2,196 research outputs found

    PKCAM: Previous Knowledge Channel Attention Module

    Full text link
    Recently, attention mechanisms have been explored with ConvNets, both across the spatial and channel dimensions. However, from our knowledge, all the existing methods devote the attention modules to capture local interactions from a uni-scale. In this paper, we propose a Previous Knowledge Channel Attention Module(PKCAM), that captures channel-wise relations across different layers to model the global context. Our proposed module PKCAM is easily integrated into any feed-forward CNN architectures and trained in an end-to-end fashion with a negligible footprint due to its lightweight property. We validate our novel architecture through extensive experiments on image classification and object detection tasks with different backbones. Our experiments show consistent improvements in performances against their counterparts. Our code is published at https://github.com/eslambakr/EMCA

    BRAHMS: Novel middleware for integrated systems computation

    Get PDF
    Biological computational modellers are becoming increasingly interested in building large, eclectic models, including components on many different computational substrates, both biological and non-biological. At the same time, the rise of the philosophy of embodied modelling is generating a need to deploy biological models as controllers for robots in real-world environments. Finally, robotics engineers are beginning to find value in seconding biomimetic control strategies for use on practical robots. Together with the ubiquitous desire to make good on past software development effort, these trends are throwing up new challenges of intellectual and technological integration (for example across scales, across disciplines, and even across time) - challenges that are unmet by existing software frameworks. Here, we outline these challenges in detail, and go on to describe a newly developed software framework, BRAHMS. that meets them. BRAHMS is a tool for integrating computational process modules into a viable, computable system: its generality and flexibility facilitate integration across barriers, such as those described above, in a coherent and effective way. We go on to describe several cases where BRAHMS has been successfully deployed in practical situations. We also show excellent performance in comparison with a monolithic development approach. Additional benefits of developing in the framework include source code self-documentation, automatic coarse-grained parallelisation, cross-language integration, data logging, performance monitoring, and will include dynamic load-balancing and 'pause and continue' execution. BRAHMS is built on the nascent, and similarly general purpose, model markup language, SystemML. This will, in future, also facilitate repeatability and accountability (same answers ten years from now), transparent automatic software distribution, and interfacing with other SystemML tools. (C) 2009 Elsevier Ltd. All rights reserved

    Red Teaming Generative AI/NLP, the BB84 quantum cryptography protocol and the NIST-approved Quantum-Resistant Cryptographic Algorithms: Red Teaming Generative AI and Quantum Cryptography

    Get PDF
    In the contemporary digital age, Quantum Computing and Artificial Intelligence (AI) convergence is reshaping the cyber landscape, introducing both unprecedented opportunities and potential vulnerabilities. This research, conducted over five years, delves into the cybersecurity implications of this convergence, with a particular focus on AI/Natural Language Processing (NLP) models and quantum cryptographic protocols, notably the BB84 method and specific NIST-approved algorithms. Utilising Python and C++ as primary computational tools, the study employs a "red teaming" approach, simulating potential cyber-attacks to assess the robustness of quantum security measures. Preliminary research over 12 months laid the groundwork, which this study seeks to expand upon, aiming to translate theoretical insights into actionable, real-world cybersecurity solutions. Located at the University of Oxford's technology precinct, the research benefits from state-of-the-art infrastructure and a rich collaborative environment. The study's overarching goal is to ensure that as the digital world transitions to quantum-enhanced operations, it remains resilient against AI-driven cyber threats. The research aims to foster a safer, quantum-ready digital future through iterative testing, feedback integration, and continuous improvement. The findings are intended for broad dissemination, ensuring that the knowledge benefits academia and the global community, emphasising the responsible and secure harnessing of quantum technology

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    Virtual Reality in Mathematics Education (VRiME):An exploration of the integration and design of virtual reality for mathematics education

    Get PDF
    This thesis explores the use of Virtual Reality (VR) in mathematics education. Four VR prototypes were designed and developed during the PhD project to teach equations, geometry, and vectors and facilitate collaboration.Paper A investigates asymmetric VR for classroom integration and collaborative learning and presents a new taxonomy of asymmetric interfaces. Paper B proposes how VR could assist students with Autism Spectrum Disorder (ASD) in learning daily living skills involving basic mathematical concepts. Paper C investigates how VR could enhance social inclusion and mathematics learning for neurodiverse students. Paper D presents a VR prototype for teaching algebra and equation-solving strategies, noting positive student responses and the potential for knowledge transfer. Paper E investigates gesture-based interaction with dynamic geometry in VR for geometry education and presents a new taxonomy of learning environments. Finally, paper F explores the use of VR to visualise and contextualise mathematical concepts to teach software engineering students.The thesis concludes that VR offers promising avenues for transforming mathematics education. It aims to broaden our understanding of VR's educational potential, paving the way for more immersive learning experiences in mathematics education

    Design and implementation of extensible middleware for non-repudiable interactions

    Get PDF
    PhD ThesisNon-repudiation is an aspect of security that is concerned with the creation of irrefutable audits of an interaction. Ensuring the audit is irrefutable and verifiable by a third party is not a trivial task. A lot of supporting infrastructure is required which adds large expense to the interaction. This infrastructure comprises, (i) a non-repudiation aware run-time environment, (ii) several purpose built trusted services and (iii) an appropriate non-repudiation protocol. This thesis presents design and implementation of such an infrastructure. The runtime environment makes use of several trusted services to achieve external verification of the audit trail. Non-repudiation is achieved by executing fair non-repudiation protocols. The Fairness property of the non-repudiation protocol allows a participant to protect their own interests by preventing any party from gaining an advantage by misbehaviour. The infrastructure has two novel aspects; extensibility and support for automated implementation of protocols. Extensibility is achieved by implementing the infrastructure in middleware and by presenting a large variety of non-repudiable business interaction patterns to the application (a non-repudiable interaction pattern is a higher level protocol composed from one or more non-repudiation protocols). The middleware is highly configurable allowing new non-repudiation protocols and interaction patterns to be easily added, without disrupting the application. This thesis presents a rigorous mechanism for automated implementation of non-repudiation protocols. This ensures that the protocol being executed is that which was intended and verified by the protocol designer. A family of non-repudiation protocols are taken and inspected. This inspection allows a set of generic finite state machines to be produced. These finite state machines can be used to maintain protocol state and manage the sending and receiving of appropriate protocol messages. A concrete implementation of the run-time environment and the protocol generation techniques is presented. This implementation is based on industry supported Web service standards and services.EPSRC, The Hewlett Packard Arjuna La

    Space life sciences: A status report

    Get PDF
    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research
    • 

    corecore