12 research outputs found

    Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements

    Full text link
    © 2014 by the authors. Spectral Vegetation Indices (SVIs) have been widely used to indirectly detect plant diseases. The aim of this research is to evaluate the effect of different disease symptoms on SVIs and introduce suitable SVIs to detect rust disease. Wheat leaf rust is one of the prevalent diseases and has different symptoms including yellow, orange, dark brown, and dry areas. The reflectance spectrum data for healthy and infected leaves were collected using a spectroradiometer in the 450 to 1000 nm range. The ratio of the disease-affected area to the total leaf area and the proportion of each disease symptoms were obtained using RGB digital images. As the disease severity increases, so does the scattering of all SVI values. The indices were categorized into three groups based on their accuracies in disease detection. A few SVIs showed an accuracy of more than 60% in classification. In the first group, NBNDVI, NDVI, PRI, GI, and RVSI showed the highest amount of classification accuracy. The second and third groups showed classification accuracies of about 20% and 40% respectively. Results show that few indices have the ability to indirectly detect plant disease

    Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina)

    Full text link
    Spectral vegetation indices (SVIs) have been widely used to detect different plant diseases. Wheat leaf rust manifests itself as an early symptom with the leaves turning yellow and orange. The sign of advancing disease is the leaf colour changing to brown while the final symptom is when the leaf becomes dry. The goal of this work is to develop spectral disease indices for the detection of leaf rust. The reflectance spectra of the wheat's infected and non-infected leaves at different disease stages were collected using a spectroradiometer. As ground truth, the ratio of the disease-affected area to the total leaf area and the fractions of the different symptoms were extracted using an RGB digital camera. Fractions of the various disease symptoms extracted by the digital camera and the measured reflectance spectra of the infected leaves were used as input to the spectral mixture analysis (SMA). Then, the spectral reflectance of the different disease symptoms were estimated using SMA and the least squares method. The reflectance of different disease symptoms in the 450~1000 nm were studied carefully using the Fisher function. Two spectral disease indices were developed based on the reflectance at the 605, 695 and 455 nm wavelengths. In both indices, the R2 between the estimated and the observed was as highas 0.94. © 2014 by the authors; licensee MDPI, Basel, Switzerland

    The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology

    Get PDF
    Plant functional traits play a key role in the assessment of ecosystem processes and properties. Optical remote sensing is ascribed a high potential in capturing those traits and their spatiotemporal patterns. In vegetation remote sensing, reflectance-based retrieval methods are either statistical (relying on empirical observations) or physically-based (based on inversions of a radiative transfer model, RTM). Both trait retrieval approaches remain poorly investigated regarding phenology. However, within the phenology of a plant, its leaf constituents, canopy structure, and the presence of phenology-related organs (i.e., flowers or inflorescence) vary considerably – and so does its reflectance. We, therefore, addressed the question of how plant phenology affects the predictive performance of both statistical and RTM-based methods and how this effect differs between traits. For a complete growing season, we weekly measured traits of 45 herbaceous plant species together with hyperspectral canopy reflectance (ASD FieldSpec III). Plants were grown in an experimental setup. The investigated traits comprised Leaf Area Index (LAI) and the leaf traits chlorophyll, anthocyanins, carotenoids, equivalent water thickness, and leaf mass per area. We compared the predictive performances of PLSR models and three variants of PROSAIL inversions based on (1) all observations and based on (2) a phenological subset where flowering plants were excluded and only those observations most suitable for modeling were kept. Our results show that both statistical and RTM-based trait retrievals were largely affected by phenology. For carotenoids for example, R2^{2} decreased from 0.58 at non-flowering canopies to 0.25 at 100% flowering canopies. Temporal trends were diverse. LAI and equivalent water thickness were best estimated earlier in the growing season; chlorophyll and carotenoids towards senescence. PLSR models showed generally higher bias than the PROSAIL-based retrieval approaches. Lookup-table inversion of PROSAIL in combination with a continuous wavelet transformation of reflectance showed highest accuracies. We found RTM-based retrieval not to be as accurate and transferable as previously indicated. Our results suggest that phenology is essential for accurate retrieval of plant functional traits and varies depending on the studied species and functional traits, respectively

    Trait Estimation in Herbaceous Plant Assemblages from in situ Canopy Spectra

    Get PDF
    Estimating plant traits in herbaceous plant assemblages from spectral reflectance data requires aggregation of small scale trait variations to a canopy mean value that is ecologically meaningful and corresponds to the trait content that affects the canopy spectral signal. We investigated estimation capacities of plant traits in a herbaceous setting and how different trait-aggregation methods influence estimation accuracies. Canopy reflectance of 40 herbaceous plant assemblages was measured in situ and biomass was analysed for N, P and C concentration, chlorophyll, lignin, phenol, tannin and specific water concentration, expressed on a mass basis (mg∙g−1). Using Specific Leaf Area (SLA) and Leaf Area Index (LAI), traits were aggregated to two additional expressions: mass per leaf surface (mg∙m−2) and mass per canopy surface (mg∙m−2). All traits were related to reflectance using partial least squares regression. Accuracy of trait estimation varied between traits but was mainly influenced by the trait expression. Chlorophyll and traits expressed on canopy surface were least accurately estimated. Results are attributed to damping or enhancement of the trait signal upon conversion from mass based trait values to leaf and canopy surface expressions. A priori determination of the most appropriate trait expression is viable by considering plant growing strategies
    corecore