352 research outputs found

    A survey of differential flatness-based control applied to renewable energy sources

    Get PDF
    Conference ProceedingsThis paper presents an overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources. Several sources are considered in the study (biomass, wind, solar, hydro and geothermal). Different control methods applied to their control are cited, alongside some previous applications. Hence, it further elaborates on the adoptive control principles, of which includes; Load ballast control, dummy load control, proportional integral and derivative (PID) control, proportional integral (PI) control, pulse-width modulation (PWM) control, buck converter control, boost converter control, pitch angle control, valve control, the rate of river flow at turbine, bidirectional diffuser-augmented control and differential flatnessbased controller. These control operations in renewable energy power generation are mainly based on a steady-state linear control approach. However, the flatness based control principle has the ability to resolve the complex control problem of renewable energy systems while exploiting their linear properties. Using their flatness properties, feedback control is easily achieved which allows for optimal/steady output of the system components. This review paper highlights the benefits that range from better control techniques for renewable energy systems to established robust grid (or standalone generations) connections that can bring immense benefits to their operation and maintenance costs

    FLATNESS BASED CONTROL OF MICRO-HYDROKINETIC RIVER ELECTRIFICATION SYSTEM

    Get PDF
    Published ThesisIn areas where adequate water resource is available, hydrokinetic energy conversion systems are currently gaining recognition, as opposed to other renewable energy sources such as solar or wind energy. The operational principle of hydrokinetic energy is not similar to traditional hydropower generation that explores use of the potential energy of falling water, which has drawbacks such as the expensive construction of dams and the disturbance of aquatic ecosystems. Hence, hydrokinetic energy generates electricity by making use of underwater turbines to extract the kinetic energy of flowing water, with no construction of dams or diversions. A hydrokinetic turbine uses flowing water, which varies with climatic conditions throughout the year, to power the shaft of a generator, hence, generating an unstable energy output. The aim of this dissertation is to develop a controller that will be used to stabilize the output voltage and frequency generated in a hydrokinetic energy system. An overview of various methods used to minimize the fluctuating impacts of power generated from renewable energy sources is included in the current conducted research. Several renewable energy sources such as biomass, wind, solar, hydro and geothermal have been discussed in the literature review. Different control methods and topologies have been cited. Hence, the study elaborates on the adoptive control principles, which include the load ballast control, dummy load control, proportional integral and derivative (PID) controller system, proportional integral (PI) controller system, pulse-width modulation (PWM) control, pitch angle control, valve control, the rate of river flow at the turbine, bidirectional diffuser-augmented control and differential flatness based controller. These control operations in renewable energy power generation are mainly based on a linear control approach. In the case whereby a PI power controller system has been developed for a variable speed hydrokinetic turbine system, a DC-DC boost converter is used to keep constant DC link voltage. The input DC current is regulated to follow the optimized current reference for maximum power point operation of the turbine system. The DC link voltage is controlled to feed the current in the grid through the line side PWM inverter. The active power is regulated by q-axis current while the reactive power is regulated by d-axis current. The phase angle of utility voltage is detected using PLL (phased locked loop) in a d-q synchronous reference frame. The proposed scheme is modelled and simulated using MATLAB/ Simulink, and the results give a high quality power conversion solution for a variable speed hydrokinetic system. In the second case, whereby the differential flatness concept is applied to a controller, the idea of this concept is to generate an imaginary trajectory that will take the system from an initial condition to a desired output generating power. This control concept has the ability to resolve complex control problems such as output voltage and frequency fluctuations of renewable energy systems, while exploiting their linear properties. The results show that the generated outputs are dynamically adjusted during the voltage regulation process. The advantage of the proposed differential flatness based controller over the traditional PI control resides in the fact that decoupling is not necessary and the system is much more robust as demonstrated by the modelling and simulation studies under different operating conditions, such as changes in water flow rate

    English Abstracts

    Full text link
    [ES] Resúmenes en inglés de todos los artículos que conforman el Vol 05, No 4 de la revista RIAI.Revista Iberoamericana de Automática e Informática industrial (2008). Resúmenes en Inglés. Revista Iberoamericana de Automática e Informática industrial. 5(4):92-96. http://hdl.handle.net/10251/145507OJS92965

    Two-Stage Control Design of a Buck Converter/DC Motor System without Velocity Measurements via a Σ

    Get PDF
    This paper presents a two-stage control design for the “Buck power converter/DC motor” system, which allows to perform the sensorless angular velocity trajectory tracking task. The differential flatness property of the DC-motor model is exploited in order to propose a first-stage controller, which is designed to achieve the desired angular velocity trajectory. This controller provides the voltage profiles that must be tracked by the Buck converter. Then, a second-stage controller is meant to assure the aforementioned. This controller is based on flatness property of the Buck power converter model, which provides the input voltage to the DC motor. Due to the fact that the two-stage controller proposed uses the average model of the system, as a practical and effective implementation of this controller, a Σ − Δ-modulator is employed. Finally, in order to verify the control performance of this approach, numerical simulations are included

    Assessment of an Average Controller for a DC/DC Converter via Either a PWM or a Sigma-Delta-Modulator

    Get PDF
    Sliding mode control is a discontinuous control technique that is, by its nature, appropriate for controlling variable structure systems, such as the switch regulated systems employed in power electronics. However, when designing control laws based on the average models of these systems a modulator is necessary for their experimental implementation. Among the most widely used modulators in power electronics are the pulse width modulation (PWM) and, more recently, the sigma-delta-modulator (Σ-Δ-modulator). Based on the importance of achieving an appropriate implementation of average control laws and the relevance of the trajectory tracking task in DC/DC power converters, for the first time, this research presents the assessment of the experimental results obtained when one of these controllers is implemented through either a PWM or a Σ-Δ-modulator to perform such a task. A comparative assessment based on the integral square error (ISE) index shows that, at frequencies with similar efficiency, the Σ-Δ-modulator provides a better tracking performance for the DC/DC Buck converter. In this paper, an average control based on differential flatness was used to perform the experiments. It is worth mentioning that a different trajectory tracking controller could have been selected for this research

    Robust converter-fed motor control based on active rejection of multiple disturbances

    Full text link
    In this work, an advanced motion controller is proposed for buck converter-fed DC motor systems. The design is based on an idea of active disturbance rejection control (ADRC) with its key component being a custom observer capable of reconstructing various types of disturbances (including complex, harmonic signals). A special formulation of the proposed design allows the control action to be expressed in a concise and practically appealing form reducing its implementation requirements. The obtained experimental results show increased performance of the introduced approach over conventionally used methods in tracking precision and disturbance rejection, while keeping similar level of energy consumption. A stability analysis using theory of singular perturbation further supports the validity of proposed control approach.Comment: 30 pages, 7 figures, 1 tabl

    Reset control for DC-DC converters: an experimental application

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Power converters in grid connected systems are required to have fast response to ensure the stability of the system. The standard PI controllers used in most power converters are capable of fast response but with significant overshoot. In this paper a hybrid control technique for power converter using a reset PI + CI controller is proposed. The PI + CI controller can overcome the limitation of its linear counterpart (PI) and ensure a fast flat response for power converter. The design, stability and cost of feedback analysis for a DC-DC boost converter employing a PI + CI controller is explored in this work. The simulation and experimental results which confirm the fast, flat response will be presented and discussed.Peer ReviewedPostprint (published version

    Control Strategies of DC–DC Converter in Fuel Cell Electric Vehicle

    Get PDF
    There is a significant need to research and develop a compatible controller for the DC–DC converter used in fuel cells electric vehicles (EVs). Research has shown that fuel cells (FC) EVs have the potential of providing a far more promising performance in comparison to conventional combustion engine vehicles. This study aims to present a universal sliding mode control (SMC) technique to control the DC bus voltage under varying load conditions. Additionally, this research will utilize improved DC–DC converter topologies to boost the output voltage of the FCs. A DC–DC converter with a properly incorporated control scheme can be utilized to regulate the DC bus voltage–. A conventional linear controller, like a PID controller, is not suitable to be used as a controller to regulate the output voltage in the proposed application. This is due to the nonlinearity of the converter. Furthermore, this thesis will explore the use of a secondary power source which will be utilized during the start–up and transient condition of the FCEV. However, in this instance, a simple boost converter can be used as a reference to step–up the fuel cell output voltage. In terms of application, an FCEV requires stepping –up of the voltage through the use of a high power DC–DC converter or chopper. A control scheme must be developed to adjust the DC bus or load voltage to meet the vehicle requirements as well as to improve the overall efficiency of the FCEV. A simple SMC structure can be utilized to handle these issues and stabilize the output voltage of the DC–DC converter to maintain and establish a constant DC–link voltage during the load variations. To address the aforementioned issues, this thesis presents a sliding mode control technique to control the DC bus voltage under varying load conditions using improved DC–DC converter topologies to boost and stabilize the output voltage of the FCs

    Maximum Power Extraction from a Standalone Photo Voltaic System via Neuro-Adaptive Arbitrary Order Sliding Mode Control Strategy with High Gain Differentiation

    Get PDF
    In this work, a photovoltaic (PV) system integrated with a non-inverting DC-DC buck-boost converter to extract maximum power under varying environmental conditions such as irradiance and temperature is considered. In order to extract maximum power (via maximum power transfer theorem), a robust nonlinear arbitrary order sliding mode-based control is designed for tracking the desired reference, which is generated via feed forward neural networks (FFNN). The proposed control law utilizes some states of the system, which are estimated via the use of a high gain differentiator and a famous flatness property of nonlinear systems. This synthetic control strategy is named neuroadaptive arbitrary order sliding mode control (NAAOSMC). The overall closed-loop stability is discussed in detail and simulations are carried out in Simulink environment of MATLAB to endorse effectiveness of the developed synthetic control strategy. Finally, comparison of the developed controller with the backstepping controller is done, which ensures the performance in terms of maximum power extraction, steady-state error and more robustness against sudden variations in atmospheric conditions
    corecore