4,494 research outputs found

    Attention-Block Deep Learning Based Features Fusion in Wearable Social Sensor for Mental Wellbeing Evaluations

    Get PDF
    With the progressive increase of stress, anxiety and depression in working and living environment, mental health assessment becomes an important social interaction research topic. Generally, clinicians evaluate the psychology of participants through an effective psychological evaluation and questionnaires. However, these methods suffer from subjectivity and memory effects. In this paper, a new multi- sensing wearable device has been developed and applied in self-designed psychological tests. Speech under different emotions as well as behavior signals are captured and analyzed. The mental state of the participants is objectively assessed through a group of psychological questionnaires. In particular, we propose an attention-based block deep learning architecture within the device for multi-feature classification and fusion analysis. This enables the deep learning architecture to autonomously train to obtain the optimum fusion weights of different domain features. The proposed attention-based architecture has led to improving performance compared with direct connecting fusion method. Experimental studies have been carried out in order to verify the effectiveness and robustness of the proposed architecture. The obtained results have shown that the wearable multi-sensing devices equipped with the attention-based block deep learning architecture can effectively classify mental state with better performance

    Sonification of guidance data during road crossing for people with visual impairments or blindness

    Get PDF
    In the last years several solutions were proposed to support people with visual impairments or blindness during road crossing. These solutions focus on computer vision techniques for recognizing pedestrian crosswalks and computing their relative position from the user. Instead, this contribution addresses a different problem; the design of an auditory interface that can effectively guide the user during road crossing. Two original auditory guiding modes based on data sonification are presented and compared with a guiding mode based on speech messages. Experimental evaluation shows that there is no guiding mode that is best suited for all test subjects. The average time to align and cross is not significantly different among the three guiding modes, and test subjects distribute their preferences for the best guiding mode almost uniformly among the three solutions. From the experiments it also emerges that higher effort is necessary for decoding the sonified instructions if compared to the speech instructions, and that test subjects require frequent `hints' (in the form of speech messages). Despite this, more than 2/3 of test subjects prefer one of the two guiding modes based on sonification. There are two main reasons for this: firstly, with speech messages it is harder to hear the sound of the environment, and secondly sonified messages convey information about the "quantity" of the expected movement

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Jefferson Digital Commons quarterly report: January-March 2020

    Get PDF
    This quarterly report includes: New Look for the Jefferson Digital Commons Articles COVID-19 Working Papers Educational Materials From the Archives Grand Rounds and Lectures JeffMD Scholarly Inquiry Abstracts Journals and Newsletters Master of Public Health Capstones Oral Histories Posters and Conference Presentations What People are Saying About the Jefferson the Digital Common

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Multimodal Emotion Recognition among Couples from Lab Settings to Daily Life using Smartwatches

    Full text link
    Couples generally manage chronic diseases together and the management takes an emotional toll on both patients and their romantic partners. Consequently, recognizing the emotions of each partner in daily life could provide an insight into their emotional well-being in chronic disease management. The emotions of partners are currently inferred in the lab and daily life using self-reports which are not practical for continuous emotion assessment or observer reports which are manual, time-intensive, and costly. Currently, there exists no comprehensive overview of works on emotion recognition among couples. Furthermore, approaches for emotion recognition among couples have (1) focused on English-speaking couples in the U.S., (2) used data collected from the lab, and (3) performed recognition using observer ratings rather than partner's self-reported / subjective emotions. In this body of work contained in this thesis (8 papers - 5 published and 3 currently under review in various journals), we fill the current literature gap on couples' emotion recognition, develop emotion recognition systems using 161 hours of data from a total of 1,051 individuals, and make contributions towards taking couples' emotion recognition from the lab which is the status quo, to daily life. This thesis contributes toward building automated emotion recognition systems that would eventually enable partners to monitor their emotions in daily life and enable the delivery of interventions to improve their emotional well-being.Comment: PhD Thesis, 2022 - ETH Zuric

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    On the Generalizability of ECG-based Stress Detection Models

    Full text link
    Stress is prevalent in many aspects of everyday life including work, healthcare, and social interactions. Many works have studied handcrafted features from various bio-signals that are indicators of stress. Recently, deep learning models have also been proposed to detect stress. Typically, stress models are trained and validated on the same dataset, often involving one stressful scenario. However, it is not practical to collect stress data for every scenario. So, it is crucial to study the generalizability of these models and determine to what extent they can be used in other scenarios. In this paper, we explore the generalization capabilities of Electrocardiogram (ECG)-based deep learning models and models based on handcrafted ECG features, i.e., Heart Rate Variability (HRV) features. To this end, we train three HRV models and two deep learning models that use ECG signals as input. We use ECG signals from two popular stress datasets - WESAD and SWELL-KW - differing in terms of stressors and recording devices. First, we evaluate the models using leave-one-subject-out (LOSO) cross-validation using training and validation samples from the same dataset. Next, we perform a cross-dataset validation of the models, that is, LOSO models trained on the WESAD dataset are validated using SWELL-KW samples and vice versa. While deep learning models achieve the best results on the same dataset, models based on HRV features considerably outperform them on data from a different dataset. This trend is observed for all the models on both datasets. Therefore, HRV models are a better choice for stress recognition in applications that are different from the dataset scenario. To the best of our knowledge, this is the first work to compare the cross-dataset generalizability between ECG-based deep learning models and HRV models.Comment: Published in Proceedings of 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network
    • 

    corecore