36 research outputs found

    MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.

    Get PDF
    Since its first release over a decade ago, the MetaboAnalyst web-based platform has become widely used for comprehensive metabolomics data analysis and interpretation. Here we introduce MetaboAnalyst version 5.0, aiming to narrow the gap from raw data to functional insights for global metabolomics based on high-resolution mass spectrometry (HRMS). Three modules have been developed to help achieve this goal, including: (i) a LC-MS Spectra Processing module which offers an easy-to-use pipeline that can perform automated parameter optimization and resumable analysis to significantly lower the barriers to LC-MS1 spectra processing; (ii) a Functional Analysis module which expands the previous MS Peaks to Pathways module to allow users to intuitively select any peak groups of interest and evaluate their enrichment of potential functions as defined by metabolic pathways and metabolite sets; (iii) a Functional Meta-Analysis module to combine multiple global metabolomics datasets obtained under complementary conditions or from similar studies to arrive at comprehensive functional insights. There are many other new functions including weighted joint-pathway analysis, data-driven network analysis, batch effect correction, merging technical replicates, improved compound name matching, etc. The web interface, graphics and underlying codebase have also been refactored to improve performance and user experience. At the end of an analysis session, users can now easily switch to other compatible modules for a more streamlined data analysis. MetaboAnalyst 5.0 is freely available at https://www.metaboanalyst.ca

    OneStopRNAseq: A Web Application for Comprehensive and Efficient Analyses of RNA-Seq Data

    Get PDF
    Over the past decade, a large amount of RNA sequencing (RNA-seq) data were deposited in public repositories, and more are being produced at an unprecedented rate. However, there are few open source tools with point-and-click interfaces that are versatile and offer streamlined comprehensive analysis of RNA-seq datasets. To maximize the capitalization of these vast public resources and facilitate the analysis of RNA-seq data by biologists, we developed a web application called OneStopRNAseq for the one-stop analysis of RNA-seq data. OneStopRNAseq has user-friendly interfaces and offers workflows for common types of RNA-seq data analyses, such as comprehensive data-quality control, differential analysis of gene expression, exon usage, alternative splicing, transposable element expression, allele-specific gene expression quantification, and gene set enrichment analysis. Users only need to select the desired analyses and genome build, and provide a Gene Expression Omnibus (GEO) accession number or Dropbox links to sequence files, alignment files, gene-expression-count tables, or rank files with the corresponding metadata. Our pipeline facilitates the comprehensive and efficient analysis of private and public RNA-seq data

    PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data

    Full text link
    [EN] The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated visualization of multiple omic data types onto KEGG pathway diagrams. PaintOmics 3 combines server-end capabilities for data analysis with the potential of modern web resources for data visualization, providing researchers with a powerful framework for interactive exploration of their multi-omics information. Unlike other visualization tools, PaintOmics 3 covers a comprehensive pathway analysis workflow, including automatic feature name/identifier conversion, multi-layered feature matching, pathway enrichment, network analysis, interactive heatmaps, trend charts, and more. It accepts a wide variety of omic types, including transcriptomics, proteomics and metabolomics, as well as region-based approaches such as ATAC-seq or ChIP-seq data. The tool is freely available at www.paintomics.orgEuropean Union Seventh Framework Programme [FP7/2007-2013] under the grant agreement [306000-STATegra]; Marie Curie International Research Staff Exchange Scheme under grant agreement [612583-DEANN]; Spanish MINECO [BIO2012-40244]. INB Grant [PT17/0009/0015 - ISCIII-SGEFI / ERDF]. Funding for open access charge: MINECO [BIO2012-40244].Hernandez-De Diego, R.; Tarazona Campos, S.; Martínez-Mira, C.; Balzano-Nogueira, L.; Furió-Tarí, P.; Conesa, A.; Pappas, G. (2018). PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Research. 46(W1):503-509. https://doi.org/10.1093/nar/gky466S50350946W

    Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer

    Get PDF
    Metabolomics deals with multiple and complex chemical reactions within living organisms and how these are influenced by external or internal perturbations. It lies at the heart of omics profiling technologies not only as the underlying biochemical layer that reflects information expressed by the genome, the transcriptome and the proteome, but also as the closest layer to the phenome. The combination of metabolomics data with the information available from genomics, transcriptomics, and proteomics offers unprecedented possibilities to enhance current understanding of biological functions, elucidate their underlying mechanisms and uncover hidden associations between omics variables. As a result, a vast array of computational tools have been developed to assist with integrative analysis of metabolomics data with different omics. Here, we review and propose five criteria—hypothesis, data types, strategies, study design and study focus— to classify statistical multi-omics data integration approaches into state-of-the-art classes under which all existing statistical methods fall. The purpose of this review is to look at various aspects that lead the choice of the statistical integrative analysis pipeline in terms of the different classes. We will draw particular attention to metabolomics and genomics data to assist those new to this field in the choice of the integrative analysis pipeline

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration

    Get PDF
    Metabolomics is a rapidly growing field consisting of the analysis of a large number of metabolites at a system scale. The two major goals of metabolomics are the identification of the metabolites characterizing each organism state and the measurement of their dynamics under different situations (e.g. pathological conditions, environmental factors). Knowledge about metabolites is crucial for the understanding of most cellular phenomena, but this information alone is not sufficient to gain a comprehensive view of all the biological processes involved. Integrated approaches combining metabolomics with transcriptomics and proteomics are thus required to obtain much deeper insights than any of these techniques alone. Although this information is available, multilevel integration of different 'omics' data is still a challenge. The handling, processing, analysis and integration of these data require specialized mathematical, statistical and bioinformatics tools, and several technical problems hampering a rapid progress in the field exist. Here, we review four main tools for number of users or provided features (MetaCore(TM), MetaboAnalyst, InCroMAP and 3Omics) out of the several available for metabolomic data analysis and integration with other 'omics' data, highlighting their strong and weak aspects; a number of related issues affecting data analysis and integration are also identified and discussed. Overall, we provide an objective description of how some of the main currently available software packages work, which may help the experimental practitioner in the choice of a robust pipeline for metabolomic data analysis and integration

    A primer on correlation-based dimension reduction methods for multi-omics analysis

    Full text link
    The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will guide researchers navigate the emerging methods for multi-omics and help them integrate diverse omic datasets appropriately and embrace the opportunity of population multi-omics.Comment: 30 pages, 2 figures, 6 table

    Metabolomic and Proteomic Stratification of Equine Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is characterised by loss of articular cartilage, synovial membrane dysfunction and subchondral sclerosis. Few studies have used a global approach to stratify equine synovial fluid (SF) molecular profiles according to OA severity. SF was collected from 58 metacarpophalangeal (MCP) and metatarsophalangeal joints of racing Thoroughbred horses (Hong Kong Jockey Club; HKJC) and 83 MCP joints of mixed breed horses from an abattoir and equine hospital (biobank). Joints were histologically and macroscopically assessed for OA severity. For proteomic analysis, native SF and SF loaded onto ProteoMinerâ„¢ equalisation columns, to deplete high abundant proteins, were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and label-free quantification. Validation of selected differentially expressed proteins was undertaken using clinical SF collected during diagnostic investigations. Native SF metabolites were analysed using 1D 1 H Nuclear Magnetic Resonance (NMR). 1,834 proteins and 40 metabolites were identified in equine SF. Afamin levels decreased with synovitis severity and four uncharacterised proteins decreased with OA severity. Gelsolin and lipoprotein binding protein decreased with OA severity and apolipoprotein A1 levels increased for mild and moderate OA. Within the biobank, glutamate levels decreased with OA severity and for the HKJC cohort, 2-aminobutyrate, alanine and creatine increased with severity. Proteomic and metabolomic integration was undertaken using linear regression via Lasso penalisation modelling, incorporating 29 variables (R 2 =0.82) with principal component 2 able to discriminate advanced OA from earlier stages, predominantly driven by H9GZQ9, F6ZR63 and alanine. Combining biobank and HKJC datasets, discriminant analysis of principal components modelling prediction was good for mild OA (90%). This study has stratified equine OA using both metabolomic and proteomic SF profiles and identified a panel of markers of interest which may be applicable to grading OA severity. This is also the first study to undertake computational integration of NMR metabolomic and LC-MS/MS proteomic datasets of any biological system

    Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana

    Get PDF
    Mixed virus infections threaten crop production because interactions between the host and the pathogen mix may lead to viral synergism. While individual infections by potato virus A (PVA), a potyvirus, and potato virus X (PVX), a potexvirus, can be mild, co-infection leads to synergistic enhancement of PVX and severe symptoms. We combined image-based phenotyping with metabolite analysis of single and mixed PVA and PVX infections and compared their effects on growth, photosynthesis, and metabolites in Nicotiana benthamiana. Viral synergism was evident in symptom severity and impaired growth in the plants. Indicative of stress, the co-infection increased leaf temperature and decreased photosynthetic parameters. In contrast, singly infected plants sustained photosynthetic activity. The host’s metabolic response differed significantly between single and mixed infections. Over 200 metabolites were differentially regulated in the mixed infection: especially defense-related metabolites and aromatic and branched-chain amino acids increased compared to the control. Changes in the levels of methionine cycle intermediates and a low S-adenosylmethionine/S-adenosylhomocysteine ratio suggested a decline in the methylation potential in co-infected plants. The decreased ratio between reduced glutathione, an important scavenger of reactive oxygen species, and its oxidized form, indicated that severe oxidative stress developed during co-infection. Based on the results, infection-associated oxidative stress is successfully controlled in the single infections but not in the synergistic infection, where activated defense pathways are not sufficient to counter the impact of the infections on plant growth
    corecore