475 research outputs found

    Absolute Correlation Weighted Naïve Bayes for Software Defect Prediction

    Full text link
    The maintenance phase of the software project can be very expensive for the developer team and harmful to the users because some flawed software modules. It can be avoided by detecting defects as early as possible. Software defect prediction will provide an opportunity for the developer team to test modules or files that have a high probability defect. Naïve Bayes has been used to predict software defects. However, Naive Bayes assumes all attributes are equally important and are not related each other while, in fact, this assumption is not true in many cases. Absolute value of correlation coefficient has been proposed as weighting method to overcome Naïve Bayes assumptions. In this study, Absolute Correlation Weighted Naïve Bayes have been proposed. The results of parametric test on experiment results show that the proposed method improve the performance of Naïve Bayes for classifying defect-prone on software defect prediction

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Software defect prediction using maximal information coefficient and fast correlation-based filter feature selection

    Get PDF
    Software quality ensures that applications that are developed are failure free. Some modern systems are intricate, due to the complexity of their information processes. Software fault prediction is an important quality assurance activity, since it is a mechanism that correctly predicts the defect proneness of modules and classifies modules that saves resources, time and developers’ efforts. In this study, a model that selects relevant features that can be used in defect prediction was proposed. The literature was reviewed and it revealed that process metrics are better predictors of defects in version systems and are based on historic source code over time. These metrics are extracted from the source-code module and include, for example, the number of additions and deletions from the source code, the number of distinct committers and the number of modified lines. In this research, defect prediction was conducted using open source software (OSS) of software product line(s) (SPL), hence process metrics were chosen. Data sets that are used in defect prediction may contain non-significant and redundant attributes that may affect the accuracy of machine-learning algorithms. In order to improve the prediction accuracy of classification models, features that are significant in the defect prediction process are utilised. In machine learning, feature selection techniques are applied in the identification of the relevant data. Feature selection is a pre-processing step that helps to reduce the dimensionality of data in machine learning. Feature selection techniques include information theoretic methods that are based on the entropy concept. This study experimented the efficiency of the feature selection techniques. It was realised that software defect prediction using significant attributes improves the prediction accuracy. A novel MICFastCR model, which is based on the Maximal Information Coefficient (MIC) was developed to select significant attributes and Fast Correlation Based Filter (FCBF) to eliminate redundant attributes. Machine learning algorithms were then run to predict software defects. The MICFastCR achieved the highest prediction accuracy as reported by various performance measures.School of ComputingPh. D. (Computer Science

    Improving Defect Prediction Models by Combining Classifiers Predicting Different Defects

    Get PDF
    Background: The software industry spends a lot of money on finding and fixing defects. It utilises software defect prediction models to identify code that is likely to be defective. Prediction models have, however, reached a performance bottleneck. Any improvements to prediction models would likely yield less defects-reducing costs for companies. Aim: In this dissertation I demonstrate that different families of classifiers find distinct subsets of defects. I show how this finding can be utilised to design ensemble models which outperform other state-of-the-art software defect prediction models. Method: This dissertation is supported by published work. In the first paper I explore the quality of data which is a prerequisite for building reliable software defect prediction models. The second and third papers explore the ability of different software defect prediction models to find distinct subsets of defects. The fourth paper explores how software defect prediction models can be improved by combining a collection of classifiers that predict different defective components into ensembles. An additional, non-published work, presents a visual technique for the analysis of predictions made by individual classifiers and discusses some possible constraints for classifiers used in software defect prediction. Result: Software defect prediction models created by classifiers of different families predict distinct subsets of defects. Ensembles composed of classifiers belonging to different families outperform other ensemble and standalone models. Only a few highly diverse and accurate base models are needed to compose an effective ensemble. This ensemble can consistently predict a greater number of defects compared to the increase in incorrect predictions. Conclusion: Ensembles should not use the majority-voting techniques to combine decisions of classifiers in software defect prediction as this will miss correct predictions of classifiers which uniquely identify defects. Some classifiers could be less successful for software defect prediction due to complex decision boundaries of defect data. Stacking based ensembles can outperform other ensemble and stand-alone techniques. I propose new possible avenues of research that could further improve the modelling of ensembles in software defect prediction. Data quality should be explicitly considered prior to experiments for researchers to establish reliable results

    Using Machine Learning and Graph Mining Approaches to Improve Software Requirements Quality: An Empirical Investigation

    Get PDF
    Software development is prone to software faults due to the involvement of multiple stakeholders especially during the fuzzy phases (requirements and design). Software inspections are commonly used in industry to detect and fix problems in requirements and design artifacts, thereby mitigating the fault propagation to later phases where the same faults are harder to find and fix. The output of an inspection process is list of faults that are present in software requirements specification document (SRS). The artifact author must manually read through the reviews and differentiate between true-faults and false-positives before fixing the faults. The first goal of this research is to automate the detection of useful vs. non-useful reviews. Next, post-inspection, requirements author has to manually extract key problematic topics from useful reviews that can be mapped to individual requirements in an SRS to identify fault-prone requirements. The second goal of this research is to automate this mapping by employing Key phrase extraction (KPE) algorithms and semantic analysis (SA) approaches to identify fault-prone requirements. During fault-fixations, the author has to manually verify the requirements that could have been impacted by a fix. The third goal of my research is to assist the authors post-inspection to handle change impact analysis (CIA) during fault fixation using NL processing with semantic analysis and mining solutions from graph theory. The selection of quality inspectors during inspections is pertinent to be able to carry out post-inspection tasks accurately. The fourth goal of this research is to identify skilled inspectors using various classification and feature selection approaches. The dissertation has led to the development of automated solution that can identify useful reviews, help identify skilled inspectors, extract most prominent topics/keyphrases from fault logs; and help RE author during the fault-fixation post inspection

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience
    corecore