277 research outputs found

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Combining Shape Completion and Grasp Prediction for Fast and Versatile Grasping with a Multi-Fingered Hand

    Full text link
    Grasping objects with limited or no prior knowledge about them is a highly relevant skill in assistive robotics. Still, in this general setting, it has remained an open problem, especially when it comes to only partial observability and versatile grasping with multi-fingered hands. We present a novel, fast, and high fidelity deep learning pipeline consisting of a shape completion module that is based on a single depth image, and followed by a grasp predictor that is based on the predicted object shape. The shape completion network is based on VQDIF and predicts spatial occupancy values at arbitrary query points. As grasp predictor, we use our two-stage architecture that first generates hand poses using an autoregressive model and then regresses finger joint configurations per pose. Critical factors turn out to be sufficient data realism and augmentation, as well as special attention to difficult cases during training. Experiments on a physical robot platform demonstrate successful grasping of a wide range of household objects based on a depth image from a single viewpoint. The whole pipeline is fast, taking only about 1 s for completing the object's shape (0.7 s) and generating 1000 grasps (0.3 s).Comment: 8 pages, 10 figures, 3 tables, 1 algorithm, 2023 IEEE-RAS International Conference on Humanoid Robots (Humanoids), Project page: https://dlr-alr.github.io/2023-humanoids-completio

    Topology based representations for motion synthesis and planning

    Get PDF
    Robot motion can be described in several alternative representations, including joint configuration or end-effector spaces. These representations are often used for manipulation or navigation tasks but they are not suitable for tasks that involve close interaction with the environment. In these scenarios, collisions and relative poses of the robot and its surroundings create a complex planning space. To deal with this complexity, we exploit several representations that capture the state of the interaction, rather than the state of the robot. Borrowing notions of topology invariances and homotopy classes, we design task spaces based on winding numbers and writhe for synthesizing winding motion, and electro-static fields for planning reaching and grasping motion. Our experiments show that these representations capture the motion, preserving its qualitative properties, while generalising over finer geometrical detail. Based on the same motivation, we utilise a scale and rotation invariant representation for locally preserving distances, called interaction mesh. The interaction mesh allows for transferring motion between robots of different scales (motion re-targeting), between humans and robots (teleoperation) and between different environments (motion adaptation). To estimate the state of the environment we employ real-time sensing techniques utilizing dense stereo tracking, magnetic tracking sensors and inertia measurements units. We combine and exploit these representations for synthesis and generalization of motion in dynamic environments. The benefit of this method is on problems where direct planning in joint space is extremely hard whereas local optimal control exploiting topology and metric of these novel representations can efficiently compute optimal trajectories. We formulate this approach in the framework of optimal control as an approximate inference problem. This allows for consistent combination of multiple task spaces (e.g. end-effector, joint space and the abstract task spaces we investigate in this thesis). Motion generalization to novel situations and kinematics is similarly performed by projecting motion from abstract representations to joint configuration space. This technique, based on operational space control, allows us to adapt the motion in real time. This process of real-time re-mapping generates robust motion, thus reducing the amount of re-planning.We have implemented our approach as a part of an open source project called the Extensible Optimisation library (EXOTica). This software allows for defining motion synthesis problems by combining task representations and presenting this problem to various motion planners using a common interface. Using EXOTica, we perform comparisons between different representations and different planners to validate that these representations truly improve the motion planning

    Robots Learning Manipulation Tasks from Demonstrations and Practice

    Get PDF
    Developing personalized cognitive robots that help with everyday tasks is one of the on-going topics in robotics research. Such robots should have the capability to learn skills and perform tasks in new situations. In this thesis, we study three research problems to explore the learning methods of robots in the setting of manipulation tasks. In the first problem, we investigate hand movement learning from human demonstrations. For practical purposes, we propose a system for learning hand actions from markerless demonstrations, which are captured using the Kinect sensor. The algorithm autonomously segments an example trajectory into multiple action units, each described by a movement primitive, and forms a task-specific model. With that, similar movements for different scenarios can be generated, and performed on Baxter Robots. The second problem aims to address learning robot movement adaptation under various environmental constraints. A common approach is to adopt motion primitives to generate target motions from demonstrations. However, their generalization capability is weak for novel environments. Additionally, traditional motion generation methods do not consider versatile constraints from different users, tasks, and environments. In this work, we propose a co-active learning framework for learning to adapt the movement of robot end-effectors for manipulation tasks. It is designed to adapt the original imitation trajectories, which are learned from demonstrations, to novel situations with different constraints. The framework also considers user feedback towards the adapted trajectories, and it learns to adapt movement through human-in-the-loop interactions. Experiments on a humanoid platform validate the effectiveness of our approach. In order to further adapt robots to perform more complex manipulation tasks, as the third problem, we are investigating a framework that the robot could not only plan and execute the sequential task in a new environment, but also refine its actions by learning subgoals through re-planning/re-execution during the practice. A sequential task is naturally considered as a sequence of pre-learned action primitives, each action primitive has its own goal parameters corresponding to the subgoal. We propose a system to learn the subgoals distribution of given task model using reinforcement learning by iteratively updating the parameters in the trials. As a result, by considering the learned subgoals distribution in sequential motion planning, the proposed framework could adaptively select better subgoals to generate movements for robot to execute the task successfully. We implement the framework for the task of ''openning a microwave'' involving a sequence of primitive actions and subgoals and validate it on Baxter platform

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen fĂŒr mobile Roboter und Multikopter ZuverlĂ€ssige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein fĂŒr den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlĂ€sslich, Änderungen in der Umgebung und die Unsicherheit bei der AktionsausfĂŒhrung zu berĂŒcksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung fĂŒr eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen AnsĂ€tzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. HĂ€ufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen FĂ€llen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein hĂ€ufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgefĂŒhrten Aktionen. Zur Evaluation der vorgestellten AnsĂ€tze werden Experimente sowohl in der Simulation als auch mit Robotern durchgefĂŒhrt. Der erste Teil dieser Dissertation behandelt Planungsmethoden fĂŒr mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgefĂŒhrt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung fĂŒr die lokale Multiresolutionsplanung ist die Pfadplanung fĂŒr humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur ĂŒber eine sehr eingeschrĂ€nkte Rechenleistung verfĂŒgen. Durch die Reduktion der PlanungskomplexitĂ€t mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusĂ€tzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berĂŒcksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen ĂŒber mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die PlanungskomplexitĂ€t zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgefĂŒhrt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgefĂŒhrt. Die GranularitĂ€t der resultierenden PlĂ€ne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie fĂŒr Multikopter entwickelt, von Missionsplanern fĂŒr verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur AusfĂŒhrung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale MultiresolutionsreprĂ€sentationen zur Beschleunigung der Planung eingesetzt. ZusĂ€tzlich zur Hindernisfreiheit und LĂ€nge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berĂŒcksichtigt werden, wie zum Beispiel die BerĂŒcksichtigung von Sensorcharakteristika. ErgĂ€nzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berĂŒcksichtigen eine angenĂ€herte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewĂ€hrleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der kĂŒnstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur ĂŒber kurze ZeitrĂ€ume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nĂ€hernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von GebĂ€uden und Schornsteinen sowie die automatisierte Inventur von LĂ€gern

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons
    • 

    corecore