minimum probability of being taken, an observer can - due to the probabilistic 
nature of transitions - with arbitrary high degree of confidence, assume that all 
transitions have been examined, simply by repeating an experiment many 
times (using the copying facility). This idea gives some plausibility to the 
notion of global testing. In fact LARSEN & SKou (1988) deviced some testing 
algorithms which allow them, with a probability arbitrary close to l , to distin­
guish between processes that are not bisimilar. 

Unless one believes in fortune telling as a technique which has some practi­
cal relevance for computer science, lookahead as a testing notion is not very 
realistic. Still, this lookahead pops up naturally if one looks at the maximal 
format of rules for which bisimulation is a congruence and we showed that 
rules with a lookahead are often useful. Therefore we think that, just like 
bisimulation equivalence, ~ formula equivalence is an interesting equivalence 
that is worth studying, even though it does not correspond to a very natural 
notion of testing. 

9.4.8. Finiteness and decidability. In their paper 'Bisimulation can't be traced', 
BLOOM, ISTRAIL & MEYER ( 1988) argue that bisimulation equivalence cannot be 
reduced to completed trace congruence with respect to any reasonably struc­
tured system of process constructing operations. They present the GSOS for­
mat, which they believe to be the most general format leading to reasonably 
structured systems, and then show that the congruence induced by this format 
is denial formula equivalence. Although the pure tyft I tyxt format cannot trace 
bisimulation equivalence, it can trace more of it than the GSOS format. This 
implies that not all pure tyftltyxt rules are structured according to the 
definition of BLOOM, ISTRAIL & MEYER (1988). And indeed what's wrong in 
their opinion with our rules is that they might lead to transition systems with a 
transition relation which is infinitely branching or not computable. The various 
finiteness constraints which are present in the definition of the GSOS format in 
(BLOOM, ISTRAIL & MEYER, 1988), are motivated by the requirement that the 
transition relation should be computably finitely branching. We think that, 
although it is certainly important to have finiteness and decidability, it is much 
too strong to call any TSS leading to a transition relation which does not have 
these properties 'not reasonably structured' (this is what BLOOM, MEYER & 
ISTRAIL ( 1988) seem to do). Since our format gives us the expressiveness to 
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describe the invisible nature of 7' (see Section 6.1) it is to be expected that, in 
general, we also have the infinite branching and undecidability of the models 
of CCS/ ACP,. based on observational congruence. If one disqualifies infinitary 
and undecidable TSS's right from the start, then one misses a large number of 
interesting applications. Of course the question what type of TSS's do lead to 
computably finitely branching transition systems is a very interesting one. It 
seems that if one generalises the positive GSOS format in the direction of the 
tyftltyxt format, infinite branching arises quite soon. The following example 
for instance, which is due to Bard Bloom, illustrates that function symbols in 
the premises are 'dangerous'. 

w ---~ 8 

f 1 

1:8 

f 1 

1: I :8 

f 1 

1: I: I :8 

f 1 

FIGURE 15 

In the example we have prefixing and 8 as usual and moreover a constant w 

with rules: 

w-4x 
w-41 :x 

The part of the transition system which is displayed in Figure 15 shows that w 
has an infinite number of outgoing transitions. Another example illustrating 
the same point is obtained by adding recursion to P(BPAl) in the style of Sec­
tion 6.2 with the 'unguarded' recursive definition X <==Xa + a. It is easy to give 
examples of tyxt rules or tree rules which lead to infinite branching or undeci­
dability. It is an open question to find a format in between positive GSOS and 
tyft!tyxt which always leads to computably finitely branching transition rela­
tions. 
In our view one reason why rules with a lookahead are important is that they 
make it possible to have different levels of granularity of actions and to 
express that an action at one level can be composed of several smaller actions 
at a lower level. The system of Table 6 for testing denial equivalence is an 
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excellent example of a situation where the GSOS format forces one to do in 
two steps what one would like to do in only one. 
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In recent years a wide variety of process algebras has been proposed in the 
literature. Often these process algebras are closely related : they can be viewed 
as homomorphic images, submodels or restrictions of each other. The aim of 
this paper is to show how the semantical reality, consisting of a large number 
of closely related process algebras, can be reflected, and even used, on the 
level of algebraic specifications and in process verifications. This is done by 
means of the notion of a module. The simplest modules are building blocks of 
operators and axioms, each block describing a feature of concurrency in acer­
tain semantical setting. These modules can then be combined by means of a 
union operator +, an export operator D, allowing to forget some operators in 
a module, an operator H, changing semantics by taking homomorphic images, 
and an operator S which takes subalgebras. These operators enable us to 
combine modules in a subtle way, when the direct combination would be 
inconsistent. We show how auxiliary process algebra operators can be hidden 
when this is needed. Moreover it is demonstrated how new process combina­
tors can be defined in terms of the more elementary ones in a clean way. 

Key Words & Phrases: process algebra, concurrency, modular algebraic 
specifications, export operator, union of modules, homomorphism operator, 
subalgebra operator, chaining operator. 
Note. This paper is essentially the same as [14], except that Sections 4 (on 
queues) and 5 (on the CABP protocol) have been left out. 

INTRODUCTION 

75 

During the last decade, a lot of research has been done on process algebra: the 
branch of theoretical computer science concerned with the modelling of con­
current systems as elements of an algebra. Besides the Calculus of Communi­
cating Systems (CCS) of MILNER [18, 19], several related formalisms have been 
developed, such as the theory of Communicating Sequential Processes (CSP) of 
HOARE [16], the MEUE calculus of AUSTRY & BOUDOL [l] and the Algebra of 
Communicating Processes (ACP) of BERGSTRA & KLoP (8-10]. 

When work on process algebra started, many people hoped that it would be 
possible to come up, eventually, with the 'ultimate' process algebra, leading to 
a 'Church thesis' for concurrent computation. This process algebra, one ima­
gined, should contain only a few fundamental operators and it should be 
suited to model all concurrent computational processes. Moreover there should 
be a calculus for this model making it possible to prove the identity of 
processes algebraically, thus proving correctness of implementations with 
respect to specifications. As far as we know, the ultimate process algebra has 
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not yet been found, but we will not exclude that it will be discovered in the 
near future. 

Two things however, have become clear in the meantime: (I) it is doubtful 
whether algebraic system verification, as envisaged in [ 18], will be possible in 
this model, and (2) even if the ultimate process algebra exists, this certainly 
does not mean that all other process algebras are no longer interesting. We ela­
borate on this below. 

A central idea in process algebra is that two processes which cannot be dis­
tinguished by observation should preferably be identified: the process seman­
tics should be fully abstract with respect to some notion of testing (see 
[12, 181). This means that the choice of a suitable process algebra may depend 
on the tools an environment has to distinguish between certain processes. In 
different applications the tools of the environment may be different, and there­
fore different applications may require different process algebras. A large 
number of process semantics are not fully abstract with respect to any (reason­
able) notion of testing (bisimulation semantics and partial order semantics, for 
instance). Still these semantics can be very interesting because they have simple 
definitions or correspond to some strong operational intuition. Our hypotheti­
cal ultimate process algebra will make very few identifications, because it 
should be resistant against all forms of testing. Therefore not many algebraic 
laws will be valid in this model and algebraic system verification will presum­
ably not be possible (specification and implementation correspond to different 
processes in the model). 

Another factor which plays a role has to do with the operators of process 
algebras. For theoretical purposes it is in general desirable to work with a sin­
gle, small set of fundamental operators. We doubt however that a unique 
optimal and minimal collection exists. What is optimal depends on the type of 
results one likes to prove. This becomes even more clear if we look towards 
practical applications. Some operators in process algebra can be used for a 
wide range of applications, but we agree with JIFENG & HOARE [17] that we 
may have to accept that each application will require derivation of specialised 
laws (and operators) to control its complexity. 

Many people are embarrassed by the multitude of process algebras occurring 
in the literature. They should be aware of the fact that there are close rela­
tionships between the various process algebras: often one process algebra can 
be viewed as a homomorphic image, subalgebra or restriction of another one. 
The aim of this paper is to show how the semantical reality, consisting of a 
large number of closely related process algebras, can be reflected, and even 
used, on the level of algebraic specifications and in process verifications. 

This paper is about process algebras, their mutual relationships, and stra­
tegies to prove that a formula is valid in a process algebra. Still, we do not 
present any particular process algebra in this paper. We only define classes of 
models of process modules. One reason for doing this is that a detailed 
description of particular process algebras would make this paper too long. 
Another reason is that there is often no clear argument for selecting a particu­
lar process algebra. In such situations we are interested in assertions saying 
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that a formula is valid in all algebras satisfying a certain theory. A number of 
times we need results stating that some formulas cannot be proven from a cer­
tain module. A standard way to prove this is to give a model of the module 
where the formulas are not true. For this reason we will often refer to particu­
lar process algebras which have been described elsewhere in the literature. 

The discussion of this paper takes place in the setting of ACP. We think 
however that the results can be carried over to CCS, CSP, MEIJE, or any other 
process algebra formalism. 

Modularisation. 
The creation of an algebraic framework suitable to deal with realistic applica­
tions, gives rise to the construction of building blocks, or modules, of operators 
and axioms, each block describing a feature of concurrency in a certain 
semantical setting. These modules can then be combined by means of a 
module combinator + . We give some examples: 
i) A kernel module, that expresses some basic features of concurrent 

processes, is the module ACP. For a lot of applications however, ACP 
does not provide enough operators. Often the use of renaming operators 
makes specifications shorter and more comprehensible. These renaming 
operators can be defined in a separate module RN. Now the module 
ACP+ RN combines the specification and verification power of modules 
ACP and RN. 

ii) The axioms of module ACP correspond to the semantical notion of 
bisimulation. For some applications bisimulation semantics does not 
make enough identifications. In these cases one would like to deal with 
processes on the level of, for example, failure semantics. Now one can 
define a module F, corresponding to the identifications made in failure 
semantics on top of the identifications of bisimulation semantics. The 
module ACP+ F then corresponds to the failure model. 

Once a number of modules have been defined, they can be combined in a lot 
of ways. Some combinations are interesting (for example the module 
ACP+ RN+ F), for other combinations no interesting applications exist (the 
module RN+ F). Didactical aspects aside, a major advantage of the modular 
approach is that results which have been proved from a module M, can also be 
proved from a module M + N. This means that process verifications become 
reusable. 

It turns out that certain pairs of modules are incompatible in a very strong 
sense: with the combination of two modules strange and counter-intuitive 
identities can be derived. In BAETEN, BERGSTRA & Kl.OP [4], for example, it is 
shown that the combination of failure semantics and the priority operator is 
inconsistent in the sense that an identity can be derived which says that a par­
ticular process that can do a b-action after it has done an a-action, equals a 
process that cannot do this. Another example can be found in BERGSTRA, 
KLoP & OLDER0G [ I I], where it is pointed out that the combination of failure 
semantics and Koomen's Fair Abstraction Rule (KF AR) is inconsistent. 

In the first section of this paper we present, besides the combinator + , some 
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other operators on modules. We discuss an export operator □, allowing to 
forget some operators in a module, an operator H, changing semantics by tak­
ing homomorphic images, and an operator S which takes subalgebras. These 
operators enable us to combine modules in a subtle way, when the direct com­
bination would be inconsistent. In Section 2 we describe a large number of 
process modules which play a role in the ACP framework. Section 3 contains 
two examples of applications of the new module operators in process algebra: 
1. The axiom system ACP contains auxiliary operators lL and I (left-merge 

and communication-merge) which drastically simplify computations and 
have some desirable 'metamathematical' consequences (finite axiomatisa­
bility1; greater suitability for term rewriting analysis). These auxiliary 
operators can be defined in a large class of process algebras. However, it 
turns out that in a setting with the silent step -r the left-merge cannot be 
added consistently to all algebras (for instance not to the usual variants of 
failure semantics). Now one may think that this result means that some­
one who is doing failure semantics with -r's cannot profit from the nice 
properties of the left-merge. However, we will show in this paper that use 
of the module approach makes it possible to do failure semantics with -r's 
but still benefit from the left-merge in verifications. The idea is that 
verifications take place on two levels: the level of bisimulation semantics 
where the left-merge can be used, and a level of for instance failure 
semantics, where no left-merge is present. The failure model can be 
obtained from the bisimulation model by removing the auxiliary operators 
and taking a homomorphic image. Now we use the observation that cer­
tain formulas (the 'positive' ones without auxiliary operators) are 
preserved under this procedure. A consequence of this application is that 
even if bisimulation semantics is not considered to be an appropriate pro­
cess semantics (since it is not fully abstract with respect to any reasonable 
notion of testing), it still can be useful as an expedient for proving formu­
las in failure semantics. 

2. As already pointed out above, one would like to have, from a theoretical 
point of view, as few operators or combinators as possible. On the other 
hand, when dealing with applications, it is often very rewarding to intro­
duce new operators. This paradox can be resolved if the new operators 
are definable in terms of the more elementary ones. In that case the new 
operators can be considered as notations which are useful, but do not 
complicate the underlying theory. A problem with defining operators in 
terms of other operators is that often auxiliary atomic actions are needed 
in the definition. These auxiliary actions can then not be used in any 
other place, because that would disturb the intended semantics of the 
operator. In the laws that can be derived for the defined operator, the 
auxiliary actions occur prominently. These 'side effects' are often quite 

I. Recently, FARON MOLLER (20) from Edinburgh showed that in bisirnulation semantics the 
merge operator cannot be finitely axiomatised without auxiliary operators. 
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unpleasant. One may think that side effects are unavoidable and that 
someone who really does not like them should define new operators 
directly in the algebras (even though this is in conflict with the desire to 
have as few operators as possible). However, we will show that the 
module approach can be used to solve also this problem: with the restric­
tion operator we remove the auxiliary actions from the signature and then 
we apply the subalgebra operator in order to 'move' to algebras where the 
auxiliary actions are not present at all. 

The concept of hiding auxiliary operators in a module in some formal way is 
quite familiar in the literature (see BERGSTRA, HEERING & KLINT [7] for exam­
ple), but the use of module operators Hand S, and their application in com­
bining modules that would be incompatible otherwise, is, as far as we know, 
new. The Hand S operations are in spirit related to the abstract operation of 
SANNELLA & WIRSING (25) and SANNELLA & T ARLECKI (24), which also 
extends the model class of a module. 

In previous papers on ACP, the underlying logic used in process 
verifications was not made explicit. The reason for this was that a long 
definition of the logic would distract the reader's attention from the more 
essential parts of the paper. It was felt that filling in the details of the logic 
would not be too difficult and that moreover different options were equivalent. 
In this paper we generalise the classical notion of a formal proof of a formula 
from a theory to the notion of a formal proof of a formula from a module. 
The definition of this last notion is parametrised by the underlying logic. What 
is provable from a module really depends on the logic that is used, and this 
makes it necessary to consider in more detail the issue of logics. In an appen­
dix we present three alternatives: (1) Equational logic. This logic is suited for 
dealing with finite processes, but not strong enough for handling infinite 
processes; (2) Infinitary conditional equational logic. This is the logic used in 
most process verifications in the ACP framework until now; (3) First order 
logic with equality. 

Our investigations into the precise nature of the calculi used in process alge­
bra, led us to alternative formulations of some of the proof principles in ACP 
which fit better in our formal setup. We present a reformulation of the Recur­
sive Specification Principle (RSP) and also an alphabet operator which returns 
a process instead of a set of actions. 

1. MODULE LOGIC 
In this paper, as in many other papers about process algebra, we use formal 
calculi to prove statements about concurrent systems. In this section we answer 
the following questions: 

Which kind of calculi do we use? 
What do we understand by a proof? 

In the next sections we will apply this general setup to the setting of con­
current systems. 



80 Modular specifications in process algebra 

1.1. Statements about concurrent systems. In many theories of concurrency it is 
common practice to represent processes - the behaviours of concurrent systems 
- as elements in an algebra. This is a mathematical domain, on which some 
operators and predicates are defined. Algebras, which are suitable for the 
representation of processes are called process algebras. Thus a statement about 
the behaviour of concurrent systems can be regarded as a statement about the 
elements of a certain process algebra. Such a statement can be represented by 
a formula in a suitable language which is interpreted in this process algebra. 
Sometimes we consider several process algebras at the same time and want to 
formulate a statement about concurrent processes without choosing one of 
these algebras. In this case we represent the statement by a formula in a suit­
able language which has an interpretation in all these process algebras. Hence 
we are interested in assertions of the form: 'Formula cp holds in the process 
algebra ct, notation ce t= cp, or 'Formula cp holds in the class of process algebras 
e, notation e 1= cp. Now we can formulate the goal that is pursued in the 
present section: to propose a method for proving assertions ce t= cp, or e 1= cp. 

1.2. Proving formulas from theories. Classical logic gave us the notion of a for­
mal proof of a formula cp from a theory T. Here a theory is a set of formulas. 
We write T 1- cp if such a proof exists. The use of this notion is revealed by the 
following soundness theorem: If T I- cp then cp holds in all algebras satisfying T. 
Here an algebra ce satisfies T, notation ct t= T, if all formulas of T hold in this 
algebra. Thus if we want to prove ce t= cp it suffices to prove T 1- cp and ce t= T for 
a suitable theory T. Likewise, if we want to prove e 1= cp, with e a class of alge­
bras, it suffices to prove T 1- cp and e 1= T. 

At first sight the method of proving ce t= cp by means of a formal proof of cp 
out of T seems very inefficient. Instead of verifying ct t= cp, one has to verify 
ct t= I} for all l}E T, and moreover the formal proof has to be constructed. How­
ever, there are two circumstances in which this method is efficient, and in most 
applications both of them apply. First of all it might be the case that cp is more 
complicated than the formulas of T and that a direct verification of ct t= cp is 
much more work than the formal proof and all verifications ce t= I} together. 
Secondly, it might occur that a single theory T with ce t= T is used to prove 
many formulas cp, so that many verifications ct t= cp are balanced against many 
formal proofs of q, out of T and a single set of verifications ct t= I}. Especially 
when constructing formal proofs is considered easier then making verifications 
ct t= cp, this reusability argument is very powerful. It also indicates that for a 
given algebra ct we want to find a theory T from which most interesting formu­
las cp with ct t= cp can be proved. 

Often there are reasons for representing processes in an algebra that satisfies 
a particular theory T, but there is no clear argument for selecting one of these 
algebras. In this situation we are interested in assertions e 1= cp with e the class 
of all algebras satisfying T. Of course assertions of this type can be con­
veniently proved by means of a formal proof of cp from T. 
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1.3. Proving formulas from modules. In process algebra we often want to 
modify the process algebra currently used to represent processes. Such a 
modification might be as simple as the addition of another operator, needed 
for the proper modelling of yet another feature of concurrency, but it can also 
be a more involved modification, such as factoring out a congruence, in order 
to identify processes that should not be distinguished in a certain application. 
It is our explicit concern to organise proofs of statements about concurrent 
systems in such a way that, whenever possible, our results carry over to 
modifications of the process algebra for which they were proved. 

Now suppose ~ is a process algebra satisfying the theory T and a statement 
~ t, q, has been proved by means of a formal proof of q, out of T. Furthermore 
suppose that ~ is obtained from ~ by factoring out a congruence relation on ~ 
(so ~ is a homomorphic image of ~ and for a certain application ~ is con­
sidered to be a more suitable model of concurrency than Ct. Then in general 
~ t, q, cannot be concluded, but if q, belongs to a certain class of formulas (the 
positive ones) it can. So if q, is positive we can use the following theorem: 'If 
~ t, T, T 1- q,, q, is positive, and ~ is a homomorphic image of if, then ~ t, q,'. 
This saves us the trouble of finding another theory U, verifying that ~ t, U and 
proving U 1- q, for many formulas q, that have been proved from T already. 
Another way of formulating the same idea is to introduce a module H(T). We 
postulate that one may derive 'H(T) t- q,' from 'T 1- q,' and 'q, is positive', and 
H (T) 1- q, implies that q, holds in all homomorphic images of algebras satisfy­
ing T. 

Thus we propose a generalisation of the notion of a formal proof. Instead of 
theories we use the more general notion of modules. Like a theory a module 
characterises a class e of algebras, but besides the class of all algebras satisfy­
ing a given set of formulas, e can for instance also be the class of 
homomorphic images or subalgebras of a class of algebras specified earlier. 
Now a proof in the framework of module algebra is a sequence or tree of 
assertions M 1- q, such that in each step either the formula q, is manipulated, as 
in classical proofs, or the module M is manipulated. Of course we will estab­
lish a soundness theorem as before, and then an assertion ~ t, q, can be proved 
by means of a module M with~ t, Mand a formal proof of q, out of M. We 
will now turn to the formal definitions. 

1.4. Signatures. Let NAMES be a given set of names. 
A sort declaration is an expression §:S with SE NAMES. 
A function declaration is an expression F:/ :S1 X · · · XSn-s with/,Si, ... ,Sn, 
SE NAMES. 
A predicate declaration is an expression R:pc;S 1 X · · · XSn withp,Si, ... ,SnE 
NAMES. 

A signature a is a set of sort, function and predicate declarations, satisfying: 

(F:f :S1 X · · · xsn-S)Eo ~ (§:S;)Eo (i = l, ... ,n) /\ (§:S)Eo 

(R:pCS1X ··· XSn)Eo ~ (§:S;)Eo(i=l, ... ,n) 
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A function declaration F:f:-s of arity O is sometimes called a constant 
declaration and written as F:JES. 

1.5. a-Algebras. Let a be a signature. A a-algebra if is a function on a that 
maps 

(S:S)Ea to a set S (j, , 

(F:/ :S 1 X · · · XSn-S)Ea to a function.fs, x ... xs ..... s:Sf X · · · xs!-s(j,, 

(R :pCS 1X ·· · XSn)Eatoapredicatep~, x---xs.CSf x ··· XS!. 

Let if and~ be a-algebras. ~ is a subalgebra of if if S~ cs(j, for all (S :S)Ea, 
if moreover .fs, x ... x s ..... s restricted to Sf X · · · xs?-s~ is just 
fl X ... x s ..... s for all F :/ :SI X ... X sn-s in a, and if P~. X ... xs. restricted 
to sr X . . . X s? is just pl X . . . X s. for all R :p Cs I X . . . X Sn in a. 

A homomorphism h =~~ consists of mappings hs:S(j,-s~ for all §:S in a, 
such that 

hs<..fs ,x • • • x s ..... s(x1, ... ,xn)) = fl x • • • x s ..... s(hs,(x1), ... ,hs.(xn)) 

forall(F:/:S 1 X ··· XSn-S)Eaandallx;ES%=1, ... ,n) 

P1. x • • • x s.(X1 ,- --,Xn) ~ Pl x • • • x s.(hs,(x1), ... ,hs.(Xn)) 

for all (R :p CS 1 X · · · XSn)Ea and all X; ESf(i = l , .. . ,n) 

~ is a homomorphic image of if if there exists a surjective homomorphism 
h:~~-

Let if be a a-algebra. The restriction p□ if of if to the signature p is the pna­
algebra ~, defined by 

s~ = s(j, for all (S:S)Epna 

/l x · · · xs ..... s = .fs, x · ·. xs ..... s for all (F:/ :S1 X ... xsn-S)Epna 

Pl x • • • xs. = P~, x ... xs. for all (R:p CS1 X · · · XSn)Epna 

1.6. Logics. A logic e is a complex of prescriptions, defining for any signature 
a 

a set Fa of formulas over a such that Fa nFp =~np, 
a binary relation ie~ on a-algebras X Fa such that for all p-algebras if and 
</>EFanp: a□if le~np q> ~ if "J/ 

- and a set~ of inference rules-;;; with H !:Fa and </>EFa. 

If if le~ q> we say that the a-algebra if satisfies the formula q>, or that q> holds in 
if. A theory over a is a set of formulas over a. If T is a theory over a and 
if i,~ q> for all (/>ET we say that if satisfies T, notation if ie~ T. We also say that 
if is a model of T. 
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A logic e is sound if H E~ implies £:e 1=~ H ~ l:e 1=~ cf> for any a-algebra £:e. 
cf> 

A formula cf>E¥a is preserved under subalgebras if £:e I=~ cf> implies 'iB I=~ cf>, for any 
subalgebra '!B of £:e. 
A formula cf>E¥a is preserved under homomorphisms if £:e I=~ cf> implies 'iB 1=~ cf>, for 
any homomorphic image 'iB of £:e. 

Without doubt, the definition of a 'logic' as presented above is too general for 
most applications. However, it is suited for our purposes and anyone can sub­
stitute his/her favourite (and more restricted) definition whenever he/she likes. 

In the process algebra verifications of this paper we will use infinitary condi­
tional equational logic. The definition of this logic can be found in the appen­
dix. For comparison, the definitions of equational logic and first order logic 
with equality are included too. 

1. 7. Classical logic. 
DERIVABILITY. A a-proof of a formula cf>E¥a from a theory TC¥a using the 
logic e, is a well-founded, upwardly branching tree of which the nodes are 
labelled by a-formulas, such that 

the root is labelled by cf> 
and if f is the label of a node q and H is the set of labels of the nodes 
directly above q then 

either f ET and H = 0, 
H e 

or -;-Ela. 

If a a-proof of cf> from T using e exists, we say that cf> is a-provable from T by 
means of e, notation T 1-~ cf>. 

TRUTH. Let e be a class of a-algebras and cf>E¥a. Then cf> is said to be true in 
e, notation e 1=~ cf>, if cf> holds in all a-algebras i:eEe. Let Alg(a, T) be the class 
of all a-algebras satisfying T. 

SOUNDNESS THEOREM. Jfe is sound then TI-~ cf> implies Alg(a,T) I=~ cf>. 
PROOF. Straightforward with induction. 0 

If no confusion is likely to result, the sub- and superscripts of 1= and 1- may be 
dropped without further warning. 

1.8. Module logic. The set~ of modules is defined inductively as follows: 
If a is a signature and Ta theory over a, then (a,T)EC!JR., 
If M and NE~ then M + N EC!JR., 
If a is a signature and ME~ then a□M EC!JR., 
If ME~ then H (M)E~ 
If ME~then S(M)E~ 

Here + is the composition operator, allowing to organise specifications in a 
modular way, and D is the export operator, restricting the visible signature of 
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a module, thereby hiding auxiliary items. These operators occur in some form 
or other frequently in the literature on software engineering. Our notation is 
taken from BERGSTRA, HEERING & KLINT [7] in which also additional refer­
ences can be found. The homomorphism operator H and the subalgebra opera­
tor S are, as far as we know, new in the context of algebraic specifications. Of 
course they are well known in model theory, see for instance MONK [21). 

The visible signature l:(M) of a module M is defined inductively by: 
l:(a,T) = a, 
l:(M + N) = l:(M) U l:(N), 
l:(a□M) = anl:(M), 
l:(H (M)) = l:(M), 
l:(S (M)) = l:(M). 

TR.urn. The class Alg(M) of models of a module Mis defined inductively by: 
if, is a model of (a,T) if it is a a-algebra, satisfying T ; 
if, is a model of M + N if it is a l:(M + N)-algebra, such that l:(M)O/f, is a 
model of Mand l:(N)O/f, is a model of N; 
if, is a model of a□M if it is the restriction of a model 'iB of M to the sig­
nature a; 
if, is a model of H(M) if it is a homomorphic image of a model 'iB of M; 
if, is a model of S (M) if it is a subalgebra of a model 'iB of M. 

Note that Alg(M) is a generalisation of Alg(a, T) as defined earlier. All the ele­
ments of Alg(M) are l:(M)-algebras. A l:(M)-algebra /f,EAlg(M) is said to 
satisfy M. A formula q> E FtM) is satisfied by a module M, notation M 1:e q>, if 
Alg(M) 1=iM> q>, thus if q> holds in all l:(M)-algebras satisfying M. 

DERIVABILITY. A proof of a formula q>EFtM) from a module Musing the logic 
e, is a well-founded, upwardly branching tree of which the nodes are labelled 
by assertions N 1- i/;, such that 

the root is labelled by M t- q> 
if N 1- i/; is the label of a node q and H is the set of labels of the nodes 

directly above q then NH is one of the inference rules of Table 1. 

I-"' 
Here positive and universal are syntactic criteria, to be defined for each logic e 
separately, ensuring that a formula is preserved under homomorphisms and 

subalgebras respectively. We write N 1- i/; for -
0
- , and omit braces in the 

Nt-i/; 
conditions of inference rules. If a proof of q> from M using e exists, we say 
that q> is provable from M by means of e, notation M 1-e q>. 

LEMMA. If M 1-e q> then q>Epel:<_M)· 
PROOF. With induction. The only nontrivial cases are the rules for + and D. 
These follow from P; CP;up and P; nF,; CP;np respectively. D 

SOUNDNESS THEOREM. If e is sound then M 1-e q> implies M l=e q>. 
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(a,n f- cp if cpE T 

M f- 'PL (JEJ) 
whenever 'PL (}EJ) 

E~(M) M f- q, "' 
M f-1!_ N f- 2 

M+N f-q, M+N f- q, 

M f-1!_ 
if q,EFa 

a□M f- q, 

Mf-2 if q, is positive 
H(M) f- q, 

Mf-2 if q, is universal 
S(M) f- q, 

TABLE 1 

PROOF. With induction. Again the only nontrivial cases are the rules for + 
and □. These follow since for all p-algebras Ii and q,EFanp: a□ ii ta q, ~ 
Ii ta q, and a□ ii ta q, ~ ii ta q, respectively. □ 

2. PROCESS ALGEBRA 
This is not an introductory paper on process algebra. We only give a listing of 
some important process modules. For an introduction to the ACP formalism 
we refer the reader to [8-10). 

2.1. ACPT. In this paper a central role will be played by the module ACPn 
the Algebra of Communicating Processes with abstraction. A first parameter of 
ACPT is a finite set A of actions. For each action a EA there is a constant a in 
the language, representing the process, starting with an a-action and terminat­
ing (successfully) after some time. 

The first two composition operations we consider are ·, denoting sequential 
composition, and + for alternative composition. If x and y are two processes, 
then XJ' is the process that starts execution of y after successful completion of 
x, and x +y is the process that either behaves like x or like y. We do not 
specify whether the choice between x and y is made by the process itsself, or 
by the environment. 

We have a special constant ~. denoting deadlock, inaction, a process that 
cannot do anything at all. In particular~ does not terminate succesfully. We 
writeA 6 =A U{~}-

Next we have a parallel composition operator II. xl[y denotes the process 
corresponding to the parallel execution of x and y. Execution of x l[y either 
starts with a step from x, or with a step from y, or with a synchronisation of an 
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action from x and an action from y. Synchronisation of actions is described 
by the second parameter of ACPT, which is is a binary communication func­
tion y:A 8 XA 6-A 8 that is commutative, associative and has 8 as zero ele­
ment: 

y(a,b) = y(b,a) y(a, y(b,c)) = y(y(a,b),c) y(a,8) = 8 

If y(a,b)=c=/=8 this means that actions a and b can synchronise. The synchro­
nous performance of a and b is then regarded as a performance of the com­
munication action c. Formally we should add the parameters to the name of a 
module: ACPiA, y). However, in order to keep notation simple, we will always 
omit the parameters if this can be done without causing confusion. In order to 
axiomatise the II-operator we use two auxiliary operators IL (left-merge) and I 
(communication merge). x[ly is xl[y, but with the restriction that the first step 
comes from x, and x ly is x l[y but with a synchronisation action as the first 
step. 

Next we have for each HCA an encapsulation operator an. The operator 
an blocks actions from H. The operator is used to encapsulate a process, i.e. to 
block synchronisation with the environment. 

When describing concurrent systems and reasoning about their behaviour, it 
is often useful to have a distinguished action that cannot synchronise with any 
other action. Such an action is denoted by the constant T!iA 8. The fact that T 

cannot synchronise makes that in some sense this action is not observable. 
Therefore it is often called the silent action. For each / CA the language con­
tains an abstraction or hiding operator T1. This operator hides actions in / by 
renaming them into T, thus expressing that certain actions in a system 
behaviour cannot be observed. 

In Table 2 we summarize the signature of module ACPT. 

§ (sort): p the set of processes 
F (functions): +: PXP-P alternative composition (sum) 

PXP-P sequential composition (product) 
II: PXP-P parallel composition (merge) 
IL: PXP-P left-merge 
I: PXP-P communication-merge 
an: P-P encapsulation, for any HCA 
'f/: P-P abstraction, for any / CA 
a EP for any atomic action a EA 
8 EP inaction, deadlock 
T EP silent action 

TABLE 2 

Table 3 contains the theory of the module ACPT. In this paper we present 
ACPT as a monolithic module. In [IO] however, it is shown that ACPT can be 
viewed as the sum of a large number of sub-modules which are interesting in 
their own right. The module consisting of axioms Al-5 only is called BPA 
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x+y=y+x Al X'T = X Tl 
x +(Y +z) = (x +y)+z A2 'TX +x = 'TX T2 
x+x = x A3 a(-rx +y) = a(-rx +y)+ax T3 
(x +y)z = xz +yz A4 
(xy)z = x(yz) A5 
x+8 = X A6 
8x = 8 A7 

a lb = -y(a,b) CF 

xl[y = x[ly +yllx + x ly CMI 
all.x = ax CM2 -rlLx = -rx TMI 
(ax)[ly = a(xl[y) CM3 (-rx)[ly = T(xl[y) TM2 
(x +y)IL.z = xll.z +yllz CM4 -rlx = 8 TCI 
(ax)lb = (a lb)x CM5 xl-r = 8 TC2 
a l(bx) = (a lb)x CM6 (-rx)ly = x ly TC3 
(ax)l(by) = (albXxl[y) CM7 X l(ry) = X ly TC4 
(x +y)lz = x lz +y lz CMS 
X I (y + z) = X ly + X I z CM9 

aH(-r) = 'T DT 
-rJ(-r) = 'T Tll 

aH(a) = a if af/.H DI -r1(a) = a if af!./ TI2 
aH(a) = 8 if a EH D2 -r1(a) = -r if aE/ Tl3 
aH(X +y) = aH(x)+aH(y) D3 -rJ(x +y) = -r1(x)+-r1(Y) TI4 
aH(xy) = aH(x)•aH(Y) D4 -r1(xy) = -r1(x)·-r1(y) TI5 

TABLE 3 

(from Basic Process Algebra). If we add axioms A6-7 we obtain BP~, and 
BP~ plus axioms Tl-3 gives BPA.-&. The module ACP consists of the axioms 
Al-7, CF, CMI-9 and D1-4, i.e. the left column of Table 3. All axioms in 
Table 3 are in fact axiom schemes in a, b, H and /. Here a and b range over 
A 6 (unless further restrictions are made in the table) and H,I (:A. In a product 
x :Y we will often omit the ·. We take · to be more binding than other opera­
tions and + to be less binding than other operations. In case we are dealing 
with an associative operator, we also leave out parentheses. 

2.1.1. Note. Let n>O. Let D = {d1, .. • ,dn} be a finite set. Let td,, ··· ,td. be 
process expressions. We use the notation ~ td for the sum td, + · · · + td.· 

d eD 

~ td = 8 by definition. 
d e0 
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2.1.2. Summand inclusion. In process verifications the summand inclusion 
predicate C turns out to be a useful notation. It is defined by: x Cy ~ 
x +y =y. From the ACPT-axioms Al , A2 and A3 respectively it follows that 
C is antisymmetrical, transitive and reflexive, and hence a partial order. 

2.1.3. PROPOSITION. ACPT 1- Txl[y = 'T(xl[y). 
PROOF. ul[y :J TxlL.y = 'T(xl[y) = TXlL.y = rrxlLY = 'T(ul[y) :J ul[y. 
Now use the fact that C is a partial order. □ 

2.1.4. Monotony. Most of the operators of ACPT are monotonous with respect 
to the summand inclusion ordering. Using essentially the distributivity of the 
operators over +, one can show that if x Cy, ACPT proves: 

x+z cy+z, 
x·z cy·z, 
x[Lz Cyllz, 
x lz Cy lz, 
aH(x)CaH(Y), 
TJ(x)CT1(Y). 

Due to branching time, in general z·xi zy, xllzi yllz and zlLxi zlL.y. 
However, we do have monotony of the merge for the case were x is of the 
form TX'. If u' Cy, then ACPT I- Tx'llz Cy llz: 

2.1.3 

u'llz = 'T(x'llz) = Tx'[Lz Cyllz Cyllz. 

2.2. Standard Concurrency. Often one adds to ACPT the following module SC 
of Standard Concurrency (a EA 6), which is parametrised by A. A proof that 
these axioms hold for all closed recursion-free terms can be found in [9]. 

SC (xlL.y)ILz = xlL(Yllz) SCI 
(x lay)ILz = x l(ayllz) SC2 
xly = ylx SC3 
xl[y = yllx SC4 
x l(y lz) = (x ly)lz SC5 
xll(Yllz) = (xl[y)llz SC6 

TABLE 4 

2.3. Renamings. Let A .-6 = A 6 U {.,. }. For every function f: A n5--+A .-6 with the 
property that /(8)=8 and /(T)=T, we introduce an operator Pf: P--+P. 
Axioms for Pf are given in Table 5 (Here a EA .-6 and id is the identity). 
Module RN is parametrised by A. 
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RN pfa) = f(a) RNl 

pfx +y) = pfx)+pfy) RN2 

pfxy) = pfx) ·pfy) RN3 

P;ix) = X RN4 

Pj>Pg{X) = PJog(x) RN5 

TABLE 5 

For t EA ro and HCA we define mappings r,,n : A ro----►A ro as follows: 

{

t if a EH 
r,,n(a) = a otherwise 

In the following we will implicitly identify the operators on and p,~H• and also 
the operators T1 and P, .. ,: encapsulation is just renaming of actions into 8, and 
abstraction is renaming of actions into the silent step -r. 

2.4. Chaining operators. A basic situation we will encounter is one in which 
processes input and output values in a domain D. Often we want to 'chain' 
two processes in such a way that the output of the first one becomes the input 
of the second. In order to describe this, we define chaining operators >>> and 
». In the process x~>y the output of process x serves as input of process y. 
Operator » is identical to operator ~>, but hides in addition the communi­
cations that take place at the internal communication port. The reason for 
introducing two operators is a technical one: the operator » (in which we are 
interested most) often leads to the possibility of an infinite sequence of internal 
actions corresponding to hidden synchronisations between the two arguments 
of the operator (a form of unguarded recursion, cf. Sections 2.8.1 and 2.12.1). 
In order to deal with such behaviours, it is useful to view » as the composi­
tion of two operators: the >>> operator and an abstraction operator that hides 
the communications of >~. We will define the chaining operators in terms of 
the operators of ACP.,. + RN. In this way we obtain a simple, finite axiomati­
sation of the operators. The operator » occurs (in a different notation) 
already in HOARE [15) and MILNER [18). 

Let for d ED, J,d be the action of reading d, and jd be the action of sending 
d. Furthermore let ch (D) be the following set: 

ch(D) = {jd,J,d,s(d),r(d),c(d)ldED}. 

Here r(d), s(d) and c(d) (dED) are auxiliary actions which play a role in the 
definition of the chaining operators. The module for the chaining operators is 
parametrised by an action alphabet A satisfying ch(D)c;A. The module should 
occur in a context with a module ACP.,.(A, y) where 

range(y)n {J,d, jd,s(d),r(d)ldED} = 0 
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and communication on ch (D) is defined by 

y(s(d),r(d)) = c(d) 

(all other communications give 8). The renaming functions ts and ,!,r are 
defined by 

fs(fd) = s(d) and ,!,r(,!,d) = r(d) (dED) 

and fs(a)=,!,r(a)=a for every other a EA-n5. Now the 'concrete' chaining of 
processes x and y, notation x>>>y, is defined by means of the axiom 
(H = {s(d),r(d)ldED}): 

I x>:»y = aH(Pr,(x)llp.v(y)) CHI I 
The 'abstract' chaining of processes x and y, notation x»y, is defined by 
means of the axiom (J = {c(d)ldED}): 

I x»y = -r1(x>>>y) CH2 I 
The module CH+ consists of axioms CHI and CH2, and is parametrised by 
A . The'+' in CH+ refers to the auxiliary actions in the module, which will 
be removed in Section 3. 

2.4.1. ExAMPLE. Let D = {O, l}. Process AND reads two bits and then outputs 
1 if both are 1, and O otherwise: 

AND = ,!,O·(,!,O·fO + ,!, l ·fO) + ,!, l ·(,!,O·fO + ,!, l ·f 1) 

Process OR reads two bits, outputs O if both are 0, and 1 otherwise: 

OR = ,!,O·(,!,O·fO + ,!,l ·fl) + ,!,l·(,!,O·fl + ,!,l·fl) 

Process NEG reads a bit band outputs 1-b: 

NEG= ,!,O·fl + ,!,l·fO 

These processes can be composed using chaining operators. It is not too hard 
to prove: 

(NEG·NEG»AND)»NEG = OR 

Note however that we do not have 

(NEG·NEG>>>AND)>:»NEG = OR 

since in the LHS process internal computation steps are still visible. 
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2.5. Recursion. A recursive specification Eis a set of equations {x =tx Ix EVE} 
with VE a set of variables and Ix a process expression for x EVE. Only the 
variables of VE may appear in Ix. A solution of Eis an interpretation of the 
variables of VE as processes (in a certain domain), such that the equations of 
E are satisfied. Recursive specifications are used to define (or specify) infinite 
processes. 

For each recursive specification E and x EVE, the module REC introduces a 
constant <x IE>, denoting the x-component of a solution of E. 

In most applications the variables XE VE in a recursive specification E will 
be chosen fresh, so that there is no need to repeat E in each occurrence of 
<XIE>. Therefore the convention will be adopted that once a recursive 
specification has been declared, <XIE > can be abbreviated by X. If this is 
done, X is called a formal variable. Formal variables are denoted by capital 
letters. So after the declaration X =aX, a statement X =aaX should be inter­
preted as an abbreviation of <XIX=aX> = aa<XIX=aX>. 

Let E = { x = t x Ix E VE} be a recursive specification, and t a process expres­
sion. Then < t I E > denotes the term t in which each free occurrence of 
x EVE is replaced by <x IE>. In a recursive language we have for each E as 
above and x E VE an axiom 

I <xlE> = <txlE> REC I 
If the above convention is used, these formulas seem to be just the equations 
of E. The module REC is parametrised by the signature in which the recursive 
equations are written. In the presence of module REC each system of recur­
sion equations over this signature has a solution. 

2.6. Projection. The operator "'n: P-P (n EN) stops processes after they have 
performed n atomic actions, with the understanding that T-steps are tran­
sparent. The axioms for "'n are given in Table 6. Module PR is parametrised 
by A . 

PR 'TTn('T) = 'T PRl 

wo(ax) = 8 PR2 

'TTn+1(ax) = a ·wn(x) PR3 

wn{'TX) = 'T "'TTn(X) PR4 

'TTn(X +y) = 'TTn(x)+wn(y) PR5 

TABLE 6 

In this paper, as in other papers on process algebra, we have an infinite collec­
tion of unary projection operators. Another option, which we do not pursue 
here, but which might be more fruitful if one is interested in finitary process 
algebra proofs, is to introduce a single binary projection operator 
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f:'IT:NxP-P. 

2. 7. Boundedness. The predicate Bn r;;,.P (n EN) states that the nondeterminism 
displayed by a process before its n th atomic steps is bounded. If for all n EN: 
Bn(x ), we say x is bounded. Axioms for Bn are in Table 7 (a EA 6). Module B 
is parametrised by A. 

B Bo(x) 

Bn(-r) 

Bn(x) 

Bn(-rx) 

Bn(x) 

Bn+1(ax) 

Bn(X), Bn(Y) 

Bn(X +y) 

TABLE 7 

Boundedness predicates were introduced in [13]. 

Bl 

B2 

B3 

B4 

B5 

2.8. Approximation Induction Principle. AIP- is a proof rule which is vital if 
we want to prove things about infinite processes. The rule expresses the idea 
that if two processes are equal to any depth, and one of them is bounded then 
they are equal. 

'vn EN 'ITn(x) = 'ITn(Y), Bn(x) 

X =y 

The'-' in AIP-, distinguishes the rule from a variant without predicates Bn. 

2.8.1. DEFINITION. Let t be an open ACP,.-term without abstraction opera­
tors. An occurrence of a variable X in t is guarded if t has a subterm of the 
form a ·M, with a EA 6, and this X occurs in M. Otherwise, the occurrence is 
unguarded. 

Let E = { x = t x Ix E VE} be a recursive specification in which all Ix are 
ACP,.-terms without abstraction operators. For X, YE VE we define: 

X ➔ Y <=> Y occurs unguarded in t x• 

We call E guarded if relation ➔ is well-founded (i.e. there is no infinite 
u u u 

sequence X ~ Y ~ Z ~ · · · ). 
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2.8.2. THEOREM (Recursive Specification Principle (RSP)J. 
ACP.,. + REC + PR + B + AIP- 1-

1 (RSP) X = .::x IE> E guarded I 

93 

In plain English the RSP rule says that every guarded recursive specification 
has at most one solution. 

2.8.3. ExAMPLE. Let E = {X=(a +b)·X} and F = {Y=a·(a +b)·Y+b·Y} 
be two recursive specifications. Since 

<XIE>= (a+b)·<XIE> = a·<XIE>+b·<XIE> 

=a·(a +b)·<XIE>+b·<XIE>, 

the constant <XIE> satisfies the equation of F. Because the specification F 
is guarded, RSP now gives that <XIE> = <YIF>. 

2.9. Koomen's Fair Abstraction Rule (KFAR). In the verification of communi­
cation protocols one often uses the following rule, called Koomen's Fair 
Abstraction Rule(/ (:A). Module KFAR is parametrised by A. 

(KFAR) 
x=ix+y (iEI) 

1'J(x)=·r-r1(y) 

Fair abstraction here means that -rJ(x) will eventually exit the hidden i-cycle. 
Below we will formulate a generalisation of KFAR, the Cluster Fair Abstrac­
tion Rule (CF AR), which can be derived from KF AR. 

2.9.1. DEFINITION. Let E = {X=tx I XEVE} be a recursive specification, 
and let/ (:A . A subset C of VE is called a cluster (of I) in E iff for all XEC: 

m n 

Ix= ~ ik-xk + ~ Y, 
k = I / = I 

(For m;;;a.O, i1, .. ,, imE/U{-r}, X1, .. ,,XmEC, n;;;a.O and Y1, .. ,, YnEV£-C), Vari­
ables XEC are called cluster variables. For XEC and YEVE we say that 

X,-,-.Y ~y occurs in Ix, 

We define 

e(C) = {YEVE-C13XEC:X,-,-.Y} 

Variables in e(C) are called exits. ,_,__• is the transitive and reflexive closure of 
"""· Cluster C is conservative iff every exit can be reached from every cluster 
variable via a path in the cluster: 

'v XE C 'v YE e( C) : X ,-,-. * Y. 
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2.9.2. E.xAM:PLE. The transition diagram of Figure 1 represents a cluster in a 
recursive specification. The nodes represent variables in the recursive 
specification, labelled edges represent summands, and the triangles denote 
exits. The sets {1,2,3}, { 4,5,6, 7}, {8} and {1,2,3,4,5,6, 7,8} are examples of 
conservative clusters. Cluster {1,2,3,4,5,6, 7} is not conservative since exit Z 
cannot be reached from cluster variables 4, 5, 6 and 7. 

FIGURE 1 

2.9.3. DEFINITION. The Cluster Fair Abstraction Rule (CFAR) reads as follows: 

(CF AR) Let E be a guarded recursive specification; let I (:;A with 
JJJ;;;a:2; let C be a finite conservative cluster of I in E; and 
let X,X'EC with X,v,+X'. Then: -rJ(X) = -r· ~ -rJ(Y) 

YEe(C) 

2.9.4. THEOREM. ACP.,. +RN+ REC+ RSP + KFAR 1- CFAR. 
PROOF. See [26). 0 

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic 
actions which it can perform. This idea is formalised in [2], where an operator 
a:P-+2A is introduced, with axioms such as: 

a(8) = 0 

a(ax) = {a}Ua(x) 

a(x +y) = a(x)Ua(y) 

In this approach the question arises what axioms should be adopted for the 
set-operators U, n, etc. One option, which is implicitly adopted in previous 
papers on process algebra, is to take the equalities which are true in set theory. 
This collection is unstructured and too large for our purposes. Therefore we 
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propose a different, more algebraic solution. We view the alphabet of a process 
as a process; the alphabet operator a goes from sort P to sort P. Process a(x) 
is the alternative composition of the actions which can be performed by x. In 
this way we represent a set of actions by a process. A set B of actions is 
represented by the process expression B= def~ b. So the empty set is 

b e B 
represented by 8, a singleton-set {a} by the expression a, and a set { a,b} by 
expression a + b. Set union corresponds to alternative composition. The pro­
cess algebra axioms Al-3 and A6 correspond to similar axioms for the set 
union operator. The notation C for summand inclusion between processes 
(Section 2.1.2), fits with the notation for the subset predicate on sets. 

The following axioms in Table 8 define the alphabet of finite processes 
(a EA). Module AB is parametrised by A . 

AB a(S) = 8 ABl 
a(ax) = a +a(x) AB2 
a(x +y) = a(x)+a(y) AB3 
a('r) = 8 AB4 
a('rx) = a(x) AB5 

TABLE 8 

In order to compute the alphabet of infinite processes, we introduce an addi­
tional module AA which is parametrised by A. 

AA a(x)CA 

a(x l[y )= a(x) + a(y )+a(x) I a(y) 

a0 p/x) C Pf°O n°a(x) 
(where H={aEA 1/(a)=T}) 

'vn EN a(wn(x))Cy 

a(x)Cy 

TABLE 9 

AAl 

AA2 

AA3 

AA4 

It is not hard to see that the axioms of AA hold for all closed recursion-free 
terms. 

2.10.1. ExAMPLE. (from [2]). Letp=<Xl{X=aX}>, and define q=T(a}(p), 
r=q·b (with b=/=-a). What is the alphabet of r? We derive: 

a(r) = a(qb) = a(T(a}(p)·b) = a(T{a}(p)·T{a}(b)) = 
AA3 RN5 

= a(T(a}(pb)) C 'l"(a} 0 a{a} 0 a(pb) = a{a} 0 a(pb). 
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Since 
AB2 

a(pb) = a(apb) = a+ a(pb ), 

we have that a <;;,a(pb). On the other hand we derive for n EN: 

a('ITn(pb)) = a(an·/3)<;;,a 

and therefore, by application of axiom AA4, a(pb)<;;,a. Consequently 
a(pb) = a and 

a(r) = a{a} 0 a(pb) = a{a}(a) = 13. 

Information about alphabets must be available if we want to apply the follow­
ing rules. These rules, which are a generalisation of the conditional axioms of 
[2], occur in a slightly different form also in [27]. Rules like these are an 
important tool in system verifications based on process algebra. Module RR is 
parametrised by A and y. 

a(x)CB 'vb EB :f(b)=b 
pfx)=x 

RRl 

a(x)CB, a(y)CC _ 2 _ 
pfxl[y)=pfxllpj(y)) 'vcEC./(c)-/ (c)/\(lr/bEB.fay(b,c)-fay(b,f(c))) RR2 

TABLE 10 

Observe that axioms AAl and RRI together imply axiom RN4 of Table 5. 
Axiom RR2, which describes the interaction between renaming and parallel 
composition, looks complicated, but that is only because it is so general. The 
axioms RR are derivable for closed recursion-free terms. 

2.10.2. LEMMA: (Conditional Axioms (CA)): Let CA be the theory consisting of 
the conditional axioms in Table 11. Then: ACPT + RN + AB + RR f- CA. 
PROOF: We prove three of the rules. The others can be dealt with similarly. 
CA3: Choose a Ea(x). Then a rill. This means that r 6,9 (a) = a. Because a 

was chosen arbitrarily, we can aply rule RRI, which gives 
Pr._/x) = ae(x) = x. 

CA5: Follows immediately from the observation 

and application of axiom RN5 of Table 5. 
CAI: Choose cEa(y). We have: 

ra,n(c) = ra,e0 ra,n(c) 

Choose bEa(x). If criH then r6,9 (c) = c and the condition of rule 
RR2 is fulfilled. If c EH then either y(b,c) equals I, (so that we have 



2. Process algebra 97 

a{x}l{aQ'.}nH}CH 
CAI a{x}l{a(y}n/}= 0 

CA2 
an(X l[y)=an(xllan(y)) -rJ(x l[y) = -r1(x ll-r1(y )) 

a{x}nH= 0 
CA3 

a{x}n/= 0 
CA4 

an(x)=x -r1(x)=x 

H=H 1 UH2 
CA5 

/=/1U/2 
CA6 

an(x)=an, 0 an,(x) -r1(x)=-r1, o-r1,(x) 

Hn/=0 
CA7 

T Joa n(X) = a H°'rJ(X) 

TABLE 11 

r 6,n°y(b,c) = 8), or y(b,c)EH, so that again ra,noY(b,c) = 8. But in 
case c EH we also have 

ra,noY(b,ra,n(c)) = ra,noY(b,8) = 8 

This means that we can apply rule RR2. □ 

2.10.3. REMARK. In most of the situations where we want to apply axiom 
CAI, H does not contain results of communications: (A IA)nH= 0. Further 
actions from a(x) will not communicate with actions from H. In these cases 
the following weakened version of axiom CAI is already strong enough: 

a{x}IH = 0 CAI• 
an(xl[y) = an(xllan(Y)) 

2.11. ACPr The combination of all modules presented thus far, except for 
KFAR, will be called ACPf (the system ACPf as presented here slightly 
differs from a system with the same name occurring in [ 10]). The module is 
defined by: 

ACPf = ACP,.+SC+RN+CH+ +REC+PR+B+AIP- +AB+AA+RR 

Bisimulation semantics, as described in for instance [3], gives a model for the 
module ACPf + KFAR. Work of BERGSTRA, KLOP & 0LDEROG (11] showed 
that in a large number of interesting models KF AR is not valid. Therefore we 
have chosen not to include KFAR in the 'standard' module ACPf. 



98 Modular specifications in process algebra 

2.12. Generalised Recursive Specification Principle. For many applications the 
RSP is too restrictive. Therefore we will present below a more general version 
of this rule, called RSP+. 

2.12.1. DEFINITION. Let '5' be the set of closed expressions in the signature of 
ACPg. A process expression p e<?J' is called guardedly specifiable if there exists 
a guarded recursive specification F with YE VF such that 

ACPf 1- p=<YIF>. 

We have the following theorem: 

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP+ )). 
ACPf 1-

I (RSP+) E IE < x IE > guardedly specifiable I 
X = <x > 

2.12.3. Remarks. In the definition of the notion 'guardedly specifiable', it is 
essential that the identity p =<YI F> is provable. If we would only require 
that p =<YI F >, then the corresponding version of RSP+ would not be 
provable from ACPf, since this rule would then not be valid in the action rela­
tion model of [13). In this model we have the identity <XI {X=X}> =8.1 

Hence <Xl{X=X}>=<Yl{Y=8}>=8. Since the specification {Y=8} is 
guarded, this would mean that expression < X I { X = X} > is guardedly 
specifiable. But then RSP+ gives that for arbitrary x: x=<Xl{X=X}>=8. 
This is clearly false. 

We conjecture that an expression p is guardedly specifiable iff it is provably 
bounded, i.e. for all n eN: ACPf 1- Bn(x). 

3. APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA 

3.1. The auxiliary status of the left-merge. 

1. Strictly speaking, this is not correct. In [ 13], a recursion construct <XIE > is viewed as a 
kind of variable which ranges over the X-components of the solutions of E. Since any process X 
satisfies X=X, the identity <XI {X =X}> =8 does not hold under this interpretation. However, 
if one interprets the construct <XIE> as a constant in the model of [13], then the most natural 
choice is to relate to <XIE> the bisimulation equivalence class of the term <XIE>. Under 
this interpretation <Xl{X=X}>=8. 
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3.1.1. Semantics. Sometimes it happens that our 'customers' complain that 
they do not succeed in proving the identity of two processes in ACPt whose 
behaviour is considered 'intuitively the same'. Often, this is because there are 
many intuitions possible, and ACP' happens not to represent the particular 
intuitions of these customers. Therefore we have defined some auxiliary 
modules that should bridge the gaps between intuitions. 

In general a user of process algebra wants that his system proves p = q (here 
p and q are closed process expressions in the signature of ACPh whenever p 
and q have the same interesting properties. So it depends on what properties 
are interesting for a particular user, whether his system should be designed to 
prove the equality of p and q or not. For this reason the semantical branch of 
process algebra research generated a variety of process algebras in which 
different identification strategies were pursued. In bisimulation semantics we 
find algebras that distinguish between any two processes that differ in the pre­
cise timing of internal choices; in trace semantics only processes are dis­
tinguished which can perform different sequences of actions; and, somewhere 
in between, the algebras of failure semantics identify processes if they have the 
same traces (can perform the same sequences of actions) and have the same 
deadlock behaviour in any context. A lot of these process algebras can be 
organised as homomorphic images of each other, as indicated in Figure 2. 

bisimulation semantics with explicit divergence [11] 

l~ 
ready trace semantics [4] 

/~ 
bisimulation semantics 
with fair abstraction [3] 

readiness semantics [22] failure trace semantics [23] 

~/ 
failure semantics [11, 12, 16] 

l 
trace semantics [15] 

FIGURE 2. The linear time - branching time spectrum 

If two process expressions p and q represent the same process in bisimulation 
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semantics with explicit divergence, they have many properties in common; if 
they only represent the same process in trace semantics, this only guarantees 
that they share some of these properties; and, descending from bisimulation 
semantics with explicit divergence to trace semantics, less and less distinctions 
are made. Now a user should state exactly in which properties of processes 
(s)he is interested. Suppose (s)he is only interested in traces and deadlock 
behaviour, then we can tell that for this purpose failure semantics suffices. This 
means that if processes p and q are proven equal in failure semantics, this 
guarantees that they have the same relevant properties. If they are only 
identified in trace semantics (somewhere in the lattice below failure semantics) 
such a conclusion cannot be drawn, but if they are identified in a semantics 
finer than failure semantics (such as bisimulation semantics with explicit diver­
gence), then they certainly have the same interesting properties, and probably 
some uninteresting ones as well. Hence a proof in bisimulation semantics with 
explicit divergence is just as good as one in failure semantics (or even better). 

This is the reason that we do our proofs mostly in bisimulation semantics: 
the entire module ACP~ is sound with respect to bisimulation semantics with 
explicit divergence. However, if two processes are different in bisimulation 
semantics, we will never succeed in proving them equal from ACP~. In such a 
case we might add some axioms to the system, that represent the extra 
identifications made in a less discriminating semantics. If we find a proof from 
this enriched module, it can be used by anyone satisfied with the properties of 
this coarser semantics. 

It is in the light of the above considerations that one should judge the 
appearance of the following module T4: 

T4 I 'T('TX +y) = 'TX +y I 
The law of this module does not hold in bisimulation semantics, but it does 
hold in all other semantics of Figure 2. Thus any identity derived from ACP~ 
+ T4 holds in ready trace semantics and hence also in the courser ones like 
failure and trace semantics, or so it seems .... 

3.1.2. An inconsistency. 

3.1.2.1. DEFINITION. Let M be a process module with ~(M):;?~(BPA..5). We 
call M consistent if for all closed expressions x and y in the signature of BP Aro 
with 

M1-x=y, 

the sets of complete traces agree: 

trace ( x) = trace (Y ). 

A complete trace is a finite sequence of actions, ending with a symbol y or ~ 
indicating successful resp. unsuccessful termination. A formal definition of the 
set trace (x) is given in (11 ]. Here we only give some examples, which should 
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make the notion sufficiently clear: 

trace(abc +ad8+a(-rbc+d)) = {abc\i, ad8, ad\i} 

trace(-r) = { V} -=/= { 8, V} = trace(-r +-r8) 
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A model l:t of M is consistent if for all closed expressions x and y in the signa­
ture of BPA..5 with 

1:t1=x=y, 

the sets of complete traces agree. The module ACP~ + KF AR is consistent 
because bisimulation semantics with fair abstraction, as described in [3], gives 
a consistent model for this module. However, KF AR is not valid in any of the 
other semantics of Figure 2. 

3.1.2.2. PROPOSITION. 

ACP,. +T4 t- T(_ac +ca)+bc = 1(_-r(_ac +ca)+bc +c(-ra +b)). 
PROOF. 

1(_-ra +b)lLc = (-ra +b)llc = T(_allc)+bc = T(_ac +ca)+bc 

T(_-ra+b)lLc = T(_(-ra+b)lic) = 1(_-r(_ac +ca)+bc+c(-ra+b)) □ 

Proposition 3.1.2.2 shows that module ACP,.+T4 is not consistent. This sud­
den inconsistency must be the result of a serious misunderstanding. And 
indeed, what's wrong is the use of ACP,. in the less discriminating models (say 
in failure semantics). It happens that, in a setting with -r, failure equivalence 
(or ready trace equivalence for that matter) is not a congruence for the left­
merge IL, and this causes all the trouble. 

3.1.3. Solution. In applications we do not use the operators IL and I directly. 
In specifications we use the merge operator II, and IL and I are only auxiliary 
operators, needed to give a complete axiomatisation of the merge. 

Let sacp,. be the signature obtained from ~(ACP,.) by stripping the left­
merge and communication-merge: 

sacp,. = ~(ACP,.) - {F: lL: P XP-+P, F: I : P XP-+P} 

Failure equivalence as in [11), etc. are congruences for the operators of sacp,.. 
However, the operators lL and I in ACP,. are needed to axiomatise the 11-
operator, and without them even the most elementary equations cannot be 
derived. Our solution to this problem is based on the following idea. Suppose 
we want to prove an equation p = q in the signature sacp,. that holds in ready 
trace semantics (and hence in failure semantics) but not in bisimulation seman­
tics. Then we first prove an intermediate result from ACP,.: one or more equa­
tions holding in bisimulation semantics (with explicit divergence) and in which 
no lL and I appear. This intermediate result is preserved after mapping the 
bisimulation model homomorphically on the ready trace or failure model, and 
can be combined consistently with the axiom T4. Thus the proof of p =q can 
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be completed. In our language of modules we can describe this as follows. The 
module 

SACPT = H(sacpTD(ACPT+SC)) 

does not contain the operators lL and I in its visible signature and since 
failure semantics can be obtained as a homomorphic image of bisimulation 
semantics, considering that ACPT + SC is sound w.r.t. bisimulation semantics 
and that the operators of sacpT carry over to failure semantics, we conclude 
that this module is sound w.r.t. failure semantics. Hence it can be combined 
consistently with T4, and SACPT is a suitable framework for proving state­
ments in failure semantics. 

We would like to stress that the use of the H-operator is essential here. The 
H-operator makes that from module SACPT only positive formulas are prov­
able. The following example shows what goes wrong if we also allow non­
positive formulas. From the proof of Proposition 3.1.2.2 it follows that: 

7(-ra +b)=-ra +b 
sacpTD(ACPT+SC) 1- ( b) -' ) b c -ra + t;;;; , \ ac + ca + c 

Consequently we can prove an inconsistency if we add law T4: 

sacpTD(ACPT + SC)+ <T(-rx +y)=-rx +y> I- c(-ra +b)t;;;;'T(ac +ca)+bc 

So although the formulas provable from module sacpT D(ACPT + SC) contain 
no left-merge, some of them (which are non-positive) cannot be combined con­
sistently with the laws of ready trace semantics and failure semantics. 

3.2. Associativity of the chaining operator. ACPT is a universal specification for­
malism in the sense that in bisimulation semantics every finitely branching, 
effectively presented process can be specified in ACPT by a finite system of 
recursion equations (see [3]). Still it often turns out that adding new operators 
to the theory facilitates specification and verification of concurrent systems. In 
general, adding new operators and laws can have far reaching consequences for 
the underlying mathematical theory. Often however, new operators are 
definable in terms of others operators and the axioms are derivable from the 
other axioms. In that case the new operators can be considered as notations 
which are useful, but do not complicate the underlying theory in any way. 
Examples of definable operators are the projection operators and the process 
creation operator of [6). 

Just like the left-merge and the communication-merge are needed in order to 
axiomatise the parallel composition operator, new atomic actions are often 
needed if we want to define a new operator in terms of more elementary 
operators. As an example we mention the actions s(d) and r(d) which we 
need in the definition of the chaining operators. These auxiliary atoms will 
never be used in process specifications. Unfortunately they have the 
unpleasant property that they occur in some important algebraic laws for the 
new operators. One of the properties of the chaining operators we use most is 
that they are 'associative'. However, due to the auxiliary actions, the chaining 
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operators are not associative in general. We do not have general associativity 
in the model of bisimulation semantics. Counterexample: 

(r(d)>>>(s(d)+s(e)))>>>r(e) = c(d)·8 

r(d):»>((s(d)+s(e)):»>r(e)) = c(e)·8 

However, we do have associativity under some very weak assumptions. In the 
model of bisimulation semantics, the following law is valid (here 
H= {s(d),r(d)ldED}): 

au(x)=x, au(y)=y, au(z)=z cc 
(x>>>y)>~z =x~(y>>>z) 

It would be much nicer if we somehow could 'hide' the auxiliary atoms, and, 
for the >>>-operator, have associativity in general. In this section we will see 
how this can be accomplished by means of the module approach. 

3.2.1. The associativity of the chaining operators. Although the rule CC holds in 
the model of bisimulation semantics, we have not been able to prove it alge­
braically from module ACPf. However, we can prove algebraically a weaker 
version of rule CC if we make some additional assumptions about the alpha­
bet. We assume that besides actions ch(D), the alphabet A contains actions: 

H = {s(d),r(d)ldED} en H = {~(d),~(d)ldED} 

One may think about these actions as special fresh atoms which are added to 
A only in order to prove the ~sociativity of the chaining operators. 1 Let 
If={r(d),s(d)ldED} and let H=HUHUH. We assume that actions from 
H do not A synchronise )Vith the other actions in the alphabet, and that 
range(y) n H = 0. On H communication is given by (d ED): 

y(s(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) = 

= y(s(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) = c(d) 
- - - -

We define for v,wE{j,!,s,r,s,r,~~} the renaming function vw: 

{

w(d) if a=v(d) for some dED 
vw(a) = a otherwise 

I. The Fresh Atom Principle (FAP) says that we can use new (or 'fresh') atomic actions in proofs. 
In (5), it is shown that FAP holds in bisimulation semantics. We have not included FAP in the 
theoretical framework of this paper. Therefore, if we need certain 'fresh' atoms in a proof, we have 
to assume that they were in the alphabet right from the beginning. 
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3.2.1.1. LEMMA. SACP,. + RN + CH+ + AB + AA + RR 1-

a11(x)=x, a11(y)=y, a11(z)=z 

an(Prs<x )IIPviY ))=x >>>y = a!!.(Pr/x )llp~(y )) 

PROOF. We only prove the first equality. The second one follows by symmetry. 

aii(Prs<x)llpJ,r(r)) = (note 1 below, RRI) 

= an°Pss"Prr<Prs<x)llpJ,r(r)) = (RN5,y=a11(y)) 

= an°Pss"Prr<Prs<x)llp,,opv(y)) = (note 2, RR2) 

= an°Pss°Prr<Pt:.(x)llpv(y)) = (SC4, RN5, x =a11(x)) 

= an°P,r°Ps:rtPv(y)IIPss°PtsCx)) = (as in note 2, RR2) 

= an°P,r°Ps:rtPv(y)IIPrsCx)) = (RN5) 

= aH 0 an(PJ,r(y)llpt.(x)) = (note 3, RRI, SC4) 
CHI 

= aH(PrsCx)llpv(y)) = x~>y 

Note 1. Let B=A-H. We claim a(pr:.(x)llpJ.r<Y))CB (recall that 
B= def 2,beBb). 
PRooF: a(pr:.(x)llpJ,r(r)) = 

AA2 

= aopt:.(x)+aopJ,r-(y)+aopt:.(x)laopJ.r<Y) C 
RN5 

(Use that x Cy~ x lz Cy lz. Use further x =a11(x) = aH0 a11(x)=aH(x).) 
AAI 

C a 0 Pts°aH(x)+a0 pvaH(y)+A IA C 

(Use that range(y) n H = 0 .) 
RN5 

C a 0 a H0 Prs<x) + a 0 a H0 P w) +BC 
AA3,RN4 

C a Hoaopt:.(x) + a Hoaop viY) +BC 

(Use that x Cy implies pfx)Cpfy).) 
AA I 

C aH(A)+aH(A)+B=B 

This finishes the proof of the claim. 

Note 2. Application of axiom AAI gives: a0 pr:.(x)CA and a 0 pJ,r(y)CA. In 
order to apply axiom RR2, we first have to check that for all c EA: 
rr(c)=rr0 rr(c). This is obviously the case. Because range(y)nH= 0, we have 
for all b,c EA :rr0 y(b,c)=y(b,c). Now the last thing to be checked is that for 
b,cEA: y(b,c)=y(b,rr(c)). This turns out to be the case. 
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Note 3. Let C=A --H. We claim: a(pJ.r(y)IIPtsCx))CC. The proof is similar to 
the proof in note I. 

This finishes the proof of the lemma. 

3.2.1.2. THEOREM. SACP,. + RN + CH+ + AB + AA + RR ~ 

a;,(x)=x, a;,(y)=y, a;,(z)=z 

x~(y~>z)=(x>~y)>>>z 

D 

PRooF. This is essentially Theorem 1.12.2 of [27). We give a sketch of the 
proof. 

x>~(y~>z) = aii(Ptrtx)llpva~(Pt:(y)llp~(z))) = 
RN5 

= a;;(PtrtX )II a ~op v<Pt:CY )lip ~(z ))) = 
RRI 

= a;;0 aH(Ptrtx)llaH0 Pv{PtsCY)IIPv(z))) = 
- - - -

RR2 

= a;;0 a H(PtrtX )llp v<PtsCY )llp v<z ))) = - - -
RR2 

= a;;0 a~(Ptrtx)llpv-(Pv'Pt:(y)llp~(z))) = 
RRI 

= an°a~(Ptrtx)IIP,1.r°Pt:(y)llp~(z)) = 
RN5 

= a~0 an(Ptrtx)IIPt:0 pv(y)llp~(z)) = 
RRI 

= a~0 aH(Pt/Ptrtx)IIPt:0 Pv{r))llp~(z)) = 
RR2 

= aH0 aH(PtsCPts<x)llpv(y))IIPv(z)) = - - -
RR2 

= a~ 0 a8(a8°pt/Ptrtx)llpv(y))llpt(z)) = 
RRI 

= a~(aH0 Pt/Ptrtx)llpv(y))llpt(z)) = 
RN5 

a~(Pt:0 an(Ptrtx)llpv(y))llpt(z)) = (x>>>y)>>>z 

D 

3.2.1.3. THEOREM. SACP,. + RN + CH+ + AB + AA + RR ~ 

a;,(x)=x, a;,(y)=y, a;,(z)=z 

x»(y»z) = (x»y)»z 

PROOF. Let /={c(d)ldED}. 
CH2 

x»(y»z) = 7"J(x>>>(1)(y>>>z))) = 
CHI 

= 'T1°aH(Pts(x)IIPv07)(y>>>z)) = 
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RN5 

= an°1APtsCx)IIT1°P,1.r(y>>>z)) = 
RR2 

= an°'1"1(PtsCx)llp,1.r(y>>>z)) = 
RN5 

= T1°an(PtsCx)llp,1.r(y~>z)) = 
CHI 

= T1(x>>>(y~>z)) = 
3.2.1.2 

= T1((x>>>y)>>>z) = · · · = (x»y)»z D 

3.2.2. Removing auxiliary atoms. We will now apply the module approach to 
remove completely the auxiliary atoms which were used in the definition of the 
chaining operators. What we want to obtain is a module where 'inside' the 
auxiliary atoms are used to define the chaining operator but where 'outside' 
they are no longer visible and moreover chaining is associative in general. 
Below we will employ the notation: 

oaM-(~-:(M)-o)□M. 

Consider the module: 

CH- = ({F: a EP la EH} U {F: Pf: P-P 1/:Aro-Aro}) 

d(SACPT+RN+cH+ +AB+AA+RR). 

This module cannot be used to prove any formula containing atoms in H. But 
unfortunately module CH- still does not prove the general associativity of the 
chaining operators: 

CH- ~ x>~(Y>~z)=(x>>>y)~>z 

The reason is that the auxiliary atoms, although removed from the language, 
are still present in the models of module CH-. Thus the countere~ample 
(r(d)>>>(s(d)+s(e)))>>>r(e) still works in the models. Let A - =A-H. We 
are interested in consistent models which only contain actions of A - . The 
module CH-+ <a(x)CA- > does not denote such models: all consistent 
models of CH- contain the process A with a(A)=A ~ A-. Adding the law 
a(x) CA - therefore throws away all consistent models. The right class of 
models can be denoted with the help of operator S. We consider the module 

CH= S(CH-)+<a(x)CA->. 

Some models of module CH- have consistent submodels which do not contain 
auxiliary atoms. In these models the law a(x) CA - holds. Thus module CH 
has consistent models. 

From Theorems 3.2.1.2 and 3.2.1.3, together with axiom RRl, it follows 
that: 

CH- I- a(x)CA-, a(y)CA-, a(z)CA- and 
(x ~y )>>>z =x >>>(Y >>>z) 
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CH - 1- a(x)CA -, a(y)CA - , a(z)CA ­
(x»y)»z =x»(y»z) 
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From this we can easily see that module CH proves the general associativity of 
the chaining operators: 

CH I- x>>>(y>>>z)=(x>>>y )>;$>x and 

CH I- x»(y»z)=(x»y)»x. 

3.2.3. The following laws can be easily proven from module CH (here 
d,eED): 

fd ·x »( ~ J.e:re) = r·(x »yd) Ll 
eeD 

fd·x»fe:r = fe-(fd ·x»y) L2 

( ~ J,d·xd)»( ~ J.e:re) = ~ J,d·(xd»( ~ J.e:re)) L3 
deD eeD deD eeD 

( ~ J,d·xd)»fe:r = ~ J,d·(xd»fe:r) + fe·(( ~ J,d·xd)»y) L4 
deD deD deD 

The laws are equally valid when the operator » is replaced by >>>, except for 
law Ll where in addition the r has to be replaced by c(d). 

3.3. SACPg. Module SACPg is an 'improved' version of module ACPg. It is 
defined by: 

SACPg = SACPT+RN+CH+REC+PR+B+AIP- +AB+AA+RR 

If modules in the above defining equation have an alphabet as parameter, this 
is A - , and if they are parametrised by a communication function this is the 
restriction -, - of y to (A - U { 8}) X (A - U { 8} ). The rules RSP, RSP+ and 
CFAR can still be used in a setting with module SACPg. We have SACPg 1-

RSP, SACPg 1- RSP+ and SACPg+ KFAR 1- CFAR. 

4. CONCLUSIONS AND OPEN PROBLEMS 

In this paper we presented a language making it possible to give modular 
specifications of process algebras. The language contains operations + and 
□ , which are standard in the theory of structured algebraic specifications, and 
moreover two new operators H and S. Two applications have been presented 
of the new operators: we showed how the left-merge operator can be hidden if 
this is needed and we described how the chaining operators can be defined in a 
clean way in terms of more elementary operators such that a setting is created 
where the chaining operators are associative. It is clear that there are many 
more applications of our approach. Numerous other process combinators can 
be defined in terms of more elementary operators in the same way as we did 
with the chaining operators. Maybe also other model theoretic operations can 
be used in a process algebra setting ( cartesian products?). 
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Strictly speaking we have not introduced a 'module algebra' as in [7]: we do 
not interpret module expressions in an algebra. However, this can be done 
without any problem. An interesting topic of research is to look for axioms to 
manipulate module expressions. Due to the presence of the operators H and 
S, an elimination theorem for module expressions as in [7] will probably not 
be achievable. 

An important open problem for us is the question whether the proof system 
of Table 1 is complete for first order logic. 

In this paper the modules are parametrised by a set of actions. These 
actions themselves do not have any structure. The most natural way to look 
towards actions likes l(d0) however, is to see them as actions parametrised by 
data. We would like to include the notion of a parametrised action in our 
framework but it turns out that this is not trivial. 

In order to prove the associativity of the chaining operators, we needed aux­
iliary actions s(d), r(d), etc. Also in other situations it often turns out to be 
useful to introduce auxiliary actions in verifications. At present we have to 
introduce these actions right at the beginning of a specification. This is embar­
rassing for a reader who does not know about the future use of these actions 
in the verification. But of course also the authors don't like to rewrite their 
specification all the time when they work on the verification. Therefore we 
would like to have a proof principle saying that it is allowed to use 'fresh' 
atomic actions in proofs. We think that it is possible to add a 'Fresh Atom 
Principle' (F AP) to our formal setting, but some work still has to be done. 

ACKNOWLEDGEMENTS 

Our thanks to Jan Bergstra for his help in the development of the fl-operator 
and to Kees Middelburg for helpful comments on an earlier version. 

APPENDIX: LOGICS 

In this appendix equational, conditional equational and first order logic are 
defined. Since all these logics share the concepts of variables and terms, these 
will be treated first. 

1. Variables and terms. Let a be a signature. A a-variable is an expression xs 
with XE NAMES and (§:S)Ea. A valuation of the u-variables in a a-algebra&, 
is a function! that takes every a-variable xs into an element of s«. 
For any (§:S)Ea the set T's of a-terms of sort Sis defined inductively by: 

xsET's for any a-variable xs. 
IfF:/:S 1 X ·· · xsn-Sisinaandt;ET's, fori=l, ... ,nthen 
I'S X · · · XS -+S(t l •···,tn) En. J! I • 

The !-evaluation [tJE ES« of a a-term t E T's in a a-algebra &, (with ! a valua­
tion) is defined by: 

[xsJE =«xs)ES«. 
l"s x ··· XS-+S(tl,···•tn)JE=1 x •·· XS-+s(lt1JE, ... ,[tnJE). J~ I • / S1 11 
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2. Equational logic. The set F;l of equations or equational formulas over a is 
defined by: 

If l;E1s for i = 1,2 and certain §:Sin a, then (t 1 =t 2)EF;l. 

An equation (1 1 =t 2)EF';l is ~-true in a a-algebra if., notation if.,~ 1=:91 t 1 =t2 , if 
[t1J€=[t2J€_ 
Such an equation q,EP/ is true in if., notation ~ 1=:qt q,, if @.,~ 1=:qt q, for all 
valuations f 
An inference system 1:qt for equational logic is displayed in Table 12 below. 
There t, u and v are terms ovc::r a and x is a variable. Furthermore t [ul x] is 
the result of substituting u for all occurrences of x in t. Of course u and x 

should be of the same sort. Finally an inference rule H with H = 0 is called 
an axiom and denoted simply by q,. '1> 

I =t 
u=v 

v=u 

I =u, u =v 

I =v 

u=v u=v 
t[u/ x]=t[vl x] u[tl x]=v[tl x] 

TABLE 12 

3. Conditional equational logic. The set F:,' of atomic formulas over a is defined 
by: 

If t;E1s for i = 1,2 and certain §:Sin a, then (1 1 =t 2)EF'/,'. 
If R:p CS 1 X · · · XSn is in a and l;E1s, for i = 1, ... ,n then 

Ps X ···XS U1,-- ·, tn) Er:,' . 
The se; F,,eqt of conditional equational formulas over a is defined by: 

If C CF'/,' and a Er:,' then (C~a)EF,,eqt_ 

The ~-truth of formulas q,EF'/,' U F,,eqt in a a-algebra ~ is defined by: 
- lf.,~l=~eql !1=!2 if(t1]€=[!2)€_ 

if.,~ l=~eql Ps X ··· XS {!1,••·,tn) if pi x··· X S (lt1]€, ... ,(tn)€). 
@.,~ l=~eql C~a • if if.,~ 11 ~eql //for some /JEC or if.,~ l=~eql a. 

q, is true in if., notation ~ t=~eqt q,, if @.,~ t=~eqt q, for all valuations f 

An inference system l~eqt for conditional equational logic is displayed in Table 
13 below. There a and a; are atomic formulas, C is a set of atomic formulas, q, 
is a conditional equational formula, I;, t, u and v are terms over a and x; and x 
are variables. Furthermore a[u Ix] is the result of substituting u for all 
occurrences of x in a. Of course u and x should be of the same sort. Likewise 
1/>[t; IX; (i El)) is the result of simultaneous substitution for i El of I; for all 

occurrences of x; in q,. An inference rule ~ is again denoted by q, and a con-q, 
ditional equational formula 0 ~a by a. 
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c~a if aEC 
c~a; (i El), { a; Ii EJ}~a 

c~a <p{t;/ X; (i El)] 

t =t {u =v}~(v =u) {t =u, u =v}~(t =u) 

{u =v, a[ulx]}~(a[v/x]) 

TABLE 13 

The logic described above is infinitary conditional equational logic. Finitary con­
ditional equational logic is obtained by the extra requirement that in condi­
tional equational formulas c~a the set of conditions C should be finite. In 
that case the inference rule 

<p{t; IX; (i El)] 
can be replaced by 

<p{tlx]" 

Furthermore (in)finitary conditional logic is obtained by omitting all reference 
to the equality predicate = . 

4. First order logic. The set F{oleq of first order formulas with equality over a is 
defined by: 

If t;ET's for i = l,2 and certain §:Sin a, then (t 1 =t2)EF{01eq_ 
If R:p ks) X ... XSn is in a and t;ET's, for i = l , ... ,n then 
Ps, x .. . x s.(11,- --, tn) EF{oleq_ 
If <f,EF!oleq then -,<f,EF!oleq_ 
If <f, and tf;EF!oleq then (4>-tf;)EF!01eq_ 
If <f, and tf;EF!01eq then (q,Atf;)EF!°'eq_ 
If <f, and tf;EF!oteq then (q,Vtf;)EF{°'eq_ 
If <f, and tf;EF!°'eq then (~tf;)EF£0 leq_ 
If Xs is a a-variable and <f,EF!oteq then Vxs(</>)EF!01eq_ 
If xs is a a-variable and q,EF{oteq then 3xs(l/>)EF{o/eq_ 

The ~-truth of a formula q,EF{oleq in a a-algebra Cf is defined inductively by: 
- if,~ t:£oleq ti =t2 if lt1]€=[t2]€. 

if,~ t:£oieq Ps,x •·· xs.(t1, · · · ,tn) ifpi, x •· · xs.(lt1]€, ... ,[tnJ€). 
if,~ t,£oleq -,<f, if if,~ ~£oleq q,. 
if,~ t,£oleq 4>-t/1 if if,~ ~!oleq q, or if,~ t,£oleq if;. 
if,~ t,£oieq q,Atf; if if,~ t:£oleq <f, and if,~ t,£oleq if;. 
if,~ t,£oleq <f, V tf; if lf,€ t:£oieq <f, or if,€ t,£oleq if;. 
if,€ t,£oleq ~if; if lf,€ t,£oleq q, if and only if if,€ t,£oleq if;. 
(f,€ t,£oieq Vxs(</>) if lf,f t,£oleq <f, for all valuations f with f(ys•) =«Ys·) for 

all variables Ys-=l=xs. 
if,~ t,£oieq 3xs(</>) if (f,f t,£oleq <f, for some valuation f with f(ys,)=«Ys·) 

for all variables Ys•-=/=Xs-
<f, is true is if, notation Cf t,£oieq q,, if if,~ t,£0 teq <f, for all valuations f 
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An inference system I{oleq for first order logic with equality is displayed in 
Table 14 below. There q,, VI and pare elements of F{oteq, a is an atomic formula 
(constructed by means of the first two clauses in the definition of F{oleq only), 
t, u and v are terms over o and x is a variable. An occurrence of a variable x 
in a formula q, is bound if it occurs in a subformula 'vx(VI) or 3x(VI) of q,. Oth­
erwise it is free. c/>[t Ix] denotes the result of substituting u for all free 
occurrences of x in t. Of course u and x should be of the same sort. Now tis 
free for x in q, if all free occurrences of variables in t remain free in c/>(t Ix]. As 

before an inference rule H with H = 0 is called an axiom and denoted simply 
q, 

by q,. 

t, 4>-+i modus ponens _L generalisation 
VI 'Vx(q,) 

q,-( Vl-4>) } { 4'-(Vl....,.P)}-{(4'-V1)-(4>-+p)} deduction axioms 
{'vx(4'-V1)}-{4>-Vx(V1)}, if xis not free in q, 
(-,4>-4> )-4' axiom of the excluded middle 
-,q,-(4>-+V1) axiom of contradiction 
'vx(q,)....,.c/>(t Ix], if t is free for x in q, axiom of specialisation 

(4>/\Vl)-4> 4'-(4'VVI) (q, - V1)-{(4>-+V1)/\(V1-'P)} 
(4>/\V1)-V1 Vl....,.(q,VVI) {('1>-V1)/\(V1-'1>)}-(q, - V1) 
4>-N-(4>/\VI)} ( q, V V1)-(-,q,....,.VI) 3x(q,) - -,'Vx(-,q,) 

t =t (u =v)-(v =u) {(t =u)/\(u =v)}-(t =v) 
(u =v)-(a[ulx] - a[vlx]) 

TABLE 14 

First order logic is obtained from first order logic with equality by omitting all 
reference to =. It is also possible to present first order logic without the con­
nectives /\, V and - and the quantifier 3, and introduce them as notational 
abbreviations. In that case the third block of Table 13 can be omitted. 

5. Expressiveness. One can translate an equation aEP/ by a (finitary) condi­
tional equational formula 0 ~a and a finitary conditional equational formula 
{a1, .•. ,an}~a into a first order formula (a1 /\ • • • /\an)....,.a. Using this trans­
lation we have F:,9' cFteql CF{oteq and furthermore ct t=:q' q, ~ ct t=~eql q, for 
q,EF'{,9' and ct t=~eql q, ~ ct t={01eq q, for q,EFteql_ This means that first order 
logic with equality is more expressive then equational logic and finitary condi­
tional equational logic is somewhere in between. However first order logic with 
equality and infinitary conditional equational logic have incomparable expres­
sive power. 
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6. Completeness. For all logics mentioned above the following completeness 
result is known to hold: Alg(a, T) t=~ q, ~ T 1-~ q,. The reverse direction also 
holds, since all these logics are obviously sound. As a corollary we have 

T 1-!91 q, <=> T 1-~t!ql q, for q,EP/ and 

T 1-~t!ql q, <=> T 1--(,olt!q q, for q,EF!uql_ 

For this reason in most process algebra papers it is not made explicit which 
logic is used in verifications: the space needed for stating this could be saved, 
since the resulting notion of provability would be the same anyway. However, 
the situation changes when formulas are proved from modules. Equational 
logic and conditional equational logic are not complete anymore and for first 
order logic with equality this is still an open problem (as far as we know). 
Here a logic e is complete if M t=e q, ~ M 1-e ct,. It is easily shown that 

M 1-"91 q, ~ M 1-ceql q, for q,E.P..p/_M) and 

M 1-ceql q, ~ M i-Jolt!q q, for q,EF¾Jh, 

but the reverse directions do not hold. Thus we should state exactly in which 
logic our results are proved. 

7. Notation. This paper employs infinitary conditional equational logic. How­
ever, no proof trees are constructed; proofs are given in a slightly informal 
way, that allows a straightforward translation into formal proofs by the reader. 
Furthermore all type information given in the subscripts of variables, function 
and predicate symbols is omitted, since confusion about the correct tYf;s is 

almost impossible. Outside Section I and this appendix inference rules - do q, 
not occur, but all conditional equational formulas c~a are written ..f., as is 

a 
usual. However, the suggested similarity between inference rules and condi-

tional equational formulas is misleading: H holds in an algebra &. if (ci',~ t= 1" q, 
for all 1pEH and all valuations O implies (ci',~ t= q, for all valuations O, while ..f. 

a 
holds in&. if for all valuations~: (ci',~ t= fJ for all /JEC implies ci',~ t= a). 

8. Positive and universal formulas. In equational logic all formulas are both 
positive and universal. In conditional equational logic all formulas are univer­
sal and the positive formulas are the atomic ones. In first order logic with 
equality the positive formulas are the ones without the connectives -, and -
and the universal ones are the formulas without quantifiers. Model theory (see 
for instance (21]) teaches us that a formula q, is preserved under homomor­
phisms (respectively subalgebras) iff there is a positive (respectively universal) 
formula 1" with i-foit!q 1" ~ q,. 
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Two Simple Protocols 
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After some introductory remarks about the specification and verification of dis­
tributed systems in the framework of process algebra, simple versions of the 
Alternating Bit Protocol and the Positive Acknowledgement with Retransmission 
protocol are discussed. 

Key Words & Phrases: process algebra, concurrency, communication proto­
cols, specification, verification, fairness, time outs. 

Note. Without further reference, we will use in this paper the notation and 
axioms that are described in the second paper of this thesis (Modular 
specifications in process algebra). 

1. GENERAL INTRODUCTION 
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In the ACP formalism we can also define (specify) networks of processes which 
cooperate in an asynchronous way. We can do this by looking at the commun­
ication channels in the network as processes which communicate in a synchro­
nous way with the processors to which they are connected. Almost always, this 
synchronous communication will take place according to the handshaking para­
digm: exactly two processes participate in every communication. When we 
specify communications of this type we will employ a read/ send communica­
tion function: Let D be a finite set of data which can be communicated 
between processes, and let P be a finite set of locations (or ports) where syn­
chronous communication can take place. The alphabet of atomic actions now 
consists of read actions rp(d), send actions sp(d) and communication (or syn­
chronisation) actions cp ( d) for p E P and d ED. As the only synchronisations 
we have: y(rp(d),sp(d)) = cp(d). 

A typical system that can be specified in this way in ACP is depicted in Fig­
ure 1. This graphical representation was first used by Jan Willem Klop. The 
corresponding process expression is then for instance: 

38 (P1 IIP2IIP3IIP 4IIP5IIC1 IIC2IIC3IIC4IIC5). 

Let us consider for a moment the issue of the physical interpretation of expres­
sions of this type and the question about the nature of the events in reality 
that are modelled by the read and send actions. In general we will describe 
with expressions P 1 , P 2 ,... and C 1, C 2 ,... the behaviour of physical objects. 
P I and P 2 for example correspond with personal computers, P 3 and P 4 with 
disk drives and P 5 with a printer. C I up to C 5 describe cables of a network 
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When process P I performs an actions l(d0) we relate this to the transmission 
of a datum d0 by the personal computer. At the physical level this means that 
at the location (port I) where cable C I is connected to the computer variations 
occur in the electric voltage during a certain amount of time. Because do can 
have a considerable size (think of a file which is sent to the printer) the 
transmission can take some time. The instantaneous event associated with 
r l(d0) occurs at a moment the cable 'knows' that a datum d0 has been 
transmitted at port 1. Such a moment occurs when P I has almost finished 
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transmission of this datum. The complementary event s l(d0) happens at the 
moment that the computer has made so much progress with the transmission 
of d0 that the environment has enough information to 'know' that it is d0 
indeed. By defining the events in the right way we can ensure that s l(d0) and 
r l(d0) coincide. It is impossible that s l(d0) occurs and r l(d0) does not, or the 
other way around. Therefore we can consider the occurrence of s l(d0) and 
r l(d0) as a single event. This is precisely what we express in process algebra 
with the communication function and the encapsulation operator. Notice that 
the above interpretation of read and send actions is not in conflict with the 
intuition presented in [10) that the instantaneous event associated with an 
atomic process should be situated at the beginning of that process. Apparently 
a command print(d0) that one can give to the computer corresponds to a pro­
cess -r·s l(d0). At the moment process C 1 knows that d0 has been transmitted 
and the event c l(d0) occurs, the execution of processes s l(d0) and r l(d0) will 
not yet be finished. One possible scenario is that execution of s l(d0) finishes 
before the end of the execution of r l(d0). 

In process theory the only aspect of a system that is considered is its exter­
nal behaviour. Two systems with identical external behaviour should be 
identified in principle. From the point of view of process algebra there is no 
difference between a labourer assembling bicycle pumps, and a robot perform­
ing the same job. Unless attention is paid in the formal specification to sophis­
ticated details like fluctuations in productivity due to nocturnal excesses, the 
approaching weekend, depressions because of the monotony of the job, etc .. 

In order to realise a certain external behaviour (the specification), often a 
complex internal structure (the implementation) is needed. This brings us to the 
important issue of abstraction. We are interested in a technique which makes it 
possible to abstract from the internal structure of a system, so that we can 
derive statements about the external behaviour. Abstraction is an indispensable 
tool for managing the complexity of process verifications. This is because 
abstraction allows for a reduction of the complexity (the number of states) of 
subprocesses. This makes it possible to verify large processes in a hierarchical 
way. A typical verification consists of a proof that, after abstraction, an imple­
mentation IMP behaves like the much simpler process SPEC which serves as 
system specification: 

ABS(JMP) = SPEC. 

In process algebra we model abstraction by making the distinction between 
two types of actions, namely external or observable actions and the internal or 
hidden action -r, and by introducing explicit abstraction operators ""i which 
transform observable actions into the hidden action (see Figure 3). 

Fundamental within the ACP-formalism is the algebraic approach. A 
verification consists of a proof of a statement of the form: 

ACPT + ... I- 'T°](IMP)=SPEC. . 

The idea is that 'users' can stay in the realm of the formal system and execute 
algebraic manipulations, without the need for an excursion into the semantics. 
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FIGURE 3 

2. THE ALTERNATING BIT PROTOCOL 

Two simple protocols 

The most widely studied communication protocol in existence is undoubtedly 
the Alternating Bit Protocol (ABP, [4]). Whenever somewhere in this world 
someone introduces a new formalism for concurrent processes, you can count 
on it that the practical applicability of the formalism is illustrated by means of 
a specification and verification of a variant of the ABP. As a first test-case for 
a concurrency theory the protocol is very appropriate indeed: the protocol can 
be described in a few words, but its formal specification and verification con­
stitutes a non-trivial problem. However, for real practical application of a con­
currency theory much more is needed. In the analysis of realistic protocols one 
encounters various problems of scale which cannot be observed when dealing 
with the ABP. 

We do not want to break with the traditions concerning the ABP, and will 
start here with a discussion of a simple variant of the ABP in the setting of 
process algebra. In the setting of process algebra, more complex protocols have 
been dealt with in [l, 12). 

Other discussions of the Alternating Bit Protocol can be found in 
[4, 13, 15, 17,20,21). In the context of ACP the protocol was verified for the 
first time in [6). The discussion of the ABP here is based on a streamlined ver­
sion of the proof, given by the author, which can be found in [8]. Variants of 
the ABP are discussed in the setting of process algebra in [11, 14). 

2.1. Specification. 
The Alternating Bit Protocol can be visualised as follows: 
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Let D be a finite set of data. Elements of D are to be transmitted by the proto­
col from port 1 to port 2. There are four components: a sender S, a receiver 
R, and two channels K and L. 

2.1.1. Component S. S starts by Reading a Message (RM) at port I. Then a 
frame consisting of the message from D and a control bit is transmitted via 
channel K (SF= Send Frame), until a correct acknowledgement has arrived via 
channel L (RA= Receive Acknowledgement). In equations we will always use 
the symbol d to denote elements from the set D, b denotes an element from 
B = {O, l }, and / finally is used for frames in DX B. In Table 1 we 'declare' 
the recursive specification that gives the behaviour of component S. After a 
variable has been declared we will use it without mentioning the corresponding 
specification. 

s = RM0 

RMb = ~ r l(d) ·SFdb 
deD 

SFdb = s3(db) ·RAdb 

RAdb = (r5(l-b)+r5(ce)) ·SFdb+r5(b) ·RM1-b 

TABLE I. Recursive specification for component S 

Graphically we can depict process S as in Figure 5. In a certain sense the 
figure is inaccurate: instead of a node speo for each element e in D, there is 
only a single node SFdo. Between each pair of nodes we draw only one edge, 
which however can be labelled with more than one action. Figure 5 can be 
considered as a 'projection' of the transition diagram belonging to S. 
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2.1.2. Component K. We assume that two things can happen if we send a 
frame into channel K : (I) the message is communicated correctly, (2) the mes­
sage is damaged in transit. We assume that if something goes wrong with the 
message, the receiver hardware will detect this when it computes a checksum 
(ce=checksum error). Further the channels are supposed to be fair in the sense 
that they will not produce an infinite consecutive sequence of erroneous out­
puts. These are plausible assumptions we have to make in order to prove 
correctness of a protocol that is based on unreliable message passing. Data 
transmission channel K communicates frames in the set D X B from port 3 to 
4. We give the defining equations (Table 2) and the corresponding diagram 
(Figure 6). 

K ~ r3(f) -Kl 
l e D X B 

Kl = ('r ·s4(ce)+r ·s4(f)) ·K 

TABLE 2. Defining equations for channel K 

The T's in the second equation express that the choice whether or not a frame f 
is to be communicated correctly, is nondeterministic and cannot be influenced 
by one of the other components. 

2.1.3. Component R. R starts by Receiving a Frame (RF) via channel K. If the 
control bit of the frame is correct, then the message contained in the frame is 
sent to port 2 (SM=Send Message). Component R Sends Acknowledgements 
(SA) via channel L. Figure 7 gives the transition diagram for R. 
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R =RF° 

RFb = ( ~ r4(d(l -b))+r4(ce)) ·SA l- b + ~ r4(db) ·SMdb 
d e D deD 

SAb = s6(b) ·RFl-b 

SMdb = s2(d) ·SA b 

TABLE 3. Recursive specification for component R 
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2.1.4. Component L The task of acknowledgement transmission channel L is 
to communicate boolean values from R to S. The channel may yield error 
outputs but again we assume that this is detected, and that moreover the chan­
nel is fair. See Figure 8 for the diagram. 

L = ~ r6(b) ·Lb 
beB 

Lb = (-r ·s5(ce)+-r ·s5(b)) ·L 

TABLE 4. Defining equations for channel L 

FIGURE 8 

2.1.5. Sets. Define D=DU(DXB)UBU{ce}. D is the set of 'generalised' 
data (i.e. plain data, frames, bits, error) that occur as parameters of atomic 
actions. We use the notation gED. The second parameter of atomic actions is 
the set P = {1,2, ... ,6} of ports. We use symbolp for elements of P. Commun­
ication follows the read/ send scheme. This leads to an alphabet 

A= {sp(g), rp(g), cp(g)lpEP,gED} 

and communications y(sp(g), rp(g))=cp(g) voor p EP, gED. Define the fol­
lowing two subsets of A: 

H = {sp(g), rp(g)ipE{3,4,5,6},gED}, 

I= {cp(g)lpE{3,4,5,6},gED}. 

Now the ABP is described by 

This is a correct description in the sense that the specifications of the 
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components S, K, R and L are guarded and consequently the specification of 
the ABP as a whole has a unique solution. 

2.2. Verification. 
Verification of the ABP amounts to a proof that: 
(1) the protocol will eventually send at port 2 all and only data it has read at 

port 1, 
(2) the protocol will output data at port 2 in the same order as it has read 

them at port 1. 
This means that, in order to verify the protocol, it is sufficient to prove the fol­
lowing theorem. 

2.2.1. THEOREM. ACPT +SC+ REC+ RSP +CA+ CFAR 1-

ABP = ~ r l(d) ·s 2(d) ·ABP. 
d eD 

PRooF. Let J'={cp(g)lpE{3,4,5}, gED}. We will use [x] as a notation for 
-rr 0 a9 (x). I' is defined in such a way that we can derive a guarded system of 
equations for [x ]. Consider the following system of recursion equations in 
Table 5. 

(0) X = x'l 

(1) .xy = ~rl(d) ·X!f' 
d e D 

(2) xt = T ·X'f' +-r ·Xf 

(3) x'f' = c6(1-b) ·X!f' 

(4) xt = s 2(d) ·X'f' 

(5) X'f' = c6(b) ·xf' 

(6) xf' = T -X'f' +-r ·Xl - b 

TABLE 5. Recursion equations for X 

The transition diagram of Xis displayed in Figure 9. We claim that with the 
above mentioned axioms one can prove that X=[SIIKIIRIIL]. We prove this 
by showing that [SIIKIIRIIL] satisfies the same recursion equations (0)-(6) as X 
does. In the computations below, the bold-face part denotes the part of the 
expression currently being 'rewritten'. 

[SIIKIIRIIL] = [RM0 IIKIIRF°IIL] (0) 
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[RAdbllK.,IIRFbllL] = 1--(RAdblls4(ce)·KIIRF"IIL] + 

+ T·[RAdblls4(db)·KIIRF"IIL] = 
= T·[RAdbllKIISA l-bllL]+ T·[RAdbllKIISMdbllL] 

[RAdbllKIISA1-bllL] = c6(1-b)·[RAdbllKIIRFbllL1-b] = 
= c6(1-b)·(T·[RA.,IIKIIRFbllsS(ce)·L] + 

+ T·[RA.,IIKIIRFbllsS(l-b)·L]) = 
= c6(1-b)·T·T·[SF"IIKIIRFbllL] = 
= c6(l -b)·1---r·-r·[RA dbllKdbllRFbllL] = 
= c6(1-b)·[RAdbllKdbllRFbllL] 

[RAdbllKIISM.,IIL] = s2(d)·[RAdbllKIISAbllL] 

[RAdbllKIISAbllL] = c6(b)·[RAdbllKIIRF1-bllLb] 

[RAdbllKIIRF1-bllLb] = T·[RA.,IIKIIRF1-bllsS(ce)·L] + 

+ T·[RA.,IIKIIRF1-bllsS(b)·L] = 
= T"[SFdbllKIIRF1-bllL] + T·[RM 1-bllKIIRF1-bllL] 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 
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[SF'611KIIRF1-bllL] = T·[RAdbllKdbllRF1-bllL] = 
= T·(T·[RA dblls4(ce) ·KIIRF1-bllL] + 

+ T·[RAdblls4(db)·KIIRF1-bllL]) = 
= T·[RAdbllKIISAbllL] 
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(7) 

Now substitute (7) in (6) and apply RSP. Using conditional axiom CA6 we 
have ABP = T1([SIIKIIRIIL]) = T1(X) = T1(Xf). Further, an application of 
CFAR gives T1(Xf') = T ·T1(X'f) and T1(X'f) = T ·TJ(Xl-b). Hence, 

T1(x'Y) = ~ r l(d) ·T1(Xf') = ~ r l(d) ·T1(X'f) = 
dED dED 

= ~rl(d) ·s2(d) ·TJ(X'f)= ~r1(d)·s2(d)·T1(Xl-b) 
dED dED 

and thus 

T1(Xf) = ~ r l(d) ·s2(d) · ~ r l(e)·s2(e)·T1(Xf) and 
dED eED 

TJ(XI) = ~ r l(d) ·s 2(d) · ~ r l(e) ·s 2(e) ·T1(XI ). 
dED eED 

Applying RSP again yields TJ(Xf) = TJ(XI) and therefore 

TJ(Xf) = ~ r l(d) ·s2(d) "TJ(Xf). 
dED 

This finishes the proof of the theorem. □ 

2.3. REMARK. 
Channels Kand L can contain only one datum at a time. Now one can say 
that this is no problem because S and R will never send a message into a 
channel when the previous one is still there. If S and R would do this then our 
process algebra modelling would be incorrect. Because they don't, there is no 
problem. This argument is correct for the ABP, but one should be careful in 
more complex situations: if one implicitly uses assumptions about the 
behaviour of a system in the specification of that system, then there is a risk 
that a verification shows that the system has certain 'wonderful' properties 
which in reality it has not. We give an example. Consider the situation where 
a process S first sends three threatening letters into channel K followed by a 
violent attempt to eliminate process R. Suppose K is a I-datum-buffer. The 
system starts and S sends the first threatening letter into the channel. Now 
receiver R at the other side of the channel is very busy doing other things, and 
has no time to read messages from K. Only after a long, long time R looks if 
there is mail in K. Of course R is really shocked by the contents of the letter, 
and immediately tries to eliminate S. Only after this has succeeded, it reads 
from K again. Because S becomes dangerous only after the third message has 
been sent, process R will not get into trouble. The crucial point is now that 
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this would have been different if K were a FIFO-queue. 

3. THE PAR PROTOCOL (PART 1) 

Two simple protocols 

In this section we will describe a protocol that is very similar to the ABP, 
although there is a fundamental difference. The protocol, that is described in 
(18), is called PAR, which stands for Positive Acknowledgement with 
Retransmission. In the protocol the sender waits for an acknowledgement 
before a new datum is transmitted. Instead of two different acknowledgements, 
like in the ABP, the PAR protocol only uses one type of acknowledgement 
(hence the word 'Positive'). This discussion of the PAR protocol is a revised 
version of Sections 3 and 4 of [ 19). 

3.1. Specification. 
The diagram that describes the architecture of the PAR protocol is almost 
identical to the diagram for the ABP, with as only difference that on one side 
of the sender a small timer process has been added. 

s 

1 

/' 
input 
port 

T 

Thus, there are five components: 
S: Sender 
T: Timer 
K: Data transmission channel 
R: Receiver 

K 

L 

FIGURE 10 

L: Acknowledgement transmission channel 

R 

2 

' output 
port 

3.1.1. Sets. Let D be a finite set of data. Elements of D are to be transmitted 
by the PAR protocol from port 1 to port 2. Let B={0,l}. Frames in DXB 
are transmitted by channel K. Define D=DU(DXB)U{ac,ce,st,to} 
(ac=acknowledgement, ce=checksum error, st=start timer, to=time out). 
For the interaction with their environment, the components use ports from a 
set P = {1,2, ... ,6, 7} . P and D occur as parameters of atomic actions. 
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Alphabet A and communication function y are defined using the read/ send 
scheme. In addition, A contains two other actions i and J which do not com­
municate. 

3.1.2. The channels. If a message is sent into channel Kor L, three things can 
happen: 
(1) the message is communicated correctly, 
(2) the message is damaged in transit, 
(3) the message gets lost in the channel. 

Channels K and L are described by the following equations in Table 6. 

K ~ r3(f)·Kf 
feD X B 

Ki = (i ·s4(f)+i ·s4(ce)+i) ·K 

L = r6(ac)·Lac 

Lac = (j ·s 5(ac)+ J ·s 5(ce)+ J) ·L 

TABLE 6. Definition for channels K and L 

The reason why we use actions i and J, instead of the T as it was done in the 
specification of the ABP, will become clear further on. 

3.1.3. The sender. In the sgecification of the sender process S (Table 7) we use 
formal variables RHn, SF , ST"", WS"" (d ED, n EB): 

RH= Read a message from the Host at port l. The host process, which is 
not specified here, furnishes the sender with data. 

SF= Send a Frame in channel Kat port 3. 
ST= Start the Timer. 
WS= Wait for Something to happen. Here there are three possibilities: (1) an 

acknowledgement frame arrives undamaged, (2) something damaged 
comes in, or (3) the timer goes off. If a valid acknowledgement comes 
in, the sender fetches the next message, and changes the control bit, 
otherwise a duplicate of the old frame is sent. 
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s = RH0 

RHn = ~ r l(d) ·SF"" 
deD 

SF"" = s3(dn)·ST"" 

ST"" = s1(st)·WS"" 

WS"" = r5(ac)·RH 1-n+(r5(ce)+r1(to))·SFdn 

TABLE 7. Specification of the sender process S 

3.1.4. The timer. The timer process Tis very simple (see Table 8). There are 
two states: the initial (stop-) state and the (run-) state in which the timer is 
running. In both states the timer can be started, but only in the running state 
a ti.me out can be generated. 

T = r1(st) ·Tr 

r = r1(st)·Tr+s1(to)·T 

TABLE 8. Specification of the timer process T 

3.1.5. The receiver. For the specification of the receiver process R (see Table 9) 
we use formal variables WFn, SA n, SH"" (d eD,n eB): 

WF= Wait for the arrival of a Frame at port 4. 
SA = Send an Acknowledgement at port 6. 
SH= Send a message to the Host at port 2. In general the host of the receiver 

will of course be different than the host of the sender. 
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R = WF° 

WF" = r4(ce)·WF"+ ~r4(d(l-n))·SA"+ ~r4(dn)·SHdn 

SA" = s6(ac)·WF" 

SHdn = s2(d)·SA i-n 

deD deD 

TABLE 9. Specification of the receiver process R 
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When a valid frame arrives at the receiver, its control bit is checked to see if it 
is a duplicate. If not, it is accepted, the message contained in it is written at 
port 2, and an acknowledgement is generated. Duplicates and damaged frames 
are not written at port 2. 

3.1.6. Premature time outs. We define 

H = {sp(g), rp(g)lpE{3,4,5,6,7},gED} 

and consider the expression 

a 8 (S II TIIKIIR IIL ). 

Each time after a frame is sent, the sender S starts the timer. An unpleasant 
property of the PAR-protocol is that a premature time out can disturb the 
functioning of the protocol. If the sender times out too early, while the ack­
nowledgement is still on the way, it will send a duplicate. When the previous 
acknowledgement finally arrives, the sender will mistakenly think that the just 
sent frame is the one being acknowledged and will not realise that there is 
potentially another acknowledgement somewhere in the channel. If the next 
frame sent is lost completely, but the additional acknowledgement arrives 
correctly, the sender will not attempt to retransmit the lost frame, and the pro­
tocol will fail. 

An important observation is that in our modelling 'too early' corresponds 
exactly to the availability of an alternative action. Thus we can express the 
desired behaviour of the timer by giving the action c7(to) a lower priority then 
every other atomic action. In the next section we will elaborate on this idea. 

4. PRIORITIES 

The axiom system ACP6, introduced in [2], consists of the operators and 
axioms of ACP, extended with a unary priority operator 0, an auxiliary binary 
operator<] (unless) and some defining axioms for these operators. We use() to 
model priorities. Parameter of () is a partial order < on the atomic actions. So 
for a,b,cEA we have 

-,(a<a) and a <b& b<c =>a <c. 
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The constant 8 can be incorporated in this ordering as a minimal element. We 
then have 8<a for all a EA. Consider, as an example, the following partial 
order on atomic actions a,b and c: 

b<a and c<a 

Relative to this ordering the operator O will forbid in a sum-context all actions 
that are majorated by one of the other actions in that sum-context. So we have 
for instance: 
(i) O(a + b) =a, O(a + c) =abut 
(ii) O(b + C) = b + C. 

Operator O is axiomatised in the system ACP11 (see Table IO). 

E.xAMPLE. Let b <a and c <a. Then: 
(i) O(a + b) = O(a)<Jb + O(b)<Ja = a<Jb + b<Ja = a + 8 = a, 
(ii) O(b + c) = O(b)<Jc + O(c)<Jb = b<Jc + c<Jb = b + c, 
(iii) O(b(a + c)) = O(b) ·O(a + c) = b ·(O(a)<Jc + O(c)<Ja) = b(a<Jc + c<Ja) 

= b(a + 8) = ba. 

In [2] the proof can be found of the following theorem: 

4. ]. THEOREM. 

i) for each recursion-free closed ACP11-term s there is a basic term t such that 
ACP111- s = t, 

ii) ACP11 is a conservative extension of ACP, i.e. for all recursionfree ACP-
terms s,t we have: ACP11 I- s =t ~ ACP 1- s =t. 

There are some nontrivial aspects about O which are not adressed in [2] nor in 
any other paper (up to now). Below we point out what the problems are and 
sketch the easiest way out. We think that O is an interesting operator that 
deserves more attention. This paper however is not the appropriate place for 
large numbers of technical theorems about 0. 

Firstly, it is not so clear what to think of O operationally in a setting with 
recursion. Let b <a, f (b) = a and consider the recursively defined process X: 

X = O(b + pf X)). 

It appears that X can do a b-action iff it cannot do a b-action. There are vari­
ous ways to resolve this paradox. Our 'solution' is that we do not allow 0 
inside recursive definitions. 

Although it seems possible to combine ACP11 and ACPT into a system 
ACP TII, the combination has not been worked out at this moment. If we 
require (and this seems reasonable) that ACP TII is a conservative extension of 
ACP11 and of ACPn then (b <a): 

O(a·(b + -r·(b + a)) = O(a·(b + a)) = a·a. 

So in the scope of 0, b +T(b +a) should not be able to do a b-step. It seems 
that there are two ways to achieve this operationally. The first way is to make 
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x+y=y+x 
x +(y +z) = (x +y)+z 
x+x = x 
(x +y)z = xz +yz 
(xy)z = x(yz) 
x+c5 = X 

c5x = c5 

a lb = y(a,b) 

xl[y = x[ly +ylLx +x ly 
a[Lx = ax 
ax[ly = a(xl[y) 
(x +y)ILz = x[Lz +y[Lz 
(ax)lb = (a lb)x 
a l(bx) = (a lb)x 
(ax)l(by) = (a lbXxl[y) 
(x + y) I z = x I z + y I z 
X I (y + z) = X ly + X I z 

Al 
A2 
A3 
A4 
A5 
A6 
A7 

CF 

CMI 
CM2 
CM3 
CM4 
CM5 
CM6 
CM7 
CMS 
CM9 

an(a) = a if af/.H Dl 
an(a) = c5 if a EH D2 
an(X +y) = an(x)+an(y) D3 
an(xy) = an(x)•an(y) D4 

ACP8 

a<)b =a if -,(a<b) 
a<)b = c5 if a<b 
x<)yz = x<)y 
x<)(y +z) = {x<)y)<)z 
xy<)z = (x<)z)y 
(x +y}<)z = x<)z +y<)z 

fJ(a) = a 
fJ(xy) = fJ(x} ·fJ(y) 
fJ(x +y) = fJ(x}<)y +fJ(y}<)x 

TABLE 10. 

Pl 
P2 
P3 
P4 
P5 
P6 
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THI 
TH2 
TH3 

T's 'transparent'. This means that in state b + T(_b +a), the process can 'see' 
that, after doing a T, an a is possible. And because a has priority over b, no b 
will occur in state b +T(_b +a). This option is not so attractive because it 
means that processes have a 'look-ahead' and can see into the future. This is 
rather counter-intuitive. 

The other possibility is to give T priority over all other actions (in particular 
over b). This seems to work, even though intuition is a bit lacking. However, 
still there are some complications. For instance, Koomen's Fair Abstraction 
Rule (KFAR) is no longer valid. We have: 

a·b = fJ(a·b) = fJ(a·T(i)(<XIX=i·X+b>)) = a·fJ(T(;J(<XIX=i·X+b>)). 

It is not clear how, in a setting where -r has priority over all other actions, 
fJ(T(iJ(<XIX=i·X+b>)) can do ab-step. Although KFAR becomes prob­
lematic, we think that KFAR- (see [91), a variant of KFAR which allows for 
fair abstraction of unstable divergence, is valid in the new model. KF AR - is 
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still powerful enough for the verifications in this paper. We will not elaborate 
here further on models that incorporate -r and () in a single sort. There are so 
many details to be worked out that it is better to have a separate paper on the 
topic. There is a simpler way to combine-rand 8. 

Consider the model cl for ACP of countably branching process graphs 
modulo strong bisimulation ((7)). Let ~ be the model obtained by adding the 
operators() and <] to cl in the obvious way (if g is a process graph, then 8(g) is 
the process graph obtained from g by pruning in each node all transitions that 
have a label that is dominated by the label of another transition starting in 
that node, <] is defined similarly). Then ~ is an expansion of if, i.e. cl is 
enriched with new function symbols but the domain is invariant. This means 
that all axioms that are valid in cl are also valid in ~; in particular we have 
body replacement (REC) for all recursive specifications in the syntax of ACP. 
By construction recursive constants <XIE> where E is a recursive 
specification containing 8, are not in the algebra ~- It is easily checked that 
the laws of ACP8 are valid in~ too. Next consider the model@.,. for ACP.,. of 
countably branching process graphs modulo rooted--r-bisimulation ((3)). Our 
way to combine () and -r is that we work with a two-sorted algebra: there is a 
sort of ACP.,.-processes and a sort of ACP8-processes: we place the algebras@.,. 
and ~ next to each other, obtaining an algebra @.,.,. Next we expand this alge­
bra to an algebra @.,.,,, by adding a mapping h from the domain of ~ to the 
domain of @.,. which is just the obvious isomorphic embedding of cl into @.,. (h 
maps the bisimulation equivalence class of a graph g to the rooted--r­
bisimulation equivalence class of g). All the laws that are valid in @.,., in partic­
ular KFAR, are also valid for the sort of ACP.,.-processes of@.,.,,,. Further, all 
laws valid in ~ are valid for the sort of ACP,-processes of @.,.,,,. Finally we 
have the obvious laws stating that h gives an isomorphic embedding of cl into 
@.,. (h(x)=h(y) ==> x =y, h(xl[y)=h(x)llh(y), etc.). 

Below we will not spend much effort on telling what processes are ACP.,.­
processes and what processes are ACP,-processes. This should be clear from 
the context. 

5. THE PAR PROTOCOL (PART 2) 
Returning to the specification of the PAR protocol we define operator() on the 
basis of the following partial ordering < on A: 
(1) a<c1(st) for aEA-{c1(st)} 
(2) c1(to)<a for aEA-{c1(to)} 
The reason for giving action c?(to) a lower priority than the other actions has 
already been given in Section 3.1.6. In addition we have given action c ?(st) a 
higher priority than the other actions in order to express that immediately 
after sending a message the timer is started. This assumption is not essential 
for the correctness of the protocol. The system as a whole is now described by 

8°an(SIITIIKIIRIIL). 

The fact that in the scope of a priority operator no -r's are allowed explains the 
use of i and j actions in the specification of components K and L. We are 
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only interested in the actions taking place at ports I and 2. The other actions 
cannot be observed. 

I = {cp(g)lpe{3,4,5,6,7}, geD}U{i,j} 

The PAR protocol can now be described by: 

For verification of the protocol it is sufficient to prove the following theorem. 

5.1. THEOREM. 

PAR= ~r1(d)·s2(d)·PAR 
d e D 

PROOF. Let/'= {cp(g)lpe{4,5,7},geD} U{i,j} . We use [x] as notation for 
'T°J ,0 h0 (Joc)H(x). Since l'<;;J we can apply axiom CA6: 

PAR= T1([SIITIIKIIRIIL]). 

In the first part of the proof we will derive a guarded system of recursion 
equations for the process expression [SIITIIKIIRIIL] in which only the opera­
tors + and · occur. Thereafter, in the second part, we will abstract from the 
other internal actions using CF AR. Throughout the proof d ranges over D and 
n ranges over B. The transition diagram of [SIITIIKIIRIIL] is depicted in Fig­
ure 11. 

[SIITIIKIIRIIL] = [RH0 11TIIKIIWF'IIL] 

[RHnllTIIKIIWFnllL] = Tr 0 h 0 0°clH(RHnllTIIKIIWFnllL) = 

= Tr 0 h 0 0( ~ r l(d) ·clH(SFdnllTIIKIIWFnllL)) = 
d e D 

= T1•0 h( ~ r l(d)•Ooc}H(SFdnllTIIKIIWPIIL)) = 
d e D 

d e D 

= ~ r l(d) ·Tr 0 h 0 0°clH(SFdn II TIIKII WFn IIL) = 
d e D 

= ~ r l(d) ·[SFt1n II TIIKII WFn IIL] 
d e D 

[SFdnllTIIKII WFnllL] = c3(dn)·[STt1nllTIIKt1nll WFnllL] = 

= c3(dn) ·(WSt1nllT'IIKt1nll WFnllL] 

(0) 

(I) 

(2) 

(Here we used that the action c1(st) has higher priority than the other 
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actions.) 

dO 
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1 
X 

1 

[WSdnllT'IIKdnllWFnllL] =Tr 0 h 0 8(c1(to)•aa(SFdnllTIIKdnllWFnllL) + (3) 

+ ;-a8 (WSdnllT'lls4(dn)·KIIWrllL) + 
+ ; -a8 (WSdnllT'lls4(ce)·KIIWFnllL) + 
+ ;-a8 (WSdnllT'IIKIIWFnllL)) = 

(Action c 1(to) has lower priority than the other actions.) 

= T·[WSdnllT'IIKIISHdnllL] + 
+ T·[SFdnllTIIKIIWrllLl 

(If the message is damaged, the resulting state is the same as in the case in 
which the message gets lost. In both cases a time out event occurs.) 
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[WS""IIT'IIKIISH""IIL] =s2(d)·[WS""IIT'IIKIISA i-nllL] 

[WS""IIT'IIKIISA I-nllL] =c6(ac) ·[WS""IIT'IIKIIWF1-n11Lac] 

[WS""IIT'IIKII WF 1-nllLac] =T·[RH 1-nllT'IIKIIWF1-nllL] + 
+ T·[SF""IIT'IIKIIWF 1-nllL] + 
+ 'T'[SF""IITIIKIIWF1-nllL] 

[RHnllT'IIKIIWPIIL] = ~ r l(d)·[SF""IIT'IIKIIWFnllL] 
deD 

[SF""IIT'IIKIIWPIIL] = c3(dn)·[WS""IIT'IIK""IIWFnllL] 

[SF""IIT'IIKII WF 1-nllL] =c 3(dn)·(WS""IIT'IIKdnll WF1-nllL] 

[SFdnllTIIKII WF 1-n IIL] =c3(dn) ·[WSdnllT'IIKdnll WF1-nllL] 

[WSdnllT'IIKdnllWF1- nllL] =T·[SFdnllT'IIKII WF 1-nllL] + 
+ T·[WS""IIT'IIKIISA l-nllL] 
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(4) 

(5) 

(6) 

(la) 

(2a) 

(7) 

(7a) 

(8) 

Now observe that the processes of equations I and la, 2 and 2a, and 7 and 7a 
are identical. This means we have derived that X (= [SIITIIKIIRIIL]) satisfies 
the system of recursion equations in Table 11. 

(0) X =x<l 

(I) X'{ = ~rl(d)·Xf' (5) Xf = c6(ac)·X'/:' 
deD 

(2) xt = c3(dn)·X'f' (6) X'/:' = T·Xl-n + T·Xf' 

(3) X'f' = T·Xf' + T·Xf' (7) xr = c3(dn)·Xf' 

(4) Xf = s2(d)·Xf (8) Xf = T·Xf + T·Xf' 

TABLE 11. Recursion equations for X 

This finishes the first part of the proof. In the second part we will abstract 
from the communications at ports 3 and 6. Because PAR= T1(X)= T1(x</), it 
is enough to show that 

T1(x</) = ~ r l(d) ·s 2(d) ·T1(x</). 
d e D 

For d and n fixed, variables Xf and X'f' form a conservative cluster from I . 
Hence we can apply CF AR. 

TJ(Xf) = T·T1(Xt). 
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Variables Xf', X'[', Xf and Xf' (d and n fixed) also form a conservative clus­
ter from I. CFAR gives: 

-r'J(Xf') = -r·-r1(Xl - n). 

We use these two results in the following derivation: 

1)(X'{) = ~ rl(d) ·-r1(Xf') = 
deD 

= ~ r l(d) ·-r "'T°J(Xf) = 
deD 

deD 

= ~rl(d)·s2(d)·-r1(Xl-n) 
deD 

Substituting this equation in itself gives: 

-r1(.xf)= ~rl(d)·s2(d)·~rl(e)·s2(e)·-ri(_x(f) and 
deD eeD 

-ri(XI) = ~ r l(d)·s2(d) · ~ r l(e) ·s2(e) ·-ri(X! ). 
deD eeD 

Due to the Recursive Specification Principle we have: 

11(.xl) = T1(XI ). 

Hence 

-ri(_x(f) = ~ r l(d) ·s 2(d) ·-ri(_x(f ), 
deD 

which is the desired result. 

5.2. REMARK. 

D 

For the modelling of time outs in the PAR protocol the use of the priority 
operator is not essential. We sketch an alternative. If a frame gets lost in one 
of the channels then one can say that this event in a sense causes a time out. 
lbis causal relationship can be expressed in process algebra by means of a 
communication between the channel and the pair sender/timer. For channels 
K and L the specifications then become: 
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K 
-J 

~ r3(f)·K 
f ED X B 

-J 
K = (i ·s4(j)+i ·s4(,ce)+i ·s7(to)) ·K 

-ac 
L = r6(ac)·L 

-ac 
L = (j·s5(ac)+j·s5(ce)+j·s7(to)) ·L 

TABLE 12. Specification for channels K and L 
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In a time out event three processes participate: the timer, the sender and a 
channel. This means that when dealing with time outs we have ternary com­
munication at port 7. 

y(s1(to),s1(to)) = ss1(to) y(s1(to),r1(to)) = sr1(to) 

y(s1(to),sr1(to)) = c1(to) y(r1(to),ss1(to)) = c1(to) 

This leads to a slightly bigger set of unsuccessful communications: 

H = HU{ss1(to),sr1(to)} 

The alternative specification of the PAR protocol now becomes: 

PAR = 7°f 0clii(SIIKIIRIIL) 

One can prove that PAR =PAR. In (16], essentially the above idea is used to 
specify a simplified version of the PAR protocol. 

5. 3. Asymmetric communication. 
Consider the situation where channel K contains a frame and the receiver is 
doing some other things and reads the datum from K only after a long time. 
Now one can consider it to be unnatural that during this whole period the 
datum keeps 'floating' in K and does not disappear. In a more realistic 
approach we would assume that if a datum is contained in channel K, either 
this is read by process R, or it gets lost if R is not willing to receive. Formally 
we can model this in process algebra by not encapsulating s4(,d) actions, but 
give them a lower priority than the corresponding c4(,d) actions. This mechan­
ism is called put mechanism in [5]. One can prove that the ABP and the PAR 
protocol are correct as well if the put mechanism is used. 
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Let x be a process which can perform an action a when it is in state s. In this 
paper we consider the situation where x is placed in a context which blocks a 
whenever x is in s. The option of doing a in state s is redundant in such a 
context and x can be replaced by a process x ' which is identical to x, except 
for the fact that x' cannot do a when it is in s (irrespective of the context). A 
simple, compositional proof technique is presented, which uses information 
about the traces of processes to detect redundancies in a process 
specification. As an illustration of the technique, a modular verification of a 
workcell architecture is presented. 

Key Words & Phrases: process algebra, redundancy in a context, trace seman­
tics, modularity, compositionality, computer integrated manufacturing. 

Note. Without further reference, we will use in this paper the notation and 
axioms that are described in the second paper of this thesis (Modular 
specifications in process algebra). 

1. INTRODUCTION 
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We are interested in the verification of distributed systems by means of alge­
braic manipulations. In process algebra, verifications often consist of a proof 
that the behaviour of an implementation IMPL equals the behaviour of a 
specification SPEC, after abstraction from internal activity: TI(IMPL)=SPEC. 

The simplest strategy to prove such a statement is to derive first the transi­
tion system (process graph) for the process IMPL with the expansion theorem, 
to apply an abstraction operator to this transition system, and then to simplify 
the resulting system to the system for SPEC using the laws of (for instance) 
bisimulation semantics. This 'global' strategy however, is often not practical 
due to combinatorial state space explosion: the number of states of IMPL can 
be of the same order as the product of the number of states of its components. 
Another serious problem with this strategy is that it provides almost no 
'insight' in the structure of the system being verified. It is impossible to use 
the approach for the design of distributed systems, i.e. the stepwise construc­
tion of an implementation starting from a specification. This makes that there 
is a strong need for proof methods with a more modular/compositional charac­
ter. 
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1.1. Modularity and compositionality. For the purpose of verification, we are 
interested in proof principles which transform a system locally, so that for a 
correctness proof of a local transformation one does not have to deal with the 
complexity of the system as a whole. A modular verification transforms an 
expression -r1(IMPL) gradually into SPEC by a sequence of local transforma­
tion steps. Consider, as an example, the case where IMPL represents the 
parallel composition of components Xi, X2 and X 3 , where the actions in a set 
H have to synchronise: IMPL = an(X1 IIX2IIX3). A possible step in a modu­
lar verification could be that X I and X 2 are replaced by Y I and Y 2 • In that 
case one has to prove that: 

-r,0 an(X1 IIX2IIX3) = -r,0 an(Y1 IIY2IIX3). 

It is sufficient to prove that XillX2 = Y1IIY2. However, this will not be pos­
sible in general. It can be the case that processes XillX 2 and Yil lY2 are only 
equal in the context -r,0 an( .. IIX3). And even if the processes are equal, then 
still it is often not a good strategy to prove this. If one shows that two 
processes are equal, then one shows that they are interchangeable in any con­
text, not only in the context in which they actually occur. In order to bring 
about successful substitutions, it is therefore desirable (or even necessary) to 
incorporate information about the context in which components are placed in 
correctness proofs of substitutions. A proof technique which allows one to do 
this to a sufficiently large degree is called modular. It is also possible to use a 
modular proof system the other way around. In that case one starts with a 
specification, which is refined to an implementation by a sequence of transfor­
mation steps. 

A proof rule is called compositional if it helps to prove properties of the sys­
tem as a whole from properties of the individual components. Compositional 
proof rules are essential for modular verifications. 

In this paper we present a proof principle which can be used to enhance the 
modularity of verifications. We claim that the principle captures a simple 
intuition about the behaviour of concurrent systems, and moreover makes it 
possible to give short, modular proofs in quite a large number of situations. 

1.2. ExAMPLE. We give a specification of a Dutch coffee machine similar to 
the one described in [12). 

KM= 30c·(kof+choc)·zoem·KM 

After inserting 30 cents, the user may select 'koffie' or 'chocolade'. Dutch 
coffee machines make a humming sound ('zoemen') when they produce a 
drink. The behaviour of a typical Dutch user of such a machine can be 
described by the recursive equation below. 

DU = (kof + 30c·kof)-talk ·DU 

Dutch people are widely known for their thrift, and they will never spend 30 
cents for a cup of coffee if they can get it for free. 1 Synchronisation of actions 

l. Dutch users do not occur in (12). In the modelling as presented here, the thrift of the Dutch 
user is not really taken into account: we can think of an environment where process DU performs 
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is given bLy(kof,koD=kof\:tJJOc, 30c)=30c* and y(choc,choc)=choc*. Let 
H={kof, kof, choc, choc, 30c, 30c}. Consider the system an(DUIIKM). It will 
be clear that in this environment the thrift of the Dutch user makes no sense. 
This behaviour is redundant _.i!!_ the given context. More 'realistic' is the 
behaviour DU= 30c·kof-talk·DU, because an(DUIIKM) = an(DUIIKM). 

1.3. Redundancy in a context. The example above is an instance of a situation 
which occurs very often: a process x has, in principle, the possibility to per­
form an action a when it is in states, but is placed in an environment an( .. l[y) 
which blocks a whenever the process is in s. In situations like this, the a-step 
from s is redundant in the context an( .. llJ, ). We want to have the possibility to 
replace x by a component i, that is identical to x except for the fact that i 
cannot do action a when it is in state s (irrespective of the context). For a 
compositional proof of the correctness of this type of substitutions new proof 
rules are needed. In this paper we will show that in most situations partial 
information about the (finite, sequential) traces of processes is sufficient to 
prove that a summand in a specification is redundant and can be omitted. 
The notion 'redundancy in a context' was introduced in [14]. The present 
paper can be viewed as a thorough revision of Section 6 from that paper. 

1.4. Trace-specifications. It is argued by many authors (see for instance [5]), 
that if one is interested in program development by stepwise refinement, one 
needs to have the possibility of mixing programming notation with 
specification parts. A natural way to specify aspects of concurrent processes, 
advocated by [7, 12, 13, 15], is to give information about the traces, ready pairs 
and failure pairs of these processes. This leads to the notation 

X sat S 

which expresses that process x satisfies property S. When we use the notation 
in this paper, S will always be a property of the traces of x. Without any prob­
lem we can also include other information in S but we don't need that here. 

In recent years it has become abundantly clear that there are many notions 
of 'process'. For instance, the idea that a process, in general, is the set of its 
traces, ready pairs or failure pairs is just false, because these notions of process 
do not capture features like real-time and fairness. Therefore we are interested 
in proof rules which express 'universal' truths about processes, and which are 
not tied to some particular model. 

The point which is new in this paper is that we use statements of the form 
x sat S, i.e. information about the traces of processes, in proofs that processes 
are equal in a sense different from (and finer than) trace equivalence. Thus we 
combine the advantages of a linear trace semantics with the distinctive power 
of finer equivalences. 

an action 30c even though it has the possibility to perform an action kof instead. Preference of a 
process for certain actions can be modelled by means of the 'priority operator' of (2]. 
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1.5. Workce/1 architecture. As an illustration of our technique, we present in 
Section 5 of this paper a specification and verification of a workcell architec­
ture, i.e. a system consisting of a number of workcells which cooperate in order 
to manufacture a certain product. The verification is not only modular, but 
also short when compared with the non-modular verifications of the same sys­
tem by BIEMANS & BLONK (4) and MAuw (11). In the first steps of the 
verification we remove the redundant summands in the process specification of 
the workcell architecture. Often the information that some summand is redun­
dant has some importance of its own. It allows one to replace one component 
by another which is simpler cq. cheaper. In our modular proof this informa­
tion becomes available as a by-product. 

1.6. Related work. This is not the first paper which is concerned with modular 
verification in the setting of process algebra. Work in this area has also been 
done by LARSEN & MILNER (9, IO] and KOYMANS & MULDER (8). We think 
that our approach has basically two advantages when compared with this 
work. The first advantage is that our approach is technically speaking much 
simpler. People have strong intuitions concerning the trace behaviour of con­
current systems. Our proof rule makes it possible to use these intuitions quite 
directly in verifications. The intuitions behind the techniques of (8-10) are more 
involved and a lot of technical machinery is needed to formalise them. Our 
approach is probably less general than the approaches of (8-10), but we think 
that for many practical applications it can be used just as well. 

The second advantage of our technique is that it is independent of the par­
ticular process semantics which is used. This in contrast to the work of [8-10), 
which is intrinsically tied to bisimulation semantics. In the discussion below 
we employ the laws of interleaved bisimulation semantics. However, we could 
just as well work with the laws of failure equivalence, ready equivalence or 
trace equivalence. Working with bisimulation semantics only makes our 
results stronger. We conjecture that the proof rule based on trace­
specifications, as presented in this paper, also holds in partial order semantics 
(see (61). Probably the correctness proof of the workcell architecture which is 
presented in Section 5, when reorganised a little bit, is also valid in partial 
order semantics. It is a potential topic for future research to substantiate these 
claims. 

2. TRACES AND TRACE-SPECIFICATIONS 

2. Traces and trace-specifications. A trace of a process is a finite sequence that 
gives a possible order in which atomic actions can be performed by that pro­
cess. A trace can end with the symbol y (pronounce 'tick'), to indicate that, 
after execution of the last atomic action, successful termination can occur. 
After some preliminary definitions we give, in Section 2.3, axioms that relate 
processes to trace sets. 
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2.J. DEFINITION. 

1. For any alphabet l:, we use l:* to denote the set of finite sequences over 
alphabet l:. We write .\ for the empty sequence and a for the sequence 
consisting of the single symbol a El°:. By a•a', often abbreviated as aa', 
we denote the concatenation of sequences a and a'. 

2. Let a be a sequence and V be a set of sequences. We use the notation a• V 
(or aV) for the set {o•plpEV}, and notation V•a (or Va) for the set 
{polpEV}. 

3. By #a we denote the length of a sequence a. 
4. On sequences we define a partial ordering ~ (the prefix ordering) by: 

a~p iff, for some sequence a', aa' = p. A set of sequences V is closed 
under prefixing if, for all a:rr;;;.p, pE V implies that oE V. 

5. A v=A U { y} is the set of atomic actions together with the termination 
symbol. Elements from A* U A** y are called traces or histories. -r acts 
as the identity over (Av)* and is therefore replaced by .\ when occurring 
in traces. 

6. T is the set of nonempty, countable subsets of T = A* U A** y which are 
closed under prefixing. 

2.2. DEFINITION. Let a,bEA, V, WET, a,a1,a2 ET. We define the following 
ACP-operators on trace sets: 1 

I. Sequential composition. 

V·W :: = (VnA *) u {01*02101 yE V and 02 EW}. 

2. Parallel composition. VII W : : = { a I 3o1 EV, a2 E W: a Eo1 llo2}. The set 
o1 llo2 of traces is defined inductively by: 

_ {a(a1 llba2)Ub(aa1ll02)Uy(a,bX011102) if y(a,b)EA 

aai llba2 - a(a1llba2)Ub(aa11102) otherwise 

.\llaa = aall.\ = a(.\lla), .\II.\ = {.\ }, yllo = ally = {a}. 

Here y:A 8 XAr .. A 8 is a given binary function which describes the syn­
chronisation between atomic actions. y is commutative, associative and 
has S as its zero-element. 

3. Encapsulation. Let HCA. an(V) :: = Vn(A..;-H)*. 
4. Abstraction. Let J CA. -r1(V) : : = {-r1(o) I oE V} . The function -r1 on traces 

is given by: 

{

-r1(a) if a El 

-rJ(a•a) = a•-r1(a) otherwise 

-rJ(.\) = .\, -rJ( y) = y. 
5. Renaming. Let f :A-r6-A-r6 with /(-r)=-r and f(S)=S. pf_V) :: = 

I. The auxiliary operator lL cannot be defined on trace sets. 
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{pfo)loE V}. The function Pf on traces is given by: 

{

f(a)•pfo) if f(a)=/=8 

pf a•o) = A otherwise 

pfA) = A, pf-v) = y'. 

6. Projection. Let n EN. 

'ITn(V) ::= {oEVnA*l#o~n}U{oy'EVl#o~n}. 

7. Alphabets. a(V) ::= {a(o)loEV}. The function a: T-+Pow(A) is given 
by: 

a(a•o) = {a}Ua(o), a(A) = a(V) = 0. 

2.3. The Trace Operator (TO). Let P be the sort of processes. The trace opera­
tor tr :P-+ T relates to every process the set of traces that can be executed by 
that process. The operator satisfies the axioms of Table I. (a EA, x ,y EP, 
H,Ir:;;,A,f:A-rn-+A-rn with/(1-)=T and/(8)=8, and nEN) 

tr(8) = {A} TOI tr(an(x)) = an(tr(x)) TO7 
tr(T) = {A, v'} TO2 tr(T1(x)) = TJ(tr(x)) TO8 
tr(a) = {A,a,a v'} TO3 tr(pfx)) = pftr(x)) TO9 
tr(x +y) = tr(x)Utr(y) T04 tr('ITn(x)) = 'ITn(tr(x)) TOIO 
tr(x-y) = tr(x)·tr(y) TO5 a(x) = a(tr(x)) TOil 
tr(xlly) = tr(x)lltr(y) T06 

TABLE I. Axioms for the trace operator 

When calculating with trace sets we implicitly use ZF. This means that the 
considerations of this paper are not of a completely algebraic nature. We res­
trict our attention to the models of the theory ACP., with recursion and auxili­
ary operators that can be mapped homomorphically to the trace algebra. This 
is no serious restriction because all 'interesting' process algebras are in this 
class. A similar approach is followed in [I). 

2.3.J. ExAMPLES. 

tr(x) = tr(8+x) = tr(8)Utr(x) = {A}Utr(x). 

So A is member of the trace set of every process. 
(I) 

tr(ax) = tr(a )·tr(x) = {A,a,a v'}·tr(x) = {A,a} U a•tr(x) = 

= {A} U {a} Ua•(tr(x)U {A}) = {A} Ua•tr(x). 

Let X be given by the recursive equation X=aX. 

tr(X) = LJ 'ITn(tr(X)) = LJ tr('ITn(X)) = LJ tr(an·8) = 
n>0 n>0 n>0 

(I) 

(2) 

(3) 
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= {;\} U {X,a} U {X,a,aa} U · · · = {A,a,aa, · · · }. 

The first identity in derivation (3) follows from the structure of T and the 
definition of the '1T n-operators on T. 

2.4. Trace-specifications. A trace-specification is a predicate. A trace­
specification S describes the set of traces which, when assigned to free 
occurrences of a chosen variable a of type trace in S, make the predicate true: 
{ a I S}. The syntax for trace-specifications we have in mind is a first-order 
language with integers, actions, traces, some simple functions like addition and 
multiplication, taking the i th element of a trace, #a, pf_a), equality predicates 
for the integers, actions and traces, and quantification over integers and traces. 
This syntax is almost equivalent to the syntax proposed in [12], except for the 
fact that we moreover have multiplication. 

It is possible to define in the logic for each regular trace-language L a predi­
cate SL such that L = { a I SL}. In Section 4.5 it will be argued that such predi­
cates are useful. All predicates that we will use in this paper are definable in 
terms of the syntax which is described informally above. 

A process x satisfies a trace-specification S for trace variable a, notation 

X sat,, S, 

if 

VaEtr(x): S. 

Because in nearly all cases we will use a fixed trace-variable a, we often omit 
the subscript a and write x sat S. In this paper we regard x sat S merely as a 
notation. The proofs take place on the more elementary level of the tr-operator 
and trace sets. In [7] an elegant proof system is given which takes x sat S as a 
primitive notion. This system contains for instance rules like 

x sat S, x sat S' 
x sat S/\S' 

X sat S, S~S' 
x sat S' 

2.4.1. Notation. Let aET, B<.:A and aEA. 
1. a t B gives the projection of trace a onto the actions of B: 

at B = T,t - B(a). 
2. aJ,a denotes the number of occurrences of a in a: 

{

#(at {a})- I if a=a'V 
aJ,a = 

#( a t {a}) otherwise 

3. Even though our trace-specification language contains no alphabet opera­
tor, we can talk about alphabets in predicates: a(a) <.:B ~at B =a. 
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2.4.2. ExAMPLE. The coffee machine from Example 1.2 satisfies 

KM sat a(o)!:;{kof,choc,30c,zoem}/\(oJ,kof ~ o.J,30c). 

The number of cups of 'koffie' produced by the machine is always less or equal 
to the number of times 30 cents have been paid. The Dutch user however, 
takes care that never more than 30 cents are paid in advance: 

DU sat a(o)!:;{kof,30c,talk}/\(oJ,kof ;;.i,(oJ,30c - 1)). 

2.4.3. REMARK. Sometimes we write a specification as S(o), to indicate that 
the specification will normally contain o as a free variable. In that case we use 
the notation S(te) to denote the predicate obtained from S(o) by substituting 
all free occurrences of o by an expression te of sort trace, perhaps after renam­
ing of bound variables of S to avoid name clashes. 

3. OBSERVABILITY AND LOCALISATION 

The parallel combinator II is in some sense related to the cartesian product 
construction. In the graph model of (3), the set of nodes of a graph gllh is 
defined as the set of ordered pairs of the nodes of g and h. Still the II-operator 
lacks an important property of cartesian products, namely the existence of pro­
jection operators. It is not possible in general to define operators I and r such 
that l(xl[y)=x and r(xl[y)=y. In this section we show that, if we impose a 
number of constraints on the communication function, and on x and y, it 
becomes possible to define an operator which, given the alphabet of x, can 
recover x almost completely from x l[y: 

'T"P,<a(x))(x l[y )·8 = ·r-x ·8. 

The conditions on x and y make that x is observable, the operator P,<a(x)) local­
ises x in xl[y. 

3.1. Communication. For the specification of distributed systems, we mostly 
use th~ read/ send communication scheme, or communications of type 
y(kof,ko/)=ko1. Following (8), such communication functions will be charac­
terised as trijective. The assumption that communication is trijective will sim­
plify the discussion of this paper. 

3.1.1. DEFINITION. A communication function y is trijective if three pairwise 
disjoint subsets R,S,C!:;A can be given, and bijections-:R-s and 0 :R-c 
such that for every a,b,cEA: 

y(a,b)=c ~ (aER/\b=a/\c=a 0

) V (bER/\a=b/\c=b 0

). 

In the rest of this paper we assume that communication is trijective. 
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3.1.2. REMARK. Observe that a trijective communication function y satisfies 
the following three properties, and that each y satisfying these properties is tri­
jective (a,b,c,d EA): 
1. y(a,a)=8, 
2. if y(a,b)µ and y(a,c)µ then b=c (y is 'monogamous'), 
3. if y(a,b)=y(c,d)µ then a =c or a =d (y is 'injective'). 
Observe in addition that a trijective y satisfies y(y(a,b),c)=8 ('handshaking'). 

3.2. Observability. We are interested in the behaviour of a process x when it is 
placed in a context .. l[y. In order to keep things simple, we will always choose 
x and y in such a way that x is observable in context with y: every action of 
x l[y is either an action from x, or an action from y, or a synchronisation 
between x and y. In the last case we moreover know which action from x par­
ticipates in the synchronisation. Below we give a formal definition of this 
notion of observability. 

3.2.1. DEFINITION. Let B (:A be a set of atomic actions. Bis called observable 
if for each triple a,b,cEA with y(a,b)=c at most one element of {a,b,c} is a 
member of B. 

Let for A1,A2(:A: A1IA2 = {y(a1,a2)EAla1EA1,a2EA2}. From the fact 
that a set B of actions is observable, we can conclude that B n B I A = 0 . 
Because y is injective, we know in addition that y has an 'inverse' on B I A: for 
each c EB IA, there is exactly one b EB such that an a EA exists with 
y(a,b) = c. In this case we write b = yi 1(c). 

3.2.2. DEFINITION. Let x,y be processes. Process x is called observable in con­
text .. l[y, if a(x) is observable, and a(y) is disjoint from a(x) and a(x)IA. 

If a process x is observable in a context .. l[y, then one can tell for each action 
from x l[y whether it is from x, from y, or from x and y together. In the last 
case one can also tell which action from x participates in the communication. 
Observe that the fact that x is observable in context .. l[y does not imply that y 
is observable in context .. llx. 

3.3. Localisation. The 'localisation' of actions from x in a context .. l[y as 
described informally above, can be expressed formally by means of renaming 
operators. In the literature other definitions of the notions observability and 
localisation can be found (see [l] and [14)). In the choice of the definitions, 
there is a trade-off between the degree of generality (the capability of operators 
to localise actions) and the length of the definitions. 
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3.3.1. DEFINITION. Let B CA be observable. The localisation function 
P(B): A ..a-A ..a is the renaming function defined by: 

{

a if a EB U { T,8} 

P(B')(a)= -ri 1(a) ifaEBIA 

'T otherwise 

3.3.2. ExAMPLE. The communication function in Example 1.2 is trijective. 
Furthermore a(DU) = {kof, 30c,talk} is observable. Process DU is observable 
in the context .. II.KM. The expression 

P,<a(DU))oa n(DUIIKM) 

denotes the process corresponding to the behaviour of the Dutch user in a con­
text an( .. 11.KM). We derive: 

P,<a(DU)) 0 an(DUIIKM) = 
= P,<a(DU))(30c* ·kof* ·(talk·zoem + zoem·ta/k)•an(DUIIKM)) = 
= 30c·kof(talk·T+T·talk)·p"'-a<.DU)>0 an(DUIIKM) = 

= 30c·koftalk·p,<a(DU))0 an(DUIIKM) 

Hence P,<a(DU)) 0 an(DUIIKM) and DU satisfy the same guarded recursion equa­
tion. Application of the Recursive Specification Principle (RSP) now gives that 
both processes are equal. 

3.3.3. REMARK. It may seem that one needs the 'T-law T2 ('TX='Tx+x) in the 
verification above. Surprisingly we can perform the verification using only the 
'T-law Tl (xT=x): 

kof(talk·T+T·talk) = kof(Tlltalk) = kof'Tll._talk = kofLtalk = koftalk. 

In fact we claim that all the verifications in this paper can be done using the 
'T-law Tl only. So we also do not need the law T3 (a(Tx+y)=a('TX+y)+ax). 

3.3.4. THEOREM. Let p,q be closed terms with p observable in context .. llq. Then 
ACPT+RN+AB 1- 'T'P,<_a(p))(pllq)·6 = 'Tp·6. 
PROOF. Easy with induction on the structure of p and q. □ 

3.3.5. THEOREM. Let x,y be processes, with x observable in context .. l[y. Then 
we can prove using the axioms TO that: tr(P,(a(x))(x l[y )) C tr(x ). 
PROOF. Using the axioms from Table 1, we rewrite the statement we have to 
prove into: 

P,<a(tr(x)))(tr(x )lltr(Y )) C tr(x ). 

Because tr(x),tr(Y)ET, it is sufficient to prove that for every V, WET with 
a(V) observable and a(W) disjoint from a(V) and a(V)IA: 
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P-<a<V>iVII W)C V. 

First we apply the definition of the merge-operator on trace sets: 

P,(a(V))(VII W) = P,(a(V))({ol 3v EV, w E W: oEvllw }). 

The theorem is proved if we show for all v EV and w E W that: 

P-<a<V>>(vllw)C V. 

We prove a slightly stronger fact: Let v = v 1 •v 2 EV and let w E W. Then: 

v 1 *P,(a(V))(v2 llw) CV. 

The proof goes by means of simultaneous induction on the structure of v2 and 
w. 
Case 1: v2 = ../ 
V1 *P,(a(V))(../llw) = v 1 *P,(a(V))({w}) = V1 *{P,(a(V))(w)} Cv1 *{A,../} CV 

Here we use that V is closed under prefixing. 
Case 2: w = ../ 
V1*P,(a(V))(v2llv') = V1*P,(a(V))({v2}) = V1*{P,(a(V))(v2)} = v1•{v2} = {v}c;V 

Case 3.1: v 2 = ;\ en w EA • 

V1*P,(a(V))(Allw) = V1*P,(a(V))({w}) = V1*{P,(a(V))(w)} = V1*{A} = {v}CV 

Case 3.2: v 2 = ;\ en w = w 1 ../ 

v 1 *P,(a(V))(Xllw1 v')=v 1 *P,(a(V))({ w 1 })=v 1 *{P,(a(V))(w1 )} =v 1 *{A}= {v} CV 

Case 4. 1: v 2 EA • en w = ;\ 
V1*P,(a(V))(v2IIX) = V1*P,(a(V))({v2}) = V1*{P,(a(V))(v2)} = V1*{v2} = {v}c;V 

Case 4.2: v2 = v3..j en w = ;\ 
v 1 *P,(a(V))(v 3 ../IIX)= v 1 *P,(a(V))( { v 3 })= v 1 *{P,(a(V))(v3)} = v 1 *{ v3} = { v 1 •v 3} CV 

( V is closed under prefixing) 
Case 5.1: v2 = av3, w = bw 1 en y(a,b)=J> 

V1*P,(a(V))(av3llbwi) = V1*P,(a(V))(a(v3llbw1)Ub(av3llw1)) = 

= v 1 •a*P,(a(V))(v3 llbw1)Uv 1 *P,(a(V))(av3 llw 1) CV 

(Apply induction hypothesis) 
Case 5.2: v2 = av 3, w = bw 1 en y(a,b)EA 

v 1 *P,(a(V))(av3 llbw i) = v 1 *P,(a(V))(a(v3 llbw 1)Ub(av3 llwi)Uy(a,bXv3 llw 1)) = 

= v 1 •a*P,(a(V))(v3 llbw 1)U v 1 *P,(a(V))(av3 llw 1) U 

Uv 1 *a*P,(a(V))(v3 llw 1)C V 

(Apply induction hypothesis) □ 
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Notice that the {:-sign in Theorem 3.3.5 cannot be changed into an =-sign. If 
tr(y) contains no traces ending on y, then tr(P,(a(x))(xl[y) will also contain no 
such traces, even if they are in tr (x ). 

3.3.6. THEOREM. Let x,y be processes, with x observable in context .. l[y, and let 
H {:A. Then we can prove using the axioms TO that: tr(P,(a(x)) 0 an(xl[y))Ctr(x). 
PROOF. Just like we did in the proof of Theorem 3.3.5, we reformulate the 
statement. Let V, WET with a( V) observable, and a( W) disjoint from a( V) 
and a(V)IA . We have to prove: 

P,(a(V)) 0 an(VIIW)C V 

For X,YET we have that an(X)CXand XCY ~ pf._X)Cpf._Y). Hence 

P,(a(V)) 0 an(VII W)CP,(a(V))(VII W). 

From the proof of Theorem 3.3.5 we conclude: 

P,(a(V))(VII W) CV D 

The following corollary of Theorem 3.3.6 plays an important role in this paper 
because it allows us to derive a property of a system as a whole from a pro­
perty of a component (this is the essence of compositionality). 

3.3. 7. COROLLARY. Let x,y be processes, with x observable in context .. l[y, let 
HCA and suppose f=P(a(x)). If x sat S(o), then: 

P/'an(xl[y) sat S(o) 

and consequently 

an(xl[y) sat S(pf._o)). 

3.4. REMARK. The formal definitions of the notions 'observable' and 'localisa­
tion' in this section are quite complex. The definitions are much simpler if one 
works with the synchronisation-merges IIA of OLDEROG & HOARE [13) instead 
of the parallel combinator II of ACP. In fact the whole discussion of this paper 
can be simplified considerably if one uses IIA -combinators. Toe main reason 
for this is that these combinators corresponds quite directly with logical con­
junction of trace-specifications (see [121). 

Still, one cannot say that IIA is a better operator than II in general. The syn­
chronisation format of the II-operator is very flexible and often allows for 
elegant specifications. An unpleasant property of the llroperator is that it is 
not associative (in the sense that in some cases (xllBy)llcz =I= xllB(yllcz)). We 
think that the operators II and IIA are both very useful and that therefore 
notions like 'observable', 'localisation' and 'redundancy in context' should be 
worked out for both. 
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4. REDUNDANCY IN A CONTEXT 

We want to prove, in a compositional way, that in a given context a summand 
in a specification can be omitted. We will restrict ourselves in this paper to 
the case where the summand occurs in a 'linear' equation: 

4.1. DEFINITION. Let E = {X=tx I XEVE} be a recursive specification. A 
set CC VE of variables is called a cluster if for each X EC, tx is of the form: 

m n 

~ ak-Xk + ~ Y1 
k=I /=I 

for actions ak EA,., variables Xk EC and Y1 E VE - C. Cluster C is called iso­
lated if variables from C do not occur in the terms for the variables from 
VE-c. 

4.2. DEFINITION. Let E = {X=txlXEVE} be a recursive specification and let 
C be an isolated cluster in E. Let X0 ,X1,X2 EC, a EA,. and let aX2 be a sum­
mand of tx, . Let E' be obtained from Eby replacing summand aX2 in tx, by 
a 'fresh' atom t. Writep=<XolE> andp'=<X0 1E'>. Lety be a process with 
p observable in context .. l[y. Let HCA. The summand aX 2 of p is redundant 
in the context aH( .. l[y) if: 

tr(P,(,a(p))oaH(p l[y)) n { aa I at Etr(p')} = 0. 

4.2.1. Comment. One can say that the set {aa latEtr(p')} is the contribution 
of summand aX2 to tr(p). Theorem 3.3.6 gives that tr(P,(,a(p)) 0 aH(plly)) is also 
a subset of tr(p). If summand aX2 is redundant, this means that all behaviours 
of p of the form 'go from state X I with an a-step to state X 2' are not possible 
ifp is placed in the context aH( .. l[y). 

We give an example which shows why we require in Definition 4.2 that clus­
ter C is isolated._ Assume a trijective communication junction y with 
y(a,a)=a• and y(b,b)=b*. Assume further that H={a,a,b,b} en I={a*,b*}. 
Consider the following recursive specification E: 

In this system X 0 forms a cluster which is not isolated. We derive: 

X 0 = aX0 + b·c·8. 

From this equation is is easy to see that X 0 is observable in context .. lib. We 
have: 

P,(,a(X.)) 0 aH(Xollb) = b·c·8. 

If the condition in Definition 4.2 that C is isolated would be absent!.. then the 
summand aX0 would (by definition) be redundant in context aH( .. llb). How­
ever, the summand cannot be omitted: outside the cluster it plays an essential 
role! 
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We can now formulate the central proof principle of this paper: 

A redundant summand can be omitted 

Below we formally present this principle as a theorem. 

4.3. THEOREM. Let p=<Xo IE> and q=<Yo IF>, with E and F guarded recur­
sive specifications, and p observable in context .. llq. Let HCA. Let C be an iso­
/ated 3/uster in E with X 0 ,Xi,X2 EC, a EA.,. and aX2 a summand oftx,- Let E' 
and E be obtained from E by resp~ replacing aX 2 by a fresh atom t, and omitting 
it. Let p'=<Xo IE'> and p-<Xo IE>. Suppose that ACP.,. + REC + RN + PR 
+ TO proves that summand aX2 is redundant. Then: ACP.,. + REC + RN + 
PR + AIP- 1- aa(pllq) = aaQJllq). 
PROOF (sketch). The proof uses a bisimulation model generated by Plotkin 
style action rules. It is proved that the (inlinitary) axiom system ACP.,. + REC 
+ RN + PR + AIP- is sound and complete for processes represented by a 
guarded specification. Consequently it is enough to prove that a9 (pllq) and 
a9 Qjllq) are bisimilar. The proof that the obvious candidate for a bisimulation 
between these processes indeed is a bisimulation uses the fact that every trace 
of actions in the transition system of an expression p is also a (provable) ele­
ment of tr(p ). □ 

4.4. REMARK. A summand which can be omitted is in general not redundant. 
In every context the second summand of the equation 

X=aX+aX 

can be omitted, even if it is not redundant. At present we have no idea how a 
'reversed version' of Theorem 4.3 would look like. 

4.5. Proving redundancies. Now we know that a redundant summand can be 
omitted, it becomes of course interesting to look for techniques which allow us 
to prove that summands are redundant. The following strategy works in many 
cases. 

Let E, C, X 0, etc., be as given in Definition 4.2. In order to prove that the 
summand is redundant, it is enough to show that for some predicate S(a): 

p' sat "la': a=a't => S(a'a) and 

P,(a(p)) 0 an(plly) sat -,S(a). 

If the cluster C is finite, then { aa I at E tr (p ')} is a regular language and can be 
denoted by a predicate in the trace-specification language of Section 2.4. Con­
sequently we can in such cases always express that a summand is redundant. 
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4.6. Ex.AMPLE. We return to Example 1.2 and show how the statement 

aa(DUIIKM) = aa(DUIIKM) 

can be proved with the notions presented in this section. KM is observable in 
context DUii .. , and DU is observable in context .. IIKM. The specification of 
DU contains no isolated clusters, but using RSP we can give an equivalent 
specification where the set of variables as a whole forms an isolated cluster 
(DU=UD): 

UD = 30c·UD1 +kofUD2 

UD1 = kofUD2 

UD2 = ta/k·UD 

TABLE 2. Specification of UD 

In Example 2.4.2 we already observed that: 
- -

KM sat o!kof ~oJ,30c. 

Because of Corollary 3.3.7 we also have: 

P,(a(KM)) 0 aa(UDIIKM) sat aikof ~ai30c. 

The alphabet of process aa(UDIIKM) contains no actions kof or 30c, because 
these actions are in H. This implies that occurrences of these actions in traces 
from tr(p,(a(KM)) 0 aa(UDIIKM)) 'originated' (by renaming) from actions ko1 
and 30c • . Hence: 

aa(UDIIKM) sat o!ko1 ~ oJ,30c* . 

But since the alphabet of aa(UDIIKM) contains no actions kof and 30c, this 
implies: 

P,(a(UD)) 0 an(UDIIKM) sat o!kof ~ oJ,30c. 

Define UD' by: 

Of course we have 

UD' = 30c·UD'1 +t 

UD' 1 = kofUD'2 

UD'2 = talk·UD' 

UD' sat 'Vo' : o=o't ~ (o'kofHkof > (o'koj)J,30c. 

This shows that the second summand in the equation for UD is redundant. □ 

In the example above, we gave a long proof of a trivial fact. The nice thing 
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about the proof is however that it is compositional and only uses general pro­
perties of the separate components. lbis makes that the technique can be used 
also in less trivial situations where the number of states of the components is 
large. 

In the sequel we will speak about redundant summands of equations which 
are not part of a cluster. What we mean in such a case is that the correspond­
ing system of equations can be transformed into another system, that a certain 
summand in the new system is redundant, and that the system which results 
from omitting this summand is equivalent to the system obtained by omitting 
the summand in the original system that was called 'redundant'. 

5. A WORKCELL ARCHITECTURE 

In this section we present a modular verification of a small system which is 
described in [ 4, 11 ]. 

One can speak about Computer Integrated Manufacturing (CIM) if comput­
ers play a role in all phases of an industrial production process. In the CIM­
philosophy one views a plant as a (possibly hierarchically organised) set of 
concurrently operating workce//s. Each workcell is responsible for a well­
defined part of the production process, for instance the filling and closing of 
bottles of milk. 

In principle it is possible to specify the behaviour of individual workcells in 
process algebra. A composite workcell, or even a plant, can then be described 
as the parallel composition of a number of more elementary workcells. Proof 
techniques from process algebra can be applied to show that a composite 
workcell has the desired external behaviour. 

In general, not all capabilities of a workcell which is part of a CIM­
architecture will be used. A robot which can perform a multitude of tasks, can 
be part of an architecture where its only task is to fasten a bolt. Other possi­
bilities of the robot will be used only when the architecture is changed. A large 
part of the behaviours of workcells will be redundant in the context of the 
CIM-architecture of which they are part. Therefore it can be expected that the 
notions which are presented in the previous sections of this paper, will be use­
ful in the verification of such systems. 

5.1. Specification. 

5.1.1. The external behaviour. We want to construct a composite workcell 
which satisfies the following specification. 
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N 

SPEC ~ rl(n)·SPECn·SPEC 
n =O 

SPEC0 = sO(r) SPECn +t = s 10<.proc(p 1))-SPECn 

TABLE 3. Specification of a composite workcell SPEC 

Via port I, the workcell accepts an order to produce n products of type 
proc(p I) and to deliver these products at port 10. Here O,s;;;.n,s;;;.N for a given 
upperbound N>O. After execution of the order, the workcell gives a signal r 
at port 0, and returns to its initial state (r = ready). 

5.1.2. Architecture. The architecture of the system that has to implement this 
specification is depicted in Figure 1. 

WA 
FIGURE 1 

There are four components: workcell A (WA), workcell B (WB), the transport 
service T, and the workcell controller WC. 

5.1.3. Workcell A. By means of a signal n at port 2, workcell A receives the 
order to produce n products of type p 1. The cell performs the job and 
delivers the products to the transport service T at port 8. Thereafter a message 
r is sent at port 3, to indicate that a next order can be given. 

N 

WA = ~ r2(n)·XAn 
n=O 

XA 0 = s3(r)·WA 

TABLE 4. Specification of workcell A 
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5.1.4. Workce/1 B. By means of a signal n at port 4, workcell B receives the 
order to process n products. B receives products from a set PROD at port 9. 
An incoming product pis processed and the result proc(p )EPROD is delivered 
at port 10 (proc = processed). Thereafter a message r is sent at port 5 and the 
workcell returns to its initial state. We assume that p 1 EPROD. 

N 
WB = L r4(n)·XBn 

n=O 

XB 0 = s5(r)·WB L r9(p)·s 10(.proc(p))·XBn 
pePROD 

TABLE 5. Specification of workcell B 

5.1.5. Transport service T transports products in PROD and behaves like a 
FIFO-queue. Products are accepted by T at port 8. Transport commands tc 
are given to T at port 6. The number of products accepted by the transport 
service should not exceed the number of transport commands which have been 
received by more than one. Each time a product leaves T at port 9, a signal 
s1(ar) is given (ar = arrival). Variables in the specification below are indexed 
by the contents of the transport service: aEPROD* andp,qEPROD. 

T" = r6(tc)·( L r8(p)·TP)+ L r8(p)-r6(tc)·TP 
pePROD pePROD 

T"q = r6(tc)·( L r8(p)·TP0 q)+ L r8(p)·r6(tc)-TP0 q+s9(q)·s1(ar)·T0 

pePROD pePROD 

TABLE 6. Specification of transport service T 

5.1.6. Workcell controller WC is the boss of components WA, T and WB. 
From its superiors (via port 1), WC can get the order to take care of the 
manufacturing of n products proc(p 1). In order to execute this order, WC 
sends a stream of commands to its subordinates, receiving progress reports 
from these subordinates in between. When the controller thinks that the task 
has been completed, it generates a signal s O(r ). 

N 

WC = Lr l(n)·s4(n)·XCn 
n=O 

xc0 = r 5(r )·s O(r )· WC xcn+I = s2(l)·r3(r)·s6(tc)·r1(ar)·XCn 

TABLE 7. Specification of workcell controler WC 
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5.1.7. Sets. D = {nl0,s;;;;n,s;;;;N}U{r,tc,ar}UPROD is the set of objects which 
can be communicated in the system, and P = {O, 1, ... , 10} is the set of port­
names used. Communication takes place following the read/ send-scheme: 

y(rp(d),sp(d)) = cp(d) for pEP,dED 

and y yields ~ in all other cases. Important sets of actions are: 

H = {rp(d),sp(d)l2,s;;;;p,s;;;;9 and dEO} and 

I = {cp(d)l2,s;;;;p,s;;;;9 and dED}. 

The implementation as a whole can now be described by: 

I IMPL = an(WCIIWAIIT,\IIWB) I 

5.2. THEOREM (correctness implementation). 
ACPT + SC + REC + PR + AIP- + AB + CA~ T1(/MPL) = SPEC. 
PROOF. In seven steps we transform T1(IMPL) to SPEC. Before we start with 
the 'real' calculations, we show in the first three steps that in the specifications 
of components WA, T and WB, a large number of summands can be omitted. 
Notice that communication is trijective and that each component of IMPL is 
observable in context with the other components. 

First we use that the only command which is given by the controller to 
workcell A is a request to produce a single product p I. This means that: 

IMPL sat aJ,c2(n) = 0 for n*l. 

Consequently 

P-,<.a(WA))(/MPL) sat aJ,r2(n) = 0 for n*l. 

Using the approach of Section 4.5, together with Theorem 4.3, we obtain that 
all the summands in the specification of WA which correspond to the accep­
tance of a command different from r2(1) are redundant. We have 

IMPL = an(WCIIWAIIT>.IIWB), 

where WA is given by: 

I WA = r2(l)·s8(p l)·s3(r)·WA I 
Hence: 

(step 1) 

Also component T>. is clearly a candidate for simplification. With some simple 
trace-theoretic arguments we show that nearly all summands in the 
specification of T>. are redundant. _ 

The only product which is delivered by WA at port 8 is p 1. This means 
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that: 

IMPL sat a!c8(p) = 0 for p=/=p 1 

From the behaviour of component WC we conclude: 

IMPL sat aic6(tc) ..;; aic3(r) 

Further we deduce from the behaviour of WA: 

IMPL sat aic3(r)..;; aic8(p I) 

(I) 

(2) 

(3) 

From (2) and (3) together we conclude that the number of transport com­
mands at port 6 is less or equal to the number of products p 1 that are handed 
to the transport service at port 8: 

IMPL sat aic6(tc) ..;; aic8(p I) (4) 

From the specification of WA we learn that A does not deliver products 
without being asked for: 

IMPL sat aic8(p l) ..;; aic2(1) (5) 

Further it follows from the specification of WC that the number of commands 
given to A by the controller, never exceeds the number of ar-signals with more 
than one: 

IMPL sat aic2(1)..;; aic1(ar) + l 

From (5) and (6) together we conclude: 

IMPL sat aic8(p l)..;; aic1(ar) + l 

(6) 

(7) 

From formulas (1), (4) and (7) it follows that nearly all summands in the 
specification of T-,,. are redundant. 

'1°J 0 an(WCIIWAIIT-,,.IIWB) = -r1°an(WCIIWAIITIIWB) (step 2) 

where T is given by: 

I T = r8(p l)·r6(tc)·s9(p l)·s7(ar)·T I 
The transport service delivers at port 9 only products of type p l. Therefore all 
summands in the specification of WB which correspond to the acceptance of 
another product, are redundant. 

-r1°an(WCIIWAIITIIWB) = -r1°an(WCIIWAIITIIWB) 

where WB is given by: 

(step 3) 
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N -n 
WB = ~ r4(n)·XB 

n=O 

XB
0 = s5(r)·WB 

-n+I -n 
XB = r9(p l)·s lO(proc(p l))·XB 

We will now •zoom in' on components WC, WA and T. Define: 

H' = {rp(d),sp(d)lpE{2,3,6,7,8} and dED} and 

I' = {cp(d)lpE{2,3,6,7,8} and dED}. 

Application of the conditional axioms CA gives: 
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'l°J 0 aH(WCIIWAIITIIWB) = -r1°aH(-rr 0 aH,(WCIIWAIIT)IIWB) (step 4) 

Let W be given by: 

N 

W = ~rl(n)·s4(n)·Wn 
n=O 

W° = r5(r)·sO(r)·W wn+I = -r·s9(p l)·Wn 

We prove that W=-rr 0 aH'(WCII WA IIT), by showing that process 
-rr 0 aw(WCII WA IIT) satisfies the defining equations of W. 

- N -
-r1,0 aH'(WCIIWA IIT) = ~ rl(n)·s4(n)·-rr 0 aw(XCnllWA IIT) 

n=O 

-r1,0 aw(XC0 IIWA IIT) = r5(r)·sO(r)·-rr 0 aH'(WCIIWA IIT) 

-r1, 0 aw(Xcn+l11WAIIT) = 
= 'TJ'(c2(l)•aH'(s 3(r)·s6(tc)·r1(ar)·XCnlls B(p l)·s 3(r)· WA IIT)) = 
= -r·-rl'(c8(p 1)-aw(s 3(r)·s6(tc)·r1(ar)·XCnlls 3(r)- WA llr6(tc)·s9(p l)·s 1(ar)·T))= 

= -r·-r·-rl'(c3(r)•aw(s6(tc)·r1(ar)·XCnll WA llr6(tc)·s 9(p l)·s 1(ar)·T)) = 
= -r·-rl'(c6(tc)•aH'(r1(ar)·XCnll WA lls9(p l)·s1(ar)·T)) = 
= 'T"'TJ'(s9(p l)-aH,(r1(ar)·XCnll WA lls1(ar)·T)) = 
= n9(p l)·-rl'(c7(ar)•aH'(XCnll WA IIT)) = 
= n9(p l)·-r1,0 aw(XCnllWA IIT) 

We have now derived: 

-r1°aH(-rl' 0 aw(WCII WA IIT)II WB) = -r1°aH(WII WB) 

Let V be given by: 

(step 5) 
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N 

V ~ r l(n)·Vn 
n=O 

V° = T·sO(r)·V vn + I = T·s lO(proc(p 1))· Vn 

We show that 7)0 dn(WII WB) satisfies the defining equations of V. 
_ N N -m 

T1°dn(WIIWB) = ~ rl(n)·1"[ 0 dn(s4(n)·Wnll( ~ r4(m)-XB )) = 
n=O m=O 

N -n N -n 
= ~ r l(n)-T1(c4(n)·dn(WnllXB )) = ~ r l(n)-T·T1°dn(WnllXB ) 

n =O n =O 
-o - -

.,. . .,.1°dn(W°IIXB ) = .,.-.,.J(c5(r)·dn(sO(r)·WIIWB)) = T·sO(r)·T1°dn(WIIWB) 
-n+I -n 

T·T1°dn(Wn +I IIXB ) = T·T1(c9(p l)·dn(Wnlls IO(proc(p l))·XB )) = 
-n = n IO(proc(p l))·T1°dn(WnllXB ) 

(here we use that 'T( TX l[y) = nx lL.y = 'TX lL.y = 'T(x l[y )). From the above deriva­
tion it follows that: 

T1°dn(WII WB) = V 

We show that SPEC satisfies the defining equations of V. 
N 

SPEC = ~ r l(n)·(T·SPECn·SPEC) 
n=O 

T·SPEC0•SPEC = T·sO(r)-SPEC 

T·SPEcn + 1 ·SPEC = T·s lO(proc(p l))·(T·SPECn·SPEC) 

Hence: 

V = SPEC 

(step 6) 

(step 7) 

□ 

This example shows that a combination of trace-theoretic arguments and the 
use of alphabet calculus makes it possible to verify simple systems in a compo­
sitional and modular way. 
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Process Algebra Semantics of POOL 
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In this paper we describe a translation of the Parallel Object-Oriented 
Language POOL to the language of ACP, the Algebra of Communicating 
Processes. This translation provides us with a large number of semantics for 
POOL. It is argued that an optimal semantics for POOL does not exist: what is 
optimal depends on the application domain one has in mind. We show that the 
select statement in POOL makes a semantical description of POOL with 
handshaking communication between objects incompatible with a description 
level where message queues are used. Attention is paid to the question how 
fairness and successful termination can be included in the semantics. 

Key Words & Phrases: process algebra, concurrency, object-oriented program­
ming, semantics of programming languages, attribute grammars, correctness of 
programming language implementations, fairness. 

Notes. This paper is a revised version of [25]. Section 6 has been left out. 
Without further reference, we will use the notation and axioms that are 
described in the second paper of this thesis (Modular specifications in process 
algebra). 

1. INTRODUCTION 
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At this moment there are a lot of programming languages which offer facilities 
for concurrent programming. The basic notions of some of these languages, for 
example CSP [ 18], occam [ 19] and LOTOS [20], are rather close to the basic 
notions in ACP, and it is not very difficult to give semantics to these languages 
in the framework of ACP. MILNER [23] showed how a simple high level con­
current language can be translated into CCS. However, it is not obvious at first 
sight how to give process algebra semantics of more complex concurrent pro­
gramming languages like Ada [6], Pascal-Plus [13] or POOL [1-3]. This is an 
important problem because of the simple fact that many concurrent systems 
are specified in terms of these languages. In this paper we will tackle the 
problem, and give process algebra semantics of the language POOL. 

In order to modularize the problems we first give, in Section 2, a translation 
to process algebra of a simple sequential programming language: with each ele­
ment of the language a process is associated, specified in terms of the operators 
·, +, >>> (sequential and alternative composition, and chaining). 

In Section 3, we give process algebra semantics of a representative subset of 
the programming language POOL-T (see [l]). POOL is an acronym for 'Paral­
lel Object-Oriented Language'. It stands for a family of languages designed at 
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Philips Research Laboratories in Eindhoven. The 'T in POOL-T stands for 
'Target'. POOL is a language that permits the programming of systems with a 
large amount of parallelism, using object-oriented programming. In [4] an 
operational semantics is given of a language from the POOL-family. Our 
semantics of POOL is to a large extent inspired by this paper. A denotational 
semantics of POOL is presented in [5). 

In order to deal with the complexity of POOL (compared to the toy 
language of Section 2) we make use of attribute grammars. We associate with 
each (abstract) POOL program a process specified in the signature of ACP 
together with some additional operators. As soon as the translation of a pro­
gramming language into the signature of ACP (+additional operators) is 
accomplished, the whole range of process algebras becomes available as possi­
ble semantics of the language. We think this is a major advantage of our 
approach. Especially when dealing with concurrent programming languages, 
the answer to the question what is to be considered as the optimal semantics, 
is heavily influenced by the application one has in mind: if the system that 
executes the program is placed in a glass box and does not communicate with 
the external world, one can work with a more identifying semantics (allowing 
for simpler proofs) than in the case in which the system is part of a network 
and communicates with the external world. Issues like fairness and the pres­
ence of interrupt mechanisms are also relevant in the choice of the optimal 
semantics. 

The process algebra semantics are very operational: we can define a term 
rewriting machine that executes the process algebra specification we relate to a 
program. Interestingly, the semantics are also (to a large extent) composi­
tional: the value denoted by a construct is specified in terms of the values 
denoted by its syntactic subcomponents. 

A good theory of semantics of programming languages is a method which 
makes it possible to predict the behaviour of a computer that executes a pro­
gram. Furthermore a good theory assists people in building new predictable 
computers. This implies that a theory of semantics of programming languages 
should provide tools which make it possible to substantiate the claim that the 
mathematical models in which the language constructs are interpreted indeed 
model reality. In our framework such a tool is the abstraction operator 'T°J. 
This operator makes it possible to prove that the semantics of POOL as 
presented in Section 3 has a common abstraction with a number of other 
semantics of the language, which are closer to implementation. 

In an implementation of the language POOL there will be message queues in 
which the incoming messages for an object are stored. On the conceptual 
level, there are no queues and we have handshaking communication between 
the objects. In Section 4 an example is presented which shows that these two 
views are in contradiction with each other. The problem is due to the so­
called 'select statement', which is part of the language POOL-T. A minor 
change in the definition of the select statement is proposed in order to remove 
this difficulty. 1 However, it is shown that even with the new language 

I. In a more recent offspring of the POOL-family of languages, called POOL2 (see (31), the select 
statement has been removed altogether. Instead this language contains a 'conditional answer state-
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definition the two descriptions are different in bisimulation semantics. 
Although we conjecture that the two views of a POOL system are equivalent in 
failure semantics, we have not been able to prove this. 

In Section 5 we discuss a trace semantics of the language POOL. Many 
things can be proved with more ease in this semantics, but we show that this 
semantics does not describe deadlock behaviour in a situation in which the 
POOL system interacts with the environment. We also pay some attention to 
the question how issues like fairness and successful termination can be 
included in a semantical description of POOL. 

Section 6 contains a number of conclusions. 

2. A SIMPLE SEQUENTIAL PROGRAMMING LANGUAGE 

In this section we will give process algebra semantics to a simple programming 
language that is described in [9]. In the definition below we use the BNF­
format. 

2.1. DEFINITION (syntax of /exp, Bexp and Stat). Let Ivar, with typical ele­
ments v, w,u, ... , and Icon, with typical elements a, ... , be given, finite sets of 
symbols. 
a. The class /exp of integer expressions, with typical elements s,t, ... , is 

defined by 

s : : = v I a I s 1 + s 2 I · · · I if b then s I else s 2 fi 

(Expressions such as s 1 - s 2, s 1 Xs 2, ... may be added at the position of 
the ... , if desired.) 

b. The class Bexp of boolean expressions, with typical elements b, ... , is 
defined by 

b : : = true I false I s, = s2 I · · · I -, b I b 1 :J b2 

(Expressions such as s 1 < s 2, ••• may be added at the position of the ... , if 
desired.) 

c. The class Stat of statements, with typical elements S, ... , is defined by 

S : : = v : = s I S 1 ; S 2 I if b then S I else S 2 fi I while b do S od 

2.2. Note. In contrast to [9], we require the sets Ivar and Icon to be finite. If 
we would allow them to be infinite this would lead to infinite sums in our pro­
cess algebra specifications. It is trivial to add an infinite sum operator to, for 
example, the term model defined in [16). However, the combination of such 
an operator and the abstraction operators 'T°J leads to a number of non-trivial 
questions that are worth separate investigation. For this reason we will confine 
ourselves to the finite case in this paper. 

ment'. It seems that this construct does not lead to semantical problems like the select statement. 
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2.3. Semantics of the toy language. We will now relate to each element of the 
language defined in Section 2.1, a recursive process specification. Besides the 
actions that will be described below, this specification may contain operators ·, 
+ and ~>. The value domain D of the chaining operator is 

D = (lvar....+Jcon)Ulcon U {true, false}. 

Here lvar-+lcon is the set of all functions from variables to their values. Ele­
ments of lvar-+lcon are called states. As usual with the chaining operator, we 
have actions td, J,d, c(d), r(d) and s(d) for each dED. 

2.4.1. Notation. Let aElvar-+lcon, v Elvar and aElcon. We use the well 
known notation a{a/v} to denote the element of lvar....+Jcon that satisfies for 
each v'Elvar 

{

a if v'=v 
a{alv}(v') = a(v') otherwise 

2.4.2. Notation. For the term 

x>>>( ~ J,d1 · · · · · ~ J,dn ·yd,. ... ,d) 
d,eD, d.eD. 

(where D1,••·•Dn CD) we write 

x>>>d,, ... ,d. Yd,, ... ,d. 

In all applications it will be clear from the context what D 1, ... ,Dn are. A sitni­
lar notation is used for the »-operator. 

2.5. Translation to process algebra. Below we give a number of process algebra 
equations. The variables in these equations are elements of the toy language 
with semantical brackets ( '[' and ']') placed around them, often sub- and 
super-scripted with elements of D. The process corresponding to execution of 
language element w El exp U Bexp u Stat, with an initial memory configuration 
aElvar....+Icon, is the solution of this system, with 

[w)o 

taken as root variable. Throughout the rest of this section a,a' El con, 
,8,,8' E {true,false} and a,a' Elvar....+Jcon. 

2.6. The class /exp 

[v]0 = ta(v) 

[a]° = ta 

ls1 +s2J° = [s11° ·[s21°>>>a,a'tsum(a,a') 

[ifb then s 1 else s2 fi]° = [b)0 >>>(J,true·ls11° + J,false·ls21°) 
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2. 7. The class Bexp 

(true]° = ttrue 

(false]° = tfalse 

(s I =s2J° = (s I J° · fs2J° >» a,a'( = 1a,a' 

{

ttrue if a= a' 
I = 1a,a' = tfalse otherwise 

(-,b ]° = (b 1° »>(J,true·tfalse + ifalse·ttrue) 

(b, ::::>b21° = (b,1°>>>(J,true·(b21° + ifalse·ttrue) 

2.8. The class Stat 

(v:=s]° = (s1°>>> 0 ta{a/v} 

(S,; S21° = (S,1°>>>o'(S21o' 

(if b then S 1 else S 2 fi]° = (b ]° >>>(J,true·(S 11° + ifalse·(S 21°) 

(wbileb doS od1° = [b]°>>> 

(J,true·([S]°>>>o'(wbileb doS od1o') + ifalse·ta) 

The following theorem shows that the specification presented above singles out 
a unique process. 

2.9. THEOREM. The specification defined in 2.6-2.8 is guarded. 

PROOF. Recall the definition of relation ➔ on 2: 

u . 
X ~ Y ~ Y occurs unguarded m t x• 

It is enough to show that the relation ➔ is well founded (i.e. there is no 

infinite sequence X 1 ➔ X 2 ➔ X 3 • • • ). This can be done by defining a 
function m : 2--+ N such that for X, YE 2 

X ➔ Y ~ m(Y)<m(X) 

The definition goes by induction on the complexity of the language elements in 
the variables. We give only a very small part of it. This should convince the 
reader that it is possible to give a complete definition, which has the desired 
property. 

etc. 

m([v]°) = I 

m([a]°) = I 

m([s 1 +s 21°) = m((s,1°) + m([s21°) 

□ 
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2.10. Note. As a direct consequence of the associativity of the chaining opera­
tor we have that ';' is associative: 

2.11. REMARK. In the equation for ls 1 +s2) 0 we say that, in order to evaluate 
s 1 + s 2, we first have to evaluate s I and thereafter s 2 . Other possibilities would 
have been 

ls, +s2J° = ls2)0 ·(s,) 0 ~>a,a'isum(a,a') 

(evaluation in the reverse order), or 

ls, +s2) 0 = (ls1J°llls2J°)>~a,a'fsum(a,a') 
(evaluation in parallel). Toe three resulting semantics are all different. One can 
prove however that they are identical after appropriate abstraction. 

2. 12. REMARK. It is easy to define a term rewriting system which, for a given 
guarded specification E = {X=txlXEE:}, rewrites a given term tin the signa­
ture of ACP,. +RN+ CH with variables in E:, into a term of the form 
~a; ·t; + ~bi. Now the simple data flow network of Figure 2.1 represents a 
machine that 'executes' specification E. Here TRS is a component that imple­
ments the term rewriting system described above, and N is a nondeterministic 
device that for each input ~a;· t; + ~bi chooses either one summand a; ·t;, 
and thereafter sends term t; to the input port and atomic action a; to the out­
put port, or chooses one summand bi and sends this to the output port. 

ti 

:Eaiti+:Ebj ai 
TRS 

X b . 0 J 

E 

FIGURE 2.1 

Toe following theorem says that the operators + and >>> can be eliminated 
in favour of the sequential composition operator ·. lbis means that in the case 
of the toy language the nondeterministic device N of Section 2.12 never has a 
real choice. 
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2.13. THEOREM. Let a be a state. Using the axioms of ACP+ RN+ 
CH+ REC+ PR+ AIP- we can prove: 
I. Let s be an integer expression. Then for certain d 1, ••• , dn and a: 

[s]° = c(d,)· · · · ·c(dn)·ja. 

2. Let b be a boolean expression. Then/or certain di, ... ,dn and /J: 

[b]° = c(d1)· • • • ·c(dn)·j/J. 

3. Let S be a statement. Then either there exist d 1, ••• ,dn, a' such that: 

(S]° = c(d1)· • • • ·c(dn) · ja' 

or there are d 1,d2 , ••• such that: 

(S]° = c(d 1) · c(d2) · · · · 

PROOF. By induction on the complexity of the language elements. □ 

2.14. REMARK. The reason why we used the operator >>> instead of operator 
» in the definitions above is that the use of » would lead to unguarded sys­
tems of equations. There exist models of ACP,. (for example models based on 
Plotkin style action rules) in which we can relate to each specification (so also 
the unguarded ones) a special solution. If we would work in these models it 
would be possible to use the operator » instead of the operator >>>. But as 
stated before, we do not want to restrict ourselves to one single model. In the 
axiomatic framework the following approaches are available if one wants to 
obtain 'abstract' semantics: 
I. Partial Abstraction. In the system of equations defining the semantics of 

the toy language (Sections 2.6-2.8) we can replace all occurrences of 
operator >~ in the equations for the classes ]exp and Bexp by an opera­
tor ». Using induction on the structure of the elements of !exp and Bexp 
one can prove that the resulting system is still guarded. It is not possible 
to replace occurrences of >>> in the equations for elements of the class 
Stat by » . Consequently this approach will not lead to 'full abstractness'. 

2. Delayed Abstraction. Let E be a guarded specification that contains no T­

steps or abstraction operator. For a language element w and a memory 
configuration a, 

(w]° 

is the formal variable that corresponds to execution of w with initial 
memory configuration a. Now we extend specification E with variables 
<w> 0 for which we have equations 

<w>a = T1([w]a) 

Here I is a set of 'unimportant' actions which we want to hide. Formal 
variable <w> 0 corresponds to the execution of program w with initial 
memory state a, in an environment where actions from I cannot be 
observed. Call the new system E1. E1 has a unique solution because E 
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has one. Note that when we follow this approach we lose, to a certain 
extent, compositionality. 

3. Combination of 1 and 2. 

3. TRANSLATION OF POOL TO PROCESS ALGEBRA 

3.1. In this section we give a translation to process algebra of a (representa­
tive) subset of the programming language POOL-T. Below we give, by means 
of a context-free grammar, the definition of a language POOL-1--CF. This 
language is a subset of the context free syntax of POOL-T, as presented in [ 1 ]. 1 

In this section we will give process algebra semantics of a language POOL-1-, 
defined by: 

POOL-1- = POOL-TnPOOL-1--CF. 

By giving a definition in this way we do not have to give an exhaustive 
enumeration of all the context conditions. Because most of the context condi­
tions in POOL are rather obvious ('all instance variables are declared in the 
current class definition', etc.), this is not a serious omission. Moreover, we will 
mention context conditions whenever we need them. 

First we will define a mapping SPECc that relates a recursion construct 
<XwlEw> to each element w of the language POOL-1- . The subscript C 
indicates that the resulting expression is in the signature of concrete process 
algebra, as opposed to the translation that we will present in Section 3.11, 
which leads to expressions that contain an abstraction operator. 

3.2. Contextfree languages. Although the notions of a context-free grammar 
and the language generated by it will be commonly known, we give a formal 
definition, because we will need this later on. 

3.2.1. DEFINITION. A contextfree grammar is a 4-tuple G = (T,N,S,P), 
where T and N are finite sets of terminal resp. nonterminal symbols; 
V = TUN is called the vocabulary of symbols; SEN is the start symbol, and P 
is a finite set of production rules of the form X 0--+X 1 • • • Xn with X O EN, n >0, 
and X1, ... ,XnEV-{S}. 

3.2.2. DEFINITION. Let G = (T,N,S,P) be a context-free grammar, and let 
V = TUN. Let ~ = (N - { 0} )* be the set of sequences of positive natural 
numbers. We write£ for the empty string, and if oEm, we use o.O as a nota­
tion for a. A derivation tree of G is a 2-tuple t = (nodes(t),label(t)), where 
nodes(t) is a nonempty finite subset of ~ such that for all oE~ and 
m,nEN-{0}: 
I. o.n Enodes(t) ~ oEnodes(t) 

I. Except for the fact that the expression denoting the destination object in a send-expression can 
be nD in POOL-.1.-CF, which is not the case in the context-free syntax of POOL-T. 
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2. a.n Enodes(t)/\m <n ~ a.m Enodes(t) 
and label(t) is a function from nodes(t) into V such that if a.n Enodes(t) and 
a.(n + l)~nodes(t), and label(t)(a.j) = ~ for 0:r;;;;.j:r;;;;.n, then production 
(X0-+X1 • • • Xn) is in P. (Xo-+X 1 • • • Xn) is called the production applied at 
a. An element aEnodes(t) is called a lea/if a.l~nodes(t). A derivation tree is 
called complete if the labels of all the leaves are in T. Let a 1 • • • an be the 
sequence consisting of all the leaves of t, ordered lexicographically. Now 
yield(t) is the sequence label(a1) • • • label(an)-

3.2.3. DEFINITION. Let G = (T,N,S,P) be a context-free grammar. The 
language L ( G) generated by G is the set 

L(G) = {yield(t)lt is a complete derivation tree of G and label(t)(t:)=S} . 

3.3. Objects in POOL A system that executes a POOL-program can be 
decomposed into objects. An object possesses some internal data, and also a 
process, that has the ability to act on these data. Each object has a clear 
separation between its inside and its outside: the data of an object cannot be 
accessed directly by ( the process part of) other objects. 

Interaction between objects takes place in the form of so-called method-ca/ls. 
One object can send a message to another object, requesting it to perform a 
certain method (a kind of procedure). The result of the method execution is 
sent back to the sender. In this way one object can access the data of another 
object. However, because the object that receives a method call decides 
whether and when to execute this method, every object has its own responsibil­
ity of keeping its internal data in a consistent state. 

The programs of POOL are called units. A unit consists of a number of class 
definitions. A class is a description of the behaviour of a set of objects. All 
objects in one class (the instances of that class) have the same data domain, the 
same methods for answering messages, and the same local process ( called the 
object's body). 

If a unit is to be executed, a new instance of the last class defined in the 
unit is created and its body is started. The body of an object can contain 
instructions for the creation of new objects. This makes it possible for the first 
object to start up the whole system. 

When several objects have been created, their bodies may execute in parallel, 
thus introducing parallelism into the language. However, the sender of a mes­
sage always waits until the destination object has returned its answer (this 
mechanism is known as rendez-vous message passing). 

A number of standard classes are already predefined in the language ( e.g. 
Integer and Boolean). They can be used in any program without defining them, 
but they also cannot be redefined. 

The symbol nil denotes for each class a special object present in the system. 
Sending a message to such an object will always result in an error. The initial 
value of variables that are not parameters of a procedure is nil. 

Because numbers are also objects, the addition of 3 and 4 is indicated in 
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POOL by sending a message with method name add and parameter 4 to the 
object 3. 

We first give, in Section 3.4, the formal definition of POOL-_l_-CF. Section 
3.5 contains some remarks concerning this definition, and the relation with 
POOL-T and POOL-_l_. 

3.4. DEFINITION (POOL-_l_-CF). We assume that two finite sets, Lld and 
Uid, of syntactic elements are given. These sets correspond to the lower­
identifiers resp. upper-identifiers in POOL-T. Elements of Lld are strings start­
ing with a lower case letter, elements of Uid start with an upper case letter. 
We define: Id = LI d U UI d. Let N OE N be given. The set Int of integers in 
POOL-_l_ is 

Int= {-N0, .• • ,- l,O,l, ... ,N0 }. 

N O can not be w because that would lead to infinite sums and infinite merges. 
The set Boo/ of booleans is 

Boo/ = {true,false}. 

Now the context-free grammar G, which defines POOL-_l_-CF, is 

G = (T,N,U,P) 

where 

T = Id U Int U Boo/ U { root, unit,d~, var, body, end, method, routine, local, in, nil 

return,post,if,tben,else,fi,do,od,sel,les,or,answer,self,new,;, ·, - , ! , , , : } 

N = { U,RU,CDL,CD,MDL,MD,RDL,RD,PD, VDL, VD,SS,S,SE, 

GCL, GC,AN,MIL,E, CO,SN,RC,MC,EL, CI,MI,Rl, VJ} 

P : see Table 3.1 

In Table 3.1, optional syntactical elements are enclosed in square brackets ( '[' 
and']'). 

Syntax of POOL-_l_ 

No Description Syntactic Rule 

1 unit U-+RU 

2 root unit RU-+root unit CDL 

3 class definition list CDL-+CD [, CDL] 

4 class definition CD-+d~ CI[varVDL][RDL][MDL] 
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body SS end CI 

5 method definition list MDL-+MD [MDL] 

6 method definition MD-+method MI PD end MI 

7 routine definition list RDL-+RD [ RDL ] 

8 routine definition RD-+routine RI PD end RI 

9 procedure denotation PD-+([ VDL]) CI: [local VDL in] [ SS] 
return E [ post SS ] 

IO variable declaration list VDL-+ VD [, VDL] 

11 variable declaration VD-+VI:CI 

12 statement sequence SS-+S[; SS) 

13 statement S-+ VI~E 
IAN 
I if E then SS [ else SS] fi 
I do E then SS od 
I SE 
I SN 
I MC 
I RC 

14 select statement SE -+sel GCL les 

15 guarded command list GCL-+GC [ or GCL] 

16 guarded command GC-+ E[AN]then SS 

17 answer statement AN-+answer(MIL) 

18 method identifier list MIL-+MI [,MIL] 

19 expression E-+ VI 
I self 
I co 
I new 
I SN 
I MC 
I RC 
I nil 
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20 constant CO-+c (for c eBool U Int) 

21 send expression SN-+ E ! MI([EL]) 

22 method call MC-+Ml([EL]) 

23 routine call RC-+ CI · RI([EL]) 

24 expression list EL-+ E [ ,EL ] 

25 class identifier Cl-+ C (for CeUld) 

26 method identifier Ml-+ m (for m elld) 

27 routine identifier RI-+ r (for relld) 

28 variable identifier Vl-+ V (for velld) 

TABLE 3.1 

3.5. REMARKS. (numbers refer to productions) 
(1) In POOL-Ta unit can, besides being a root unit, also be a specification 

unit or an implementation unit. This makes it possible to group a set of 
class definitions together into a logically coherent collection and to 
specify a clear interface with other units. 

(2) The names of the classes defined in a unit must be different (similar 
context conditions in (5), (7), (9) and (IO)). There are 4 standard 
classes: Integer, Boolean, Read__Fi/e and Write__Fi/e. The definitions of 
these classes can be found in Section 3.9.3. The standard classes can be 
used in any program without defining them, but they also cannot be 
redefined. Elements of Int are instances of class Integer and elements of 
Boo/ are instances of class Boolean. 

(4) The class identifier following the end must be identical to the initial 
class identifier (similar context conditions in (6) and (8)). 

(8) Routines are procedural abstractions related to a class, rather than to 
an individual object. They can be called also by objects from another 
class. Two objects can call and execute a routine concurrently as though 
each has its own version of the routine. 

(9) The first variable declaration list is the formal parameter list, the second 
one contains the local variables of the method or routine. Only in the 
case of a method, a post-processing section may be present. The type of 
the return expression must be the class identifier in the procedure deno­
tation. 
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( 11) A strong typing mechanism is included in the language: each variable is 
associated to a class (its type) and may contain the names of objects of 
that class only. 

(13) The statement Vl+-E is called an assignment and executed as follows: 
First the expression on the right hand side is evaluated and its result (a 
reference to an object) is determined. Then the variable is made to con­
tain this reference. 
The statement do Ethen SS od is the classical while statement. 
A send expression, a method call and a routine call can occur as state­
ment as well as expression. If they occur as statement, the correspond­
ing expression is evaluated, and its result is discarded. So only the 
side-effects of the evaluation are important. 

(14) The select statement is the most complicated construct in the language. 
It specifies the conditional answering of messages. A select statement is 
executed as follows: 

All the expressions (called: guards) of the guarded commands 
are evaluated in the order in which they occur in the text. If any 
of them results in nil, an error occurs. 
The guarded commands whose expressions result in false are dis­
carded, they do not play a role in the remainder of the execution 
of the select statement. Only the ones with true (the open 
guarded commands) remain. If there are no open guarded com­
mands, an error occurs. 
Now the object may choose to execute the (textually) first open 
guarded command without an answer statement, or it may 
choose to answer a message with a method identifier which 
occurs in one of the answer statements of an open guarded com­
mand that has no open guarded command without an answer 
statement before it. In the last case it must select the first open 
guarded command in which the method identifier of the chosen 
message occurs. 
If the object has chosen to answer a message, this is done. 
After that in either case the statement after then is executed, and 
the select statement terminates. 

(17) An object executing an answer statement waits for a message with a 
method name that is present in the list. Then it executes the method 
(after initializing parameters). The result is sent back to the sender of 
the message, and the answer statement terminates. 

(19) The symbol self always denotes the object that is executing the expres­
sion itself. 
The expression new may only occur in a routine. When a new expres­
sion is evaluated, a new object of the class where the routine is defined, 
is created, and execution of its body is started. The result of the new 
expression is a reference to that new object. 

(21) When a send expression is evaluated, first the expression before the '!' 
is evaluated. The result will be the destination for the message. Then 
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the expressions in the expression list are evaluated from left to right. 
The resulting objects will be the parameters of the message. Thereafter 
the message, consisting of the indicated method identifier and the 
parameters, is sent to the destination object. The answer of the destina­
tion object is the result of the send expression. 

(22) An object may not send a message to itself. If an object wants to 
invoke one of its own methods, this can be done by means of a method 
call. A method call may not occur in a routine. 

3.6. Attribute grammars. The complexity of the language POOL does not allow 
for a translation into process algebra which is as straightforward as in the case 
of the toy language of Section 2. Several problems arise, e.g. how to establish 
the relation between a method call and the corresponding method declaration, 
the semantics of a new expression, etc .. 

The main tool we will use in order to manage this complexity is the formal­
ism of attribute grammars. This is not the place to give an extensive introduc­
tion into the theory of attribute grammars. For this we refer to e.g. [12, 14,21). 

Informally an attribute grammar is a context-free grammar in which we add 
to each nonterminal a finite number of attributes. For each occurrence of a 
nonterminal in a derivation tree these attributes have a value. With each pro­
duction rule of the context-free grammar we associate a number of semantic 
rules. These rules define the values of the attributes. Some of the attributes are 
based on the attributes of the descendants of the nonterminal symbol. These 
are called synthesized attributes. Other attributes, called inherited attributes, are 
based on the attributes of the ancestors. 

In the theory of abstract data types one presents specifications of the stack, 
Petri net people model the producer/consumer problem, and in the field of 
communication protocols one verifies the alternating bit protocol. The example 
one always encounters in an introduction into the theory of attribute gram­
mars is the one, first presented in [21 ], in which the binary notation for 
numbers is defined. We do not want to break with this tradition, and will also 
give the famous example. 

3.6.1. ExAMPLE. We start with a context-free grammar that generates binary 
notations for numbers: the terminal symbols are ·, 0, 1; the nonterminal sym­
bols are B, L and N, standing respectively for bit, list of bits, and number; the 
starting symbol is N; and the productions are 

B-+0 j l 

L-+B ILB 

N-+L I L·L 

Strings in the corresponding language are for instance 'O', '010', '0.010' and 
'1010.101'. Now we introduce the following attributes 
I. Each B has a 'value' v (B) which is a rational number. 
2. Each B has a 'scale' s(B) which is an integer. 
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3. Each Lhasa 'value' v(L) which is a rational number. 
4. Each Lhasa 'length' l(L) which is an integer. 
5. Each Lhasa 'scale' s(L) which is an integer. 
6. Each N has a 'value' v (N) which is a rational number. 

These attributes can be defined as follows: 

Syntactic Rules Semantic Rules 

B-+0 v(B) = 0 

B-+l v(B) = 2s(B) 

L-+B v(L) = v(B);s(B) = s(L);l(L) = I 

s(L2) = s(L1)+ 1; /(L1) = /(L2)+ I 

v(N) = v(L);s(L) = 0 

TABLE 3.2 
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(In the fourth and sixth rules subscripts have been used to distinguish between 
occurrences of like nonterminals.) If one looks for some time at this equations, 
one sees (hopefully) that for each complete derivation tree t with label(t)(£)=N 
there is a unique valuation of the attributes such that the semantic rules hold. 
First one can compute the values of the attribute /, starting from the leaves of 
the tree (/ is a synthesized attribute). Next one can compute the attribute s 
starting from root (s is an inherited attribute). Finally one computes, starting 
from the leaves, the synthesized attribute v. The v attribute of the root nonter­
minal gives the value of the string generated by the tree. 

Below we give a formal definition of an attribute grammar. There are many 
(often essentially different) definitions possible. The following one is a 
simplified version of the definition presented in [14). 
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3.6.2. DEFINITION. The elements of an attribute grammar Gare: 
1. A context-free grammar G0 = (T,N,S 0 ,P). 
2. A semantic domain (or set of data types) D = <0,cl>>, where O is a 

finite set of sets and cl> is a set of functions of type 
V1 X · · · X Vm-+Vm+I for m~O and V;eO. In the case m =O, cl> can 
contain elements of V (for VeO). We demand that for each VeO there is 
a veVwith vecl>. 

3. An attribute description consisting of 
a. Two finite disjoint sets S-Att and 1-Att of synthesized or s-attributes 

resp. inherited or i-attributes; Att = S -Att U J -Att is the set of attri­
butes. 

b. For XeN, S(X) and J(X) are subsets of S-Att resp. 1-Att; A (X) = 
S(X)UJ(X) is the set of attributes of X. We demand J(S0) = 0. 

c. For each aeAtt, V(a)eO is the (possibly infinite) set of attribute 
values of a. 

4. First some intermediate terminology: 
For each production rule p: X 0-+X1 • • · Xn, we define the set A (p) of 
attributes of p, by 

A(p) = {<a,J>IO~j~n,aeA(Xj)} 

Intuitively <a,J> is an attribute of the occurrence of x1 on the j th posi­
tion inp. Furthermore the sets INT(p) and EXT(p) of internal resp. exter­
nal attributes of p are defined by 

INT(p) = { <a,J> l(j =O/\aeS(X0))V(l~J~n/\aeJ(Xj))} 

EXT(p) = { <a,J> l(j =O/\aeJ(X0))V(l~j~n/\aeS(X1))} 

A semantic rule for p is a string of the form 

<a,J> = /( <a1,k1>, ... ,<am,km>) (*) 

with <a,J>elNT(p), m~O, <a;,k;>eEXT(p) for l~i~m, and feel> 
is a function from V(a1)X · · · X V(am) into V(a). 
Now we continue the definition: 
For each p eP, R (p) is a finite set of semantic rules for p. We demand 
that for each p eP and <a,j > eJNT(p ), R (p) contains exactly one 
semantic rule. 

The definition above gives the 'syntax' of attribute grammars. To define the 
'semantics' of an attribute grammar, we need again some terminology: 

3.6.3. DEFINITION. Let G be an attribute grammar. Let t be a derivation tree 
of the corresponding context-free grammar. The attributes of t are defined by 

A (t) = { <a,a> laenodes(t),aeA(label(tXa))} 

(the notation A(.) is clearly overloaded, but always means 'attributes of ... ' ) 
A decoration of t is a function 
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val: A (t)➔{ v 13aEA (t): v E V(a)} 

such that for each <a,a> EA (t), val(a,a)E V(a). 
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Suppose aEnodes(t) and p: Xo➔X1 • • • Xn is a production applied at a. If 
R (p) contains a semantic rule (*) (see Definition 3.6.2), then the string 

<a,a.j> = f(<a 1,a.k 1>, ... ,<am,a.km>) 

is called a semantic instruction of t. 

(**) 

3.6.4. DEFINITION. A decoration val of t is called a correct decoration if for 
each semantic instruction (**) of t 

val(a,a.j) = f(val(a 1,a.k 1), .. . ,val(am,a.km)) 

(this is a serious equality, not a string!) 

3.6.5. It follows from the Definitions 3.6.2 and 3.6.3, that for each attribute 
<a,a> there is exactly one semantic instruction in R (t) of the form 
<a,a> = · · · . This means that each attribute of t is defined by exactly one 
equation in the system of equations R (t). A sufficient condition to solve this 
system is that the system of equations contains no circularities. In [21], an 
algorithm is given which detects for an arbitrary attribute grammar whether or 
not the semantic rules can possibly lead to circular definition of some attri­
butes. All the attribute grammars we will employ, contain no circularities, and 
therefore there is for each complete derivation tree precisely one correct 
decoration. This decoration can be computed if the functions which occur in 
the semantic rules are computable. 

3. 7. State Operator (SO). In [8], state operators A;;' are introduced. Here m is 
member of a set M, the set of objects. These objects are very much like the 
objects in POOL: they posses some internal data, and there is a local process 
which can act upon these data. The object can block actions of the process, or 
rename then, depending on the data. A;;'(x) is a process corresponding to 
object m in state a, executing process x. We can visualize this as in Figure 3.1. 

m 

00 
FIGURE 3.1 

Below we give the formal definition of the state operators. 
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3.7.1. DEFINITION. Let Mand~ be two given sets. Elements of Mare called 
objects, elements of~ are called states. Suppose two functions act and e.lJ are 
given 

act: A XMX~-+A.,,s (action function) 

efj: A XMX~-~ (effect function) 

Now we extend the signature with operators 

A::': P-+P (for m EM, aE~) 

and extend the set of axioms by (a EA; x,y EP; m EM; aE~) 

A::'(T) = 'T S02 

A::'(ax) = act (a,m, a) ·A~(a,m,a)(x) S03 

A::'(Tx) = T·A::'(x) S04 

A::'(x +y) = A::'(x)+A::'(y) S05 

TABLE 3.3 

The state operators can be defined in terms of the operators and constants of 
ACPT + RN (see [25)). 

3.8. Parameters of the axiom system. We will relate to POOL-.1. programs 
specifications in the signature of ACP +RN+ CH+ SO. The first thing we have 
to do is to specify the parameters of the axiom system. We will not give a 
complete list of all the atomic actions. The alphabet A of atomic actions sim­
ply consists of all the atomic actions we mention. 

3.8.1. Objects. Let N 1 be a fixed natural number. N 1 gives an upperbound on 
the number of active (or non-standard) POOL objects which can be created 
during the execution of a POOL-.1. program. The set A Obj contains references 
to these potential objects. 

A 

A Obj = {0, 1, ... ,N 1} 

The hats are needed to distinguish between the names of the non-standard 
objects and the names of the standard objects which are always present in the 
system: 

SObj = /ntUBoo/U{nil}U{input,output}. 

The set Obj=SObjUAObj gives the domain of values of variables in POOL­
.1. programs. It is also the value domain of the chaining operator we will 
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employ; this means that the alphabet contains actions ja,J,a, etc. for aEObj). 

3.8.2. Communication. Objects in POOL communicate by sending frames to 
each other. These frames are built up as follows 

destination type of message message sender 

The field 'sender' contains a reference to the object which sends the message; 
the field 'destination' contains a reference to the object which reads the mes­
sage. There are two types of messages: 
me: The sender asks the destination to perform a method-call. The field 'mes­

sage' contains the name of the method together with the actual parame­
ters. So an me-frame looks as follows 

(a,mc,m (a1 , ... ,an),/1) (3.8.2.1) 

an: After an object has executed a method call, an an-frame is sent back to 
the object which originated the method call. The field 'message' contains 
the answer (a reference to an object): 

(/1,an, y,a) (3.8.2.2) 

Let N 2 be a fixed natural number. N 2 gives an upperbound on the length of a 
variable declaration list of a procedure denotation. The set '!J1t of messages that 
occurs in a method call frame is: 

'!Jlt = {m(a1,••·,an)lmELld,0,;;;;;n,;;;;;N2,a1, ... ,anEObj} 

and the set '?f" of frames is: 

'?f" = {(a,mc,d, /1) I a,{JEObj,d E'!Jlt} U {(/1,an, y,a) I a,/1, yEObj} 

(3.8.2.3) 

(3.8.2.4) 

For each frame /E6J, we have atomic actions read(f), send(f) and comm(f). 
The communication function on these actions is given by 

y(read(f),send(f)) = comm(f) for /E'?f° 

The set J of forbidden actions that will be encapsulated is 

J = {read(f),send(f) 1/E~ 

(3.8.2.5) 

(3.8.2.6) 

3.8.3. Renamings. A POOL object is fully determined by its class and its 
name. For each class we will specify a process that gives the general behaviour 
of the instances (the objects) of that class. Now the only thing we have to do 
in order to define the process corresponding to a specific object, is to give a 
renaming function which renames the actions of the process which is related to 
the class of that object. This renaming function gives the object its identity, a 
name. The frames which are sent and received by an object, contain the name 
of that object. But since at the level of a class this name is not known, the pro­
cess related to a class contains 'incomplete' read and send actions: actions 
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rd(if) and sn(if), where if is an incomplete frame in which the field that gives 
the identity of the object is absent. Actions of the form rd (if) and sn (if) do 
not communicate. 
For each aEObj we define a renaming function/a by: 

fa(sn(/J,mc,m(a1, ••• ,an))) = send(/J,mc,m(a1, ••• ,an),a) 

fa(rd(mc,m (a1 , ... ,an),{J)) = read(a,mc,m (a1 , .. . ,an),/J) 

fa(sn(/J,an, y)) = send(/J,an, y,a) 

fa(rd(an,{J, y)) = read(a,an,{J, y) 

(3.8.3.1) 

(3.8.3.2) 

(3.8.3.3) 

(3.8.3.4) 

If an object a executes a self expression, the corresponding process on class 
level contains an alternative composition of actions eqs(/J) for /JEObj. The fol­
lowing equations for the renaming functions make that, for a specific instance 
of the class, the action which will be actually performed is the right one. 

{

skip if fJ = a 
fa(eqs(/J)) = 8 otherwise (3.8.3.5) 

If an object a answers a method call, the result of the return expression in the 
procedure denotation has to be sent back to the sender of the method call. To 
model this we introduce renaming functions ga . The function ga interprets a 
t/J action as a sn (a,an, fl) action: 

ga(t/J) = sn(a,an,{J) (3.8.3.6) 

3.8.4. Process Creation. For dEq]{,XAObj we introduce atomic actions 
create(d), create"(d) and create(d). create(d) stands for: ask for the creation 
of a process on basis of initial information d. create• (d) means: receive a 
request for creation. create(d) indicates that process creation has taken place. 

Elements of qJc, (see Definition 3.2.2) play the role of formal variables in the 
process algebra specification that we will construct in order to give the seman­
tics of POOL-...1.. . In general the process denoted by the first parameter of a 
create action will give the behaviours of a certain class, and the second param­
eter gives the name of the instance of that class to be created. 

We extend the communication function by 

y(create(d), create"(d)) = create(d) (3.8.4.1) 

Create actions are not involved in any other proper communication. Let 

K = {create(d),create"(d)ldEq]{,XAObj} (3.8.4.2) 

Actions from K will be encapsulated. 
Our way of dealing with process creation in POOL is inspired by the 

mechanism described in [10). We have chosen however not to use the process 
creation operator E ♦ presente.d there, because of the lack of proof rules for 
this operator. 
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3.8.5. State Operator. In the semantical description of the toy language of Sec­
tion 2 the state of the memory was a parameter of the formal variables in the 
specification. In principle this approach can also be followed in the case of the 
language POOL-..L. But since in POOL objects of a different class have, in 
general, different variables; and the language contains recursion, which leads 
to the creation of new instances of variables, the memory state of a POOL 
object can become rather complicated. For this reason we prefer to keep track 
of the memory state in a different way: namely by means of a state operator. 
For each variable v EUd and value aEObj, ;\~ represents a memory cell with 
name v in state a. A value P can be assigned to variable v by means of an 
atomic action ass(v,P): 

(3.8.5.l) 

If in the evaluation of an expression the value of a variable v is needed, this 
can be expressed at the level of process algebra by means of an alternative 
composition of actions eqv(v,P). The following equation makes that in an 
environment with variable cell v, the correct action will be actually performed: 

{

skip · ;\~(x) if a= /1 
;\~(eqv(v,P)·x) = 8 otherwise (3.8.5.2) 

Notice that in the case of nested A~ operators, actions ass(v,P) and eqv(v,/3) 
interact with the innermost ;\~ operator. This is relevant for nested method 
calls, etc.. A 

The initial object, which starts up the system, has name 0. An object 
counter counts the number of objects which have been created. It also provides 
an environment in which new objects obtain new names. An error occurs when 
more than N I objects have been created. For n EN we have 

{

skip ·;\~°'ft'(x) if a=n /\n <N 1 

;\~ounter(create(X,a)·x) = error·;\~°'f{e'(x) if n =N 1 (3.8.5.3) 

8 otherwise 

3.8.6. Formal Variables. The set E of formal variables of the process algebra 
specifications related to POOL-..L consists of the elements of 0L (as defined in 
Section 3.2.2), possibly sub- and superscripted with elements of Lid and Obj*. 
Formally we have: 

E = 0L U 0LXLld U 0LX(Obj*) U 0LXLldX(Obj*) (3.8.6.1) 

We define node : :::-0t to be the projection function which relates to each 
variable the corresponding element of '!JL. 
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3.8.7. Note. From now on, when we speak about a POOL-_l_ program, what 
we mean is an extended program, in which the class definition list begins with 
the class definitions of the standard classes (see Section 3.9.3). 

3.9. Attribute description. Table 3.4 contains a list of all the attributes we will 
employ for the semantical description of POOL-_l_ . In Section 3.9.l we give a 
detailed description of these attributes. Section 3.9.2 contains all the semanti­
cal rules which were not already given in Section 3.9. l, and in Section 3.9.3 the 
standard classes are defined. 

Name .1 D .. Attribute 
Nonterminals 1 s escrzptwn 

attr. type 

M Key variable '?)l, N-{U} 
id s Identifier Lid {Vl,RI,MI,CI, 

VD,RD,MD,CD} 
vd s Variable declarations Lid* {VDL} 
pd s Procedure declaration '?)r,XN {PD,RD,MD} 
rd s Routine declarations Lld-+'?)l,XN {RDL,CD} 
md s Method declarations Lld-+'?)l,XN {MDL,CD} 
cd s Class declarations Uld-+'?)l, {CDL} 
rdc s Routine decl. of a CDL Uld X Lld-+'?)l,X N {CDL} 
mdc s Method decl. of a CDL U/dXLld-+'?)l,XN {CDL} 
cdf Class definitions Uld-+'?)l, N-{U,RU} 
rdf Routine definitions UldXLld-+'?)l,XN N-{U,RU} 
mdf i Method definitions UldXLld-+'?)l,XN N-{U,RU} 
class i Class Uld N-{U,RU,CDL,CD} 
I s Length N {EL} 
mis s Method ident. set Pow(Lld) {MIL,AN,GC} 
misl s Method ident. set list (Pow(Lld))* {GCL} 
peq s Process equations Sets of eq. over N-{U,VI,RI,Ml,CI, 

ACP+RN+CH+SO VD,VDL,RD,RDL, 
with variables in E: MD,MDL} 

spec s Specification Sets of eq. over N-{VI,Rl,MI,CI, 
ACP+RN+CH+SO VD,VDL,RD,RDL, 
with variables in E MD,MDL} 

TABLE 3.4 
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3.9.J. REMARKS. 

I. We make the names of the nodes in a derivation tree explicit by means of 
an inherited attribute [.]. With each node in a derivation tree we will 
relate a number of process algebra equations with variables in E:. The 
values of the attribute [.] (which are elements of E:) will be the 'most 
important' or 'key' variables in this specification. The semantic rules for 
this attribute are as follows 

For production u-Ru the rule is [RU] = I 
If X o-X 1 • • • Xn is a production with X o=I= U, and if X; EN for cer­
tain J .,;;;; ..;;;n then we have the rule [X;] = [X 0].i. 

2. The value of synthesized attribute id is (one of) the identifier(s) generated 
by the corresponding nonterminal. 

3. Attribute vd collects variables declared in a variable declaration list. 
4. Attribute pd gives the information concerning a procedure declaration that 

we need: a formal variable denoting the process related to the procedure, 
and the number of parameters of the procedure. 

5. The attribute rd gives for each routine in a routine definition list the 
essential information: a process variable and the number of parameters. 
The value of rd is arbitrary for elements of Lid which are not the name of 
a routine. 

6. The meaning of attribute md is similar to the meaning of rd. 
7. The attribute cd gives the essential information for each class definition in 

a class definition list: the process corresponding to the general behaviour 
of that class. The value of cd is arbitrary for elements of Uld which are 
not present in the class definition list. 

8. Attribute rdc is like rd but now for a list of class definitions. 
9. Attribute mdc is like md but now for a list of class definitions. 
10. All the information that is gathered in the s-attribute cd is distributed 

over the parse tree by means of the i-attribute cdf: 
For production RU-root unit CDL we have the rule cdf(CDL) = 
cd(CDL). 
If X 0-X1 • · • Xn is a production (X0=/=U,RU), and if X;EN forcer­
tain J.,;;;;..;;;n, then cdf(X;) = cdf(Xo)-

11. Attribute rdf is like attribute cdf 
12. Attribute mdf is like attribute cdf 
13. In order to define the semantics of, for example, a new expression, we 

need to know in which class definition this expression occurs. Therefore 
we define an i-attribute class with domain Uld: 

For production 

CD-class CI 1 [varVDL J[RDL ][MDL )body SS end C/2 

we have rules 

[ c/ass(VDL)=J [ c/ass(RDL)=J [ class(MDL)=Jclass(SS)=id(CI 1) 

If X 0-X1 • • • Xn is a production (X0=/=U,RU,CDL,CD), and if 
X;EN for certain 1-.;;;;..;;;n, then c/ass(X;) = c/ass(X0). 
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14. In the semantic rules for the send expression we need information about 
the length of the expression list. This information is contained in attribute 
I. 

15. The attribute mis gives the method identifiers which occur in the method 
identifier list of an answer statement. The attribute is used to define the 
semantics of the select statement. 

16. The attribute mis/ gives a list of the method identifier sets which occur in 
the answer statements in a guarded command list. 

17. The value of the attribute peq is a set of equations in the signature of 
ACP+RN+CH+S0 with variables in :E:. We will define the attribute in 
such a way that for each nonterminal X: 

(Y=ty)Epeq(X) ~ node(Y)=[X]. 

Furthermore we take care that for each nonterminal X, peq(X) never con­
tains two equations for the same variable. These conditions make that the 
union for all the nodes in a derivation tree of the values of attribute peq 
never contains two equations for the same variable. 

18. The s-attribute spec collects the values of attribute peq. If w is a POOL­
program, then the value of the attribute spec belonging to the root of the 
derivation tree of w (which has label CJ) is the process specification that 
we relate to w. The process expression associated by mapping SPECSc 
tow is <[RU] lspec(U)>. We have the following semantic rules: 

Let X0 ...+X1 · · · Xn be a production such that X 0=pU has attribute 
spec. Let S C {I, ... ,n} be the set of indices i for which X; has an 
attribute spec. Then: 

spec(Xo) = peq(Xo)U U spec(X;) 

For production U...+RU we have: 

spec(U) = sp~c(RU) U 

ieS 

U {(X=6)1XE:E: . and there is no equation for X in spec(RU)}. 

3.9.2. Semantic rules. In case a production contains an optional syntactical 
element, we will often use a fraction notation in the semantic rules: the 
numerator corresponds to the semantic rule for the production with the 
optional element, the denominator corresponds to the production without the 
optional element. In~ of a semantic rule peq(X) = {Ei,E2, .•• }, we only 
write down the equations E 1,E2 , ..• !!! Numbers refer to the numbering of pro­
ductions in Table 3.1. 

VI-+v (vELld) 

id(Vl) = V 

Rl-+r (rELld) 

(28) 

(27) 
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id(RI) = r 

Ml-+m (m ELld) 

id(MI) = m 

Cl-+C (CEUld) 

id(CI) = C 

ELo-+E [, EL1] 

l(EL0) = I[+ /(EL 1)] 

[ELo] = [El[· [EL 1] ] 
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(26) 

(25) 

(24) 

0 We state again that the equation for [EL0] is not to be considered as a 
semantic rule defining attribute (.], but as an element of the set defining attri­
bute peq. The equation says that execution of an expression list consists of 
sequential execution of all the expressions from left to right. 

RC-+Cl·RIO 

Let 

rdf (RCXid(Cl),id(RJ)) = (X, n) 

then 

(RC] = skip · X 

(23.1) 

0 Process X corresponds to execution of routine id(RI) of class id(CI). In a 
correct POOL-...L program n will be 0. The skip action is needed in order to 
keep the specification guarded. 

RC-+Cl · RI (EL) (23.2) 

Let 

rdf (RCXid(Cl),id(RI)) = (X, n) 

then 

(RC] = (EL]>>>a,, ... ,a. Xa,, ... ,a. 

0 First the expressions of the parameter list are evaluated. Thereafter the rou­
tine call is executed, with the actual parameters instantiated. Process X a, , ... ,a. 

corresponds to execution of routine id(RJ) of class id(Cl) with actual parame­
ters a1, ... ,an. In a correct program the number of actual parameters equals the 
number of formal parameters: /(EL) = n. 

MC-+MIO 

Let 

mdf (MCXclass(MC),id(Ml)) = (X, n) 

(22.1) 
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then 

[MC] = skip · X 

0 Method calls are treated in exactly the same way as routine calls. 

MC-MI(EL) 

Let 

mdf(MCXclass(MC),id(MI)) = (X, n) 

then 

[MC] = [EL]>>>a,, ... ,a. Xa,, ... ,a. 

SN-E!MIO 

Let 

id(Ml) = m 

then 

[SN] = [E] >» a [SN]a 

{

error 
[SN]a = sn(a,mc,mO)· ~ rd(an,/3,a)·tp 

fleObj 

if a=nil 

otherwise 

(22.2) 

(21.1) 

0 First the expression on the left is evaluated. If the result is nil an error 
occurs. Otherwise the result of the expression is the destination of the message. 
Now the message is sent and the answer awaited. This answer (if it comes) is 
the result of the send expression. In a correct POOL program the type of 
expression E will be a class that contains a method m without parameters. 

SN-E ! MI (EL) 

Let 

id(Ml) = m 

/(EL) = n 

then 

[SN] = [E] »> a [SN]a 

[SN]n0 = error 

and for a*nil: 

(21.2) 

[SN]a =[EL]>>> a,, ... ,a.sn (a,mc,m (a1 , ... ,an))· ~ rd(an,/3,a)-j/3 
/le Obj 

0 Like 21.1 but now with parameters. 
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co-c (cEBoo/Ulnt) 

[CO) = fc 
E-+Vl 

Let 

id(Vl) = V 

then 

[E) = ~ eqv(v,a) · fa 
a EObj 

0 Cf. Equation 3.8.5.2. 

£-+self 

[E) = ~ eqs(a)·ta 
a EObj 

0 Cf. Equation 3.8.3.5. 

E-+CO 

[E) = [CO) 
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(20) 

(19.1) 

(19.2) 

(19.3) 

(19.4) 

Let 

cdf(EXclass(E)) = X 

then 

[E) = ~ create(X, a) · ja 
a EAObj 

0 Process creation takes place in an environment (cf. Equation 3.8.5.3) that 
takes care of the naming of new objects, and always allows only one of the 
actions create(X, a) to occur. See also the definition of attribute peq(RU) at the 
end of this section. 

E-+SN (19.5) 

[E) = [SN) 

E-+MC (19.6) 

[E) = [MC) 

E-+RC (19.7) 

[E) = [RC) 

£-+nil (19.8) 

[E) = foil 
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MILo-MI[, MIL1] 

Let 

id(Ml) = m 

mdf (MILo)(class(MILo),m) = (X n) 

then 

mis(MIL0) = {m}[ Umis(M/L 1)] 

Process algebra semantics of POOL 

(18) 

[MILolm = ~ rd(mc,m(a1, .. . ,an),a) · pg.(Xa, , ... ,a) 
a,, ... ,a.,aeObj 

] [M/L1l;,; ifm-~m 
[MILo m = 

8 
---r-

O For them which occur in the method identifier list, [M/Lolm gives the pro­
cess that describes the answering of a message m: first a method call with 
identifier m is read, then the method is executed, and the result is returned to 
the sender (cf. Equation 3.8.3.6). Form not in MIL0 , [MIL 0lm = 8. 

AN-answer(M/L) 

mis(AN) = mis(M/L) 

[ANlm = [MILlm 

[AN] = ~ [MILlm 
m eUd 

(17) 

0 The variables [ANlm will be needed for the description of the select state­
ment. 

The semantic rules for the nonterminals MIL, AN, GC, GCL and SE are 
rather complicated. This is because the semantics of the select statement is to a 
large extent not compositional: it is not defined in terms of the semantics of 
the answer statements which occur in the guarded commands, but in terms of 
the individual method identifiers of these answer statements. The formalism of 
attribute grammars has difficulties in dealing with such a case. It seems that 
the 'conditional answer statement', which replaces the select statement in a 
more recent version of the POOL language, does have a compositional seman­
tics. Moreover the semantical description of this construct will be much shorter 
than the one of the select statement. 

GC-EthenSS (16. l) 

mis(GC) = 0 

[GC] = [E] 

[ GC], = skip · [SS] 

0 The prefix skip in the equation for variable [ GC], is needed because we 
want to give a different semantics to the following two select statements: 
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sel 

true answer(m 1) then x +---1 or 

true answer(m 2) then x +-2 

les 

and 

sel 

true answer(m 1) then x +---1 or 

true then answer(m 2) ; x+---2 

les 
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If the environment offers a method call with method identifier m 1, but no 
method call with method identifier m 2 , then the first select statement will 
answer m 1 • The second select statement however may choose to execute the 
second guarded command, which will result in a deadlock. 

GC-E AN then SS (16.2) 

GCL-GC 

Let 

then 

mis(GC) = mis(AN) 

[GC] = [E] 

[ GClm = [ANlm . [SS] 

mis(GC) = M 

misl(GCL) = (M) 

[GCL] = [GC] 

[ GCL]a( = 

[GCL]!:, 

{/;

[GC]( if a=trueAM= 0 

otherwise 

{

[GC]( if a=trueAM= 0 

[GC]m if a=trueAmEM 

/; otherwise 

0 See remark about production 14. 

GCL0-GC or GCL 1 

Let 

(15.1) 

(15.2) 
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mis(GC) = Mo 

misl(GCLi) = (M1, ... ,Mn) 

then 

misl(GCLo) = (Mo,M1, ••·•Mn) 

(GCLo] = (GC] ·(GCL 1] 

{

(GCl« 
( GCLot'•·····a· 

· l GCL 11:•····· .... 

( GCLoJ::;--···a· = ( GC]m 
{

(GC]« 

(GCL1J:;·····a· 

0 See remark about production 14. 

SE-sel GCL les 

Let 

misl(GCL) = (Mi, ... ,Mn) 

then 

if ao =true/\M o = 0 

otherwise 

if ao=true/\M0 = 0 

if £ro = true/\m EM o 

otherwise 

(SE] = (GCL] »>a,, ... ,a,lSEla,, ... ,a. 

(14) 

(SE] = ellor if (3i:a,-= nil)V""i:a,•= false) a,, ... ,a.. \" 

(SEla,, ... ,a.. ~ (GCL]:;·····a· otherwise 
mel.ldU{«} 

0 Execution of a select statement starts with evaluation of the expressions in 
the guarded commands. If one expression yields nil or all expressions yields 
false an error occurs. The intuitive meaning of variable 

(GCLJ:•· ····a· 

is: Execute the first open guarded command without an answer statement, 
assuming that evaluation of the expressions yields values a 1, .•. ,an. If there is 
no open guarded command without an answer statement the result is 8. 
Analogously, form ELld, the intuitive meaning of variable 

(GCLJ:; ·····a· 

is: Execute the first open guarded command without an answer statement or 
with m in the method identifier list of the answer statement. 

s- Vl+-E 

Let 

(13.1) 
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id(VI) = V 

then 

[SJ = [E]~>a ass(v,a) 

0 Cf. Equation 3.8.5.1. 

S➔AN 

[SJ = [AN] 

S➔if E thenSS 1 [ elseSS2 ]fi 

[SJ = [El>>> a [Sla 

[SS 1] if a=true 

[Sla = 
[SS2] 

if a=false --
skip 

error otherwise 

S ➔do Ethen SS od 

s➔sE 

S➔SN 

[SJ = [E] >~ a [S1a 

{

[SS] ·[S] 

[S] 11 = skip 
error 

[S] = [SE] 

if a=true 
if a=false 
otherwise 

[SJ = [SN]>>>( ~ J,a) 
a e Obj 
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(13.2) 

(13.3) 

(13.4) 

(13.5) 

(13.6) 

0 The send expression is evaluated and afterwards the result is discarded. 

[SJ = [MC]>~( ~ J,a) 
aeObj 

[SJ = [RC]>>>( ~ J,a) 
aeObj 

SSo➔S[;SS1] 

[SSol = [S][ · [SS 11] 

VD➔VI:CI 

(13.7) 

(13.8) 

(12) 

(11) 
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id(VD) = id(VI) 

VDLo-VD [, VDL1] 

vd(VDL0) = (id(VD))[ •vd(VDL 1)] 

0 Here * denotes concatenation of lists. 

PD-([ VDL 1 ])Cl: [local VDL 2 in] [SS 1 ] returnE[postSS 2 ] 

Let 

vd(VDLi) = (v1,••·•vn) 

vd(VDL2) = (w1 ,••·• wk) 

(n =O or k =O if there is no VDL 1 resp. VDL 2) 
then 

pd(PD) = ([PD] n) 

(10) 

(9) 

[PDla,, ... ,a. =A:: 0 ••• 0 A:: 0 A:'a 0 • •• 0 A:0( [ [SS 1l ][E)[ ·[SS 21]) 

0 Process [PDla, , ... ,a. corresponds to execution of the procedure with parame-
ters ai, ... ,an. 

RD-routine RI I PD end RI 2 

id(RD) = id(RI 1) 

pd(RD) = pd(PD) 

RD Lo-RD [ RDL 1 ] 

rd(RDL1) 
rd(RDL0 ) = d {pd(RD)lid(RD)} 

r, 0 

(8) 

(7) 

0 We use the notation for function modification of Section 2.4.1. rd0 is an 
arbitrarily chosen element out of the domain of attribute rd. We use similar 
conventions in the semantic rules for productions 5,4 and 3. 

MD---+methodM/ 1 PDendM/2 

id(MD) = id(Mli) 

pd(MD) = pd(PD) 

MDLo---+MD [ MDL 1 ] 

md(MDL 1) 
md(MDL0) = mdo {pd(MD)lid(MD)} 

CD---+classC/ 1 [varVDL] [RDL] [MDL]bodySSendC/2 

Let 

vd(VDL) = (v1, ••· ,vn) 

(6) 

(5) 

(4) 
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then 

id(CD) = id(Cli) 

md(CD) = md(MDL) 
mdo 

rd(CD) = rd(RDL) 
rd0 

(CD] = X~o .. . oX~((SS]) 

CDLo-CD [, CDL1] 

cd(CDL0 ) = cd(C:Li) {(CD]lid(CD)} 
C 0 

mdc(CDL0) = mdc(~DLi) {md(CD)lid(CD)} 
m c0 

rdc(CDL 1) 
rdc(CDL0) = ..1 {rd(CD)!id(CD)} 

ruc0 

(CDL1] 
(CDLol = (CD] 

0 Process [CDL0] gives the behaviour of the last class defined in CDL 0 • 
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(3) 

RU-root unit CDL (2) 

Let 

then 

cd(CDLXInteger) = I 
cd(CDLXBoolean) = B 

cd(CDLXReadJ'i/e) = R 

cd(CDLXWriteJ'ile) = W 

e = {cd(CDLXC)ICEUld} 

A CT/VE = II ( ~ create• (X, a)· PJ. (X)) 
ae.AObj X ee • 

[RU] = X~ounter 0 aJ0 aK(create((CDL],O)IIACTIVEIISTANDARD) 

0 The environment in which a POOL-..L unit is to be executed consists of 
encapsulation operators aJ and aK (cf. Equations 3.8.2.6 and 3.8.4.2), and the 
object counter (cf. Equation 3.8.5.3). In the scope of these operators we have 
the 'sleeping' active objects and the standard objects ( except for nil, which is in 
our semantics a kind of virtual object). Now execution of a POOL-..L unit 
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starts with an action that orders for the creation of an instance of the last class 
defined in the unit. 

3.9.3. Standard classes. In POOL-T there are a number of classes that are 
predefined. Four of them, the classes Integer, Boolean, Read__Fi/e and 
WriteJile, are, although in simplified form, also present in POOL-..L. The 
standard classes can, to a large extent, be defined in terms of POOL-..L. To 
make a complete definition possible, we extend the language POOL-..L with a 
new construct: 

E-+acp t pea 

for each closed term t in the signature of ACP. The corresponding semantic 
rule is 

peq(E) = {(£) = t} 

The standard classes are described by the following class definitions: 

3.9.3.1. The Booleans. This is a class with as only objects true, false and the 
virtual nil. The methods of the class generate an error if a parameter is nil. 
Surprisingly, we can describe this class completely in terms of POOL itself. 

class Boolean 

var result : Boolean 

method or ( b : Boolean ) Boolean : 

if self then 

fi 

if b then result+-true else result+-true fi else 

if b then result+-true else result+-false fi 

return result 

end or 

method and ( b ; Boolean ) Boolean ; 

if self then 

fi 

if b then result+-true else result+-false fi else 

if b then result+-false else result+-false fi 

return result 

end and 

method not O Boolean : 
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if self then result+--false else result+--true fi 

return result 

end not 

method equal ( b : Boolean ) Boolean : 

if self then 

fi 

if b then result +--true else result +--false fi else 

if b then result+--false else result+--true fi 

return result 

end equal 

body do true then answer( or,and,not,equal) od 

end Boolean 
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3.9.3.2. The Integers. This class contains all the integers from Int (plus nil). 
The methods of the class generate an error if the parameter is nil. In case of 
overflow the result of a method call is nil (so, for example sum(N0 ,N0 ) = nil). 
Another option would have been to generate an error. We only give the 
definition of the method add. The other method definitions are similar. 

class Integer 

method add ( i : Integer ) Integer : 

return acp ~ eqs(a)( ~ eqv(i,/J)·jsum(a,/3) + eqv(i,nil)·error) pea 
aelnt /Jelnt 

end add 

etc., etc. 

body do true then answer(_add,,mul,div,mod,power,minus, 

less,less ....or .....equal,equal,greater,greater ....or ....equal) od 

end Integer 

3.9.3.3. The classes Read_Fi/e and Write_Fi/e. In POOL-T it is possible to 
open new input and output files. These options are not present in POOL-..L: 
there is only one object of class ReadJ'ile (the object input), and one object of 
class WriteJ'ile (the object output). These objects communicate with the exter­
nal world by means of actions input(d) and output(d), for dEintUBool. 

class Read _Fife 
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rootine standard _in O Read _File : 

return acp finput pea 

end standard _in 

method read_int O Integer : 

return acp ~ input(a)· fa pea 
aelnl 

end read _int 

method read....hool O Boolean : 

return acp ~ input (/J) · f /J pea 
/JeBool 

end read ...boo/ 

body do true then answer(_read_int,read....hool) od 

end Read_Fi/e 

dam Write_Fi/e 

rootine standard....out O Write_Fi/e : 

return acp footput pea 

end standard ....out 

method write _int ( i : Integer) Write _File : 

Process algebra semantics of POOL 

return acp ~ eqv (i, a) · ouput( a)· footput + eqv (i, nil)· error pea 
aelnl 

end write _int 

method write ...boo/ ( b : Boolean ) Write Jile : 

return acp ~ eqv(b,{J)·ouput(/J)·footput + eqv(b,nil)·error pea 
/JeBool 

end write ...boo/ 

body do true then answer(_write _int, write ...boo/) od 

end Write _File 

3.10. THEOREM. Let wEPOOL-..L and let SPECc(w) = <XIE>. Then Eis 
guarded 
PROOF. Introduce a new s-attribute height for those nonterminals which have 
attribute peq. Let the value domain of this new attribute be the set N of 
natural numbers. Let x0-x1 • • • Xn be a production where X 0 has attribute 
height. Then the semantic rule for the attribute height is: 
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height(X0) = max({O} U (height(X;)l lE;;;iE;;;n and X; has attribute height})+ I 

Using the same technique as in the proof of Theorem 2.9, the proof that for 
each POOL-1- program the corresponding specification is guarded can now be 
given by means of straightforward induction on the value of attribute height. 

□ 

3.11. Abstraction. Most of the atomic actions which were used in the descrip­
tion of the semantics for POOL will be invisible in an actual implementation 
of the language. If one looks at a computer executing a POOL program, one 
most likely cannot observe that one object sends a message to another object. 
In general the only visible actions will be the actions by means of which the 
POOL system communicates with the external world: the e"or action and the 
actions input(d) and output(d) (dElnt UBool) as defined in Section 3.9.3.3. 
Let 

I= {c(d)ldED}U{comm(f)l/e§}U{skq,} 

and let w be a POOL program. Then 

SPECSA(w) = 1°/(SPECSc(w)). 

(3.11.1) 

(3.11.2) 

SPECA gives the abstract behaviour of a POOL system executing a given unit. 

3.12. Models. A large variety of semantics (models, ~-algebras) have been 
given of the signature that is used in this section. For each of these models M, 
there exists a mapping INT M that maps process expressions in M . As exam­
ples of models we mention the semantics ci(_BS) of terms modulo bisimulation 
equivalence presented in [16], the semantics ci(_FS) of process graphs modulo 
failure equivalence described in [ 11 ], and the trace model that is for instance 
presented in [27]. 

4. MESSAGE QUEUES 

In the description of POOL as presented in the previous section, communica­
tion between objects takes place by means of handshaking. However, in the 
official language definition (see [I]) communication is described differently: All 
messages sent to a certain object will be stored there in a queue in the order in 
which they arrive. When that object executes an answer statement, the first 
message in the queue which name occurs in the method identifier list of the 
answer statement will be answered. Below we present a modified process alge­
bra description of POOL, in which each object has its own message queue. 
This description, which, due to the select statement, turns out to be rather 
complicated, corresponds to the language definition in [I]. We call the new 
translation function SPECAQ· Thereafter, in Section 4.5, we discuss the impor­
tant question for which models M the mappings SPECA and SPECAQ are 
semantically the same. 
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4.1. New channels. If we view the field 'type of message' of a frame (cf. Section 
3.8.2) as the name of a channel, then we can depict the situation in which 
there are two objects a and p, connected by channel me, 'classically' as fol­
lows: 

me (;'\ -u 
FIGURE 4.1 

In this section we introduce for each object Pa message queue Pf,(Q). Furth­
ermore we have new channels (message types) iq, om and fm. The modified 
version of Figure 4.1 becomes: 

fm 

me 

om 
FIGURE 4.2 

First we discuss the new message types. 
iq: (in queue). If object a wants to send a message to object P, it must send 

this message by channel iq to the queue of object p. We have the follow­
ing new semantic rules for the send expression: 

SN➔E!MIO 

Let 

id(Ml) = m 

then 

[SN] = [E]~Cl[SN]CI 

[SN]a = {::;;,iq,mO)· ~ rd(an,P,a)·tP !th::°! 
/JeObj 

(production 21.2 is changed analogously). 

(21.1) 

om: (order message). Let L <;;;,Ud. By sending message L along channel om to 
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its queue, object fJ orders the queue to deliver the first message with a 
message identifier in L. The message type om occurs in the new semantic 
rules for the answer statement: 

AN-answer(MIL) 

Let 

M = mis(MJL) 

then 

mis(AN) = M 

(AN)m = sn(om,{m})·(MIL)m 

(AN) = sn(om,M)· ~ (MIL)m 
meM 

(17) 

fm: (first method). During the execution of a select statement object fJ some­
times needs to know, for a given L c;;,Lid, if there is a message in its 
queue with a method identifier in L, and if so, what is the method 
identifier of the first one. This information is passed along channel fm (the 
negative answer is coded as £). The new semantic rules for the select 
statement are: 

SE-sel GCL les 

Let 

then 

misl(GCL) = (M1,••·,Mn) 

Ma, , ... ,a. LJ M; 
{ila,=true} 

(SE) = (GCL) >>>a,, ... ,a,.lSEJa,, ... ,a. 

(SEla,. ... ,a. =error 

if (3i: a; =nil)V('t/i: a; =false), 

(SE) - °"" rd(fm (M m))·(GCL)a, , ... ,a,. a 1, ••• ,a_ - ~ , a 1, ••• ,a., m 
meUd 

if 'fli : a;= true ~ M;"=/= 0 , and 

(SE) = °"" rd(fm (M m))·(GCL)a,, ... ,a. a., ... ,o., ~ , a 1, ••• ,a., m 
m e UdU{<} 

otherwise. 

(14) 

0 M a, , ... ,a. is the set of all method identifiers occurring in the answer 
statement of an open guarded command. If there is no message in the 
queue whose method identifier is in M a,, ... ,a,., and there are open guarded 
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commands without an answer statement (M; = 0 for some i), then the 
(textually) first of them is selected. If there is no message in the queue 
whose method identifier is in M a., ...• a., and there is no open guarded com­
mand without an answer statement, the object waits until a message that 
belongs to M "•····•"- arrives, and then proceeds with this message. lbis 
waiting may last forever. If there is a message in the queue with method 
identifier in M "•····•"- this message is selected. The first guarded command 
is chosen that has either no answer statement or whose answer statement 
contains the method named in the message. 

4.2. The process Q. We introduce a new object q as parameter of the state 
operator. The state of this object (the content of the queue) will be an element 
of (~X Obj}* (for definition ~ see Equation 3.8.2.3): a list of pairs of 
method calls and references to the senders of these calls. We need four fresh 
formal variables Q, R, S and A. The process Q gives the behaviour of an 
'unfinished' queue, a queue that is not yet associated with one specific object. 
We have the following equation: 

Q = >.1(RIISIIA) (4.2.1) 

Q consists of the merge of three processes, R, S and A, which operate in an 
environment in which the content of the queue is known. The job of process R 
is to read messages in the queue: 

R = ~ ~ rd(iq,d,a)·R 
deGJI. aeObj 

The relevant equation for the state operator is: 

>.j(rd(iq,d,a)·x) = rd(iq,d,a)·>.(d,a)"o(x) 

(4.2.2) 

(4.2.3) 

The process S first waits for an order to deliver a message with method 
identifier in a certain set L, and thereafter delivers the first message in the 
queue with this property. When such a message is not in the queue, process S 
waits until it arrives. 

S = ~ rd(om,L)·sn(mc,L)·S (4.2.4) 
LC,Ud 

In order to define the interaction between actions sn(mc,L) and operator >.g 
we need three auxiliary functions. The function mf (L, a) picks the first mes­
sage in a with a method identifier in L, and returns < if there is no such mes­
sage. The function is recursively defined by: 

mf (L,<) = < (4.2.5) 

{

m(a1,••·,an) if mEL 
mf(L,a•(m(a1,••·•an),a)) = mf(L,a) otherwise (4.2.6) 

The function sf (L, a) returns the sender of the first message in a with method 
identifier in L, or returns <. 
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sf(L,E) = E 

{

a if mEL 
sf(L,o•(m(a1,••·• an),a)) = sf(L,o) otherwise 
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(4.2.6) 

(4.2.7) 

The function of (L, o) omits the first element of o with method identifier in L. 

of(L,E) = f. 

{

o if mEL 
of(L,o•(m(a1 ,••·•0 n),a)) = of(L,o)•(m(a1, .. . ,an),a)) otherwise 

Now we can define: 

(4.2.8) 

(4.2.9) 

{

sn(mc,mf (L, o),sf (L,o)) · Ag/(L,cr)(x) 
)..,,(sn(mc,L)·x) = 8 

if mf(L,o)=p. 

otherwise (4.2.10) 

The process A gives an answer to questions of the form: 'Is there a message in 
the queue with method identifier in a set L, and if so, what is the method 
identifier of the first one?'. 

A = ~ ~ sn(fm,(L,m))·A (4.2.11) 
LC~Ud meUdU{•} 

Again we need an auxiliary function: if (L,o) gives the identifier of the first 
message in o with identifier in L. 

if (L,E) = f. 

if (L,a<(m(a1, ••• ,a.),a)) = {;(L,a) if mEL 

otherwise 

The relevant equation for the state operator is: 

{

sn(fm,(L,m))·Aj(x) if if(L,o) = m 
Aj(sn(fm,(L,m))·x) = 8 otherwise 

(4.2.12) 

(4.2.13) 

(4.2.14) 

4.3. Extensions. We add the new frames which were introduced in the previous 
section to the set '?f of frames (see Equation 3.8.2.4), we introduce actions 
rd (f), sn (f), read (f), send (f) and comm (f) for the new frames, and extend 
the communication function in the obvious way. Furthermore the set J of 
encapsulated actions (see Equation 3.8.2.4) is extended. For the new atoms 
the renaming functions /a are defined by: 

fa(sn(/J,iq,d)) = send(/J,iq,d,a) (4.3.1) 

fa(rd(iq,d,/J)) = read(a,iq,d,/J) (4.3.2) 

fa(sn(om,M)) = send(a,om,M,a) 

fa(rd(om,M)) = read(a,om,M, a) 

fa(sn(fm, (M,m))) = send(a,fm, (M,m),a) 

(4.3.3) 

(4.3.4) 

(4.3.5) 
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fa(rd(fm, (M,m))) = read(a,fm, (M,m),a) (4.3.6) 

4.4. Root unit. Now we change the semantic rule for the root unit as follows: 

RU➔root unit CDL 

Let 

then 

cd(CDL)(Integer) = I 
cd(CDL)(Boolean) = B 

cd(CDL)(Read...File) = R 

cd(CDL)(Write...File) = W 

e = {cd(CDL')(C)ICeUid} 

ACTIVE= II (~create.(X,a) · p.r.(X)) 
aeA.Obj Xee • 

STANDARD = ( II Pf.(/) )IIP1_(B)IIP1_(B)llp1-(R)IIP1_(W) 
aelnt 

QUEUE = II (P.r. (Q)) 
aeObj • 

[RU] = A6°""1u0 aJ0 ax(create((CDL),O)IIACTIVEIISTANDARDIIQUEUE) 

(2) 

4.5. The incompatibility of SPEC,. and SPEC_.Q· Clearly the mapping SPEC_.Q 
is much more complicated than the mapping SPEC,. . Therefore we would like 
to work with SPECA instead of SPECAQ· But since SPEC,.Q corresponds to 
the official language definition in [l] and SPEC,. does not, we first have to 
show that the two mappings lead to the same semantics of POOL. Unfor­
tunately this is not possible as we will demonstrate below: for any model M of 
ACP,. which preserves fairness and liveness properties we have 

M II SPEC_. =SPEC,.Q. 

Stated informally, the fairness we require of the models is that (1) all processes 
that become permanently enabled, must execute infinitely often, and (2) two 
processes that can communicate infinitely often will do so infinitely often. 
These fairness requirements correspond to the fairness requirements formu­
lated in [I]. The issue of fairness is discussed in more detail in Section 5.4. 

The notions of safety and liveness are frequently used in the literature. 
Roughly, safety means that something bad cannot happen, while liveness 
means that something good will eventually happen. In the context of POOL, 
liveness implies that a program that will certainly perform a certain action is 
different from a program which may not do this. 

Now consider the situation in which an object executes the following piece 
of POOL text: 
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b+-true; 

do b then sel 

les od; 

true answer(m 1) then b+-false or 

true then b+-b or 

true answer(m 2) then b+-false or 

WriteJ'ile . standard.....outO ! write....bool(b) 
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Suppose the object operates in a system with message queues, and that at the 
moment at which the object starts execution of the POOL text, the message 
queue of the object contains two messages: first a message with method 
identifier m 2, and after that a message with method identifier m 1• Now execu­
tion of the POOL text takes place as follows: first b is set to true, then the 
object enters the do-loop and the select statement is executed. The set of 
method identifiers occurring in an open guarded command is {m 1,m 2 }. The 
first message in the queue with a method identifier in this set is m 2 • Now the 
first guarded command is chosen that has either no answer statement or whose 
answer statement contains m 2 • In our case this is the second guarded com­
mand. The trivial statement part of this guarded command is executed, and the 
select statement terminates. But since variable b is still equal to true, the select 
statement is immediately executed for the second time. Again b remains true. 
It will be clear that the select statement never terminates. 

However, if the object operates in a system without message queues, the 
select statement will terminate! In the situation with handshaking communica­
tion there is one object that wants to send a message with identifier m 1, and 
one object that wants to send a message with identifier m 2• Due to the fair­
ness requirement communication of the message with identifier m I will eventu­
ally take place, b is set to false, the do-loop terminates, and false is printed. 
This means that there is a difference with respect to liveness between the situa­
tion with, and the situation without message queues. 

A good semantics of POOL should preserve fairness and liveness properties. 
The example presented above shows that in a semantical description that uses 
message queues between objects instead of handshaking communication, live­
ness properties get lost almost inevitably. 

4.6. In this section we propose a minor change in the language definition of 
POOL, which removes the difficulty of Section 4.5. In the example of Section 
4.5 it is clear from the beginning that the third guarded command will never 
be chosen. But instead of leaving the turmoil of battle, the third guarded com­
mand starts helping his neighbour, the second guarded command. Because of 
this the competition between the first and the second guarded command is not 
fair and the second guarded command always wins. The modification of the 
language definition we propose consists of the removal of all open guarded 
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commands in a select statement which have an open guarded command 
without an answer statement before them. Formally this means that we replace 
the definition of sets M .. , .... ,.._ in the semantic rules for the select statement in 
Section 4.1 by: 

M .. , .... ,.._ = {ml3i:mEM;/\a;=true/\('r/j<i:aj=true~M/=/=0)} 

The modified version of SPECAQ is called SPECAQ'· 

4. 7. Even after modification of the language definition, the semantical descrip­
tion with handshaking communication is not equivalent to the description 
using message queues. The following theorem shows that it is impossible to 
prove equivalence if one only uses the axioms presented thus far. However, 
whereas the difficulty of Section 4.5 was a general difficulty, present in all 
semantical descriptions employing handshaking communication between the 
objects, the difficulty pointed out in the following theorem is specific, and only 
present in bisimulation semantics and other semantics which distinguish 
processes that cannot be distinguished by observation. 

4.7.1. THEOREM. @{BS) II SPEC_. =SPECAQ'· 
PROOF. Below we present a POOL-...1.. unit u with the property that in the 
models based on bisimulation SPEC,.(u) and SPECAQ'(u) are different. The 
program is a very simple one: the initial object of class Root creates 3 objects 
of class Number and these three objects ask the standard output object to print 
resp. numbers I, 2 and 3. 

root unit 

class Number 

var m : Integer 

routine new O Number : 

return new 

end new 

method init (n: Integer)Number : 

m~n return self 

end init 

body answer(init) ; Write_Fi/e. standard....out O ! write_int(m) 

end Number, 

class Root 

body Number. newO ! init(l); Number. newO ! init(2); Number. newO ! init(3) 
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end Root 

Writing down SPEC,4(u) and SPECAQ'(u) is a long and tedious job which we 
happily leave to the reader. However, it is easy to see that the process graphs 
that correspond to these specifications can not be bisimilar. If there is a mes­
sage queue before the standard output object, it is possible that at a certain 
moment during execution of the program the three method calls of the three 
objects of class Number are waiting in the queue. Because, for a given method, 
an object answers the methods calls in the queue in the order in which they 
have arrived, the order in which the actions ouput(l), ouput(2) and ouput(3) 
will be performed, is completely determined in such a state. However, in the 
case where there are no message queues there is no state in which no output 
action has taken place but still the order in which the output actions will occur 
is known. Therefore the process graphs corresponding to SPECA(u) and 
SPECAQ'(u') are not bisimilar. D 

What we learn from Theorem 4. 7 .1 is that we can either do bisimulation 
semantics based on a translation of units in which we use queues (this leads to 
very long and complicated proofs), or add some axioms to our theory in such 
a way that we can prove equivalence of SPEC,4 and SPECAQ'· We conjecture 
that 

@I.._FS) 1= SPEC,4 = SPECAQ' 

and that equivalence can be proved if we add to our theory the axioms of 
failure semantics as presented in [ 11 ). The proof however will be long and 
complicated, and we do not even try to give it in this paper. 

5. TRACE SEMANTICS, FAIRNESS AND SUCCESSFUL TERMINATION 

5.1. A trace model as presented for instance in [27), is not a good semantic 
domain for POOL in the sense that it identifies too much and does not 
describe deadlock behaviour. In @I.._TRtkn) we have for example: 

ouput(O) = ouput(O) + -r·8. 

We do not want to identify these processes because the first one will definitely 
output a 0, whereas the second one may not. 

5.2. It is well known that it is not possible to give a trace model of ACP in 
which one looks at the terminating (and infinite) traces, and the trace sets do 
not have to be prefix closed. In such a model a(b +c) and ab +ac would be 
identical. This is problematic since a{c}(a(b +c)) = ab and a{c}(ab +ac) = 
ab +a8 are different. 
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5.3. However, there exist some interesting semantics of POOL based on trace 
sets. The basic idea of the approach which is, although in a different setting, 
followed in [4], is that one first interprets a specification in a domain in which 
not very many processes are identified (the domain of transition systems, the 
model ci.(BS)) and then takes the set of terminating (and infinite) traces of this 
process. In this approach one typically looks at 

YIELD 0 1NT fil..BS) 0 SPECA(u) 

where YIELD is a function that gives the set of terminating (and infinite) 
traces of elements of ci.(BS). The resulting semantic domain is not a model of 
ACP but for most applications that does not matter. An advantage of the 
approach is that it allows for simple solutions to a number of problems. 

5.4. Fairness. The fairness problem for example can be solved easily. In [l] a 
fairness condition concerning POOL is formulated by stating that the execu­
tion 'speed' of any object is arbitrary but positive. Whenever an object can 
proceed with its execution without having to wait for a message or a message 
result, it will eventually do so. A second fairness requirement on the execution 
of a POOL program is the condition that all messages sent to a certain object 
will be stored there in one queue in the order in which they arrive. In process 
algebra we have deliberately chosen to ignore the exact timing of occurrences 
of events. Fortunately the fairness requirements concerning POOL can be 
defined without referring to timing aspects. The first fairness requirement is 
called weak process fairness or justice in the literature: 

All processes that become permanently enabled. must execute infinitely often 
The second requirement is called strong channel fairness: 

Two processes that can communicate infinitely often will do so infinitely often 
For reviews of the literature on fairness we refer to [1 5, 24). We think that the 
Petri net model for ACP based on occurrence nets, which is presented in [17), 
preserves enough information for a description of the fairness requirements of 
POOL. More research is needed to make this explicit. In the trace set 
approach the solution is very simple: one omits all the unfair traces and looks 
at: 

YJELDF0 /NT f«..BS) 0 SPECc(u) 

where YIELDF gives the set of fair terminating and infinite traces of elements 
of ci.(BS). 

5.4.1. Fair abstraction. If we work with 'abstract' translation functions like 
SPECA and SPECAQ• then it is possible to give a 'more or less' fair semantics 
of POOL without using a YIELDF function. This employs the fact that 
Koomen's Fair Abstraction Rule (KFAR) is valid in (for example) the model 
ci.(BS). Consider the following unit f 

root unit 

class Out 
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routine newO Out: 

return new 

end new 

body Write_File. standard.....out ! write_int(0) 

end Out, 

class Chatter 

var x : Integer 

body Out . newO ; do true then x ~ 1 od 

end Chatter 

It can be proved that for any model Min which KFAR holds: 

M ~ SPEC,t(f) = -r·output(0)·8. 

211 

This means that the object of class Out will make progress despite the infinite 
chatter of the object of class Chatter. Note that KF AR equates infinite chatter 
and deadlock. 

5.4.2. KFAR is too fair. We give an example which shows that sometimes 
KFAR is too fair. Consider the architecture of Figure 5.1. 

Driverl 

Driver2 

m 
1 

Merge 

FIGURE 5.1 

write_int(O 

There are two objects Driver} and Driver2. The only thing these objects do is 
sending method calls to an object Merge. Driver} all the time asks Merge to 
perform method m I and analogously Driver2 asks Merge to perform method 
m 2• The object Merge has the task to perform statement answer(m 1,m 2) until 
doomsday. Every time when it has answered method m 1 two times consecu­
tively, the object Merge asks the object output to print a 0. We leave it to the 
reader to write down the corresponding POOL program. 

The point we want to make is this. According to the language definition in 
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(I], the execution where object Merge answers messages of Driver] and Driver2 
in tum (m 1, m2, mi, m2, ••• ) will be fair. Hence it is possible that Merge never 
orders to print a 0. However, in a semantics where KF AR holds, a 0 will be 
printed: the only way for the system to get out of the 'cluster' of internal 
actions is to perform an action output (0). This action is always possible during 
execution of the program. KFAR says that therefore it will occur. Again we 
leave it to the reader to fill in the formal details. 

5.4.3. Failure semantics. In (11] it is shown that KFAR is not valid in the 
model cU_FS). Nevertheless the model admits a restricted rule KFAR- for the 
fair abstraction of so-called unstable divergence: · 

X = ix+'T}' 

KF AR - turns out to be sufficient for the protocol verifications in (22, 26, 28). 
However, for our purposes KF AR - is not what we want. Like KF AR, the 
rule is too fair for some applications. But in addition there are applications 
where KF AR - is not fair enough. KF AR - does not allow for a proof that 
the object of class Out in the example of Section 5.4.1 will make progress. We 
even have: 

cU_FS) JI w1(SPEC,4(f))=-r·output(0)·8. 

This is a crucial observation. Failure semantics - being a linear semantics -
often yields simpler proofs than bisimulation semantics which preserves the 
full branching structure of processes. Although the notion of full abstractness 
still has to be defined for the language POOL, it is clear that failure semantics 
is closer to full abstractness than bisimulation semantics. Furthermore, as 
pointed out in Section 4, failure semantics will supposedly allow for a proof 
that the communication between objects can be implemented by means of 
message queues. Thus failure semantics seems to be ideal for POOL. But now 
it turns out that the combination of failure semantics and weak process fair­
ness is problematic. At present we do not know if it is possible to give a 
semantics of POOL which is 'fully abstract' and also 'fair'. 

5.5. Deadlock behaviour. A limit on the applicability of the trace approach 
sketched in Section 5.3 is that it only describes the behaviour of a POOL sys­
tem in situations in which this system is placed in a 'glass' box, and does not 
communicate with the environment. Below we present two POOL-1. units u I 
and u 2 with the property that 

YJELD 0 JNT et._Bs) 0 SPEC,4(u 1) = YIELD 0 JNT /ll..BS) 0 SPEC,4(u2) 

although 

cU_BS) JI SPEC,4.(u I) = SPEC,4(u2) 
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(we even have &t._FS) II SPECA(u 1) = SPECA(u2)). 
The root object of unit u 1 creates an object that performs the job of output­
ting a 0. After ordering for the creation, the root object inputs a value. 

root unit 

dam Out 

routine newO Out : 

return new 

end new 

body WriteJ'ile . standard_out ! write-1nt(0) 

end Out, 

d~In 

body Out. newO; ReadJ'i/e. standard-1nO ! read-1ntO 

end/n 

In unit u 2 the root object of class Semaphore creates two objects: one object 
has to output a 0, and the other object inputs a value. But before the 1/0 
actions can take place the objects have to decrease a semaphore. After an 
object has decreased a semaphore, it can perform the 1/0 action. After that, it 
increases the semaphore again. If during execution of u 2 the input actions are 
blocked (the enemy has bombed the input device), it can happen (if the object 
that has to input a value is the first one to decrease the semaphore) that the 
output action will not take place. In this respect u 2 differs from u 1: if during 
execution of u 1 the input actions are blocked, the output action will still hap­
pen. 

root unit 

d~Out 

var sem : Semaphore 

routine newO Out : 

return new 

end new 

method init (s : Semaphore) Out : 

sem +-S return self 

end init 

body 
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answer(init); 

sem !downQ; 
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Write _Fife. standard....outO ! write -1nt(0); 

sem ! up() 

end Out, 

d~In 

var sem : Semaphore 

routine newO In: 

return new 

end new 

method init (s: Semaphore)In: 

sem-s return self 

end init 

body 

end In, 

answer; 

sem !downO; 

Read_Fi/e. standard-1nO ! read-1ntO; 

sem ! up() 

d~ Semaphore 

method down O Semaphore : 

return self 

end down 

method up O Semaphore : 

return self 

end up 

body 

Out. new O ! init(self); 

In. new O ! init(self); 
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do true then answer(down) ; answer (up) od 

end Semaphore 

We can prove in the theory that: 
(1) The following x 1 equals SPEC,4(u 1): 

x 1 = T·(output(O)II ~ input(a))·8 
aelnl 

(2) The following x 2 equals SPEC,4(u2): 
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x 2 = T·(T · output(O)·( ~ input(a)) + T·( ~ input(a))·output(0))·8 
aelnt ae/nt 

Let B = {input(a)laelnt} be the set of blocked actions. Then 

as(X 1) = T· output(0) · 8 

as(X2) = T·(T·output(0)·8 + T•8) 

Thus units u 1 and u 2 behave differently in an environment which does not 
offer certain actions: in environment a8 (.) u 1 will certainly output a 0, 
whereas u 2 may not do this. 

5.6. Successful termination. For arbitrary POOL units u I and u2, and for an 
arbitrary model M we have that: 

MI= SPEC,4(u 1)· 0 SPEC,4(u 2) = SPEC,4(u 1). 

This is because the process corresponding to a unit is infinite or ends in a 
deadlock. If one wants to describe a situation where after execution of a 
POOL unit, something else can be done, one has to change the semantics. In 
the trace set approach of the previous section this is simple: one simply defines 
the operation sequential composition in the obvious way. In the axiomatic 
approach things are not that easy. We propose (but do not work out) a solu­
tion in the spirit of (7): one defines a program transformation that transforms 
the original program (in the case of POOL also the definitions of the standard 
classes have to be transformed). The transformation introduces a number of 
new program variables and statements in such a way that the resulting pro­
gram can terminate successfully. In this approach it is possible to differentiate 
between various ways in which a unit can terminate: one option is that a unit 
terminates successfully if all active objects have finished execution of their 
body; another option says that a unit terminates successfully if there is no 
object (or pair of objects) that can do a step. 

6. C ONCLUSIONS 

1. In this paper we have shown that it is possible to give semantics of a real­
istic concurrent programming language by means of process algebra. The 
translation of POOL programs into process algebra is complicated, but 
this is mainly caused by the complexity of POOL, in particular by the 
complexity of the select statement. The attribute grammar which we used 
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for the translation made it possible to give the semantics in a modular 
way. 

2. This paper contains an application of ACP where the sequential composi­
tion operator is used in full generality. It would have been more involved 
to give semantics of POOL in a signature containing prefixing (an opera­
tor A XP--+P) instead of sequential composition. Three auxiliary opera­
tors, the renaming operator, the chaining operator and the state operator, 
turned out to be useful. 

3. Because we have no infinite sum and infinite merge operators in the signa­
ture, we had to choose the value domain of POOL variables finite. Furth­
ermore the number of objects which can be created during execution of a 
POOL unit is finite. Although it would be useful to have these infinitary 
operators available, we do not think that their absence in the present 
paper is a real deficiency: the memory of each computer is finite, and no 
computer will function eternally. 

4. The approach followed in this paper can also be used to give semantics of 
other concurrent programming languages. From the point of view of pro­
cess algebra we see no fundamental difference between the object-oriented 
approach from POOL, and the imperative or functional approaches fol­
lowed in other languages. However, at present it is difficult to give process 
algebra semantics of a language in which real-time aspects play a role. 

5. KFAR does not completely capture the notion of fairness in POOL. In 
Section 5.4.3 we pointed out that combination of failure semantics and 
weak process fairness is especially problematic. An open question is 
whether or not the two concepts can be combined in a consistent manner. 

6. There is not one single 'optimal' semantics of POOL. Depending on the 
application domain one has in mind one can try to find an optimum. 
There are several features which can be included in the semantical 
description of the language: infinite domains of variables, fairness, error 
behaviour, termination behaviour, etc.. An important parameter in the 
choice of a semantics is the type of interaction between the environment 
and the POOL system. In case one wants to use the semantics to build 
an executable prototype, the semantics has to be operational. In case the 
semantics is used for the construction of proof systems or for the correct­
ness proof of implementations, one requires abstractness and composi­
tionality. It might be the case that the combination of all these require­
ments leads to inconsistencies. 

7. The translation of POOL into process algebra can be used for prototyping 
of the language. The shortest route seems to be a translation into an alge­
braic specification formalism. The attribute grammar which we used can 
be specified algebraically in a straightforward way. The process algebra 
part is already specified algebraically but some work has to be done in 
order to deal with a number of notational conventions, for example the 
sum operator and the numerous' .. .' occurring in the equations. There are 
several alternatives for transforming algebraic specifications into execut­
able prototypes, for example by means of a transformation into a 
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complete (conditional) term rewriting system and execution by means of 
an existing rewrite rule interpreter, or by means of a transformation into a 
set of Hom clauses and using an existing Prolog system for their execu­
tion. 

8. A semantical description of POOL with handshaking communication 
between the objects is incompatible with the description in [ 1 ], where mes­
sage queues are used. A minor change in the language definition is pro­
posed in order to remove this difficulty. In our opinion this result shows 
that, when dealing with concurrent programming languages, questions 
like: 'Is this semantical description in accordance with the language 
definition?' and 'Is this a correct implementation of the language?' are 
highly relevant. 

9. An important problem to be solved is in our view the development of 
techniques which make it possible to prove that two semantics of POOL 
have a common abstraction. In (25) we gave a sketch of such a proof, 
showing that the Integers and Booleans can be implemented in different 
ways. In Section 4 we discussed the question whether or not the com­
munication between objects can be implemented by message queues. We 
showed that, even after modification of the language definition, this is not 
possible in bisimulation semantics. An open question is the equivalence in 
failure semantics. 
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A concurrent system S is called deterministic if for all states s of S we have that 
whenever S can evolve from state s into states s' and s" by doing an action a, 
it must be the case that s' equals s". It is well known that for deterministic 
concurrent systems, most of the interleaved equivalences (bisimulation-, 
failure-, trace-equivalence) coincide. In this paper we prove in the setting of 
event structures that also most of the non-interleaved equivalences coincide 
(with each other) on this domain. In the last section of the paper we show 
that, as a consequence of our result, the causal structure of a deterministic 
concurrent system can be unravelled by observers who are capable to observe 
the beginning and termination of events. 

Key Words & Phrases: event structures, determinism, sequence/trace seman­
tics, bisimulation semantics, step semantics, partial order semantics, pomset 
semantics, action refinement, split semantics. 

1. INTRODUCTION 
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A (discrete) concurrent system generates events as it evolves in time. At any 
moment a set of events will have occurred and these will be ordered 'in time' 
or by 'causal precedence'. This order may be partial. When modelling con­
current systems and reasoning about their behaviour, it is often useful to con­
sider different events as occurrences of the same action. This may indicate 
that certain events are produced by the same physical resource or that they 
cannot be distinguished by an observer. The relation between events and 
actions can be expressed by a labelling function l:E-A that relates an action 
to each event. Different approaches to the modelling of concurrent systems 
can be classified by looking at the types of labelling functions they allow for. 
For instance, if one models a concurrent system with an elementary net system 
[24), then it can never be the case that in some behaviour two events with the 
same label are concurrent (i.e. not related by the ordering). If we consider the 
usual semantics for process algebra languages like CCS [17), TCSP [14), ACP 
[4] and MEIJE [3], then it turns out that these languages are very liberal wrt 
labellings of events: there is (almost) no restriction at all. There exists a very 
rich theory of 'comparative concurrency semantics' relating the interleaved 
semantics for CCS-like languages, i.e. those semantics which do not treat con­
currency as a primitive notion. Now a well-known result says that almost all 
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these equivalences (bisimulation equivalence, trace equivalence and everything 
in between) coincide for deterministic systems (see for instance ENGELFRIET 
[9D. A concurrent system S is called deterministic if for all states s of S we 
have that whenever S can evolve from state s into states s' and s" by doing an 
action a, it must be the case that s' equals s". 

Recently, many equivalences have been proposed that do consider con­
currency as a primitive notion. Besides the event structure equivalence and the 
step sequence equivalence that will be discussed in this paper, we have for 
instance the occurrence net equivalence of NIELSEN, PLOTKIN & WINSKEL [18), 
the NMS equivalence of DEGANO, DE NICOLA & MONTENAIU [8], the BS 
bisimulation of 'fRAKHTENBROT, RABINOVICH & HIRSHFELD [27), the step 
failure semantics of TAUBNER & VOGLER [26), the step bisimulation semantics 
of NmLSEN & THIAGARAJAN [19), the pomset semantics of PRATI [22), the 
pomset bisimulation semantics of BoUDOL & CASTELLANI [6], the generalised 
pomset bisimulation and the ST-bisimulation of VAN GLABBEEIC & VAAN­

DRAGER [11), the split sequence equivalence which we present at the end of this 
paper, etc, etc. 

Now one can ask the obvious question what happens with all these 
equivalences if we restrict ourselves to the domain of deterministic systems. 
The main result of this paper is that almost all non-interleaved equivalences 
coincide (with each other) for deterministic systems. More specifically, we will 
show that step sequence equivalence and event structure isomorphism agree on 
this domain. Of the equivalences mentioned above only occurrence net 
equivalence is not situated in between step sequence equivalence and event 
structure isomorphism. 

Event structures. A natural domain for modelling concurrency is the class of 
event structures, which were introduced in NIELSEN, PLOTKIN & WINSKEL [18). 
By now many different types of event structures have been defined. For an 
overview we refer to WINSKEL [28). In our view an especially important class of 
event structures is the class of prime event structures. Prime event structures 
contain no junk: every event in the set of events of a prime event structure can 
occur in at least one behaviour. The event structures used in this paper are 
labelled prime event structures with binary conflict. Below we give a formal 
definition of this type of event structures, followed by some explanatory 
remarks. If one assumes binary conflict, then one can only express that two 
events exclude each other. Thus it is not possible to say that three or more 
events cannot occur in combination even though each proper subset can. For 
this one needs more general types of event structures. The assumption of 
binary conflict is not essential in the proof of the main theorem of this paper. 
Because most people will be more familiar with event structures with binary 
conflicts and because the main use we foresee of our theorem lies in the field 
of CCS-like languages (where conflict is always binary), we decided to present 
the theorem for the case with binary conflict only, and to leave the generalisa­
tion to the case with arbitrary conflict as a (simple) exercise to the reader. 
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Arbitrary interleaving versus True concurrency. In the last section of the paper 
some consequences will be discussed of our result for the issue of arbitrary 
interleaving versus 'True' concurrency. We introduce an operator which splits 
each event into a beginning and an end and show that the causal structure of a 
deterministic concurrent system can be unravelled by observers who are capa­
ble to observe these beginnings and ends. 

Related work. One can view the main theorem of this paper as a retrievability 
result: given the step sequences of a deterministic event structure, we can 
retrieve this event structure up to isomorphism. Within the theory of con­
currency there are quite a number of other retrievability results. BEST & 
DEVILLERS [5] prove various retrievability results for Petri nets. KIEHN [15] 
describes how the partial language of a pit net can be recovered from the set 
of its step sequences. SHIELDS [25] considers a subclass of deterministic sys­
tems ('behaviour systems with conservative labelling') which makes it possible 
to lift concurrency up to a relation on labels, just like in MAzURKIEwicz's 
trace theory [ 16]. In both cases the partial order structure of a system can be 
retrieved from firing sequences (or words) and the concurrency relation. In 
l'RAKHTENBROT, RABINOVICH & HlRsHFELD [27], some retrievability results are 
proved for 'behaviour structures'. 

In this paper we investigate the effect of assuming determinism on the lattice 
of equivalences in between sequence/trace equivalence and event structure iso­
morphism. In the course of the discussion we will sketch parts of this lattice: 
we will define a number of equivalences and establish their mutual relation­
ships. Hence our paper can be viewed as a contribution to the research area 
of comparative concurrency semantics. Related work on this topic has been 
done by POMELLO [21 ], v AN GLABBEEK & V AANDRAGER [ 11] and ACETO, DE 
NICOLA & FANTECHI [l]. 

2. EVENT STRUCTURES 

2.1. DEFINITION. A (labelled) event structure (over an alphabet A) is a 4-tuple 
(E, ,i;;;, #, /), where 

E is a set of events; 
,i;;; CE XE is a partial order satisfying the principle of finite causes: 

(e'eEle',e;;;e} is finite for eeE; 

#CEXE is an irreflexive, symmetric relation (the conflict relation) satisfy­
ing the principle of conflict heredity: 

e1#e2,i;;;e3 ==> e1#e3; 

- I: E-A is a labellingfunction. 
As usual we write e'<e for e',e;;;e A e'=/=e, ;;.. for ,i;;;- 1

, and > for <- 1
• We 

use w to denote the relation E XE -( ,i;;; U ;;.. U #). w is called the concurrency 
relation. By definition<, =, >,#and w form a partition of EXE. 
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2.2. Note. The components of an event structure E will be denoted by respec­
tively EE, <;E, #t: and /E. The derived relations will be denoted "'E, <E, >E, 
;;;a,E· For eeEE,preE(e) denotes the set of events which precede e in the ord­
ering (so preE(e)= { e' eEE I e'<;Ee }). 

2.3. Graphical representation. In the graphical representation we either depict 
the events or their labels, depending on what we want to illustrate. The partial 
order relation is indicated by arrows. The confict relation is denoted by means 
of dotted lines. If we draw no relation between events they are concurrent, 
unless, by means of the transitive and reflexive closure of the arrows, it can be 
deduced that they are ordered, or, by means of the principle of conflict hered­
ity, it can be deduced that they are in conflict. 

2.4. ExAMPLE. Let the event structure E be given by: 

EE = {ei,e2,e3,e4,e5} 

.i;;;;;E = {(e1,e2),(e1,e3),(e2,e3)} U {(e,e) I e eEE} 

#E = {(x,e4),(e4,x)lxe{e1,e2,e3}} 

/E(e;) = a; 

Graphically we can depict E as follows: 

FIGURE l 

2.5. Operational meaning of event structures. The events in a event structure 
can be anything varying from a clock pulse in a computer, the printing of a 
file, my act of writing this article, your act of reading it, the next crash of Wall 
Street, etc. 

The partial order relation expresses that some events are causally related to 
other events or that for all observers the occurrence of certain events will be 
seen to precede the occurrence of others. For instance, my act of writing this 
article will precede your act of reading it. On the other hand, your act of read­
ing this article will probably not be causally related to the next crash of Wall 



2. Event structures 225 

Street. The question what, in general, constitutes a causal link, is a metaphysi­
cal one and difficult to answer. However, in a lot of practical situations it is 
perfectly clear what we mean with causality and reasoning about the behaviour 
of concurrent systems in terms of causality is useful. 

The principle of finite causes says that the systems we consider are discrete 
and that moreover we do not consider situation like 

FIGURE 2 

or 

FIGURE 3 

In the first situation it is not clear that any of the e; can ever happen, in the 
second situation e 00 can occur if execution of all events e i, e 2, • • • finishes 
after a finite amount of time. Because we do not make any assumptions about 
the time it takes to perform an event, it is possible that e 1 takes I second, e 2 

takes 2 seconds, etc. In that case e 00 will never take place. 
If two events are in conflict, then at most one of them can occur. As a 

consequence of the principle of conflict heredity we have that when an event 
occurs, all its 'causes' must have occurred before. So if two events e and e' are 
related in the ordering, say e<e', then occurrence of e is a prerequisite for the 
occurrence of e'. In general it is not the case that after occurrence of e the 
occurrence of e' is inevitable. It would be possible to allow event structures 
where one event has two causes, which are in conflict: 

e1 ... . ........ -e2 

\/ 
FIGURE 4 

Two interpretations of the above event structure are possible: either one can 
say that e3 will never occur because it is impossible that all its causes occur (in 
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that case one can just as well leave e3 out of the event structure and adopt the 
principle of conflict heredity), or one can say that e3 can occur if a maximal, 
conflict-free subset of its causes has occurred, so {ei} 6r {e2 }. 

There are no fundamental reasons to adopt the principles of finite causes 
and conflict heredity. We have included them in our definition of event struc­
tures because this makes an elegant formulation possible of the main result of 
this paper. 

The operational intuitions that we presented in the discussion above, will be 
defined formally below. 

2.6. DEFINITION. Let E be an event structure and let X be a subset of EE. 
We say that Xis left-closed if 

eEX I\ e',e;;;Ee ~ e'EX 

Xis conflictfree if X does not contain a pair of events which are in conflict, so 
if #E n (X XX)= 0 . E is conflict-free if #E = 0 . A configuration of E is a 
finite, 1 left-closed, conflict-free subset of EE. With EXE) we denote the set of 
configurations of E. 

2. 7. ExAMPLE. In Figure 5 below we have depicted all configurations of the 
event structure of Example 2.4. An arrow is drawn between two 
configurations if one can be obtained from the other by adding a single event. 

FIGURE 5 

I. WINSKEL (28) does not require that configurations are finite. 
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2.8. DEFINmoN. For any alphabet l:, we use l:* to denote the set of finite 
sequences over alphabet l: and l: + to denote the set of finite nonempty 
sequences over this alphabet. We write A for the empty sequence and a for the 
sequence consisting of the single symbol a El°:. By a•a', sometimes abbreviated 
aa', we denote the concatenation of sequences a and a'. On sequences we 
define a partial ordering :e;;; (the prefix ordering) by: aE;;p iff, for some 
sequence a', aa' = p. If a :e;;;; p we say that a is a prefix of p. 

2.9. DEFINITION. Let E be an event structure and let X and Y be 
configurations of E. 
i) Let a EA. We say that there is an a-transition from X to Y, notation 

X ~EY, if Y=XU{e} for some event e1tXwith lE(e)=a. 

ii) An action a EA is enabled in X, notation X ~ E, if X ~ EX' for some 
configuration X'. 

iii) A sequence of actions a= a 1 * · · · •an EA • is enabled in X, notation 

X ~E, if there exist configurations Xo,••·, Xn such that X=X0 and for 
a 

lE;;iE;;n: X;-t ➔EX;. We say that Xn is obtained from X by the 

occurrence of a, notation X ~EXn. We also say that a is an (action) 
sequence of X. 

iv) A sequence of events a=e 1 * · · · •en EEi is enabled in X, notation 

X ~E, if there exist configurations X 0 , .•• , Xn such that X=X0 and for 
lE;;;iE;;;n: e;ltX;-t and X;=X;-t U{e;}. We say that a is an (event) 
sequence of X. 

v) With seqE(X) we denote the set of action sequences of X, so seqE(X) 

{aEA* IX ~E}-

2_10. PROPOSITION (no Junk). Let Ebe an event structure and let eEEE. Then 
there exists a configuration X ofE with eEX 
PROOF. Take X=preE(e). Due to the principle of finite causes Xis finite. From 
the fact that :e;;;E is a partial order it follows that Xis left-closed. Xis conflict­
free due to the principle of conflict heredity. Hence X is a configuration. 
Clearly e EX. □ 

3. THREE BASIC EQUNALENCES ON EVENT STRUCTURES 

We will now define three equivalences on event structures which make increas­
ingly more identifications. 

3.1. DEFINITION. An event structure isomorphism between two even structures 
E and Fis a bijective mapping/: Er-+EF such that: 

f(e) E;;F f(e') ~ e :e;;;E e', 
f(e) #F j(e') ~ e #Ee' and 
/F(f(e)) = /E(e). 

E and F are isomorphic, notation E--F, if there exists an event structure 
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isomorphism between them. 

3.2. DEFINITION. Let E, F be two event structures. A relation R k~)X<:XF} 

is a bisimulation between E and F if: 
I. 0R0; 

2. If X R Y and X ~ EX' for some a EA, then there exists a Y' E<:XF} such 

that Y ~ E Y' and X' R Y'; 
3. As 2 but with the roles of X and Y reversed. 
E and F are bisimi/ar, notation E~F, if there exists a bisimulation between 
them. 

3.3. DEFINITION. Two event structures E and Fare sequence equivalent, nota­
tion E seq F, if: 

seqE(0) = seqF(0). 

3.3.1. REMAiuc. The semantical notion of sequence equivalence, is usually 
called trace equivalence in the settings of process algebra and trace theory a la 
REM [23). However, use of the word trace would be very confusing in a paper 
on event structures, since event structures are closely related to a completely 
different type of traces, namely those which are studied in trace theory a la 
MA.zURKIEWICZ [16). Therefore we have chosen to use the word 'sequence' to 
denote a finite string of symbols recording the actions in which a process has 
engaged up to some moment in time. 

3.4. PROPOSITION. ::::, ~ and seq are equivalence relations and their relations 
are as indicated below: 

PROOF. Standard. D 

3.5. ExAMPLES. The event structures in Figure 6 show that :::::, ~ and -seq 

are really different equivalences. In the graphical representations we have dep­
icted the labels of the events and not the events themselves. 

a . ........ a a•· ······· a 

/ ! ! ! ! 
b ..... b C b C 

F IGURE 6 

The following definition is central in this paper: 

~ a 

= seq I \ 
b . . ... . . .. .... C 
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3.6. DEFINITION. Let E be an event structure. E is deterministic if for all 

con.figurations XE~) we have that whenever X ~ E Y and X ~ E Y' for 
some a EA and Y, Y' E~), we have that Y = Y'. 

So an event structure is deterministic if it does not have a con.figuration with 
the property that two different events are enabled which have the same label. 

3.7. DEFINITION. Let E be an event structure. Two events e,e'EEE are in 
immediate conflict, notation e #ie', if they are in conflict and furthermore: 

e ;;;a.E / #E e' ~ e = f and e #t! f ,e;;;E e' ~ f = e'. 

Using the notion of immediate conflict we can give a 'less operational' charac­
terization of deterministic event structures. 

3.8. PROPOSITION. Let Ebe an event structure. Then Eis deterministic iff: 

e --i: e' or e #i e' ~ /E(e) =I= /E(e'). 

PROOF. Easy. D 

It is well-known that the linear time - branching time spectrum collapses for 
deterministic event structures. 

3.9. PROPOSITION. Let E,F be deterministic event structures. Then: E ~ F ~ 
E seq F. 

PROOF. '~' follows from Proposition 3.4. In order to prove'~' define a rela­
tion R C~)X~ by: 

X R Y ~ seqE(X)=seqF(Y). 

It is easy to show that R gives a bisimulation between E and F. D 

3.10. REMARK. In a dictionary ([20)) we found the following entry for the 
word 'determinism': 
1. a doctrine that all phenomena are determined by preceding occurrences; 

esp. the doctrine that all · human acts, choices etc are causally determined 
and that free will is illusory; 

2. a belief in predestination. 
One may think that the notion of determinism introduced in Definition 3.6 is 
in conflict with the above description. If one for instance considers the deter­
ministic event structure containing two events labelled a and b which are in 
conflict, then one may argue that the choice between a and b is not causally 
determined, that the event structure 'has a free will' and 'may choose' whether 
to perform a or b. Therefore one may propose another definition of determin­
ism for event structures which says that an event structure is deterministic iff it 
is conflict-free. In fact this definition occurs in ACETO, DE NICOLA & F ANTE­

cm [I]. 
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We however prefer our own definition because we like to view event struc­
tures as 'reactive systems'. An event structure model of a concurrent system 
describes how the system reacts to stimuli received from its environment. In 
the above example of the event structure with actions a and b, it is completely 
determined how a system modelled by this event structure will react to exter­
nal stimuli: the system has no choice. 

Now consider the following event structure: 

a a 

! 
b C 

FIGURE 7 

This event structure is conflict-free and hence deterministic in the sense of [ l ]. 
However, if the environment offers an a, then there is a choice between the 
'left' a and the 'right' a. Depending on how this choice is resolved by the sys­
tem, it can engage in b or in c afterwards. Hence one can argue that the event 
structure exhibits nondeterministic behaviour. 

4. NON-INTERLEAVED EQUIVALENCES 
Many people think that bisimilation equivalence, and consequently also 
sequence equivalence, make too many identifications on event structures to be 
of use in general. In bisimulation semantics concurrency is not preserved, i.e. 
for each event structure we can give a bisimilar event structure with an empty 
concurrency relation. We elaborate on this below. 

4.1.1. DEFINITION. The sequentialisation of an event structure E, notation~), 
is the event structure F defined by: 

EF = {ae(EE)+ 10 ~E}; 
a--.Fp iff a is a prefix of fJ; 
#F = (EFXEF)-(E;;;FU;;;.F); 
/F(a*e) = /E(e). 

4.1.2. PROPOSITION. Let Ebe an event structure. Then: 
i) the concurrency relation of~) is empty, 
ii) E~~), 
iii) ~) - &(~)). 
PROOF. Easy. □ 
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4.2. Step semantics. Intuitively, one of the reasons why an event structure is in 
general different from its sequentialisation is that it sometimes has the possibil­
ity to do a number of events simultaneously in one 'step'. The notion of a 
'step' immediately suggests refinements of sequence equivalence and bisimula­
tion equivalence which do not disregard concurrency. These refinements will be 
called step sequence equivalence and step bisimulation equivalence respec­
tively. Step sequences were defined already in (10]. Step bisimulations appear 
in [ 19]. In [ 11] they are called 'concurrent bisimulations'. Below we give the 
formal definitions of step sequence equivalence. 

4.2.1. DEFINITION. Let E be an event structure and let X and Y be 
configurations of E. 
(i) Let U be a finite subset of EE. We say that Y Ufollows X, notation 

X{U>Y, if Xn U= 0, the elements of U are pairwise concurrent (so 
'tle,e' EU: e=/=e'~e ~E e') and Y=XU U. 

(ii) Let U~EE. We say that U is enabled in X (U is a step from X), notation 
X{U>E, if X{U>EX' for some configuration X' of E. 

(iii) A sequence a=U1• • • • •Une(Pow(EE))* is enabled in X, notation 
X{a>E, if there exist configurations X 0 , ... ,Xn such that X=X0 and for 
l~i~n: X;-i[U;>EX;. We say that Xn is obtained from X by the 
occurrence of a, notation X{a>EXn. We also say that a is an (event) step 
sequence of X. 

(iv) Let a=U1• • • • •UnE(Pow(EE))* such that X{a>EY. Let CJ be the 
sequence IE(U1)* · · · •IE(Un) where IE(U;) denotes the multiset of labels 
of events in U;. We say that CJ is enabled in X, notation X{CJ>E- We also 
say that CJ is an (action) step sequence of X, and that Y is obtained from X 
by the occurrence of CJ, notation X{CJ>E Y. 

(v) With stepE(X) we denote the set of action step sequences of X, so 
stepE(X) = {CJE(Mul(A))* IX{CJ>E}-

4.2.2. DEFINITION. Two event structures E and Fare step sequence equivalent, 
notation E =•,ep F, if: 

stepE(0) = stepF(0). 

4.2.3. PROPOSITION. -,,ep is an equivalence relation. The following relations 
hold between the equivalences presented thw far: 

,_, 
~ ~ = 

i i 
-.,ep ~ =•eq 

PROOF. Easy. □ 
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4.2.4. E.xAMPLES. We give some examples which show that the diagram above 
gives all relations between the equivalences. Our first example shows that step 
semantics (at least sometimes) takes concurrency as a primitive notion. 

a b '=t.stq, a ······ · ······ b 

~ l l 
-seq b a 

FIGUllE 8 

The two leftmost event structures in Figure 6 are not isomorphic but they are 
step sequence equivalent. This follows from the observation that on the 
domain of event structures with empty concurrency relation step sequence 
equivalence and sequence equivalence coincide. 

The two rightmost event structures in Figure 6 are not bisimilar, but they 
are step sequence equivalent. 

4.3. Partial order semantics. An A-labelled partially ordered set is a triple 
(X,-._,/) with X a set, .,_ a partial order on X, and /: X➔A a labelling func­
tion. Two such sets (X0,-._0,/0) and (Xi,-._i,/1) are isomorphic if there exists a 
bijective mapping /: Xo➔X1 such that f(x).,_if(y) ~ X.,_QY and 
l 1(f(x))=/0(x). A partially ordered multiset (pomset) is an isomorphism class 
of labelled partially ordered sets. As usual, pomsets can be made setlike by 
requiring that the events in the partial orders should be chosen from a given 
set. Below we will view equivalence classes of conflict-free event structures as 
pomsets. 

4.3.1. DEFINmON. The restriction of an event structure E to a set X{:EE of 
events is the event structure Et X = (X, -.;;En(XXX), #En(XXX), /Et X). 

4.3.2. DEFINmON. Let E be an event structure and let X be a configuration of 
E. The set of pomsets of X, notation pomE(X), is defined by: 

pomE(X) = {(E t(X'-X))/ :;a; IX{:X'ecXE)}. 

4.3.3. DEFINmON. Two event structures E and Fare pomset equivalent, nota­
tion E -pom F, if: 

pomE(0) = pom,(0). 

The first systematic study of pomsets is by GRABOWSKI [12), who called them 
partial words. Pomset semantics is advocated by PRATI [22). 
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4.3.4. PRoPOsmoN. -pom is an equivalence relation. It fits in our semantical 
lattice as follows: 

-= 

4.3.5. E.xAMPLES. The two rightmost event structures in Figure 6 provide an 
example of two event structures which are identified in pomset semantics, but 
distinguished in bisimulation semantics. The remaining examples distinguish­
ing pomset equivalence and the other equivalences are displayed in Figure 9 
below. The example of Figure IO is interesting because it only contains 
conflict-free event structures. The example disproves Theorem 3.5 of ACETO, 

DE NICOLA & FANTECID [l]. 

a b ~ a b :t:pom a b 

JH)ffl -.,,ep 

a ~ a 

-seq ! 
b 

FIGURE 9 

a a =t=pom a a 

!~! -.,,ep ! ! 
a a a a 

FIGURE 10 

Notice that all these examples contain non-deterministic event structures. 

5. DETERMINISM -+ (EVENT STRUCIURE ISOMORPHISM = STEP SEQUENCE 

EQUIVALENCE) 

Proposition 3.9 stated that bisimulation equivalence and sequence equivalence 
coincide on the domain of deterministic event structures. Surprisingly, most of 
the non-interleaved semantics which have been proposed in the literature, also 
coincide on this domain. 

In the introduction of this paper we mentioned a large number of 
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equivalences which are situated in between event structure isomorphism and 
step sequence equivalence. As a consequence of the following result all these 
equivalences (except for occurrence net equivalence) coincide with event struc­
ture isomorphism on the domain of deterministic event structures. 

5.1. THEOREM. Let E,F be deterministic event structures. Then: E::: F <=> 
E step F. 

5.2. LEMMA. Let E be a deterministic event structure and let X, Y be 
configurations ofE such that Et X-E t Y. Then: X= Y. 
PROOF. Induction on the size of X. If Xis the empty set, then Y must be 
empty too and we are done. Suppose Xis nonempty. Let e be a maximal ele­
ment of X and let X'=X-{e}. Now we use that there exists an event struc­
ture isomorphism f between E t X and E t Y: we have E t X' ::: E t Y' for 
Y' = Y - {/ ( e)} and furthermore X' and Y' are configurations. Applying the 
induction hypothesis gives X' = Y'. Let a =IE( e) = I E<J ( e )). We have that 

X' ~ EX but also X' ~ E Y. Now use that E is deterministic to obtain that 
X=Y. □ 

5.3. LEMMA. Let E and F be deterministic event structures. Then: 
E -pom F <=> E ::: F. 
PROOF. '~' is trivial, so the interesting direction is '~'. Define relation 
~ C,EEXEF by: 

eo~e 1 <=>t1et E tpreE(eo) - F tpreF(e1} 

We claim that ~ gives a bijective mapping between EE and E F. Because 
E -pom F, it is obvious that dom(~)=EE and range(~)=EF. Suppose that 
e0 ~e 1 and e0 ~e 1'. We show that e 1 =e 1'. By definition we have 
E tpreE(e0) - F tpreF(e 1) ::: F tpreF(e 1'). Application of the previous 
lemma gives preF(e 1)=preF(e 1'). Since both sets have a unique maximal ele­
ment, these maximal elements must be identical: e 1 = e 1 '. In the same way we 
can prove that if e 0 ~e 1 and e0'~e 1, this implies e 0 =e0'. Hence ~ gives a 
bijection between EE and EF. It is not hard to see that this bijection is in fact 
an event structure isomorphism. □ 

Proof of Theorem 5.1. From the previous results it follows that in order to 
prove Theorem 5.1 it is enough to show that for deterministic event structures 
E,F: 

E -step F ~ E -pom F. 

By definition this is equivalent to: 

stepE(0) = stepF(0) ~ pomE(0) = pomF(0). 

We will prove a slightly stronger statement, namely: 

VXe~) VYecXF): stepE(X) = stepF(Y) ~ pomE(X) = pomF(Y). 
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Let Xe~}, Ye~ with stepE(X)=stepF(Y). Let X' be a configuration of E 
with XCX'. Let ao = {ei}{e2} ···{en} be a sequence of singleton steps 
such that X{ao>EX' and X'-X = {e 1, ••• ,en}- Let a 1 = {e 1'}{e2'} ·· · {en'} 
be a step sequence such that Y[a1 >F and /E(e;)=/F(e/) for 1 E.;;iE.;;n (due to 
the fact that X and Y have the same step sequences, such a sequence will 
always exist). Let Y' = YU {e 1', ... ,en'}- We claim that the function which 
maps e; to e;' is an event structure isomorphism between E t (X' - X) and 
F t(Y'-Y). For reasons of symmetry we have proved the theorem if we have 
shown this. 

The proof goes by induction to n. The case with n =O is trivial. Now sup­
pose n >0. Due to the fact that X and Y have the same step sequences and 
due to the determinism of E and F, we have: 

Since 

stepE(XU {ei}) = stepF(YU {e1'}). 

XU{ei} [{e2} · · · {en}>EX' and 

YU{e1'} [{e2'} · · · {en'}>EY', 

we can now apply the induction hypothesis which gives: 

E t(X'-(XU {ei})) :::'. F t(Y'-(YU {e 1'})). 

In order to prove the induction step it is enough to show that for 2,i;;;;;-.;n: 
e 1 <Ee;<:> e1' <Fe/. If n = 1 we are done, so assume n;..2. Let for some i, 
e; be minimal in {e2, ... ,en}- Then e/ is minimal in {e2', ... ,en'}. We claim that 
e 1 <Ee; <:> e 1' <Fe;'. Suppose e 1 <Ee; but not e 1' <Fe/. If we show 
that this leads to a contradiction we have proved the claim because the 
remaining case is symmetric. If it is not the case that e 1' < F e/ then 
e 1' VF e;'. Due to the minimaJity of e;' we have that Y[{e 1', e;'}>F- Now we 
use that X and Y have the same step sequences and the fact that E is deter­
ministic. There must be some/such that X{{ei,/}>E and /E(f) = /F(e;') = 
/E(e;). Because e 1 <E e;, /=foe;. But now there is a contradiction since we can 
go from configuration XU{ei} with an /E(f)-transition to XU{e 1,/} as well 
as XU {e 1,e;}. 

Now we have proved that fore;, which are minimal in {e2, ... ,en}, e 1 <Ee; 
<:> e 1' <Fe;'. In order to prove this fact also for e; which are not minimal, 
we distinguish between two cases. 
I. For all e; which are minimal in { e2,••·,en}, we have that e 1 <E e;. This 

implies that e1 <E e1 for 2E.;/E.;n. Further we have that for all e;' which 
. . 1 . { ' '} ' ' Co ti ' ' f are mmnna m e2 , ... ,en , e 1 <Fe;. nsequen y e 1 <Fe, or 

2E.;/E.;n, and we are done. 
2. There is an e; which is minimal in {e 2 , ••• ,en} such that e 1 VE e;. This 

means that e 1' ~ e;'. We now have the following situation: 

XU{e;} [{ei} · · · {e;-1}{e;+i} · · · {en}>EX' and 

YU{e;'} [{e1'} · · · {e;-1'}{e;+1'} · · · {en'}>FY'. 
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Of course XU { e;} and YU { ei'} have the same step sequences. Applica­
tion of the induction hypothesis gives: 

D 

Observe that in the proof of Theorem 5.1 we only use that E and F have the 
same sequences of steps containing at most two events. 

5.4. The diagram below presents the relations between the equivalences 
presented thus far when restricted to the domain of deterministic event struc­
tures. 

~ ~ seq 

The example of Figure 8 shows that even for deterministic systems there is a 
difference between arbitrary interleaving and partial order semantics. 

6. ARBITRARY INTERLEAVING VERSUS TRUE CONCURRENCY 

One can consider event structures up to step sequence equivalence as an inter­
leaving semantics if one is willing to view a multiset of actions as an action 
again. In the process algebra languages MEDE and ACP this idea can be 
implemented by working for instance with an action structure which is the 
product of a free commutative monoid and a free commutative group. Under 
this interpretation one can say that for deterministic systems there is no 
difference between arbitrary interleaving and True concurrency. 

Now one can ask the question to what extent a multiset of more than one 
action can be considered as something which is observable. In a synchronous 
system like a systolic architecture there is certainly no problem. After each 
clock tick one can just stop the system and examine which 'cells' have per­
formed an action. The multiset (or set if the system is deterministic) of actions 
performed by the separate cells gives the step which is performed by the syn­
chronous system. It is much harder to imagine how a 'step' can be observed 
in an asynchronous system. The only thing I can come up with is that some 
observer notices the beginning of one action before another action has been 
finished. In such a situation the observer can conclude that the two actions 
occur concurrently. 

Below, this way of observing concurrent processes is formally implemented 
by means of an operator split on event structures that splits any event e into 
events e + and e - , which are ordered. One may think of e + as the beginning 
of e and of e- as the end of e. 
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6.1.1. DEFINmON. Let E be an event structure over some alphabet A. Let 
A+ ={a+ laeA} and A - ={a- laeA} be two disjoint copies of A. The 
event structure F=split(E) over alphabet A+ UA - is given by: 

Er= {e+,e - leeEE} 

<, = {(e\f")lx,ye{+,-} ande <E/}U{(e+,e-)leeEE} 

#, = {(e\f")lx,ye{ +, - } and e #E /} 

l,(e+) = (IE(e))+ 

l,(e-) = (IE(e))-

6.1.2. REMARK. 

split ( a C ) 

l 
b ·· ···· ······· d 

! ! 
a C 

! 
b+ ........... . . d+ 

! ! 
b- d-

FIGURE 11 

6.1.3. DEFINITION. Two event structures E and F are split sequence equivalent, 
notation E split F, if: split(E) seq split(F). 

Split sequence equivalence is closely related to ST-bisimulation semantics as 
presented in VAN GLABBEEK & VAANDRAGER [11) on the domain of Petri nets, 
but there are some differences. Besides the fact that split sequence equivalence 
does not respect branching time it is also not real time consistent in the sense 
of [11). The idea of splitting actions into a beginning and an end is, on a 
different and more restricted domain, also described by HENNESSY [13). Our 
split-operator can be viewed as a special case of action refinement as described 
by CASTELLANO, DE MICHELIS & POMELLO [7] and ACETO & HENNESSY [2). 
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6.2. LEMMA. Let E and F be two event structures. Then: 

E -po,,i F ~ split(E) -po,,i split(F). 

PROOF. The main idea of the proof occurs already in [7]. 
Let E and F be event structures with E -po,,i F. Choose a configuration 
X Ea._sp/it(E)). We must show that there exists a configuration Y Ea._split(F)) 
such that: 

split(E) t X ::::::: split(F) t Y. 

By symmetry it follows that we are ready if we have proved this. Define the 
sets x± ,x+ <;;,EE by: 

x± = {eEEEle+ EX and e- EX}, 

x+ = {eeEEle+eXande-riX}, 

One can easily check that x± u x+ is a configuration of E. Since E 1""" F, 
there is a configuration YE~ and a bijection /:X± U x+-+ Y which gives an 
event structure isomorphism between E t(X± ux+) and Ft Y. Define 

Iii Y-'P <;;,Esplit(F) by: 

yspiit = {(f(e))+ ,(f(e))- leEX±} u {(f(e))+ le EX+}. 

It is not hard to see that y.spiit is a configuration of split(F). Now define a 
mapping j""t :X-+ y.spiit by: 

jl"lit(e+) = (f(e))+ fore+EX, 

jl"lit(e-) = (f(e))- fore- EX 

We claim that jl"lil is an event structure isomorphism between split(E) t X and 
split(F) t yspiit. A simple argument gives that j""t is a bijection. Oearly jl"lit 
preserves labels. Finally we have that if two events in X are ordered their 
images under j""t are also ordered, and if two events in X are concurrent their 
images under j""' are concurrent too. □ 

6.3. PRoPOsmoN. Let E and F be two event structures. Then: 

E -pom F ~ E .splil F. 

PROOF. E 1""" F ~ split(E) -pom split(F) ~ 
E .split F. 

split(E) ffq split(F) ~ 

□ 

6.4. PRoPOsmoN. Let E and F be two event structures. Then: 
E .split F ~ E stq, F. 
PROOF. Let E and F be two event structures with E .split F. Let a = 
A 1 • • • AmE(Mu/(A))* with A; = {a;1, ... ,a;.,,} be an action step sequence of E. 
We must show that a is also an action step sequence of F. By symmetry we 
are ready if we have proved this. The following sequence p is an action 
sequence of split(E): 
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p = a~ a(i ··.at_, au au .. · aj;., aiJ ... a:1 ... a!.. a;;;I .. · a;;;,,. 

Since E split F, p is also an action sequence of split(F). Hence split(F) has 
some event sequence a with the property that, if we replace the events in a by 
their labels, we obtain p. Let this a be given by: 

a = e~ e(i · · · et_, fi"i /ii · · · /I,., eiJ · · · e: 1 • • • e!.. f;;; 1 • • • /;;;,,. 

Note that in general eij may be different from fij• However, we do have that 
{ en , ... ,e;n,} equals {Ii 1, ••• ,.fin, }. 
From the fact that a is an event sequence of split(F) it follows that F has the 
event step sequence: 

{e11, •••, e1n,} ... {em1,••·,emn.}-

Hence o is an action step sequence of F. D 

6.5. As a consequence of Propositions 6.3 and 6.4, split sequence equivalence 
can be located in our semantical lattice as follows: 

=> 

pom => split => =step => -seq 

6.6. E.xAMPLES. The following examples show that all equivalences in 6.5 are 
different. 

a b ±pom a 

=split ! 
b ········· b 

FIGURE 12 

a C ±sp/it b~a ••······ ·C 

! -step / ! ! 
b C a ----b 

FIGURE 13 

Due to Theorem 5.1 and the position of split in the semantical lattice we have 
that for deterministic event structures, split bisimulation equivalence and event 
structure isomorphism coincide: 
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6. 7. PRoPOsmoN. Let E,F be deterministic event structures. Then: E :::: F <=> 
E sp/il F. 

Thus the causal structure of a deterministic concurrent system can be 
unravelled by observers who are capable to observe the beginning and termina­
tion of events. 
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Dit proefschrift bestaat, naast een inleiding, uit zes artikelen op bet gebied van 
de semantiek van programmeer- en specificatietalen voor parallelle en gedistri­
bueerde computersystemen. 

Het eerste artikel bebandelt Plotkin's methode om operationele semantiek te 
geven aan dergelijke talen. Betoogt wordt dat allerlei resultaten die tot nu toe 
bewezen werden voor een gegeven taal en semantiek afzonderlijk, ook bewezen 
kunnen worden voor grote klassen van talen en semantieken tegelijkertijd. 
Eigenscbappen waar naar gekeken is zijn onder meer de vraag of bisimulatie 
equivalentie een congruentie is, de mate waarin een semantiek robuust is onder 
uitbreidingen van de taal, en de aard van de volledig abstracte semantiek die 
boort bij een gegeven taal en observatie-criterium. 

De laatste jaren is er veel onderzoek verricbt op bet gebied van de pro­
cesalgebra. Het betreft bier kleine taaltjes, die gegenereerd worden door een 
beperkt aantal fundamentele taalconstructies zoals parallelle, sequentiele en 
altematieve compositie. Het idee is dat een grondige studie van de semantiek 
van dergelijke kleine talen een gedegen ondergrond verscbaft voor bet geven 
van semantiek aan de vaak uiterst complexe talen die in de praktijk gebruikt 
worden. Het blijkt mogelijk en tevens verbelderend om de diverse semantieken 
van de basistalen (bijvoorbeeld de semantieken die onder gebruikmaking van 
Plotkin's methode zijn gedefinieerd) algebratscb te karakteriseren. In bet 
tweede artikel van dit proefschrift wordt een algemeen raamwerk gepresenteerd 
om de algebratscbe wetten te groeperen en te structureren. Dit raamwerk 
wordt dan toegepast op ACP ( der Algebra der Communicerende Processen), 
een in Amsterdam ontwikkelde familie van basistalen. 

In bet derde artikel worden twee eenvoudige communicatieprotocollen 
gespecificeerd in de taal van ACP en correct bewezen met bebulp van de 
axioma's die in bet tweede artikel zijn gepresenteerd. Dit ondersteunt de claim 
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dat een volledig algebraische verificatie uitvoerbaar is voor kleine systemen (in 
een infinitaire, conditionele equationele eensoortige logica). 

V oor grotere systemen ligt . dit anders. In theorie is algebraische verificatie 
nog steeds mogelijk maar in de praktijk blijkt dat correctheidsbewijzen onno­
dig lang worden en dat bet niet mogelijk is om bepaalde elementaire inzichten 
over bet gedrag van een systeem te laten corresponderen met een korte 
afleiding van een algebraische identiteit. Daarom wordt in bet vierde artikel 
bet axiomatisch raamwerk ACP uitgebreid met de zogenaamde 'trace logica'. 
De7.C logica laat toe om eigenschappen te formuleren van de rijtjes van acties 
die door een systeem kunnen worden uitgevoerd. Het artikel laat zien hoe 
soms de lengte van verificaties drastisch kan worden ingekort door gebruik te 
maken van trace logica. 

Het vijfde artikel behandelt de vertaling naar ACP van de parallelle, object­
georiimteerde programmertaal POOL. Dit is een door Philips ontwikkelde taal, 
bedoeld voor bet programmeren van een parallelle computer. Omdat er voor 
ACP vele semantieken beschikbaar zijn, kan de vertaling van POOL naar ACP 
gezien worden als een manier om semantiek aan POOL te geven. Verder kan 
de veelheid aan theorie die voor ACP beschikbaar is gebruikt worden om 
feiten te bewijzen over POOL. In bet artikel wordt in bet bijzonder ingegaan 
op de vraag of bepaalde implementaties van POOL correct zijn. De7.C analyse 
heeft geleid tot de ontdekking van een kleine fout in bet taalontwerp van 
POOL. 

Het laatste artikel in dit proefschrift handelt over 'gebeurtenisstructuren' 
(event structures). Gebeurtenisstructuren vormen de basis voor een serie van 
nieuwe modellen voor parallelle systemen die verfijnder zijn dan de gangbare 
transitiesysteemmodellen omdat ze parallellisme, bet onafhankelijk en 
tegelijkertijd plaatsvinden van gebeurtenissen, als primitieve notie incor­
poreren. Het belangrijkste resultaat van bet artikel is dat voor de klasse van 
'deterministische' gebeurtenisstructuren vrijwel alle in de Iiteratuur voor­
komende noties van equivalentie samenvallen. 



STELLINGEN 

1. V oor parallelle, op bun omgeving reagerende systemen bestaat er niet een 
kanonieke notie van waameembaar gedrag. In plaats daarvan is er een 
veelheid van dergelijke noties die aanleiding geeft tot een veelheid van 
procesequivalenties. Het succes van de algebraiscbe, axiomatiscbe aanpak 
van de theorie der communicerende processen wordt voor een belangrijk 
deel verklaard door deze situatie. 

2. Bescbouw bet domein §/ t- van eindigsplitsende procesgrafen modulo 
sterke bisimulatie-equivalentie. Zij [g ],[h) E@/ t> · Defineer: 

d([g ],[h]) = 2 - sup(,i lg en h zijn n -genest simulalie-equivalent}, 

met de conventie dat 2- 00 = 0. Dan is d een ultrametriek en alle operato­
ren op §It- die definieerbaar zijn via welgefundeerde tyftltyxt regels zijn 
continu ten opzicbte van d. 

Zie: bet eerste artikel in dit proefschrift. De bovenstaande stelling volgt 
onder gebruikmaking van Stelling 8.5.5 en Lemma 8.5.7 uit dit artikel. 

3. Zij :JC een K.ripke-structuur met n toestanden en m transities. Er bestaat 
een O(m·n) algorithme voor bet beslissen van de zogebeten stotter­
equivalentie op :JC. Aangezien m,;;;;n 2

, betekent dit dat bet vermoeden van 
Browne, Clarke & Griimberg dat hun O (n 5) algorithme verbeterd kon 
worden, juist was. 

Zie: M.C. Browne, E.M. Clarke & 0. Gri.imberg, Characterizing finite 
Kripke structures in propositional temporal logic. Theoretical Computer 
Science 59(1,2), 115-131, 1988. 
J.F. Groote & F.W. Vaandrager, An efficient algorithm for branching 
bisimulation and stuttering equivalence. (In voorbereiding) 

4. Een semantiscbe bescbrijving van de programmeertaal POOL-T die geba­
seerd is op handshaking communicatie tussen objecten is niet verenigbaar 
met een implementatie van deze communicatie waarbij gebruik wordt 
gemaakt van wacbtrijen voor boodschappen. Dit probleem wordt veroor­
zaakt door bet select statement in POOL-T en het is daarom een goede 
zaak dat deze constructie niet meer deel uitmaakt van de meer recente 
versies van de taal. 

Zie: het vijfde artikel in dit proefschrift. 



5. Het is een opmerkelijk feit dat, bij aanname van max.imaal parallellisme, 
pomset-equivalentie niet en ST-bisimulatie-equivalentie wel real-time con­
sistent is. 

Zie: R.J. van Glabbeek & F.W. Vaandrager, Petri net models for algebraic 
theories of concurrency. In: Proceedings PARLE conference, Eindhoven, 
Vol. II (Parallel Languages), LNCS 259, Springer-Verlag, 224-242, 1987. 

6. lndien men in de definitie van Milner's observation equivalence, een 
zwakke bisimulatie definieert als een relatie tussen paden in plaats van 
tussen toestanden, en indien men verder naast de gebruikelijke 'voor­
waartse' conditie ook de conditie toevoegt dat indien twee paden gerela­
teerd zijn en men langs het ene pad een stap achterwaarts kan doen dit 
langs het andere pad gei'.miteerd moet kunnen worden, dan valt de resul­
terende equivalentie samen met de branching bisimulation equivalence van 
Van Glabbeek & Weijland. 

Zie: R. De Nicola, U. Montanari & F.W. Vaandrager, Back and forth 
bisimulations. (In voorbereiding) 

7. Er bestaat een eenvoudige constructie die aan een procesgraaf g een 
procesgraaf tr(g) toevoegt waarvan de knopen gelabeld zijn op zodanige 
wijze dat (1) wanneer gen tr(g) worden uitgerold tot bomen, deze bomen 
(afgezien van knooplabels) isomorf zijn, en verder (2) twee grafen g 1 en 
g 2 vertakkend bisimulatie-equivalent zijn precies dan wanneer tr(g 1) en 
tr(g2 ) dezelfde CTL°-formules zonder nexttime-operator waar maken in 
een interpretatie waarbij gequantificeerd wordt over alle paden en niet 
alleen de max.imale. 

Zie: R. De Nicola & F.W. Vaandrager, Three logics/or branching bisimula­
tion . (In voorbereiding) 

8. In de geometrische opbouw van het fresco De dood van Adam van Piero 
della Francesca is het linkeroog van Adam het belangrijkste punt. Ver­
moedelijk met opzet heeft de schilder dit punt een fractie ter linkerzijde 
van de gulden snedelijn geplaatst. 

9. Ook al neemt men het matige peil van veel wetenschappelijke presentaties 
in aanmerking, dan nog bestaat er een opvallend verschil tussen de 
staande ovaties die musici en toneelspelers vrijwel altijd ten deel vallen en 
het lauwe handgeklap waarmee wetenschappers het in het algemeen moe­
ten doen. 

10. In tegenstelling met de kroketten in het restaurant, 
zijn die in de kantine juist aan de grote kant. 

Vgl.: C.B. Vaandrager, Vaandrager's totale poezie, De Bezige Bij, Amster­
dam, 1981. 




