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ABSTRACT With the progressive increase of stress, anxiety and depression in working and living environ-
ment, mental health assessment becomes an important social interaction research topic. Generally, clinicians
evaluate the psychology of participants through an effective psychological evaluation and questionnaires.
However, these methods suffer from subjectivity and memory effects. In this paper, a new multi- sensing
wearable device has been developed and applied in self-designed psychological tests. Speech under different
emotions as well as behavior signals are captured and analyzed. The mental state of the participants
is objectively assessed through a group of psychological questionnaires. In particular, we propose an
attention-based block deep learning architecture within the device for multi-feature classification and fusion
analysis. This enables the deep learning architecture to autonomously train to obtain the optimum fusion
weights of different domain features. The proposed attention-based architecture has led to improving
performance compared with direct connecting fusion method. Experimental studies have been carried out in
order to verify the effectiveness and robustness of the proposed architecture. The obtained results have shown
that the wearable multi-sensing devices equipped with the attention-based block deep learning architecture
can effectively classify mental state with better performance.

INDEX TERMS Mental health assessment, wearable device, attention-based feature fusion.

I. INTRODUCTION
Mental health evaluation is an important topic for human
safety analysis. Wearable device, acquiring data of related
social-speech and behavioral activity, provides a new
approach to understand mental health better by establish-
ing the interrelationships of Social Signal Processing (SSP)
and Physical Mental Health (PMH). Traditional methods
had been proposed to measure and evaluate social behavior.
However, they are of limited effectiveness for continuous
monitoring of mental health. The key point is to use a more
comprehensive analysis by combining multi-sensor features
available from the wearable device. These features assist
to determining the potential relationship between human
activities and mental health. Moeslund et al. [1] summarized
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technologies in in automatic visual analysis of human behav-
ior including automatic initialization, tracking, pose estima-
tion, andmovement recognition. However, these technologies
havemany restrictions in daily life and equipments are expen-
sive. Thus, sensor-based social signal processing has become
an active research topic [2]–[4] which attracted researchers
on the relationship generation between the multi-sensor data
and healthcare. In [5], Pentland proposed the wearable intel-
ligent devices which was developed to objectively sense and
gain an understanding of human wellbeing. In order to cap-
ture social signals with high quality, reliability, and validity,
the first priority is to create an appropriate collection environ-
ment or experiment. Long-term wellbeing monitoring [5] is
able to achieve high accuracy for analyzing long-term daily
behaviors for human. Long-term monitoring requires the
expenditure of a long duration and this results in significant
challenges in recruiting and retaining sufficient number of
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participants. In addition, there is a need to protect the pri-
vacy of the participants [6]. The use of wearable devices
in short-term for targeted psychological tests is a possible
solution to offer an efficient and low-cost method to analyze
social signals for mental wellbeing monitoring.

The application of machine learning and deep learning
algorithms in wearable devices is crucial. In most wearable
devices, they extract 6-axis behavior data in the classification
of complex movements such as gestures or dances [7], [8].
In addition, by fusing with speech and behavioral features,
it is possible to design wearable devices with machine
learning algorithms for monitoring mental health wellbeing.
Efficient speech segmentation and classification methods
help to analyze social audio. Audio features mainly include
Mel-frequency cepstral coefficients (MFCCs) and spectral
features. Log-mel spectrograms are used as audio features,
which can be processed by using image classification and
segmentation model [9], [10]. Speech classification meth-
ods can be divided into supervised and unsupervised mod-
els. Unsupervised models include Hidden Markov Models
(HMMs)[11], Gaussian Mixture Models (GMMs)[12], and
Nonnegative Matrix Factorization (NMF) [13], [14] which
have advantages of fast computations and do not require
human annotation for the data. In recent years, deep learning
model significantly improves the classification performance
despite the long-duration training process. For instance, con-
volution neural networks (CNNs) can extract high level
speech features and achieve high classification accuracy by
using spectrogram [15], [16]. Another network with high
performance accuracy in audio classification is the Long
Short-TermMemory (LSTMs) which is a variant of recurrent
neural network with good results in analyzing time series
signals. Chernykh et al. [17] achieved emotion classifica-
tion by using LSTM, and Han et.al [18] built a LSTM net-
work through the DenseNet structure to further improve the
accuracy. Deep learning model often requires large datasets
while the annotation is a complicated task [19]. Transfer
learning [20], [21] enables the deep model to perform bet-
ter in a small datasets. The model can first learn abundant
information in a large public dataset and then fine-tuning in
the small target dataset. Transfer learning achieves remark-
able results in natural language processing [22] and image
classification [23].

For multi-sensor wearable devices, speech pattern is one
of the most effective cues for analyzing mental health. This
is usually accomplished by speech segmentation from the
wearable users. However, single speech segmentation has
severe limitations. It does not comprehensively consider the
relationship between speech signals under various emotions
nor can it relates to behavioral data such as natural limb
movements under stress. Thus, multi-sensor data is consid-
ereds as a way forward in assisting speech segmentation
to further enhance the classification accuracy. Appropriate
feature fusion method or model can effectively fuse differ-
ent categories of features and learns the intrinsic associa-
tion of different features. Chen et al. [24] constructed a deep

feature fusion model for CTR(Click-Through Rate) pre-
diction whereby they fused image features with one hot
features and obtained good performance. Yu et al. [25]
proposed a model to fuse deep learning and traditional
image features which yielded better results than single CNNs.
Janani and Ramanan [26] presented a feature fusion frame-
work to connect traditional Bag-of-Features and CNN fea-
tures in the object classification task. Feature fusion method
achieves good performance in processing speech data.
Hasan et al. [27] proposed an audio-visual feature fusion via
deep neural networks and implemented speech recognition
with low error rate. In addition, the audio-visual feature
fusion was used to recognize lip language [28]. Xu et al. [29]
constructed the deep model which fusedMFCCs and spectro-
grams, and resulted in high score in the DCASE-2017 audio
scene classification challenge. Therefore, the effective feature
fusion method can help to utilize features to improve the
classification performance of the classifier.

In this paper, we propose an effective features fusion
method that fuses multiple sensor features of the wearable
device for mental health evaluation. The contributions can be
summarized as follows:
(i) Designing wearable devices with multiple sensors and

developing an efficient collection process of the voice
and behavioral data for wearer. In addition, we design
an objective psychological test for depression/anxiety
and recruit participants among the university students.
The collected data generates the dataset for training and
testing the proposed wearable device.

(ii) Proposing attention-based features fusion block to fuse
behavior features and speech features under various
emotions. It improves the performance compared with
direct connection fusion method. Based on the block,
we construct a mental state classifier.

(iii) Presenting and analyzing classification results for
depression/anxiety level of participants and exploring
the relationship between multi-sensor data and mental
health.

The paper is organized as follows, the framework of wear-
able device, classification and model fusion are presented
in Section II. Results and analysis are shown in Section III.
Section IV is the conclusion of the paper.

II. IPROPOSED SYSTEM DESCRIPTION
A. DESCRIPTION WEARABLE SOCIAL SENSING
PLATFORM AND ANALYSIS FRAMEWORK
The block diagram of wearable social-sensing and data anal-
ysis is presented in Figure 1. It indicates the various signals
collected by the wearable device and describes how the fea-
ture fusion model can be used in the system. The proposed
system is illustrated in four parts: (i) audio signal processing,
(ii) activity signal processing, (iii) feature fusion system.
(iv) prediction and analysis for social sensing results. The
wearable device collects audio and activity data. The audio
data consists of 5 speech fragments of different emotions
for every participant. The system analyzes 5 speech features
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FIGURE 1. Block diagram of the data analysis system.

from different emotions as well as activity features and find
their relationship with social sensing results. Finally, it makes
a fusion on these features and predicts the level of depres-
sion. In addition, the wearable device collects data from
participants, performs feature extractions and stores data. The
training and prediction process of machine learning model
runs on the local server.

The proposed wearable device and its relevant hardware
platform is shown in Figure 2. The microprocessor of the
wearable device is an ARM-Cortex4 microcontroller with
DSP function for audio feature calculation and the model
is STM32F405. Besides, the sensors system consists of 6D
acceleration and angular sensor (MPU6050), temperature and

FIGURE 2. Hardware platform of the self-designed wearable device.

humidity sensor (SI7021) to collect multi-modal data from
the environment, physiological signals and behavioral activ-
ity. The sampling frequencies of MPU6050 and SI7021 are
100hz and 0.1Hz, respectively.

The audio collecting system contains MEMSmicrophones
as well as audio code unit (WM8978), the audio signals
collected and amplified by an inter-integrated-circuit (I2C)
bus with 8 KHz sampling frequency. The display module is
an OLED screen. In order to record large amounts of data,
the wearable device contains power management unit with a
2200mAh lithium battery and a micro SD card.

B. DESCRIPTION EXPERIMENT PROTOCOL AND SOCIAL
DATA ACQUISITION
The dataset is collected from an autobiographical memory
test which involves the participation of 60 students (30 males
and 30 females; age range = 18 − 26) at the University
of Electronic Science and Technology. All students signed
informed consent before the experiment and we have signed
a confidentiality agreement with the participants on their
speech content. Prior to the experiment, the level of depres-
sive symptoms and state as well as trait anxiety of all partici-
pants were assessed by using the Beck Depression Inventory
(BDI-II) [30], and State-Trait Anxiety Inventory (SAI, TAI)
[31]. The scores of the questionnaires were used to calibrate
the data. For the autobiographical memory test, the partici-
pants were initially asked to think of six specific events for
each emotion (happy/angry/sad/fearful/neutral) that had hap-
pened to them rather than being told by others. Meanwhile,
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the participants can write them down for each event to give a
clue for the following recording session. During the experi-
ment, the participants were shown the prompt words for 30s
duringwhich they verbalized the events coupledwith emotion
as specifically as possible.

During data collection, the wearable device is worn at the
preferred wrist to collect the voice as well as the behavioral
data of the participants. The behavior in the experiment is
not a specific movement, it behaves as a hand swing of the
participant during the experiment and this movement may be
unconscious. In addition, in order to prevent the participants
from being disturbed, each subject was tested alone in a quiet
room. To prevent potential bias, all experimental procedures
were guided by computer programs. The collection of the
wearable device is synchronized to the clock of the computer,
which allows us to effectively timestamp the collection data.
After the experiment, we extracted the speech and behav-
ioral data of the wearable device. In this case, we collected
30 pieces of speech and behavioral data for each subject
(six speaking fragments for each emotion). The dataset of
the paper is composed of speech and behavioral data of the
60 participants and the ground truth is the scores of the
questionnaires. The specification of the dataset is shown on
Table 1. Temperature and humidity sensors are embedded
in wearable devices, whereas they are not used because the
experimental environment for collecting data is fixed and the
time is short. Thus, the environmental sensing data changes
little.

TABLE 1. Description of dataset.

There are two main limitations with the experiment. Each
emotion is generated by recalling a specific event instead of
generation in the natural state. Besides, all participants are
university students with age range from 18 to 26 and our
experiments do not cover wider age groups. Thus, at the initial
evaluation, our experiments only focus on these age group.
Therefore, the impact should be drawn that our system can
only test on data of persons on these age groups.

C. DESCRIPTION AUDIO FEATURES AND BEHAVIOR
FEATURES
In the experiment, the speech data is collected by micro-
phones of the wearable device, it is grouped into data seg-
ments of 30s with 8kHz sampling frequency. The behavioral
data is obtained through 6-axis sensor in which it consists of
three axes acceleration data and three axes angular velocity
data. This 6-axis data is used to extract behavioral features
and they are calculated from the sliding window. The time

interval between the sliding windows is 3 seconds. In addi-
tion, the features are divided into time domain features and
frequency domain features as listed in Table 1.

The input audio features of the network are Mel Frequency
Cepstral Coefficients (MFCCs) [32] which mimic the human
auditory system. Firstly, the audio signal is divided into sev-
eral frames with 512-points and take the Short-Time Fourier
Transform (STFT) of each frame. It then maps the power of
the spectrum onto the Mel scale and take the discrete cosine
transform of the Mel log power. The MFCCs are the ampli-
tudes of the resulting spectrum. Feature extraction operations
are conducted by using Librosa [33] which is an open-source
library for audio analysis. For speech classification tasks,
the raw speech is used as input. However, for the training
tasks, the dimensions of the raw speech signal are huge (30s
speech segment has 240,000 data points), which cannot be
directly used as the input of the network because of the
excessive calculation. Furthermore, it is more complicated to
learn effective speech features in the network from the raw
speech signal since it requires large amount of training data.
MFCC is th e commonly used effective speech features and it
can be used as input for deep learning model. the features
are extracted by framing the raw signal, which reduce the
dimension of the input signal.

D. PROPOSED FRAMEWORK OF FEATURE FUSION
SYSTEM AND CLASSIFICATION METHOD
1) LSTM BASED NETWORK AND FINE-TUNING METHOD
The basic network of the proposed framework is the LSTM
(Long Short-Term Memory). The effect of LSTM on time
series learning is profound. A significant attribute of LSTM
is the ability to map from the entire history of inputs to
each output [34]. Besides, LSTM solves the vanishing gra-
dient and context access problems commonly plague the
RNN [35], [36]. The basic unit of the LSTM architecture
consists of a memory block with different types of memory
cells and three adaptive multiplications named input gate,
forget gate as well as output gate. LSTM contains information
outside the normal flow of the RNN in a gated cell, which
helps to avoid the vanishing gradient problem. The training
loss of LSTM can be back-propagated through time and
layers.

The audio data can be divided into time series segments
and each segment has 470-time steps. The proposed model
makes use of a multi-layered LSTM structure to extract high
level emotional features on time steps.

The network with 3 LSTM blocks is used to process
audio features. However, the size of collected data is small
and hence this presents difficulties in sufficiently extract-
ing the bottom layer features. Extracting rich features and
generalizing bottom layer features are vital to learning more
efficient high-level abstract features and improving the net-
work performance as well as robustness. Figure 3 shows
the audio classification model and fine-tuning method. The
EMO-DB audio dataset [37] is chosen as the source dataset
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FIGURE 3. Classification model for audio features and fine-tuning
method.

as it consists of audio segments with 6 labeled emotions and
our experiment audio data also contains different emotions.
Thus, the source task refers to emotions classification and
training this task helps the network to learn more of the basic
emotional low-level features. In implementation, the weights
of the first two LSTM layers are initialized by using source
task training weights while other further layers need to be
retrained.

For the main task, the input of the network is the audio
features of single emotion, which is the 40-length MFCCs
with 470-time steps. In the first step, the model is trained
on audio features of each emotion separately to analyze and
compare the classification results of the speech under each
emotion.

2) PROPOSED ATTENTION-BASED FEATURE FUSION
Commonly used feature fusion methods include weighting
method as well as direct connecting method. For weighting
method, finding the weight value for different features is
the crucial part. However, determining the optimal weights
combination is a difficult task. In order to effectively integrate
the features of different emotions, we designed an attention
block to produce better combination weights and this block
can make the model focus on relevant emotions.

Attention mechanism was used in the transformer
model [38] and word encoder model [39] where this mech-
anism enables the model to exercise attention to the more
related word vectors in the translation task, while reducing
the attention to unrelated word vectors. Thus, the atten-
tion mechanism can be used in feature fusion tasks as it
enables the model to focus on important features. For our
task, the attention layer enables the proposed deep learning

FIGURE 4. Working process of the attention block.

network to concentrate on emotional features with different
weights, and construct a model to analyze the relationship
between emotions and mental health.

Specifically, as shown in Figure 4(a), the vectors
E1,E2, . . . ,En represent different groups of emotional fea-
tures. The weighted features fusion layer F is computed as
concatenated weighted fusion of these group features where
the weights (α1, α2, . . . , αn) are computed in a method illus-
trated in Figure 4(b). The weights vector A is calculated as

S1 = tanh(EW1)T

S2 = S1W2

A = softmax(S2)

(1)

where E = [ET1 ;E
T
1 ; . . . ;E

T
1 ] with a shape of d × n, W1

is a vector of parameters with size d × 1 and the size of
W2 is n × n. S1 and S2 are the middle layers, which are
composed of n neurons. The softmax() function ensures all
the computed weights sum up to 1. After obtaining the fusion
weights, the fusion layer F can be represented as

layerF = {α1E1, α2E2, . . . , αnEn, (2)

3) OVERALL FEATURE FUSION SYSTEM
Figure 5 shows the fusion model for audio features and
behavior features. The input of the model can be divided
into 2 fields. In the first field, 17 selected behavior features
are inputted to DNN network to extract high-level behav-
ior features. In the second field, five groups of emotional
speech features are put into the LSTM-based network and
the weights of the first two LSTM layers are initialized by
using the method of Figure 3. F1 is the weighted fusion layer
which fuses 5 groups of high-level speech features through
the attention block 1. Besides, the combined LSTM features
and high-level DNN features are concatenated on the layer
F2 by attention block 2.
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FIGURE 5. The overall architecture of the fusion model.

The loss function of the model is categorical cross
entropy function. The optimizer of training is Adam (Adap-
tive Moment Estimation) and the initial learning rate is
0.00001 while the batch size is 16. In order to avoid overfit-
ting, we set early stopping and its patience is 15 epochs. This
means that the training will automatically stop if the accuracy
of the validation set is not improved in 15 epochs. The model
for single audio features is trained in GTX 1070 and the
fusionmodel is trained in GTX1080Ti. The total training time
of 5-fold cross-validation is approximately 18 hours..

III. EVALUATION AND ANALYSIS
A. EXPERIMENTAL RESULTS
In this experiment, F1− Score is used to measure the predic-
tion results. It considers the Precision and Recall at same time
and can be regarded as a weighted average of the Precision
and Recall. Thus, F1 − Score helps objectively analyze the
performance of the classifier.

Precision and Recall are defined as:

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

where tp is true positive, fp is false positive, fn is false nega-
tive. Precision is also referred to as positive predictive value
(PPV), and it is the fraction of correctly predicted positive
samples to the total predicted positive samples. Recall is also
referred to as the true positive rate or sensitivity, it can be
represented as the fraction of correctly predicted positive
samples to the total positive samples in actual label.

The F1− score is calculated by using Precision and Recall
with same weight:

F1 − score = 2
Recall × Precision
Recall + Precision

(5)

All test results are obtained using a 5-fold cross-validation
strategy which balances the training accuracy of each round
and the total training time. The overall performance is
computed by averaging the results from all 5 iterations.
20% of the data is used as a test set for each iteration.
Our cross-validation method is similar to the subject cross
validation[40]. The method of dividing the training set and
validation set is shown in Figure 1. The training and testing
sets are split by subject. The dataset contains speech and
behavior data for 60 subjects and the raw data are stored in
different folders with subjects’ numbers. In each iteration of
cross-validation, the training set and validation set are divided
by this number. For example, the data with numbers 01 to 48
is the training set, and the data with 49 to 60 is the test set.
Thus, the training set and validation set are independent of
each other and the data of one subject may only be in the
training or test set. Overlapping windows are only used in
feature extraction process. We performed feature extraction
after dividing training set and validation. Thus, the train-
ing features and validation features are extracted separately.
Therefore, there is no overlapping data between training set
and validation set.

The results of the source task are shown in Figure 6. The
pre-train task is an emotion classification for EMO-DB audio
dataset and training on task can initialize the weights of the
LSTM based network. CNN-based networks are usually used
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FIGURE 6. The method of dividing the training set and validation set.

for speech classification. The figure compares classification
performance of the LSTM-based model and a powerful
CNN-based network: VGG-net. The input of VGG-net is the
same as the input of LSTM since they are both 40-length
MFCCs. In addition, the time step is zero padded to 40. Thus,
the input size of VGG-net is 40 × 40 (since the time step
of each speech segment in EMO-DB is less than 40). It is
illustrated that the LSTM-based model has relatively better
performance and the average F1 − Score of LSTM-based
model is 8.7% higher than VGG-based model. The main
reason is that LSTMblock extracts features of time dimension
more efficiently for short-term sequences whereas CNN net-
work with deeper layer is difficult to train for small datasets.

Our project dataset description and collection experiment
has been covered in the Section II. The classification index of
the dataset in our experiment is based on three questionnaires
of BDI assessing depression, SAI assessing state anxiety, and
TAI assessing trait anxiety, which avoid the contingency of
individual indicator results. Besides, we have divided the data
into three labels for every index, the 27% lowest scores are the
low class of depression, the 27% highest scores are the high
class and another 46% middle scores are the middle class.
27% is a common criterion for dividing the ratio of high and
low in psychological experiments. This method is named as
high-low-27-percent group method [41].

Tables 2 to 4 show the F1-score results of BDI, SAI
and TAI class, respectively. The input is the audio features
with single emotions and these tables compare the classifi-
cation performances for audio input with different emotions.
Figure 7 shows the average F1-scores for these three indices.
The result reveals that the accuracy of depression and anxiety
classification under the emotions of happiness, fear and anger

TABLE 2. Description for analysis of activity features.

TABLE 3. F1-score results for BDI level under one emotion channel audio
features.

TABLE 4. F1-score results for SAI level under one emotion channel audio
features.

are higher than that under the other two emotions. This rather
interesting result shows that depression and anxiety are more
easily detected through speech when the emotions of the
participants are anger, fear and happy.
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FIGURE 7. The classification results of pre-train dataset.

In this paper, the attention block has been designed to
produce the appropriate combination weights for the emotion
features as well as behavior features and to enable the model
focus on more relevant features. In addition, we compared
the fusion method based on attention block with the direct
connection method which uses same weights on features.

Figure 8 compares the average F1-scores of these two
fusion methods. It is seen that attention block can improve the
classification accuracy because better dynamic combination
weights are obtained by training the attention model. The
detailed results of the two fusion methods will be compared
in Table 5.

FIGURE 8. The average F1-scores under single emotion input.

Figure 9 shows that the fusion weights for speech features
under different emotions. This provides a degree of explain
ability of the deep learning model which helps to reveal the
contributions of various emotional features to mental state

TABLE 5. F1-score results for TAI level under one emotion channel audio
features.

FIGURE 9. Comparison of two fusion methods.

recognition. For prediction of different indices, the generated
fusion weights are different whereas several common phe-
nomena can be found. This is clearly visible in Figure 9 that
the attention model has highlighted the importance of speech
features under emotions of anger and fear in each index
prediction. On the separate hand, the speech features under
neutral and sadness contribute less to the classification of
mental states. Besides, the weight changes little for different
mental states.

High-level behavior features and emotional audio features
are fused in attention block 2 and their fusion weights in each
index are shown in Figure 10. It is seen that the weight of the
emotional audio features is much greater than the behavioral
features. Therefore, emotional audio features contribute more
to the classification of mental states.

The evaluation results of attention-based fusion model and
direct connection fusion model are tabulated in Table 5. The
accuracy of the fusion models is significantly higher than that
of the model under single emotion features. This illustrates
the multiple emotional audio features are useful for analyzing
mental wellbeing. Besides, the accuracy of attention-based
model has obvious improvement compared with direct con-
nection fusion model. Furthermore, the fusion of behavioral
features slightly improved the classification performance.

BLSTM (Bi-directional Long Short-Term Memory) is
another state-of-the-art learning algorithm for time series
classification. Thus, two algorithms are conducted for com-
parison in both the single and the overall fusion model.
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FIGURE 10. Average fusion weights produced by attention block 1 for
(a) BDI level prediction, (b) SAI level prediction, (c) TAI level prediction.

Table 1 shows the classification results of LSTM-based
model and BLSTM-based model. The input is the speech
features with single emotion and the results are the aver-
age F1 scores. It is seen that BLSTM-based model slightly
improves the classification performance compared with
LSTM-based model. Besides, Table 2 compares the results
of the overall fusion model with LSTM blocks and BLSTM
blocks. It is seen that LSTM blocks and BLSTM blocks have
overall similar results for the fusion model. One BLSTM
layer is composed of two LSTM layers, the parameter and
computational complexity of BLSTM is much greater. There-
fore, LSTM is chosen in the overall fusion model.

FIGURE 11. Average fusion weights produced by attention block 2.

TABLE 6. F1-score results for feature fusion model.

TABLE 7. F1-score results of the LSTM-based model and the
BLSTM-based model.

B. ANALYSIS AND DISCUSSION
Through the prediction results of these three indices, the rela-
tionship between mental health and multiple-sensor features
can be analyzed objectively. Besides, it is shown that the
fusion of multiple emotional features and behavioral features
contributes to improving the classification accuracy.
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TABLE 8. F1-score results of the overall Fusion model with LSTM blocks
and the overall fusion model with BLSTM blocks.

We evaluated mental state through wearable devices and
deep learning models. This is different from traditional
method. The model we used is based on a supervised algo-
rithm which requires automated features extractions and
annotation of the data through the labels of the training set.
Although the training set is implicitly derived from the ques-
tionnaires, these questionnaires are not used in a traditional
sense to code up a system. In addition, the prediction process
of the proposed system does not depend on the question-
naires.

The LSTM-based network of the fusionmodel is initialized
by using the method. The fine-tuning method is derived from
the parameters/model-based transfer learning. The source
dataset is the EMO-DB and the task is emotion classification.
The target dataset is from our experiments and the target
task is the classification of mental states. The two datasets
are similar, they are both human speech fragments and the
input features are MFCCs. The difference between source
and target is that the speech language of the two datasets are
different and the classification task is different. According
to the theory of transfer learning, the lower layers of the
neural network can extract general features, while the specific
features are extracted in the higher layer. Therefore, the lower
layers are transferable even if there are several differences
between source and target. In details, the first two LSTM
layers are initialized by the model trained on the EBO-DB,
other layers have random initialization and all layers are
trainable. In this case, general speech features can be shared
and the model converges faster.

IV. CONCLUSION
A wearable device with multiple sensors has been proposed
and designed to collect social signals and continuously moni-
tor the mental health status of the wearer. In addition, psycho-
logical experiments have been designed to analyze the degree
of depression and anxiety. The speech as well as behavioral
data have been collected by the wearable devices. By analyz-
ing data and building models from more than 60 participants,
the relationship between audio and behavioral features and
degree of depression has been established. In particular, three
indices of depression and anxiety have validated the pro-

posed detection approach to ensure the objectivity of the
results. Attention-based features fusion model has success-
fully demonstrated to achieve high level of performance accu-
racy in classifying depression and anxiety levels.
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