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Abstract
This paper shows how a robot arm can follow and grasp moving objects tracked by a vision system, as is needed when a human
hands over an object to the robot during collaborative working. While the object is being arbitrarily moved by the human
co-worker, a set of likely grasps, generated by a learned grasp planner, are evaluated online to generate a feasible grasp with
respect to both: the current configuration of the robot respecting the target grasp; and the constraints of finding a collision-free
trajectory to reach that configuration. A task-based cost function enables relaxation of motion-planning constraints, enabling
the robot to continue following the object by maintaining its end-effector near to a likely pre-grasp position throughout the
object’s motion. We propose a method of dynamic switching between: a local planner, where the hand smoothly tracks the
object, maintaining a steady relative pre-grasp pose; and a global planner, which rapidly moves the hand to a new grasp
on a completely different part of the object, if the previous graspable part becomes unreachable. Various experiments are
conducted using a real collaborative robot and the obtained results are discussed.

Keywords Human–robot collaboration · Grasp planning · Motion planning · Grasping · Pose tracking

1 Introduction

Autonomous grasping andmanipulation of stationary objects
has been studied extensively for several decades. In con-
trast, far less work has been done on the more challenging
problems of grasping moving objects. This paper presents a
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novel approach to dynamically tracking and grasping mov-
ing objects. We further demonstrate how such methods can
be used to enable fundamental human–robot collaboration
activities, such as a human handing over an object to the
robot (Fig. 1). Additional applications might include grasp-
ing objects using a robot arm mounted on an erratically
moving underwater vehicle, collaborative assembly of auto-
motive parts etc.

The mainstream grasping literature has previously
addressed a variety of grasping sub-problems, including:
grasp synthesis based on analytical or data-driven approaches
(Kopicki et al. 2016; Lenz et al. 2015; Levine et al. 2016; Roa
andSuárez 2015); grasp controlwith tactile sensing (Romano
et al. 2011); reactive grasping dealing with uncertainty in
object location and shape (Hsiao et al. 2010); integrated grasp
and arm motion planning (Fontanals et al. 2014a). Addition-
ally, adaptation strategies have been proposed to increase the
robustness of grasps, including: learning to maintain grasp
stability based on tactile sensing Li et al. (2014); learning
to adapt hand postures through human corrections (Sauser
et al. 2012); using probabilistic inference to detect grasps
which are likely to be unsuccessful, and then correct them
(Bekiroglu et al. 2016); and human guided shared control-
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Fig. 1 A human operator handing over a test object to the robot. (Inset)
feasible grasp found during the online planning task

based grasping using dynamic virtual-fixtures (Vogel et al.
2016).

In contrast to the above work, grasping of moving objects
engenders a variety of difficult new challenges. An important
example of this problem is that of human–robot collabora-
tion, where a human hands an object to a robot, and the robot
must track the motions of that object and continuously adapt
its grasp plan in order to successfully receive the object from
the human.

Note that this problem cannot be solved by simply com-
bining a conventional vision system (for object pose tracking)
with a conventional grasp planner (designed for station-
ary objects). While the object is moving in unpredictable
ways, new grasps and new reach-to-grasp trajectories must
be continually replannedon-the-fly. For an arbitrarilymoving
object, there will typically be periods of time during which
no feasible grasp is possible at all. During such periods, it
is desirable that the robot continues to “track” the object by
keeping its hand as close as possible to a feasible pre-grasp
location, even while the actual pre-grasp location is unattain-
able.

Additionally, even if the robot can keep its hand near to a
likely grasp location on the moving object (which we refer to
as “grasp tracking”), a small rotation of the object can make
this grasp location suddenly disappear completely from the
robot’s reachable space and/or from the camera’s field of
view. This necessitates immediate replanning of a completely
new grasp, for a completely new part of the object, leading
to a gross discontinuity as the robot’s trajectory is replanned
to reposition the hand near a new object part. We address this
problem, by showing how the robot can dynamically switch
between:

(i) a local planner, which causes the hand to smoothly track
the object and maintain a steady pre-grasp pose relative
to the object;

(ii) a global planner, which plans a new grasp, and new
reach-to-grasp trajectory, to rapidly move the hand to a
different part of the object, when the previous graspable
part becomes unreachable.

1.1 Related work

A comparatively small amount of previous literature has
explored the more difficult problems of grasping moving
objects. Early work by Houshangi (1990) described a sys-
tem for online visual servoing of a robot manipulator to
grasp a moving target. This early work executed a top grasp
on a cylinder, constrained to move on a flat surface while
viewed from a ceiling-mounted camera, i.e., the problemwas
reduced to 2D tracking of a circle on a plane, and execution
of a pre-programmed grasp on the circle. Other early work,
by Allen et al. (1993), used a PUMA robot with a parallel jaw
gripper to grasp a moving toy train which was tracked by a
pair of cameras. The main contribution of this work was the
development of fast algorithms for computing optical flow
at real-time frame rates, using the low-power computers of
the time, and predictively extrapolating the motion of the
toy train to overcome computational time delays. As with
Houshangi (1990), the actual grasp planning in this work
was relatively simplistic, and worked by simply grasping
the toy train from above, while aligning the gripper’s jaws
with the direction of the train’s motion. The work of Smith
and Papanikolopoulos (1995) was similarly limited, with a
rectangular block, moving in a straight line, being grasped
from above. Other papers, e.g. Zhang and Buehler (1994),
explore control strategies for dynamic grasping via simpli-
fied 2D simulation experiments, in which a successful grasp
is defined as servoing a gripper until it has the same position,
velocity and acceleration as an object to be grasped (repre-
sented as a circle).

In contrast, we use an advanced, learning-based grasp
planner, which probabilistically generates a large number of
likely grasps at many different locations on the surface of
arbitrarily shaped objects with complex 3D geometries. In
our experiments, the robot continuously replans its grasps
and reach-to-grasp trajectories, while the objects are moving
with complex, arbitrary 6-degrees of freedom (DoF) trajec-
tories. As the object moves, the robot dynamically switches
between several different reach-to-grasp configurations, i.e.,
it replans trajectories to reachnewparts of anobject,whenold
parts become unreachable (due to both kinematic limitations
of the robot and also the constraints of avoiding obstacles in
the environment).

More recently, Kim et al. (2014) presented an impres-
sive programming-by-demonstration approach to catching
thrown objects. The system learns object flight dynamics
by observing examples, and learns a distribution of feasi-
ble grasps from several human-demonstrated grasps on each
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object. The system searches the space of reachable grasps
to find an appropriate catching motion which intercepts the
trajectory of the thrown object. Joint ranges were limited to
improve the speed of trajectory planning, and grasp selec-
tion was simplified by using a heuristic of always orienting
the palm of the robot’s hand to be opposite to the thrown
object’s velocity vector. Collisions between the arm trajec-
tory and surrounding objects were not explicitly considered.
In contrast, our approach allows the robot to exploit poten-
tial grasps on any part of the object, regardless of motion
direction, and reach-to-grasp trajectories are continuously
re-planned (utilising the entire motion space of the robot)
by avoiding self-collisions. We also exploit a learning-based
grasp planner, which can generalise from a small number
of examples to plan grasps on new objects with previously
unencountered shapes.

Menon et al. (2014) presented a search-based kinody-
namic motion planning algorithm that generates a time
parametrised trajectory for both the arm and end-effector to
grasp a moving object at the earliest feasible point based
on graph search. The system relied on prior knowledge of
the object’s trajectory and pre-programmed grasps for each
object. The proposed planner is unable to compute a real-time
trajectory when the object is very close to the robot. In con-
trast, our approach utilizes a task space error to relax the goal
constraints on the reach-to-grasp trajectory, which enables
our robot to perform continuous “grasp tracking”, always
maintaining a pre-grasp pose, or a pose that is very close to
the desired pre-grasp pose, throughout the object’s motion.
We also do not use pre-programmed grasps, and our system
can autonomously generate novel grasps on new objects with
previously unencountered shapes.

Inmost previous literature, grasp planning and armmotion
planning have been seen as two separate steps. A smaller
body of recent literature has started to address the problem of
simultaneous grasp and motion planning. Vahrenkamp et al.
(2012) proposed an RRT based planner, that combines build-
ing a feasible grasp, solving the inverse kinematics problem
and determining a collision-free trajectory that brings the
hand to the grasping pose, and presented evaluations in sim-
ulation. This work was limited to grasping of stationary
objects, in contrast to our focus on moving objects in this
paper. Additionally, the grasp planning of Vahrenkamp et al.
(2012) is based on a classical force-closure andwrench-space
approach, which requires accurate knowledge of physical
parameters, e.g. friction coefficients, which are rarely avail-
able for real hands and real objects. In contrast, we use a
probabilistic grasp planner based on learning, which is capa-
ble of generalising to new objects with unknown physical
parameters.

Kitaev et al. (2015) presented a physics-based trajectory
optimisation method that plans grasp approach trajectories
for grasping in cluttered environments. An interesting con-

tribution of this work, whichwe do not consider, is the idea of
planning reach-to-grasp trajectories which push aside clutter
objects on the way to grasping a desired object. However,
unlike our work, Kitaev et al. (2015) is aimed at grasping
stationary objects, and grasping of complex shapes is also
not addressed, with experiments limited to simple grasps on
primitive blocks in a simulation environment.

Fontanals et al. (2014b) proposed an approach using the
initial configuration of the robotic arm and the pose of the
target object to simultaneously plan a hand pose and arm
trajectory, where grasps are found based on independent con-
tact regions. Again, this work does not address the problem
of grasping moving objects, instead using simulation exper-
iments with stationary objects which have simple shapes.
Horowitz andBurdick (2012) formulated the combined prob-
lem of grasp contact selection, grasp force optimisation, and
manipulator arm/hand trajectory planning as a problem in
optimal control. This work also did not address the problem
of graspingmoving objects, although it does consider the fin-
ger contact forces that are needed formoving an object after it
has been grasped. Simple fingertip point placements are con-
sidered, in a simplified 2D simulation environment. In con-
trast to the above methods, our work explicitly addresses the
problem of grasping objects which are moving with arbitrar-
ily complex 6DoF trajectories. Our method is tested in real
experiments, using objects which have complex 3D shapes.

1.2 Overview of our approach

Our approach enables a robot to grasp arbitrarily moving
objects (using no prior model information). It is based on
learned generative grasp model, which generates offline a
diverse set of possible grasp trajectories1 for a query object,
i.e., the object, which robot has to follow and grasp. The
object pose is estimated and updated by a particle filter-based
optimised pose tracker, which is then used by a real-time
iterative inverse kinematics solver (IK solver) based on dif-
ferential evolution optimisation of joint angles to transform
grasp trajectories into a new object frame. At any given
instant, a single grasp trajectory is selected online that has
the smallest task space error due to kinematic constraints and
collisions. Finally, a real-time arm trajectory planner selects
and executes a collision-free trajectory leading to the selected
grasp trajectory.

Our approach is different from the approaches known from
the literature in the following ways:

1. It relies on a generative grasp model which generates
a diverse set of grasp trajectories (also called as grasp

1 Each trajectory is represented as a sequence of waypoints from
approach to grasp, where each waypoint consists of hand-wrist pose
and hand-joint configuration.
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hypotheses in some parts of this paper) for each new
object. Typically for a moving object, only a sub-set of
these trajectories can successfully be executed at any
particular moment. Nevertheless, it is very likely that
for most object poses this trajectory sub-set will not be
empty.

2. Grasp trajectories are selected using a soft measure of
trajectory quality, a task space error, which can be incor-
porated into the robot’s motion planning by solving
inverse kinematics using a non-classical approach based
on iterative numerical optimisation of the robot’s joint
angles in order to minimise the soft task space error. The
robot continuously “tracks” the current grasp trajectory
approachwaypoint, by executing trajectories which yield
the smallest feasible task space error at any instant. This
technique enables handling of situations where no error-
free trajectories exist, but where feasible grasps are likely
to become available again in the near future.

3. Our approach relies on dynamically switching between
two types of planners, depending on the distance of the
robot from the current destination pre-grasp position.
This technique results in smooth, “local” robot move-
ments (in terms of joint space) as long as the current
task space error is not larger than a predefined thresh-
old. However, when the current goal pre-grasp location
becomes far from feasible (task space error becomes
large), the robot switches to a “global” planner which
triggers a gross discontinuity as the robot chooses and
moves towards a new pre-grasp pose with respect to the
moving object (needed because the object’s motion has
caused the previous desired pre-grasp pose to become
unachievable). It is worthmentioning that for local trajec-
tory planning, we use a fast anytime local planner which
plans collision-free trajectories such that waypoints are
guaranteed to stay close to each other in joint space. For
global re-planning of new reach-to-grasp trajectories, a
non real-time global planner is used to plan collision-
free trajectories towards a new choice of grasp pose, that
cannot be solved using the local planner.

The remainder of the paper is structured as follows. We
describe the components of the system and the robotic hard-
ware in Sect. 2 and the grasp planning algorithm in Sect. 3.
Experimental results are presented in Sects. 4 and 5 provides
concluding remarks.

2 System outline

Online moving object grasping method presented in the next
section requires the object pose to be updated continuously
throughout the task. To this extent, in this section, we present
a particle filter-based method, which is capable of tracking

Fig. 2 Experimental setup used for this work

object’s full 3D pose using partial point clouds of the objects
acquired using a low-cost sensor. Initial object scanning and
model building tasks are the primary initialisation blocks that
are executed before initiating the tracking process. We first
present our hardware set-up and then proceed with the object
shape modeling and 3D pose tracking.

2.1 Robotic platform

The experimental set-up used in this work is shown in the
Fig. 2. It consists of a 7DoF collaborative robot, KUKA iiwa
140whose end-effector is equippedwith a twofinger parallel-
jaw gripper, Schunk PG 70 with a stroke size of 68 mm.
The vision system includes three different cameras: 2 Prime-
Sense Carmine RGB-D narrow angle sensors (task and track
cameras) and 1 Point Grey Grasshopper USB-3.0 camera.
The task camera mounted on top of the gripper is mainly
responsible for acquiring scene point clouds, which are then
processed to generate a target object cloud. Consecutively,
the obtained cloud will be used to generate a set of possi-
ble grasps as well as to trigger visual object tracking. On
the other hand, the track camera located in the workspace
is responsible for tracking full pose of the moving objects.
The Point Grey camera is used merely for recording videos
of experiments, which can be augmented to aid visualisa-
tion by superimposing virtual views of possible grasps being
considered by the planner onto the camera images. All the
three cameras are calibrated with respect to the robot base
frame and are connected to the work computer (4.00 GHz
Intel Core i7 CPUwith 32 Gb of RAM). The communication
with the robot controller (runningKuka Sunrise.OS) to trans-
fer motion commands has been realised as a cross-platform
client (C++) - server (Java) communication over UDP, where
the client program runs on the work PC. The objects used for
robot-human handover experiments are visually trackedwith
respect to the robot task space and, as a matter of safety, the
robot’s joint torque limits are constrained.
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2.2 Object shapemodeling

The objects used for training and validating our approach are
shown in Fig. 3a. In this work, all these objects are repre-
sented as (partial) depth point clouds obtained by registering
multiple depth clouds. Overall model generation process is
comprised of two steps: scanning and stitching. During the
scanning phase, robot moves to four different poses around
the object. At each individual pose a single depth cloud is
acquired (see first two rows of Fig. 3b) using the robot wrist
mounted task camera. The robot poses are selected such that
all faces of the object are maximally covered. Later during
the stitching phase, all these individual depth clouds are first
processed to remove the dominant ground plane. The remain-
ing points from the processed clouds are registered together
to form a model of the object. Last row of Fig. 3b show mul-
tiple views of an obtained final registered point cloud of a test
object. In this case, stitching the point clouds is trivial since
the exact pose of the camera is known from the robot’s for-
ward kinematics. Alternatively, the stitching accuracy can
also be improved using cloud registration algorithms like
iterative closest point (ICP) (Rusinkiewicz and Levoy 2001),
three dimensional normal distribution (Magnusson 2009) etc.
Figure 3c shows registered partial point clouds of various test
objects. Since our algorithm, presented in the next section,
is capable of working robustly on partial point clouds, no
efforts were made in this work to interpolate or smooth these
partial clouds.

2.3 Object pose tracking

Visual tracking of the object’s 6DoF pose plays an important
role in planning and controlling the robot trajectories. In this
work, we use a particle filter-based 3D tracker to track full
6D0F pose of a moving object in order to generate both grasp
andmotion plans (Aldoma et al. 2012). Even though this type
of visual object tracking is not new, many researchers in the
fields of computer vision and robotics have previously proved
their robustness and adaptivity in case of solving challenging
problems (Fukui et al. 2016; Marturi et al. 2015; Wu et al.
2013). Nevertheless, it is worth mentioning that due to the
highly modular nature of our implementation, the current
pose tracker can be easily replaced with another one e.g. a
CAD model-based tracker (Ortenzi et al. 2016; Tamadazte
et al. 2010) or a coupled layer pose tracker (Ma et al. 2016).

In this work, the tracker is initialised using the regis-
tered object’s point cloud. Hereafter, for each new cloud,
the tracker uses the tracked pose obtained from the previ-
ous frame to initialise, and propagates a uniform sample
of N particles, where each particle represents a candidate
6DoF pose of the object. Likelihoods for each particle are
computed according to the degree of fit between a reference
point cloud (for first cloud in process, this will be the regis-

(a)

(b)

(c)

1

2

4

3

5

6

7

Fig. 3 a Objects used in this work. Red line differentiates train and
test objects. The two objects on the left are used for training and on the
right are used for validation, as labeled: (1) dishwash, (2) can (3) bar
(4) coffee box (5) jug (6) big can (7) lego toy. b Illustration of object
modeling. Point clouds clouds obtained from four scanning poses are
shown in the first two rows. Multiple views of final segmented and
registered partial cloud of a test object are shown in the third row. c
Partial point clouds of remaining test objects (Color figure online)
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tered cloud from object modeling step) and the input cloud
obtained from the track camera, using the distance likelihood
function Ldist (r j , c j ) given by (1):

Ldist (r j , c j ) = 1

1 + |r j − c j |2 (1)

where, r j and c j are the j th points in the reference and current
(input) point clouds, respectively. Weights with each particle
ωi |i=1...N are thus computed using (2)

ωi =
∑

j

Ldist (r j , c j ) (2)

The particle with the maximum weight will be retained as
the reference cloud for the next iteration and its pose will be
used as an input for the robot’s motion planning module.

In order to speed-up the overall process, we parallelized
the likelihood computation over multiple threads on a CPU.
In other cases, such as high volume tracking, the pro-
cess speed can be further improved by implementing these
computation routines over a GPU as shown by Choi and
Christensen (2013). Besides, the speed of the tracking also
depends on the number of particles to track and the size of
the target object, i.e., the density of the points in the clouds.
For high volume clouds, the tracking speed can be increased
by downsampling the points and by reducing the number of
particles. However, this can affect the overall visual track-
ing accuracy (in turn the grasp selection accuracy). Hence
a good trade-off needs to be achieved beforehand. In this
work, by trial and error based on failure rate, we selected a
downsampling size of 0.5 cm and the number of particles to
track as

( S
75

)
, where S is the total number of points in the

cloud. Alternatively, this selection process can be automated
using adaptive version of the particle filter proposed by Soto
(2015).

3 Online grasping algorithm

The proposed online grasping algorithm is summarized in
Algorithm 1. Here we consider tracking (arm following the
object) and grasping of each object as a trial. Each trial
consists of five different phases: (i) grasp generation, (ii)
tracking, (iii) selection, (iv) planning and (v) grasp execu-
tion. Phases (ii)–(iv) are repeated until a human co-worker
gives the robot permission to enter the grasp execution phase
(v). Each of these phases is detailed below.

3.1 Grasp generation

At the beginning of each experimental trial, for a stationary
object (registered depth point cloud), a number of grasp tra-

Algorithm 1Moving object grasping algorithm
1: CI = capture()
2: Get object’s initial pose vCI = track(CI)

� Generate initial grasp trajectories and select first N ones
3: {T vw

j } j=1...N = generate(CI)

� Set current trajectory error ε∗
r and index r to infinity

4: ε∗
r ← ∞, r ← ∞

5: while tracking() do
6: C =capture()
7: Get object’s current pose vC =track(C)
8: Compute object pose update s = vC(vCI

)−1

9: for j:=1 to N step 1 do

� Transform grasp trajectories to cloud frame vC

10: s ⊗ T vw

j = T svw

j , T svw

j ≡ {(svw, ch)i j }i=1...m j

� Read current arm and hand configuration
11: cc ← (cca, cch)

� Find grasp trajectories with arm joint configurations ca

and corresponding trajectory error ε∗
12: {T ca

j , ε j } = inverse(cc, T svw

j )

13: end for

� Select grasp trajectory with the smallest error ε

14: {r , ε∗
r } =

⎧
⎨

⎩
k, εk if εk + δw < ε∗

r , k = argmin
j

ε j

r , ε∗
r otherwise

15: Find trajectory T cc
r from cc to c1r = (ca, ch)1r

� Use local or global planner

16: T cc
r =

{
global(cc, c1r ) if ‖cc − c1r‖2 > δc

local(cc, c1r ) otherwise

� Execute trajectory T cc
r

17: exec(T cc
r )

18: if permitted to grasp then
19: exec(Tr)
20: Set tracking To false
21: return
22: end if
23: end while

jectories T vw

j are generated using generate() function.

These grasp trajectories are sequences of waypoints (vw, ch)
given by (3), each consisting of hand-wrist pose vw ∈ SE(3)
and hand-joint configuration ch ∈ R

Nh
, with Nh being the

number of hand joints,

T vw

j = {(vw, ch)i } with i = 1 . . .m j , (3)

where, m j represent number of waypoints of j th trajectory.
Thegrasp trajectorybeginning, calledapproachwaypoint,

has index-1 (pre-grasp). The last grip waypoint specifies the
hand-object contact and has index m j , which may be dif-
ferent for different grasp types (Kopicki et al. 2016). The
grasp trajectory generator, represented by generate(),
relies on a generative grasp learning approach introduced
in our previous work, (Kopicki et al. 2014, 2016). It gener-
ates from a single or multiple-view point cloud, a number
of grasp hypotheses, i.e., grasp trajectories T vw

j , where only

123



Autonomous Robots

the firstN most likely ones are selected. In Sect. 4, we anal-
yse the affect of N selected hypotheses on the performance
of our algorithm. The grasp hypotheses are generated by
considering previously known (from training) hand configu-
ration model and object contact model, which is the relation
between a rigid link of the hand and the local object shape
near its point of contact. Combinely, these two models are
represented as probability distributions (kernel density esti-
mation models). For a query object, candidate grasps are
explored to find a candidate grasp that maximises the prod-
uct of these distributions.

This approach does not assume anymodels of objects, and
is robust enough even if the training and validation objects
are substantially different (see Fig. 3). The grasp planning
algorithm (Kopicki et al. 2016) provides a diverse set of grasp
trajectories of which, only a subset is expected to be feasible
at any particular moment, given moving object and static
obstacles.

3.2 Tracking

The tracking phase starts after grasp generation. During this
phase, a human operator starts moving the object (arbitrarily)
for which a set of feasible grasps were generated during the
grasp generation phase. The robotic arm “tracks” the grasp
approach waypoint of a current grasp trajectory T vw

r , how-
ever without executing the entire grasp trajectory, i.e., the
final grasp waypoint will not be reached during this phase.

Tracking, track(), relies on the previously described
visual object pose tracker, which continuously estimates pose
changes s ∈ SE(3) of the moving object’s point cloud C.
These tracked or updated poses are then used to transform
wrist poses of all generated grasp trajectory waypoints back
to the object frame, as shown in (4).

s ⊗ T vw

j = T svw

j (4)

where, ⊗ denotes rigid body transformation applied to the
entire set of waypoints of the grasp trajectories (see (3)), and
s is the object pose update (given by (5)) that is computed
from the current point cloud pose vC with respect to the initial
or reference pose vC

I
,

s = vC(vC
I
)−1. (5)

In (4), T svw

j is a set of grasp trajectories in the updated object
frame and is represented as

T svw

j ≡ {(svw, ch)i j } with i = 1 . . .m j (6)

where, svw are the transformed wrist poses.

3.3 Selection

In this phase, the grasp trajectory to be executed with the cur-
rent object’s pose will be selected. The current grasp trajec-
tory T ca

r is the r th trajectory computed and selected from the
previously obtained set of grasp trajectories {T svw

j } j=1...N

(with N being number of hypotheses) in a two stage process
as explained below.

3.3.1 Anytime iterative inverse kinematic solver

In the first stage, grasp trajectory waypoints (svw, ch)i j with
wrist poses svw ∈ SE(3) are transformed by inverse()
into trajectories in a complete joint space of the robot,

T ca
j = {(ca, ch)i j } with i = 1 . . .m j (7)

with hand-joint configuration ch ∈ R
Nh

and arm-joint con-
figuration ca ∈ R

Na
, where Na is the number of arm joints.

Trajectories given by (7) are computed using our anytime,
iterative, inverse kinematic solver (IK solver), which is based
on differential evolution optimisation of joint angles, but
not on, e.g. inverting or pseudo-inverting the Jacobian as
in most classical methods. The complete theoretical descrip-
tion of the used inverse kinematics algorithm can be found
in Sect. 4.2.3.4 of (Kopicki 2010).

The IK solver provides a collision-free solution T ca
j for

any input target T svw

j given various task-space constraints
such as collision bounds or joint limits. This is possible
because solutions are allowed to be inaccurate with accuracy
measured by task space errors (see Eq. (8)). The algorithm
favours solutions which waypoints ci j are close to the cur-
rent robot configuration cc. Furthermore, the algorithm can
be interrupted after a specific amount of time to preserve
fixed duration of the robot control cycle in phases (ii) to (iv).

3.3.2 Error-based selection

The quality of inverse kinematic solutions are measured by a
task space error, which compares the desired wrist pose svw

to the pose computed by forward kinematics map K f or :
R

Na −→ SE(3) from the approximate solution c̃a ,

εi j = (1 − a) ‖lin(svw
i j ) − lin(K f or (̃cai j ))‖2

+a (1 − |ang(svw
i j ) · (ang(K f or (̃cai j )))

−1|) (8)

where lin(.) extracts the argument R
3 translation vec-

tor, ang(.) extracts the argument SO(3) quaternion, ‖.‖ is
the Euclidean norm, · is the quaternion dot product, and
a ∈ 〈0. . .1〉 is a coefficient weighting linear and angular
distances.
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The overall j-th trajectory error ε j is a sum of task space
errors for of all waypoints,

ε j = 1

m j

m j∑

i=1

εi j (9)

After computing all grasp trajectories together with corre-
sponding errors {T ca

j , ε j } j=1...N , the k-th trajectory with the
least trajectory error εk is found,

{r , ε∗
r } =

⎧
⎨

⎩
k, εk if εk + δw < ε∗

r , where k = argmin
j

ε j

r , ε∗
r otherwise

(10)

The k-th trajectory becomes current grasp trajectory r , if its
error εk is smaller than previous least error ε∗

r with addi-
tional offset δw ∈ R

+. The offset δw prevents too frequent
trajectory selection and is selected by trial and error. For
the experiments reported in this paper, we used a value of
δw = 2.0.

3.4 Planning

This fourth phase of our algorithm involves finding a track-
ing trajectory T cc

r from the current robot configuration cc

to the approach waypoint c1r of the current grasp trajectory
Tr , selected from the previous phase. This is then executed
immediately.

3.4.1 Tracking trajectory planning

Tracking trajectory T cc
r is found using one of the two trajec-

tory planners (see details in Sect. 4.4.4 of Kopicki (2010)):

– local iterative optimisation-based local planner, repre-
sented as local(); (or)

– probabilistic roadmap (PRM) based global planner, rep-
resented as global().

Both the planners find a collision-free trajectory T cc
r from the

current robot configuration cc to the target approachwaypoint
c1r . Local planner guarantees that all trajectory waypoints
{ci } lie in some neighbourhood of cc and c1r . Global plan-
ner does not guarantee this property, albeit it tries to find
the shortest path from cc to c1r . The decision whether to
use global or local planner is made based on the Euclidean
distance between cc and c1r ,

T cc
r =

{
global(cc, c1r ) if ‖cc − c1r‖2 > δc

local(cc, c1r ) otherwise
(11)

where δc ∈ R
+ is a threshold which controls switching of

the global and local planning. Typical values of δc can be in
between 0 and 1,where smaller values allow faster switching.

3.4.2 Tracking trajectory execution

Robot performs tracking trajectory T cc
r at the end of each

control cycle. In this way robot tries to stay at the approach
waypoint of the current grasp trajectory until tracking is inter-
rupted.

3.5 Grasp execution

In the current implementation, also for demonstration pur-
poses, a human operator decides when to interrupt tracking,
i.e., to stop arm following the object and execute the final
stage of the current grasp trajectory Tr , whichmeans to reach
the final graspwaypoint. The online grasping algorithmguar-
antees that Tr is a trajectory with the task space error ε∗

r no
larger than εk + δw, where εk is the smallest trajectory error
among all grasp trajectories (see Eq. (9)).

4 Experimental evaluation

Various experiments are conducted using the system pre-
sented in Sect. 2 to evaluate the performance of our proposed
moving objects adaptive grasping approach. Validation has
been performed considering different aspects of the algo-
rithm. Firstly, we evaluate the performance of our approach
qualitatively in the scenario where a human handovers differ-
ent test objects to the robot, which is also the central objective
of this work. Main motivation behind these tests is two-fold;
to find out the suitability of objects that can be used with
our current implementation (especially visual tracking) and
to analyse the system performance in terms of repeatabil-
ity. Next, we evaluate the effect of various parameters in a
semi-controlled manner, where again a human demonstrator
moves the objects, but in a pre-defined systematic way. It is
worth noting that the human operator is well-trained in using
the industrial robots and possess extensive knowledge of the
developed system. Before proceeding with the experimental
analysis, we begin this section detailing the training process
as well as with an analysis of the used visual tracker.

4.1 Grasp training

The grasp training has been performed as follows. Initially
we obtain the stitched point clouds of the two training objects
(wooden block and a can) depicted in Fig. 3 by scanning them
from four different views.Using our implemented interface, a
human operator then demonstrates each possible grasp kines-
thetically on the obtained point cloud. During this process,

123



Autonomous Robots

Fig. 4 Sample screenshots obtained during the training process, where
an operator demonstrates the possible grasps kinesthetically using our
software interface. Final grip configuration of the robotic parallel grip-
per with contact regions (in cyan) can be seen in the images (Color
figure online)

different hand poses are recorded along the trajectory from
approach configuration to the final grip (contact) as shown in
Fig. 4. Due to simple two finger (parallel jaw) configuration
of the used gripper, only pinch and power grasp configura-
tions are used in this work. The hand-joint configuration and
contact models are learned from a final configuration of this
trajectory, which are used for generating grasp hypotheses as
explained in Sect. 3.1. An important point to note is that the
training is solely performed using the kinematic information
and no tactile information is used.

4.2 Analysing visual object pose tracker

From the description of our method, it is obvious that visual
object pose tracking plays a vital role in the success of our
approach, i.e., to dynamically adapt grasp trajectories for the
moving objects. In this context, we assess the performance
of the implemented particle filter-based tracker irrespective
of object’s size, shape and colour. As mentioned before, the
tracker is initialised using the supplied depth point cloud (no
rgb information is used, except for visualisation) of the tar-
get object and its various parameters are set as explained in
Sect. 2.3. Once initialised, the object has been moved arbi-
trarily by a human, where its poses are tracked and updated
simultaneously. Top two rows of Fig. 5 show the results of
tracking two test objects at different instances of time and
the bottom row of Fig. 5 shows the trajectories followed by
the objects in task space. After evaluating all the test objects
over ten different tracking trials spanning 2min, it has been
determined that by using our choice of parameters, on an
average we are able to process 7.62 clouds per second. Since
the tracker performed reliably well in all cases, we believe
its applicability for the online task planning. Nevertheless, an
important point to be highlighted is target object occlusion.
Even though particle filter-based trackers have been previ-
ously proved to be robust enough handling large occlusions,
in this work we avoid such cases; the human is constrained

Fig. 5 Thefirst two rows showsomeof the screen-shots obtained during
pose tracking of (top) coffee filter box and (middle) dishwasher soap.
The objects are moved randomly in the task space. Bottom row shows
the trajectories followed by both these objects respectively

to hold the objects only at bottom while working with real
robot.Moreover, since no object detection has been used (e.g.
model matching), the tracker re-initialisation is not consid-
ered in this work. Therefore any trial matching this case is
treated as a failure.

4.3 Demonstration of the online grasp planning

We conducted experiments to evaluate our grasp adaptation
approach, where a human moves the test objects while they
are being tracked. Figure 6 illustrates the steps during these
experiments. Provided supplementary video illustrates the
reported results in more detail. Weighting coefficient a (from
Eq. (8)) and switching threshold δc (fromEq. (11)) are chosen
to be 0.4 and 0.2, respectively for these tests. In the next sec-
tion, we also analyse the performance with different values
for δc.

Firstly the model point cloud of the object is obtained as
explained in Sect. 2.2 and is used for building the set of initial
grasp hypotheses. It is worth noting that in case of multiple
objects presented in the scene, the query object, i.e., the object
to be followed and grasped has been selected manually by
a human operator using our software interface. Whereas in
case of single object, the human operator directly allows the
algorithm to proceed with next steps. Out of the generated
hypothesis, the first 20 are selected for these tests. In the next
section, we analyse the effect of the amount of these hypoth-
esis. Once the visual tracking starts, the selected grasps are
adapted based on changed object poses so that they are still
applicable according to the current object pose. The grasp
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Segmented Cloud Replanning While Tracking Grasping

Fig. 6 Grasp adaptation experiments: the test objects are segmented
out from the background and the initial grasp set is chosen based on
that. Virtual models of the robot, hand and object are shown superim-
posed over the observed camera images of the scene. Red points show
the segmented selected object depth cloud (first column). As the objects
are moved, the grasp set is updated accordingly to include applicable
candidates (middle three columns). Gray frames indicate all the possi-

ble grasp candidates, red frame represents the current grasp followed by
the robot and blue frame points to the next best possible candidate. The
point cloud inside the blue bounding box illustrates the tracked object.
Successful grasps are shown in the last column. Provided supplemen-
tary video illustrates the results in more detail. The trial with bar failed
during rotation, where the visual tracker failed to track the object (can
be seen in middle two columns of last row) (Color figure online)
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set includes the grasps that correspond to the lowest error
from step 14 in Algorithm 1 and the set is shown with gray
wire-frames in Fig. 6. The transparent blue bounding box
corresponds to the region where the grasps should be appli-
cable. The red wire-frame corresponds to the best feasible
grasp based on the error (given by Eq. (9)) and the blue one
shows the next best feasible configuration. The last column
in the figure shows example grasps that were executed during
the trials. From our experiments, we found out that one of the
used test objects: bar (labeled 3 in Fig. 3) is not suitable for
the experiments. Results with bar are shown in the last row

of Fig. 6, where it can seen that the visual tacking failed dur-
ing rotation due to lack of distinguishable depth textures and
symmetry of the object, leading to wrong grasp poses. Since
no tracker re-initialisation is used, we consider this case as a
failure.

The switching process while executing the current grasp
trajectory, i.e., while the arm follows the approach way-
point, has been visually illustrated for two different objects
in Figs. 7 and 8. It can be observed that once large errors
are present, the global planner is triggered to reduce the
error immediately in each trial, which clearly validates our
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Fig. 7 Analysis of planner switching while handling dishwash. Red
curve represents currently executed grasp trajectory error and green
curve shows previous error. Selected offset is shown with dotted line.
As explained with Eq. (10), a trajectory becomes current grasp trajec-

tory, when its error is less than previous plus offset. The points where
this switching occurred are pointed with diamonds and corresponding
robot locations are shown in the images beside (Color figure online)
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Fig. 8 Analysis of planner switching while handling coffee box
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Table 1 Statistical results for repeated trials

Object Trial Switches Success rate (%)

Dishwash T-1 2 100

T-2 3

T-3 3

Can T-1 5 90

T-2 1

T-3 3

Coffee box T-1 6 100

T-2 4

T-3 1

Blue Jug T-1 1 80

T-2 6

T-3 1

Big can T-1 2 100

T-2 1

T-3 1

Lego toy T-1 7 100

T-2 4

T-3 8

approach. This way the grasp set is updated with applicable
grasps. It is worth mentioning that the used IK solver from
Sect. 3.3.1 is already integrated with a collision expert due
to which no self-collisions are noticed during the trials.

We repeated the experiments ten times for each test
object, where a human arbitrarily moved the object in
the robot workspace for about half a minute on average.
Table 1 summarizes the results for the first three trials from
these experiments, listing the number of switches between
local and grasp planners and the success rates (for all ten
trials). The resulting number of switches between the plan-
ners demonstrate the re-planning capability of the proposed
approach. One trial with can failed due to visual tracking fail-
ure caused by self-occlusion and two experiments with blue
jug failed as the rotation of the object caused the handle to
appear again after it became hidden from the camera which
led to wrong grasp poses as the object pose was inverted.
It can be also noted that the number of switchings for lego
toy are comparatively high due to its complexity in surface
model. Overall, these results show that once the initial grasps
are chosen, the proposed approach can find feasible con-
figurations in the work-space given that the objects can be
visually tracked continuously. Detailed results can also be
found at https://youtu.be/kzG-TxT4wd8.

4.4 Analysing the effect of selected grasp
hypotheses

In this section, we report the experiments performed to anal-
yse the effect of the number of grasp hypotheses used for
following and grasping moving objects. The tests are con-
ducted in a semi-controlled environment, where a human
moves the objects in a systematic way along the two tracks
shown in Fig. 9. The objects are rotated along the black line
and are translated along the metallic scale (30 cm both for-
ward and backward). For the following tests, three different
amounts of hypotheses: first 10, first 20 and first 30 (out
of the total generated hypotheses), as shown in Fig. 9b–d
are evaluated. Three different test objects are selected for
these experiments based on the experimental performance
achieved in the previous tests and also on the shape complex-
ity: big can (labelled 6 in Fig. 3-symmetric shape), dishwash
(labelled 1 in Fig. 3-moderately complex shape) and lego toy
(labelled 7 in Fig. 3-highly complex shape). On an average,
each trial took 3min and 10s. The values of a and δc remain
same as the previous experiments. Table 2 summarises the
obtained results. From the results, an important conclusion
can drawn, which is with an increase in the number of grasp
hypotheses the number of switches increases, i.e., the sys-
tem is more flexible in tracking (following) a moving object.
Also, it can be seen that the average task space error reduces
with increase in the grasp hypotheses, i.e., the system try
to track the object as closely and smoothly as possible by
continuous replanning. Although the system performance is
convincing, we believe the requirement of automatic best
hypotheses selection from the available ones, which we plan
to integrate in future.

4.5 Analysing the effect of switching threshold ıc

In this section, various experiments are performed to analyse
the effect of switching threshold on the task performance.
Similar to the previous, these tests are performed in a semi-
controlled manner and same test objects are used. The
number of grasp hypotheses are fixed to be first 20 and a
value of 0.4 is used. For analysis, we conduct the experi-
ments using four different thresholds: 0.2, 0.4, 0.6 and 0.8.
The obtained results are summarised in Table 3. From the
results, it can be clearly seen that the system is more dynamic
with a smaller threshold. However, an interesting fact is with
the task space error, which do not follow any trend. With this
results, two conclusions can be derived. On one hand, the
task space error is more dependent on the number of grasp
hypotheses provided, which is also true from the previous
results. On the other hand, due to the availability of ample
amount of grasp hypotheses (20 in this case), the system tries
to follow the object locally, keeping the error low.
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Fig. 9 a Tracks used by the human operator to move the object. The objects are rotated along the black line and are translated along the metallic
scale (30 cm both forward and backward). b–d Illustration of the number of selected hypotheses on dishwash object. b First 10, c first 20 and d
first 30

Table 2 Analysis of the selected grasp hypotheses

Object Hypotheses Switches Avg. task space error

Big can 10 18 0.839

20 26 0.77

30 29 0.513

Dishwash 10 27 0.631

20 43 0.392

30 45 0.344

Lego toy 10 23 0.98

20 48 0.51

30 45 0.383

5 Conclusions

This paper presented a novel approach for adaptive grasping
and trajectory planning, which enables a robot armwith hand
to dynamically track and grasp objects moving in arbitrary
6DoF trajectories. For a moving object whose pose is con-
tinuously updated by a particle filter-based 3D visual object
tracker, the proposed method evaluates online a set of pre-
generated grasp hypotheses (provided by a learned generative
grasp planner) enabling the robot to maintain a suitable pre-
grasp pose with minimum task space error while following
the object (throughout its motion). The task space error is
incorporated into the robot’s motion planning through an
iterative numerical optimization-based IK solver. Themotion
planning associated with the proposed method is comprised
of dynamic switching between local and global planners,
which enables the robot to track the object as closely and
smoothly as possible by continuous re-planning.

The proposed method has been demonstrated in an appli-
cation, in which a human move an object in arbitrary ways
before handing it over to the robot, as might be necessary
for collaborative human–robot co-working. The first set of
experiments are conductedwith a number of different objects
of diverse shapes, moved along arbitrary 6DoF trajectories to
analyse the performance in terms of repeatability. Obtained
results suggest that the method is highly repeatable in track-

Table 3 Analysis of the switching thresholds

Object Threshold Switches Avg. task space error

Big can 0.2 27 0.8

0.4 23 0.59

0.6 13 1.43

0.8 8 0.91

Dishwash 0.2 39 0.35

0.4 31 0.43

0.6 17 0.61

0.8 14 0.58

Lego toy 0.2 47 0.31

0.4 39 0.4

0.6 22 0.29

0.8 18 0.76

ing and grasping the objects’ given that the objects pose can
be visually tracked. They also demonstrate how the grasps are
adapted by dynamically switching between local and global
trajectory planners for objects with variety of shapes. The
second set of experiments are conducted at a semi-controlled
environment to analyse the effect of various parameters on
the proposed approach. The results obtained from these tests
suggest that the system demonstrates smooth performance
with an increase in the initially selected grasp hypotheses or
by using small switching threshold. Altogether, these results
clearly indicate the robustness of our proposed online grasp
planning method.

Our ongoing work is directed towards increasing the
speed of the visual tracking by using a GPU implementa-
tion. Additionally, there are several possible directions for
future research, which include integrating a gaze controller
(Marturi et al. 2015) with tracking for hand-eye coordina-
tion, improving the switching approach between local and
global trajectory planners, and improving the detection and
selection of candidate grasp poses. We will also consider
alternative applications, such as grasping stationary objects
from robot arms mounted on moving vehicles.
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