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Abstract

Background: The software industry spends a lot of money on finding and fixing defects.
It utilises software defect prediction models to identify code that is likely to be defective.
Prediction models have, however, reached a performance bottleneck. Any improvements to
prediction models would likely yield less defects-reducing costs for companies.

Aim: In this dissertation I demonstrate that different families of classifiers find distinct
subsets of defects. I show how this finding can be utilised to design ensemble models which
outperform other state-of-the-art software defect prediction models.

Method: This dissertation is supported by published work. In the first paper I explore
the quality of data which is a prerequisite for building reliable software defect prediction
models. The second and third papers explore the ability of different software defect prediction
models to find distinct subsets of defects. The fourth paper explores how software defect
prediction models can be improved by combining a collection of classifiers that predict
different defective components into ensembles. An additional, non-published work, presents
a visual technique for the analysis of predictions made by individual classifiers and discusses
some possible constraints for classifiers used in software defect prediction.

Result: Software defect prediction models created by classifiers of different families predict
distinct subsets of defects. Ensembles composed of classifiers belonging to different families
outperform other ensemble and standalone models. Only a few highly diverse and accurate
base models are needed to compose an effective ensemble. This ensemble can consistently
predict a greater number of defects compared to the increase in incorrect predictions.

Conclusion: Ensembles should not use the majority-voting techniques to combine decisions
of classifiers in software defect prediction as this will miss correct predictions of classifiers
which uniquely identify defects. Some classifiers could be less successful for software defect
prediction due to complex decision boundaries of defect data. Stacking based ensembles can
outperform other ensemble and stand-alone techniques. I propose new possible avenues of
research that could further improve the modelling of ensembles in software defect prediction.
Data quality should be explicitly considered prior to experiments for researchers to establish
reliable results.
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Chapter 1

Introduction

A software defect is an imperfection or deficiency in a work product where that work product
does not meet its requirements or specifications [IEEE Std 2009]. Traditionally, software
functionality has been manually or automatically validated and defects fixed upon discovery.
However, with the ever-growing size and complexity of software systems, manual inspections
have become infeasible, whilst automatic testing is limited when resources are scarce.

The aim of software defect prediction modelling is to identify software units likely to
be defective. Software defect prediction models are cheaper to produce and evaluate than
software testing, because they require minimal human effort. Predictions are made based on
software metrics that are typically gathered from the system source code or the development
process. The models can help practitioners save costs [Tassey 2002] by focusing their efforts
on code units predicted to be defect-prone. In the last three decades many software defect
prediction models have been developed [Catal and Diri 2009, Hall et al. 2012, Malhotra
2015], yet only few have been used in industry (e.g. Zimmermann et al. [2009]). Some of
the likely reasons for the limited use of software defect prediction models in industry are
their low rate of true and high rate of false positive predictions.

A systematic literature review by Hall et al. [2012] synthesised software defect prediction
models between 2000 and 2010. They reported that some simple modelling techniques (i.e.
Naïve Bayes and Logistic Regression) perform well compared to more complex techniques,
such as Support Vector Machines. Lessmann et al. [2008a] compared 22 classifiers on ten
public datasets and reported no significant difference amongst the top 17 classifiers. More
recent studies have also shown no clear winner amongst classifiers used for software defect
prediction [Elish 2014, Malhotra 2015].

To mitigate the performance bottleneck, researchers have applied more advanced machine
learning techniques to software defect prediction. Recent literature reviews by Malhotra
[2015] and Wahono [2015] reported an increase in the use of ensemble techniques in software



2 Introduction

defect prediction. Their results suggest that ensembles can improve performances of software
defect prediction models. Mısırlı et al. [2011a] demonstrated a decrease in false positives
when applying ensembles compared to single models. Chen et al. [2018] successfully
demonstrated the effectiveness of ensemble models on nine highly-imbalanced defect datasets.
Despite the positive outcomes of ensembles used in software defect prediction, it is likely
that performance can be further improved.

The studies by Elish [2014], Lessmann et al. [2008a], Malhotra [2015] suggest that the
choice of classifier for software defect prediction is in most cases irrelevant. If all defects were
the same, the choice of classifier would not matter. However, defects differ in their nature.
Some defects are configuration related [Xia et al. 2013], install-ability/requirements/usability
issues [Hernandez-Gonzalez et al. 2018], whilst others link to structural problems [Petrić
and Grbac 2014]. As defects differ in their nature, an investigation of the success of different
machine learning techniques to predict distinct defective components would be worthwhile.
Some classifiers could be more successful than others in finding particular defects.

Panichella et al. [2014] were amongst the first to consider the ability of different classifiers
to predict distinct defective components. They established that different classifier types,
which identify different subsets of defects, have the ability to complement each other when
combined. In a cross-project defect prediction set-up1, Panichella et al. [2014] proposed
Combined Defect Predictor (CODEP) where predictions from the first layer of classifiers are
used as an input to the second (meta) layer classifier2. Their results demonstrated that the
CODEP approach can outperform stand-alone classifiers. No work, however, has explored in
detail how ensembles for software defect prediction should be constructed so that they can
identify the defects predicted by different types of classifiers.

In this work I analyse ensemble designs that have the potential to improve the performance
of software defect prediction models. The aim is to establish whether models created by
different classifiers can find different defective components, and if they do, what is a suitable
way to combine them in order to obtain models that outperform state-of-the-art techniques. I
also develop visual techniques to better understand the constraints of classifiers that constitute
the ensemble. I ensure the models used in this dissertation are trained on high-quality datasets
and use state-of-the-art approaches.

1Cross-project defect prediction uses several different software projects when building prediction models
and validates the model on the project of interest, which is different from my work which considers within-
project defect prediction. Within-project defect prediction uses the same project to build and validate prediction
models.

2This technique is more commonly known as stacking in the machine learning context.
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1.1 Thesis Statement

I show that software defect prediction models created by classifiers from different machine
learning families can predict distinct subsets of defects. This property can be used to construct
composite models that detect more defects than state-of-the-art models. I show that it matters
how the decisions of composite models are combined. The popular majority-voting technique
may not be the most appropriate as it may miss defects predicted by individual classifiers.
Stacking ensembles can be used instead. Combined classifiers need to be diverse as this
increases their ability to find more defects. Stacking ensembles need not be composed of
many classifiers. Three accurate and diverse classifiers are sufficient to obtain acceptable
results. I visualise the individual predictions of different classifiers and discuss potential
characteristics that could limit certain classifiers from discovering more defects.

1.2 Research Questions

This dissertation aims to answer two research questions. The first research question focuses on
the ability of classifiers to identify different defective components. The second research ques-
tion, which is broken into three parts, focuses on modelling techniques whose aim is to im-
prove software defect prediction models. More details about the research questions are given
below.
RQ1. Do models created by different classifiers find different defective components?

Motivation. In a large experimental analysis Lessmann et al. [2008a] established no
significant difference amongst the top 17 best performing classifiers. Similar performances
of various defect models suggest that the choice of the modelling technique is irrelevant.
However, by their nature, defects are different. As the underlying mechanisms of prediction
models differ between models, it is likely that some models have better chance of picking up
diverse subsets of defects that others cannot. An empirical analysis is needed to establish
whether models created by different classifiers find distinct subsets of defects.

RQ2. How can software defect prediction models be improved by combining classi-
fiers predicting different defective components?

RQ2a. Can stacking ensembles based on explicit diversity improve prediction per-
formance compared to other software defect prediction models?

Motivation. Diversity and accuracy play key parts in the success of ensemble learners
in various scientific disciplines. This question investigates whether an ensemble for which
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diversity and accuracy are explicitly considered improves prediction performance when
compared to other ensembles and standalone techniques.

RQ2b. How many classifiers combined into stacking ensembles are needed to pro-
vide good software defect prediction models?

Motivation. Combining multiple classifiers increases the training time of ensemble
models. Very large ensembles would be slower to train compared to their smaller counter-
parts. This question analyses what would be an ideal size of ensemble (i.e. the size after
which adding new classifiers would not improve the performance).

RQ2c. How much diversity and which base classifiers need to be combined to pro-
vide good ensemble models?

Motivation. If different families of classifiers find different defective components,
it should matter which type of classifiers are combined in the ensemble. I look at the
frequency of the type of classifiers typically selected into ensembles.

1.3 Contributions

I make the following contributions to knowledge in this dissertation:
Practical Contributions – I find that although different classifiers achieve similar pre-

diction performances, they find distinct subsets of defects. I propose an ensemble model
which is composed of classifiers that complement each other and show that this ensemble
outperforms other defect predictors. A consistent increase in correctly predicted defects
compared to the increase in false positives is observed across datasets using the proposed
ensemble. Companies whose priority is to comprehensively detect defects would benefit from
this ensemble model. I also develop dynamic visual techniques which provide the possibility
for analysing individual predictions made by different classifiers. These visual techniques
suggest that some classifiers achieve poor prediction performances but find defects with
unusual code characteristics, whilst others find more defects for the price of increasing false
positive predictions. Future researchers can use these visualisation techniques to improve
understanding of the advantages and limitations of classifiers for predicting distinct subsets
of defects.

Methodological Contributions – I show that a successful ensemble model needs only
a few diverse and accurate classifiers to perform well. The diversity of those classifiers
should come by selecting from different classifier families. Ensembles should not use
the majority-voting technique for decision making. Majority-voting misses those defects
correctly predicted by individual classifiers.
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Data Contributions – My final major contribution is about data quality. I propose five
novel integrity constraints for cleaning defect datasets which I add to the existing state-of-
the-art list of data integrity checks. I use the novel and state-of-the-art integrity checks
to clean the commonly used NASA defect datasets and report significant problems within
them. I also clean the PROMISE datasets which I use in this dissertation. My additional
integrity constraints improve data quality and increase the strength of conclusions I make.
My findings should urge researchers to explicitly consider data quality in the future. Data
quality underpins the confidence we can have in the results of studies using this data.

1.4 Dissertation Outline

The following is an overview of each subsequent chapter in this dissertation:

• Chapter 2 is an introduction to the current state-of-the-art knowledge in software
defect prediction.

• Chapter 3 is an overview of machine learning techniques used in software defect
prediction. This chapter provides details of the techniques used in this dissertation.

• Chapter 4 describes the work I did on data quality. The first part describes the
background knowledge about data cleaning and reports on new issues which I found.
This is followed by Paper 1 that specifically details the methodology and results of
data cleaning applied to the NASA Metrics Data Program datasets.

• Chapter 5 demonstrates the ability of different classifiers to find distinct subsets of
defects. This work is supported by two papers, Paper 2 and Paper 3, where the latter
is an extension to the former containing more datasets.

• Chapter 6 introduces an ensemble model which exploits the findings from Chapter 5
to produce a more effective software defect prediction model. This work is supported
by Paper 4.

• Chapter 7 shows a novel approach for visualising predictions made by classifiers
using confusion matrices as density plots.

• Chapter 8 finalises this dissertation by presenting the overall conclusion. It also
presents the significance of my work and its implications for future directions of
research.





Chapter 2

A Review of Software Defect Prediction

Software defects impact industries and people who rely on software. A good example of
this is the shut down of London airspace on a Friday afternoon in the run up to Christmas
2014. This shut down, which affected some 240,000 passengers, was caused by a latent
defect that had been in the code since the system was deployed in 1994. Defects can have
various impacts on industries and people. Reputation damage, huge costs to companies, and
life threatening risks are examples of this impact. The field of software defect prediction
develops techniques to prevent defects before they manifest. In this chapter I summarise
the aims of software defect prediction and how they are achieved. In particular, I detail the
components needed to conduct a defect prediction study. Within this chapter I also provide
definitions of the terms used.

2.1 Definition of a Defect

In this dissertation the term ‘defect’ will correspond to a static code anomaly in software as
defined in the IEEE standard classification for software anomalies [IEEE Std 2009]. A defect
may or may not manifest itself during the program execution. When a defect manifests itself
during the program execution, it becomes a fault which then causes a failure. A defect that is
discovered by inspection or static code analysis and removed from the system is not a fault.
Figure 2.1 depicts a complete relationship of the terms as defined by [IEEE Std 2009]. In this
dissertation, I will use the terms ‘bug’ and ‘fault’ interchangeably to denote a defect, which
is in accordance with the literature where the term defect is described using any of the terms
above.

There are different types of defects. Some defects appear due to configuration problems
[Arshad et al. 2013, Xia et al. 2013], structural problems in code [Petrić and Grbac 2014],
installability, requirements and usability Hernandez-Gonzalez et al. [2018], and so forth. In
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Fig. 2.1 The IEEE classification of software anomalies [IEEE Std 2009]

this dissertation I am interested in defects found exclusively in the source code, which is
common in software defect prediction. Most studies rely on datasets containing known code
defects. The majority of datasets I use in this dissertation are Java based projects with several
C and C++ systems. Defects appearing outside of the source code are out of the scope of this
work.

2.2 The Aim of Software Defect Prediction

Software engineering researchers develop techniques which assist practitioners to find defects
early. One such approach is software testing, which checks the correctness of software
functionalities. Software testing is widely used in software companies. However, testing is
typically limited by predefined goals to limit resource expenditure [Yusifoglu et al. 2015].
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Fig. 2.2 The standard defect prediction framework

For example, one goal in testing could be reaching a fixed threshold for coverage. Where
resources are scarce, testing has limited use for uncovering defects. Software defect prediction
serves as an alternative and addition to testing which makes forecasts about units of code
likely to contain defects.

Software defect prediction relies on prediction models which are typically based on
machine learners. Machine learners learn from existing defect data to make informed
decisions about yet unseen data. Decisions are either continuous or categorical. The former
predicts the number of defects in a unit, whereas the later indicates whether a unit is defective
or not. Historical defect data is usually collected on previous versions and contains various
measurements of the software. Most frequently used measurements in software defect
prediction are static code metrics. They hold basic characteristics of software code such as;
lines of code, complexity, the number of operators and operands, and so forth [Hall et al.
2012, Malhotra 2015]. Defect data is typically cheap to collect using automated tools. The
historical data is used to build prediction models. Once models are built, they can be used by
practitioners at a fraction of the cost of testing to take further actions about units predicted as
likely to be defective.
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Prediction models are bound to make errors if they have not been trained on data which
represents the whole model. Models’ performance determines how useful they are at pre-
dicting defects. Software defect prediction models rarely achieve performances beyond 80%
recall [Hall et al. 2012]. The imbalanced nature of datasets [Mahmood et al. 2015], nonde-
script metrics, and inappropriate modelling techniques limit the performance of software
defect prediction models. Inaccurate models are likely to incur wasted effort by inspecting
non-defective units, which is conceivably one of the reasons why those models are not widely
used by the industry. However, where the reliability of software is crucial, software defect
prediction models can be valuable.

Figure 2.2 depicts the stages in software defect prediction modelling. Software defect
prediction models are usually constructed by using historical software data, which is split
into training and testing sets allowing the model to be validated. The training set, made of
independent and dependent variables, is then fed into some mathematical model, usually a
machine learner, which aims to find relevant patterns in the data. The model can then be used
to predict the defectiveness of new unseen data. Prudent improvements to any stage of the
framework can potentially reduce the errors of software defect prediction models and make
them useful for a wider software industry.

2.3 Independent and Dependent Variables in Software De-
fect Prediction

Software defect prediction requires two sets of variables – the independent and dependent
variables. The former measures different aspects of software code (such as lines of code),
whilst the latter (either the number of defects or the binary defective/not–defective label)
are to be predicted. There is an assumption that the dependent variable(s) are somehow
associated with the independent variables. In other words there is a link between a dependant
and an independent variable such that the dependent variable may respond to a change of the
independent variable. In the remaining of this section I describe commonly used independent
and dependent variables in software defect prediction.

2.3.1 Independent Variables in Software Defect Prediction

An independent variable typically measures a certain phenomenon which is then used for
determining what effect it has on a dependent variable. In software defect prediction we
use terms metrics, attributes, and features to denote the independent variables. In this
dissertation I use the words metrics, attributes, and features interchangeably as these terms
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are typically used in the literature to denote the same concept. There are two major types
of the independent variables in software defect prediction: source code metrics and process
metrics. Source code metrics directly measure source code itself (an example is lines of
code). Process metrics measure some aspect of the environment in which the software is
being produced. An example of the process metric is the number of changes made to a
particular unit in the system. Other types of metrics have also been used in software defect
prediction, such as source code text, socio-technical network [Hall et al. 2012], and developer
oriented metrics [Di Nucci et al. 2018, Posnett et al. 2013].

Lines of code counts (LOC) are commonly used in software defect prediction to account
for software size. The LOC counts can be broken down into executable, comment, and blank
lines of code. The usefulness of LOC counts have extensively been debated in the literature.
Zhang [2009] discovered that the number of defects can be predicted with reasonable
precision and recall using only lines of code as the input. He et al. [2015] demonstrated
that LOC in combination with the coupling between objects and lack of cohesion metrics
can achieve satisfactory results independent from the model used. Contrary, Fenton and
Neil [1999b] demonstrated that alternative explanations between the size and defect density
relationship can be given. They concluded that the LOC counts are not sufficient to create
appropriate software defect prediction models. The LOC counts remain extensively used in
software defect prediction, often accompanied by other metrics [Zhang et al. 2017].

Cyclomatic complexity (CC) and Halstead metrics are a popular set of product metrics
based on software size. CC measures the complexity of a program by calculating how
many independent paths exist in the program [McCabe 1976]. The number of independent
paths of a program is particularly useful for establishing coverage in software testing, as
coverage is calculated based on the independent paths exercised. Despite its usefulness in
software testing, CC has been criticised as a possible proxy for LOC metrics [Shepperd
1988]. Therefore, Shepperd [1988] and Fenton and Bieman [2014] argue that CC should
be interpreted with caution in the context of software defect prediction. Halstead metrics
are a set of metrics derived from the unique number of operators/operands and their total
numbers. They were introduced by Halstead [1977] with the aim to measure code complexity
and developer effort. For example, Halstead Vocabulary is merely the sum of the unique
operators and operands, whilst Halstead Bugs is equal to Halstead Vocabulary divided by
3000. Halstead metrics, which particularly rely on constants (e.g. Halstead Bugs), have been
a subject of considerable criticism due to constants that cannot be entirely justified [Fenton
and Bieman 2014].

With an increased popularity of object-oriented languages (OO), Chidamber and Kemerer
[1994] proposed the most commonly used set of OO specific metrics [Malhotra 2015].
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Initially, the Chidamber and Kemerer [1994] set had consisted of six OO metrics, which
was later extended with several additional metrics. Amongst commonly used OO metrics
are WMC (weighted method per class), CBO (coupling between objects), DIT (depth of
inheritance), LCOM1 (lack of cohesion of methods), and so forth [Okutan and Yildiz 2014,
Yan et al. 2017].

Another large group of metrics used in software defect prediction are process metrics.
Moser et al. [2008] established that the number of previous defects is a good indicator of
future bugs. Similarly, D’Ambros et al. [2009] demonstrated that previous defect reports
are the best predictors. However, in their systematic literature review, Hall et al. [2012]
showed that process metrics are no better than the LOC counts. Stanić and Afzal [2017]
confirmed that process are as good as static code metrics, however particular process metrics
such as number of distinct committers and number of defects in the previous version are
more discriminative than other process metrics. The combination of static code and process
metric sets, on the other hand, tends to improve prediction performances [Stanić and Afzal
2017].

Although the product and process metrics have mostly been used in defect prediction,
much effort has been put to engineering new metrics for defect prediction. Zimmermann and
Nagappan [2008] used graph theory, showing that software modules with a greater degree of
centrality tend to be more defective. Similarly, Petrić and Grbac [2014] used graph theory
to show that some graph structures are more related to defects than others. Shippey [2015]
presented a new metric based on the Java abstract syntax tree and demonstrated usefulness in
predicting specific subsets of defects. Bowes et al. [2016] demonstrated that the combination
of static code and test related metrics work well for predicting defect-proneness. More
recently, Kirbas et al. [2017] showed how evolutionary coupling, which is defined as an
implicit relationship between two or more software artefacts that are frequently changed
together, is positively correlated with defectiveness.

Overall, there is no single independent variable which is always associated with the top
performing software defect prediction models. Malhotra [2015]’s systematic review suggests
some OO metrics to be particularly useful for software defect prediction, such as coupling
between objects and response for a class. Contrary, the number of children and depth of
inheritance metrics have not shown to be useful for software defect prediction. It is likely
that a combination of different types of independent variable will yield better predictors
compared to a single group of metrics [Hall et al. 2012].
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2.3.2 Dependent Variables in Software Defect Prediction

Software defect prediction can be divided into two groups given the dependent variable. One
group of software defect prediction studies is concerned with whether a module is defective
or not (binary approach), whilst the other focuses on the number of defects per module. The
two groups differ in their approaches towards prediction, as the former uses classification,
whilst the latter uses regression techniques.

According to Wahono [2015], classification is more prominent than regression within
software defect prediction. In classification, the dependent variable is the status of a module
– defective or non-defective. The defectiveness status has historically been extracted in
two different ways. The first way is to use one of the algorithms for extracting defects
(more details in Section 2.4.2). Where a module is found to be defective in the past, it is
assigned a defective label, otherwise a non-defective label. The second way is based on the
transformation from the number of defects to the binary values. The number of defects is
typically established by counting how many distinctive bugs appeared in a particular unit. To
make the transformation from the continuous to binary form, the formula by Menzies et al.
[2007b] has predominantly been used:

de f ective? = (error_count ≥ 1).

“Although such a binary labelling toward module defectiveness is clearly a simplification
of the real world, it is hoped that such a classification system could be an effective aid
at determining which modules require further attention during testing” [Gray et al. 2010].
By binarising the dependent variable, defect quantity is permanently lost and there is no
distinction between modules containing substantially different numbers of defects. Another
problem is the loss of severity of the problem, as modules with more defects are more likely
to contain a critical defect [Gray et al. 2012].

Learning to rank approaches, which are regression-based, are an alternative to the classi-
fication system. In a learning to rank approach, the information about the number of defects
is kept. Software units are sorted from the ones which require immediate attention towards
the units which are less likely to be problematic [Yang et al. 2015, Yu et al. 2017]. Using a
ranking approach allows developers to focus their efforts to the most problematic units first.
However, despite the shortcomings of the binarisation process, the classification approach
remains the most commonly used in software defect prediction.
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2.4 Data and Quality

Until the early 2000s datasets in software defect prediction were largely not available to the
wider community. Companies would generally report their results without providing the
datasets on which the models were built [Kamei and Shihab 2016]. The scarcity in data
availability posed two problems for software defect prediction. First, researchers had a very
limited pool of data to choose from, making the comparison of various modelling techniques
harder. Second, replications and reproducibility of studies, which are an essential part of
every scientific discipline, become challenging when only parts of study details are disclosed
[Mahmood et al. 2018].

In the rest of this section I report on the most commonly used software defect prediction
datasets and describe how defect data is collected. I then briefly talk about some of the
problems with defect data, and the techniques used for improving the quality of defect data.

2.4.1 Software Defect Prediction Datasets

The NASA Metrics Data Program (MDP) was amongst the first to publicly share 14 datasets
for software defect prediction1 [Menzies et al. 2015]. Since their release, the datasets have
remained a popular choice amongst researchers. According to Hall et al. [2012], the NASA
MDP datasets have been used in 62 out of 208 software defect prediction studies from 2000
to 2010. Subsequent to the NASA MDP program, other researchers have shared defect data
publicly [D’Ambros et al. 2010, Jureczko and Madeyski 2010, Zimmermann et al. 2007a].
Most of those datasets are today available at the tera-PROMISE website2, and the Eclipse
website3.

2.4.2 Data Collection and Algorithms

One way to identify defective code is by analysing the code’s version control system (VCS)
and the projects bug tracking system (e.g. BugZilla). A VCS records any changes done to
files, by keeping information about added, removed, or modified lines in each commit. A
commit is a point in time when a developer decides to submit their changes. At that point
the changes to files are recorded, submitted to a VCS, and given a unique identifier. At the
point of submitting a commit to a VCS, the commit can be given a comment. Git, SVN, and
Mercurial are examples of well-known version control systems [Lanubile et al. 2010].

1Initially, the datasets were shared at http://mdp.ivv.nasa.gov. Eventually the datasets have been transferred
to http://openscience.us/repo/.

2http://openscience.us/repo/defect/
3http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
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A bug tracking system is a repository of defect reports which are reported about the
system. When a defect is discovered, a developer typically opens a defect report which
keeps the relevant information about the defect. Ideally, the defect then gets fixed by some
developer and committed to a VCS. At that point, a good practice is to give a descriptive
comment about the commit by providing a link to the relevant defect report. When the link
between a defect report in a bug tracking system, and a commit in a VCS is established, it is
possible to obtain defect data [Mauša et al. 2014, Shippey 2015].

Most of the publicly available datasets4 are collected by using either the SZZ or BugInfo
algorithm. Both algorithms rely on the link between a VCS and a bug tracking system. The
SZZ algorithm matches the fix described in the bug tracking system with the corresponding
commit in the version control system that removed the defect. By backtracking through
the version control records, it is possible to identify earlier code changes which ended up
being fixed. It is assumed that the code changes which had appeared prior to the fault report
introduced a defect. The module of code is therefore labelled as defective between the time
the fault was inserted and the time it was fixed. Using this technique it is possible to identify,
for a particular snapshot of the code, which methods were faulty and which were not. The
SZZ algorithm was described by Śliwerski et al. [2005], and it is based on the early work
of Čubranić and Murphy [2003] and Fischer et al. [2003] who used links between a bug
tracking system and a VCS. BugInfo is a simplified version of the SZZ algorithm introduced
by Jureczko and Spinellis [2010]. BugInfo first identifies links between a bug tracking system
and commits in a VCS. It then labels all files in a commit which are linked to a defect report
as defective.

The current approaches in extracting defect data have some shortcomings. Both, SZZ
and BugInfo depend on a reliable linkage between a VCS and bug tracking system. Where a
practice of assigning unique defect report identifiers to commit messages is not followed, both
approaches are incapable of inferring the link. Mauša et al. [2014] report on the effectiveness
of bug linking techniques. They establish that traditional approaches can work well in
certain environments, however particular parts of the algorithm might need adjustments for
each project (for example, adjusting a regular expression for matching commits and defect
reports).

Tracking back changes to a defect insertion point is another challenge for obtaining defect
data. Text- and dependence-based are two common approaches for determining the origins of
defects [Davies et al. 2014]. The text approach uses only changes in text code and returns all
relevant files, whilst the dependence approach examines changes between control and data
returning the first relevant file. Davies et al. [2014] manually analysed over 170 bugs and

4Available in the tera-PROMISE and Eclipse repositories
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showed that both approaches were partially successful in retrieving correct defect insertion
points (29-79% precision, 40-70% recall). Despite these limitations, most commonly used
algorithms for extracting defects, SZZ and BugInfo, use the text-based approach.

2.4.3 Defect Data Issues

Many studies have used openly available datasets for software defect prediction. Boucher
and Badri [2018], Di Nucci et al. [2017], Li et al. [2017], and Gao et al. [2015] are a small
subset of recent studies that use datasets from public repositories. According to Wahono
[2015], about 65% of the studies in software defect prediction are based on public datasets.

However, public datasets impose a risk to the community. As many researchers rely on
the same datasets, any errors in the data could endanger the validity of the whole body of
studies. The work of Ghotra et al. [2015] demonstrated how the quality of data can affect the
conclusions researchers make in software defect prediction studies. The authors replicated
an earlier work of Lessmann et al. [2008a] who had used erroneous NASA datasets in their
study. After these datasets were cleaned by Shepperd et al. [2013], Ghotra et al. [2015]
compared whether there were any differences in results. They concluded that four statistically
distinct ranks of classification techniques emerged as opposed to the two distinct groups that
emerged from the earlier study by Lessmann et al. [2008a].

Any issues with the publicly shared data should be eradicated early. The availability of
such data makes it possible to partially verify their correctness and quality. For example,
Kaminsky and Boetticher [2004] reported repeated tuples, whilst Boetticher [2006] reported
tuples that share the same attribute values but distinctive labels within the NASA MDP
datasets. Gray et al. [2011] carried out the first systematic cleaning of the NASA MDP
datasets. Shepperd et al. [2013] extended their work by providing a comprehensive list of
integrity checks to clean the NASA datasets. Subsequently, Petrić et al. [2016] expanded
the Shepperd et al. [2013]’s list by providing two additional integrity checks. The problems
reported about the NASA MDP datasets alone have demonstrated how difficult is to collect
high-quality data. A detailed description of the issues of defect datasets and their remedy is
described in Section 4.2.

2.4.4 Data Cleansing Techniques

The issues with public defect datasets yielded an extensive set of cleansing techniques.
Kaminsky and Boetticher [2004] reported on the repeated data instances in the NASA
MDP datasets. Bezerra et al. [2007] additionally cleaned inconsistent data instances, where
two modules share equal values of the independent, but opposite values for the dependent
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variables. Despite the possibility of repeated and inconsistent instances occurring, it poses a
problem in the context of machine learning. As Witten and Frank [2002] describe, the data
points on which learners train need to be distinct from the data points on which the models
are validated (observe the separation of train and test data in Figure 2.2). Therefore, repeated
data points should be removed.

Other issues specific to the machine learning context occur in public defect datasets.
Constant and repeated attributes and missing values are amongst those reported by Gray
et al. [2012]. Gray et al. [2012] developed a series of steps to systematically clean the NASA
datasets. Their technique is not necessarily limited to the NASA data. They describe five
stages through which the quality of data can be improved. The first two stages remove
constant and repeated attributes. These two stages do not add benefits to software defect
prediction in the machine learning context. The following stage replaces missing values. The
fourth stage removes data points which do not follow domain specific rules. The final stage
removes repeated and inconsistent data points. The order of these stages is essential, as any
change in ordering could lead to a different final dataset.

Violations of the domain-specific rules have repeatedly been reported in public datasets
Gray et al. [2012], Shepperd et al. [2013]. Shepperd et al. [2013] reported twenty integrity
checks to mitigate the issues of low-quality datasets. Effects of individual violation rules
are different amongst public datasets. Chapter 4 describes the effect of data cleansing when
applied to the NASA datasets.

2.5 Software Defect Prediction Frameworks

Menzies et al. [2007b], Lessmann et al. [2008a], and Song et al. [2011] are the three most
influential software defect prediction frameworks according to Wahono [2015]. Menzies
et al. [2007b] selected OneR, C4.5 decision tree, and Naïve Bayes classifiers and tested their
performance on ten NASA MDP datasets. Their framework is based on the 10×10 cross
validation, where a dataset is divided into ten folds. At any one time, nine folds are used for
training and one fold for testing. Cross validation is typically repeated ten times to minimise
order effects which can affect classifiers’ performance [Fisher et al. 1992]. Menzies et al.
[2007b] used InfoGain, a feature selection method to select the most relevant features. The
performance of the models was established using two measures, the probability of detection
(pd) and the probability of false alarm (pf ).

Lessmann et al. [2008a] was a follow-up to Menzies et al. [2007b]. They proposed
additional results by investigating more classifiers and suggested certain improvements for
Menzies et al. [2007b]’s methodological framework. A major improvement to the framework
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was using the Area-Under-Curve measure (AUC) for assessing classifiers’ prediction per-
formance. This improvement was necessary as Zhang and Zhang [2007] had demonstrated
that pd and pf are not suitable performance measures for highly imbalanced datasets (see
Section 3.1.1 for data imbalance and Section 3.4.3 for measuring performance in software
defect prediction). Imbalanced datasets are common to software defect prediction where the
non-defective class is typically over-represented compared to the defective class. Lessmann
et al. [2008a]’s experimental design also used a different partitioning of the data with respect
to Menzies et al. [2007b], where 2/3 was used for training and 1/3 for testing each classifier.
They argued that the split-sample set-up enables easy replication and offers an unbiased
estimate of a classifier’s generalisation performance.

The current state-of-the-art framework was suggested by Song et al. [2011]. Their
framework offers an improved approach to feature selection with respect to Menzies et al.
[2007b]. Menzies et al. [2007b] ranked features on the entire dataset, violating the intention
of the holdout strategy (i.e. separating testing data points during the training). As the
potential result “they overestimate the performance of their learning model and thereby
report a potentially misleading result” [Song et al. 2011]. In addition, Menzies et al. [2007b]
evaluated each feature separately and selected features with the highest scores. Such strategy
“cannot consider features with complementary information and does not account for attribute
dependence” Song et al. [2011]. On the other hand, Lessmann et al. [2008a] omitted
feature selection. Song et al. [2011] considered these shortcomings and provided their own
framework which has wider application. Song et al. [2011]’s framework is depicted in
Figure 2.2. This framework is the basis of the software defect prediction models used in this
dissertation.

2.6 Summary of Software Defect Prediction

A defect is an unwanted anomaly in a working product which can cause a program to fail.
The field of software defect prediction builds prediction models whose aim is to find locations
in code where defects are likely to reside. The earlier a defect is identified and fixed the
lower the cost of its effect is [Karg et al. 2011]. Software defect prediction models use two
key elements to make predictions: independent and dependent variables. The independent
variables or metrics describe software or the process used in developing software. Those
metrics typically characterise individual software units. Metrics about each unit are typically
obtained using automated tools. Each unit is further characterised with a dependent variable.
The dependent variable is either the number of defects that occurs in a unit or a binary label
indicating whether a unit is defective or not. Defects are obtained from bug tracking and
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version control systems by using algorithms such as SZZ and BugInfo. Defect datasets are
constructed by combining the independent and dependent variables. The quality of defect
datasets has been a subject of much concern. The usefulness of models depends on the quality
of the data with which is provided. Several frameworks have been proposed to standardise
the construction of software defect prediction models.





Chapter 3

Predictive Modelling for Software Defect
Prediction

Predictive modelling in software defect prediction is predominantly accomplished using
machine learning techniques. The field of machine learning involves algorithms that use
a set of mathematical rules which enable computers to build models. In software defect
prediction, machine learners are used to find predictable patterns in software’s historical
data which can be used to locate potentially defective code units. Machine learning is in
general divided into supervised and unsupervised (semi-supervised learning is a combination
of both). Depending on the dependent variable, machine learning can further be divided on
classification and regression. The most common type of machine learning in software defect
prediction is supervised classification [Malhotra 2015].

In this Chapter, I primarily focus on supervised classification machine learning algorithms.
Supervised machine learners in classification are typically called classifiers, the terminology
I use throughout this dissertation. In this Chapter I describe the following: first, I detail the
most common issues regarding the use of machine learning in software defect prediction.
With respect to the underlying algorithm of a classifier, each belongs to a particular category.
I, therefore, explain four basic groups of classifiers (families of classifiers). These classifiers
are used in this work. I then describe various types of ensembles of machine learners which
are also part of this work. Finally, I explain how models are evaluated in software defect
prediction.
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3.1 An Introduction to Machine Learning

Machine learning is a method that automates the process of learning and identifying patterns
in data to make informed decisions. Almost any non-random data contains underlying
patterns [Segaran 2007]. The two most popular areas of machine learning are supervised
and unsupervised learning. Supervised learning requires both independent and dependent
variables to be known during the learning stage. The independent variables describe a data
instance, usually in terms of metrics. The dependent variables are typically nominal or
continuous variables we try to predict. Once a machine learner is trained on a sufficient
dataset, the resultant model can be used to predict the dependent variable from yet unseen
data. Unsupervised learning, on the other hand, contains only independent variables (metrics)
during the learning stage. Various clustering algorithm can then use data instances described
by the independent variables to demonstrate any patterns in the data. Software defect
prediction studies are predominately supervised learning [Wahono 2015].

Supervised learning can further be broken down to classification and regression methods.
In classification methods the dependent variable is required to be categorical (also called
nominal). Categorical variables contain two or more categories. In software defect prediction
these categories are typically a binary label indicating whether a unit is defective or non-
defective. Contrary, in regression modelling the dependent variables are discrete values.
In a regression set-up the dependent variable is typically the number of defects per unit.
According to Wahono [2015], more than 70% of software defect prediction studies are
classification methods.

Machine learners are used to build prediction models. Once a learner learns from
sufficient examples in the data, a prediction model can be built (or predictor). This predictor
can then be deployed in the classification set-up and used to label an unseen instance for
which the label is not known as defective or non-defective. Similarly, in the regression set-up,
a predictor can be used to estimate the number of defects for an unseen instance.

Three factors of machine learning have been widely explored in software defect predic-
tion studies: data imbalance, feature selection, and model optimisation. Defect datasets are
typically imbalanced. Most instances belong to non-defective units. The under-representation
of defective instances introduces a problem to machine learners which tend to optimise for
recall [Chawla et al. 2004] (i.e. predicting more true positives for the price of introducing
more false positives). Feature selection is another factor influencing software defect predic-
tion models. Correlated features (the independent variables described in Section 2.3.1) are
known to negatively affect the performance of a model [Hall 1999] and result in one variable
being over-represented [Gray et al. 2012]. Finally, the ability of some learners to perform
well depend on their parameters. A good example is the support vector machine family of
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classifiers which need substantial tuning of the parameters to perform well [Sarro et al. 2012].
Techniques which deal with these three factors are discussed next.

3.1.1 Data Imbalance

Data imbalance occurs when one class is under-represented compared to other classes in
classification learning [He and Garcia 2009]. For example, in software defect prediction it
is common that most of data instances belong to the non-defective class. This problem can
hamper the performance of machine learners as many learners tend to maximise the predictive
accuracy by ignoring the minority class [Chawla et al. 2004]. The data imbalance problem
can be mitigated in three ways [Gray 2013]. First, a performance metric measuring classifiers’
success rate can be replaced with another metric. The second approach is to modify classifier
parameters by, for example, increasing the cost of a minority class misclassification. The
third option is to re-sample the training data by adding or removing instances to obtain a
more balanced distribution. Often, the combination of multiple approaches is used.

Data can be re-sampled in several ways. Over-sampling is a technique where data
balance is obtained by adding minority class instances. New class instances are often
added by duplicating the existing minority instances, or by synthesising similar instances
to the existing ones (the synthesising technique called SMOTE is introduced by Chawla
et al. [2002]). Under-sampling changes data balance by removing instances belonging
to the majority class. A simple under-sampling technique will randomly drop instances
of the majority class until the balance is obtained. Clustering methods, where similar
instances belonging to the majority class are removed, have also been proposed [Yen and
Lee 2009]. Another typical approach to deal with class imbalance is to use an ensemble of
learners. Ensembles have been repeatedly reported to successfully deal with class imbalance
[Rodríguez et al. 2012, Wang and Yao 2013].

Mahmood et al. [2015] demonstrated that training on defect datasets with balance under
20% results in weak software defect prediction models. They used the MCC performance
measure to evaluate the models. Bennin et al. [2017] reported significant improvements of
software defect prediction models with large effect sizes by applying re-sampling techniques
on highly imbalanced defect datasets. Interestingly, Bennin et al. [2017] noticed the im-
provements only when the models are evaluated using performance measures based on the
confusion matrix (i.e. re-sampling had no effect on AUC). Pelayo and Dick [2012] performed
re-sampling of both classes to obtain data balance and demonstrated a 23% improvement in
the average geometric mean accuracy across four datasets. Rodriguez et al. [2014] compared
four re-sampling techniques grouped into sampling, cost-sensitive, ensembles, and hybrid
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approaches to find that re-sampling can significantly improve the correct classification of the
minority class if data is preprocessed.

3.1.2 Feature Selection

The objective of feature selection is to remove irrelevant and/or redundant features and retain
only relevant features [Maimon and Rokach 2010]. There are two fundamentally different
approaches when selecting relevant features, namely filter and wrapper. The former assesses
the amount of information each attribute carries towards predicting the dependent variable.
The latter evaluates various subsets of features using machine learning before deciding which
features are most valuable [Witten and Frank 2002]. Redundant features can be removed by
establishing the correlation between features.

Both approaches described by Witten and Frank [2002] have appeared in the software
defect prediction literature. According to Malhotra [2015] the correlation based feature
selection (CFS) was used the most. The CFS is a filter based technique which retains features
highly correlated with the dependent variable and removes all others. Menzies et al. [2007b]
demonstrated that typically two or three features are sufficient to build competitive prediction
models. The authors used the Information Gain (InfoGain) filter technique. InfoGain works
on a principle of Shanon’s entropy, where the features with most information with respect to
the dependent variable are preserved [Mitchell et al. 1997]. Wrappers have also successfully
been applied in software defect prediction [Bowes et al. 2016, Cahill et al. 2013, Rodríguez
et al. 2012]. The systematic literature review by Hall et al. [2012] reported that “the use
of feature selection on sets of independent variables seems to improve the performance of
models”.

In software defect prediction features are typically correlated. Highly correlated, and
especially repeated features, can result in a single feature being over-represented [Gray
et al. 2011]. Hall [1999] and Howley et al. [2006] demonstrated that highly correlated
features can harm classification performances of many different classifiers. Although not
useful for training learners, correlated features are beneficial for validating data integrity.
Some feature selection techniques are better than others for software defect prediction.
Xu et al. [2016] empirically compared 32 feature selection techniques in software defect
prediction and found that filter and wrapper techniques work best. Filter-based techniques
select features regardless of the model typically using correlation between independent
and dependent variables. Wrapper-based, on the other hand, select best features for each
particular model. A similar study comparing 30 feature selection techniques by Ghotra et al.
[2017] established that filter-based approach outperforms other techniques across different
projects and classification techniques. Ghotra et al. [2017] validated results on 21 commonly
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used machine learning techniques in software defect prediction, compared to Xu et al. [2016]
who used Random Forest alone.

3.1.3 Model Optimisation

Tuning involves searching for the parameters that produce the most accurate classifier.
The search is typically performed in a systematic manner. A grid search, for example,
systematically selects best parameters by performing an exhaustive search [Hsu et al. 2003].
Hill climb uses heuristics to find most appropriate parameters [Jacobson and Yücesan 2004].
The search is performed on the training data, which is split into folds. In each iteration of
the search, one fold is used in turn as a validation fold, with the remaining folds being used
for training a classifier with a set of parameters. The parameters that achieve the highest
performance are used to train the classifier on the entire training set.

Some classifiers require tuning to perform well. For example, the SVM classifier is
known to perform poorly if not tuned [Soares et al. 2004]. Koru and Liu [2005], Mende and
Koschke [2009] and Mende [2010] reported that parameter tuning affects the performance of
software defect prediction models. Even though Jiang et al. [2008b] and Tosun and Bener
[2009] have shown that the default parameters of the frequently used machine learning tools
(e.g. Weka, R, Scikit-learn) are suboptimal, the default parameters remain a favourite choice
of many software defect prediction studies. For example, Mende et al. [2009] used the
default number of trees in a random forest classifier, Weyuker et al. [2008] used the default
parameters for C4.5, and Jiang et al. [2008a] and Bibi et al. [2006] left the default number
of nearest neighbours in k-NN. Sarro et al. [2012] used a genetic algorithm (GA) to select
the optimal parameters for SVMs. They argue that commonly used grid-search is coarse
grained compared to GA and may miss best parameters. Their technique improved recall and
F-measure (see Table 3.2) compared to grid-search, and performed better than random-search
on all datasets. According to Mahmood et al. [2018] the number of studies performing tuning
is low. One out of 13 studies performed parameter tuning. When these 13 studies were
replicated, the tuning appeared in two out of 21 studies.

Fu et al. [2016] suggest that tuning is relatively simple to perform and often surprisingly
fast. Their results show that tens of attempts to tune the parameters of a model can drastically
improve its prediction performances. In certain cases, they show, the models’ precision went
from 0% to 60%. Similarly, Tantithamthavorn et al. [2016] demonstrate that parameter tuning
can increase “the likelihood of producing a top-performing classifier by as much as 83%”.
However, parameter tuning could potentially increase the risk of over-fitting. Over-fitting
occurs when a classifier specialises for one dataset and it cannot generalise to other datasets.
The Tantithamthavorn et al. [2016]’s study which uses 26 classifiers on 18 different datasets
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shows that classifier tuning does not cause greater over-fitting compared to the equivalent
classifiers with their default parameters.

3.2 Basic Machine Learning Techniques

Basic learning classifiers can be divided into several categories. In this section I will
particularly discuss four types used in my experiments:

• instance-based classifiers

• tree-based classifiers

• Bayesian classifiers

• linear separation classifiers

3.2.1 Instance-based Classifiers

Instance-based classifiers belong to a lazy learning technique where for each individual
prediction the whole training dataset needs to be re-considered [Witten and Frank 2005]. The
benefit of this lazy approach is that data instances can be added or removed dynamically. The
down side occurs for large datasets where recalculations for predicting new instances can
be expensive. Predictions are typically determined by calculating the distance of neighbour
instances [Martin 1995]. The assumption is that instances nearby each other will share the
same class. The distance between instances are established using a distance function. The
choice of a distance function depends on the type of attributes. Amongst others, the Euclidean
distance can be used for numeric attributes and the Hamming distance for categorical
attributes as a distance function.

A commonly used instance-based classifier in software defect prediction is k-nearest
neighbour [Ghotra et al. 2015, Tantithamthavorn et al. 2016]. K-nearest neighbour determines
the class by taking the rounded average class of the nearest instances. The most significant
parameter is the number of nearby instances to consider (k). For k = 1 the classifier will
clone the same class of its nearest neighbour. For k = 3 the classifier will take the average
class of its three nearest neighbours. The k parameter is typically an odd number for a binary
classification, as an even k can potentially cause an undetermined class.
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3.2.2 Tree-based Classifiers

Tree-based or decision tree classifiers use a decision tree as a model to make predictions.
The tree structure contains leaves representing class labels, and branches representing paths
of attributes that lead to those class labels. A tree model is created once at the training stage
and then used to predict new, yet unseen, instances. A top-down approach is typically used to
construct a tree. Witten and Frank [2005] describes this as the divide-and-conquer approach.
The crucial part of the algorithm is to chose suitable nodes. Each node is selected based on its
ability to best split data into homogeneous subsets with the same class. For this purpose many
methods can be used, however the most commonly used are information entropy [Quinlan
1993] and Gini index [Ceriani and Verme 2012].

Different implementation of tree-based classifiers exist. C4.5 is a commonly used tree-
based classifier in software defect prediction, which is an extension to an earlier ID3 algorithm
[Quinlan 1986]. C4.5 uses information entropy to construct a tree. To best split data into
homogeneous subsets, C4.5 uses information gain, which is the difference in entropy. The
attribute with the highest information gain is then chosen as a node. J48 is a popular variant of
C4.5 available in the Weka tool [Witten and Frank 2002]. Recursive PARTitioning (RPart) is
another tree-based classifier which is similar to Classification and Regression Trees (CART)
[Therneau et al. 1997]. The RPart programs build classification or regression models of a
very general structure where the resulting models can be represented as binary trees. The
decision tree is built by finding the variable which best splits the data into two groups. The
same process is then applied to each of the groups. The algorithm recursively continues to
split the data into groups until no improvement can be made.

Decision trees perform comparatively to other classification techniques in defect pre-
diction [Malhotra 2015]. However, particular implementations of decision trees need to
be optimised to work well. For example, Tantithamthavorn et al. [2016] showed that the
C5.0 implementation of decision trees can gain 27 percentage points improvement if the
parameters are optimised. Decision trees are used to construct Random Forest, an ensemble
classifier known to perform well in software defect prediction [Laradji et al. 2015].

3.2.3 Bayesian Classifiers

A Bayesian classifier is a linear classification technique which works on the principle of
applying Bayes’ theorem. Bayes’ theorem describes the probability of an event occurring
given that conditional events happen. Equation 3.1 depicts Bayes’ theorem.

Prob(A|B) = Prob(A)×Prob(B|A)
Prob(B)

(3.1)
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Naïve Bayes classifiers are a family of simple Bayesian classifiers with a strong but false
assumption of the independence between attributes. Even though attributes are seldom fully
independent, Naïve Bayes classifiers often perform comparable to other more sophisticated
classifiers [Huang et al. 2003]. A model is created by calculating conditional probabilities
based on the attribute values. Numeric attributes are typically converted to nominal values
by splitting them into bins. This process is called discretisation [Yang and Webb 2009].

A Naïve Bayes classifier uses training data to determine how much is each attribute
associated to different classes. The benefit of this approach is that probabilities of a model
are explicitly available which simplifies the model’s understanding. Similar to decision-tree
techniques, in Naïve Bayes, it is enough to train once and use it to predict any number of
instances for which a class is unknown.

Despite its simplicity, Naïve Bayes performs well across different datasets in software
defect prediction [Hall et al. 2012]. A recent systematic literature review by Malhotra
[2015] showed that Naïve Bayes performs competitively compared to other commonly used
software defect prediction models. Naïve Bayes has been extensively studied in software
defect prediction [Wahono 2015].

3.2.4 Linear Separation Classifiers

Linear separation classifiers work by finding a linear equation that effectively separates
classes. There are typically an infinite number of solutions to find an effective separator.
Two separators are commonly used in the literature: soft- [Cortes and Vapnik 1995] and
hard-margin [Boser et al. 1992]. Soft-margin separators are established by finding a linear
separator which ensures the highest prediction performance on training data. A hard-margin
separator positions a linear separator to ensure a large distance between classes despite the
possibility that this could hinder the performance. The benefit of using a hard-margin over
soft-margin separator is in generalisability. As soft-margin separators are perfectly adjusted
to training data, their generalisability may be limited.

Support Vector Machines (SVM) are classifiers which use a linear separator. SVMs build
models by producing a hyper-plane which can separate the training data into two classes. The
items (vectors) which are closest to the hyper-plane are used to modify the model with the
aim of producing a hyper-plane which has the greatest average distance from the supporting
vectors. Sequential Minimal Optimization (SMO) is a commonly used implementation of
SVMs, which solves the quadratic programming problem that arises during the training of
SVMs [Platt 1998].

Support Vector Machines have obtained conflicting results in software defect prediction,
likely due to their need for extensive parameter optimisation. Gray [2013] argues that the
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performance of SVM classifiers is very sensitive to the parameter values which need to be
carefully tuned. When the best parameters are selected, SVM can achieve 70% accuracy on
average [Gray et al. 2009]. On the other hand, Ghotra et al. [2015] showed that SVM perform
less well than some other commonly used techniques such as Naïve Bayes. However, no
details of the model optimisation were given in [Ghotra et al. 2015].

3.3 Ensembles of Machine Learners

An ensemble of machine learners is a collection of classifiers which are combined in a certain
way to make the final prediction. The assumption is that opinions from multiple experts
(classifiers) should reduce the noise in training data and improve the prediction performances.
Occasionally, ensembles appear in the literature under various names such as: mixture of
experts, multiple classifier systems, committee of classifier, etc. There are several sound
reasons which favour the use of ensemble systems [Polikar 2006]:

• statistical reasons: the average decision made by multiple classifiers may reduce the
poor selection of a single classifier with weak generalisability performances

• lots of data: a problem could potentially be broken down and the decision be given to
multiple classifiers

• little data: re-sampling techniques can be used to create sets of data from which
classifier can learn the underlying distribution

• complex boundary decisions: certain complex boundaries cannot be solved by a single
classifier, but potentially can be solved with a combination of them

• combining data from multiple sources: occasionally, data for predicting a single
phenomenon can be gathered from multiple sources which requires ensembles to be
used

Ensembles have repeatedly been shown to produce more favourable performances over
single classifiers [Polikar 2006]. One of the first applications of ensembles for a classification
problem is Dasarathy and Sheela [1979]. They discussed using multiple classifiers for a
partitioned attribute space. Tukey [1977] combined the outputs of two linear regression
models. Ensembles have particularly gained in popularity in the nineties when the well-known
bagging, boosting, and stacking algorithms were introduced. Freund et al. [1996] proposed
an award winning ensemble algorithm called AdaBoost. They showed that AdaBoost can
improve the prediction performance by using classifiers which perform only marginally
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better than random (so-called weak classifiers). The predictions of these classifiers are then
combined using majority-voting. Schapire [1990] had previously laid the foundations of
AdaBoost. Around the same time, Breiman [1996] suggested the bagging ensemble classifier,
where multiple classifiers are trained on slightly different data. Various other ensemble
systems appeared in response to different problems researchers and practitioners were facing:
stacked generalisation [Wolpert 1992], consensus aggregation [Benediktsson and Swain
1992], dynamic classifier selection [Woods et al. 1997], and so forth.

Ensembles have occasionally been investigated in the context of software defect predic-
tion. Random Forest has been repeatedly used with mixed results. Lessmann et al. [2008a]
demonstrated that Random Forest performs well within software defect prediction, whilst
Tantithamthavorn et al. [2016] showed that Random Forest is not always in the range of
the top performing classifiers. Tosun et al. [2008] used Naïve Bayes, neural networks and
Voting Feature Intervals to create an ensemble of classifiers. They demonstrated that the
ensemble performs considerably better than Naïve Bayes. At the time, Naïve Bayes was
considered as an effective classifier for software defect prediction [Menzies et al. 2007b],
and not significantly worse than most of other classifiers [Lessmann et al. 2008a]. Tosun
et al. [2008] conducted a similar study in 2011 confirming that ensembles of classifiers can
improve software defect prediction Mısırlı et al. [2011b]. Huanjing et al. [2010] compared
various ensembles for their ability of selecting attributes for software defect prediction.
Laradji et al. [2015] used ensembles to demonstrate their strengths in selecting attributes and
managing data imbalance to improve software defect prediction.

According to Surowiecki [2004] there are four criteria needed for achieving superior
performances over single individuals:

• opinion diversity – every individual should have private information

• independence – an opinion of an individual is not influenced by others

• decentralisation – individuals should make informed decisions based on their local
knowledge about the problem

• aggregation – the opinions should be somehow aggregated into a joint decision

Although Surowiecki [2004] argued about ensembles of humans in decision making, the
same concepts apply to ensembles of machine learners [Rokach 2009]. The assumption is, as
Surowiecki [2004] argues, that under special circumstances, aggregated decisions can offer
superior results compared to individuals (even if those individuals are experts). Ensembles of
human decisions is the basis of a democracy system.
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There are two key components to consider when constructing ensembles of machine
learners: generating individual components (classifiers) and combining their decisions
[Polikar 2006]. An ensemble’s classifiers should be chosen in such a way to promote
diversity amongst its components. If an ensemble consisted of classifiers making errors on
the same instances, then it could not perform better than an individual classifier. Therefore,
each classifier should ideally make errors on different data points. Combining decisions
of multiple classifiers is another key component. Majority-voting is a popular technique
to combine predictions, where the class being predicted by the majority of classifiers in
an ensemble is being chosen as a final decision. Numerous other combining techniques
exist. Weighted majority-voting favours predictions from some classifiers more than from
others. Behavioural Knowledge Space (BKS) tracks the frequency of how often each class
combination was produced by the classifiers [Huang and Suen 1995]. The class combination
appearing most often during training for a particular class is chosen as a prediction class
when the same combination appears during testing.

In the rest of this section I will explain why diversity and combining decisions are the key
concepts for ensembles. I will then describe two popular ensemble approaches: bagging and
boosting. Finally, I will introduce the stacking ensembles approach used in my experiments.

The cornerstones of ensembles: diversity and combining decisions

Ensemble systems prefer diversity amongst their classifiers. Classifiers are diverse if their
decision boundaries differ. Those different decision boundaries ensure that classifiers make
mistakes on different instances. The assumption is that if each classifier makes different
mistakes, their decisions can be combined in a way that could potentially reduce the total
error [Polikar 2006].

There are at least five ways to achieve diversity that are used by popular ensemble
techniques. Amongst the easiest is data re-sampling, where each data subset is randomly
drawn from the entire training set and then used for training a single classifier. Bagging
and boosting use this approach. Tuning classifiers’ parameters is another common approach
to change decision boundaries of classifiers. Diversity can also be achieved by selecting
classifiers belonging to different classifier families. Finally, by selecting different attributes,
different decision boundaries can be achieved.

Diversity is typically measured using a certain quantity indicator. Pair-wise measures,
which count the differences between each pair of classifiers in the ensemble, are frequently
used [Polikar 2006]. Examples of pair-wise measures are correlation, Q-statistics, and entropy
measure. Kuncheva and Whitaker [2003] report that no diversity measure consistently yields
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ensembles with the greatest performance. They suggest the use of Q-statistics due to its
simplicity and intuitive meaning.

Weighted Accuracy Diversity (WAD) is a novel pair-wise measure introduced by Zeng
et al. [2014]. This method favours most accurate classifiers given a high diversity between
them. WAD’s definition is given in Equation 3.2.

WADα,β (Acc,Div) =
Acc×Div

β ×Acc+α ×Div
(3.2)

Where α +β = 1 and Acc and Div are accuracy and diversity of the ensemble, calculated
according to Equation 3.3 and 3.4, respectively.

Acc =
∑

k
i=1 O(xi)

k
(3.3)

Where k is the number of classifiers in the ensemble, and O(xi) is 1 if the prediction of a
classifier i is correct, 0 otherwise.

Div =
2

m(m−1)

m−1

∑
i=1

m

∑
j=i+1

N10 +N01

N00 +N11 +N00 +N01 (3.4)

Where m represents the number of classifiers in the ensemble, and N the number of disagree-
ments between a pair of classifiers Ci and C j. The disagreements are established based on
the confusion matrix of two classifiers depicted in Table 3.1. I use a variation of the WAD
measure for creating a stacking ensemble classifier described in Chapter 6.

Table 3.1 The confusion matrix of disagreements between a pair of classifiers

C j (correct) C j (incorrect)
Ci (correct) N11 N10

Ci (incorrect) N01 N00

3.3.1 Bagging and Boosting

Each ensemble technique achieves diversity and combines prediction in a specific way.
Bagging is amongst the simplest algorithms whose pseudocode is depicted in Algorithm 1.
Diversity is achieved by creating different subsets of data on which bagging classifiers are
trained. The training of the algorithm works as follows. In the first iteration a bootstrapped
version of a dataset with known labels is created (line 6). Namely, a specific number of
instances is randomly selected from the dataset with replacement. A classifier is then trained
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on the bootstrapped dataset (line 7) and added to the ensemble (line 8). These steps are
repeated a predefined number of times N. To evaluate a new unlabelled instance, each
trained classifier in the ensemble makes a prediction. The counter is incremented each
time the defective class gets predicted by a classifier (lines 11-13). Finally, if the majority
of classifiers in the ensemble predicted the instance de f ective, the final prediction of the
ensemble becomes de f ective. Otherwise, the non−de f ective class is predicted.

TRAIN:
1: Training data D with labels l1 = de f ective and l2 = non−de f ective
2: Classifier C
3: Integer N specifying the number of iterations
4: Percentage I of instances to create a bootstrapping training dataset from
5: for i = 1 to N do
6: Create a subset Di by randomly selecting I% of D with replacement
7: Create a classifier Ci using Di
8: Add Ci to the ensemble, E

TEST:
9: Evaluate E on unlabelled instance x

10: Integer T initialised to 0
11: for i = 1 to N do
12: if Ei = l1 then
13: T = T +1
14: if T > N/2 then
15: Predict l1
16: else
17: Predict l2

Algorithm 1 A simplified pseudocode for the bagging algorithm [Polikar 2006]

Boosting is another popular ensemble algorithm whose pseudocode is given in Algorithm
2. The algorithm achieves diversity in a similar way to bagging, by creating an ensemble of
classifiers whose data is resampled. The final decision is made by majority-voting. However,
unlike bagging, in boosting data resampling is not random. The basic boosting algorithm is
made of three classifiers. The first classifier is trained on the randomly drawn subset of the
training data (lines 3-4). The second classifier gets half of the training data which is correctly
predicted by the first classifier and the other half are misclassifications (lines 5-6). The third
classifier is trained on the instances for which the first and second classifier disagree (lines
7-8). Finally, the final decision is made by majority-voting amongst the three classifiers (lines
9-10). Schapire [1990] showed that the performance of a boosting ensemble is never worse
than the best classifier in the ensemble, given that each classifier is better than random.
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INPUT:
1: Training data D of size M with labels l1 = de f ective and l2 = non−de f ective
2: Classifiers C1, C2, C3

TRAIN:
3: Choose M1 < M instances from D without replacement to create D1
4: Create C1 by training on D1
5: Create D2 by selecting half of correctly predicted instances from C1 and another half

misclassifications applying the following rules:
a: Flip a fair coin. If Head, choose samples from D and classify them using C1. Stop
when the first instance is misclassified and add it to D2
b: If Tail, choose samples from D and classify them using C1. Stop when the first instance
is correctly predicted and add it to D2
c: Repeat 5 until no more instances can be added to D2

6: Train C2 on D2
7: Create D3 by selecting instances on which C1 and C2 disagree
8: Train C3 on D3

TEST:
9: Classify each test instance x with C1 and C2. If the classifications agree this is the

prediction
10: Otherwise, use C3 and choose its prediction as final

Algorithm 2 A simplified pseudocode for the boosting algorithm [Polikar 2006]

Bagging and boosting are widely shown to be effective compared to single classifiers
[Chan and Paelinckx 2008, Prusa et al. 2015]. The key difference between bagging and
boosting is in the way each samples the data. Whilst bagging allows replacement of samples,
boosting does not. One of the most popular bagging algorithms, Random Forest, typically
performs well across different domains: medicine [Shaikhina et al. 2017], 3D face recog-
nition [Fanelli et al. 2013], and chemistry [Cano et al. 2017]. Boosting ensembles have
also demonstrated success compared to other techniques across fields, e.g. heart disease
classification [de Menezes et al. 2017] and emotion recognition from speech [Kim et al.
2015].

3.3.2 Stacking Ensembles

Stacking is an ensemble technique which combines predictions of multiple base classifiers via
a meta-classifier. A pseudocode of the stacking ensemble classifier is depicted in Algorithm
3. Stacking sets off by training all of its base classifiers on the whole training dataset (lines
4-5). The decisions of the base classifiers are recorded (line 6) as they are used to construct a
new dataset D′ (line 7-8) whose attributes are prediction outputs of each base classifier. A
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new meta-classifier is then trained on the D′ dataset which results in the ensemble classifier
E (line 9). At this point new unlabelled instances can be fed into the ensemble. For each test
instance the base classifiers of the ensemble make the predictions. Their output is fed into
the meta-classifier which makes the final decision (lines 10-11).

INPUT:
1: Training data D = {xi,yi}, where xi is an ith instance and yi its label (defective or

non-defective)
2: Unlabelled test data T of size P
3: A number O of base classifiers C1..O

TRAIN:
4: for i = 1 to O do
5: Train Ci on D
6: Record decision pi of Ci

7: for j = 1 to N do
8: Construct meta-data D′

j = {p1..O,yi}, where p1..N = {C1(xi), ...,CO(xi)}
9: Train meta-classifier on D′ and construct E

TEST:
10: for i = 1 to P do
11: Predict Ti using E

Algorithm 3 A simplified pseudocode for the stacking algorithm

Stacking’s architecture substantially differs from the bagging and boosting algorithms.
Unlike bagging and boosting where diversity is achieved via different training datasets,
stacking trains its base classifiers using the same dataset [Rokach 2009]. Diversity, therefore,
has to be achieved by varying the base classifiers. This is typically done in two ways. One
option is to tune parameters of the same classifier, creating a set of models with different
decision boundaries. Another option is to use classifiers of different type, each making a
unique decision boundary. Unbounded to the diversity choice, the goal is to create a new
dataset from the predictions of the base classifiers. Those predictions are a training dataset
for the meta-classifier, which can be of the same or different type as the base classifiers.

The stacking ensemble has shown superior performances compared to other ensemble
learners. It has been successfully applied on problems such as malware detection [Yan et al.
2018] and a wide variety of the UCI machine learning datasets [Džeroski and Ženko 2004].
Most notably, Sill et al. [2009] reported stacking to be a top performing system in the Netflix
competition. I use the stacking approach to create a model which can outperform other
state-of-the-art models in software defect prediction.
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3.3.3 Algorithm Recommendation

Algorithm recommendation is a variation of the stacking technique designed to select the most
appropriate algorithm based on the characteristics of data [Kalousis 2002]. The technique is
similar to stacking as both approaches require meta-data and meta-classifiers. Stacking uses
predictions from the base classifiers to construct meta-data from which the meta-classifier
learns. In contrast, algorithm recommendation constructs bespoke meta-data depending
on the meta-target. The meta-target is the dependent variable which the meta-classifier
in algorithm recommendation aims to predict. Typically, the meta-target is the solution
achieving highest performance or lowest cost [Porto et al. 2018]. Examples of meta-targets
are predictions of appropriate base learners [Di Nucci et al. 2017] and selecting the most
appropriate attribute selection method [Parmezan et al. 2017]. Algorithm 4 depicts the
algorithm recommendation technique.

INPUT:
1: Training data D = {xi,yi}, where xi is an ith instance and yi its label
2: Unlabelled test data T of size J
3: A number K of base classifiers C1..K

TRAIN:
4: for i = 1 to J do
5: Train Ci on D
6: Record decision pi of Ci

7: Assemble meta-data D′ of size K according to the meta-learning goal
a: Construct meta-attributes a1..z by extracting information from D
b: Construct meta-target t1..z by applying bespoke transformations to pi..N

8: Train meta-classifier on D′ and construct E
TEST:

9: for i = 1 to J do
10: Transform Ti to a meta-attribute a′i
11: Feeding a′i to E to predict a suitable classifier C′

i
12: Predict Ti using C′

i

Algorithm 4 A simplified pseudocode for algorithm recommendation

Algorithm recommendation has recently been applied in the domain of software defect
prediction. das Dôres et al. [2016] argue that since there is no single algorithm which
performs best overall, “research efforts should be directed towards improving algorithm rec-
ommendation instead of building more robust approaches”. They suggest a novel algorithm
recommendation approach, where meta-data is extracted from the basic information about
the datasets (i.e. number of instances, number of binary attributes, etc.). The meta-target is to
produce the rank of the most suitable classifier given the characteristics of data. They com-
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pare their novel approach with random and majority ranking to establish that their approach
achieves better results.

Di Nucci et al. [2017] use algorithm recommendation to build an ensemble which predicts
the most suitable classifier for predicting a data instance in software defect prediction. Their
approach is different from das Dôres et al. [2016] in the granularity and construction of the
meta-data. The meta-data in Di Nucci et al. [2017] uses the same independent variables as
the ones given to the base level of the ensemble. However, the meta-target is replaced with
the label depicting the classifier which correctly predicts a given instance. This meta-data
is fed to a meta-level classifier which is Random Forest. Each new instance for which the
defectiveness label is unknown is given to their ensemble. The meta-prediction is the best
suitable classifier that can potentially correctly predict defectiveness. The assumption is that
the selected classifier will be successful in predicting similar instances. The results of Di
Nucci et al. [2017]’s study suggest that their approach is performing better in the majority of
cases compared to single classifiers and voting ensembles. Future work is needed to establish
how the stacking approach used in this work compare with Di Nucci et al. [2017]’s algorithm
recommendation technique.

3.4 Defect Prediction Models

3.4.1 Regression and Classification Models

Two types of experiments are typically employed in defect prediction: regression and
classification [Wahono 2015]. In software defect prediction, a variable capturing the number
of defects in a unit is typically the dependent variable. This number can be directly used in
regression techniques to estimate the number of defects. The predicted number of defects
need not be accurate for a model to be useful. The estimated number of defects per unit can
be sorted in descending order, prioritising the units with most defects [Khoshgoftaar and
Allen 2003]. Gray et al. [2011] argue that a descending ordered list could be of a greater
practical value as it would allow practitioners to prioritise fixing as resources allow. Other
exemplar studies which use regression techniques to predict the number of defects per unit
are Bibi et al. [2006], Kanmani et al. [2004], Xu et al. [2000], and Ostrand et al. [2005].

Classification studies require the dependent variable to be nominal. In software defect
prediction the dependent variable is typically a binary label describing whether a unit is
defective or not. In the classification set-up all instances predicted as defective have an
equal priority. This is a weakness of the classification approach. However, even though
some well-known public repositories contain the number of defects per unit, those data are
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usually binarised. For example, Rahman and Devanbu [2013] binarise their data to perform a
classification task. Zimmermann et al. [2007b] collect their own data from Eclipse projects
by counting the number of pre- and post-release defects. However, they binarise the number
of defects to hasdefect=1 and hasdefect=0 to perform classification. Other studies, such as
Jing et al. [2014], Kim et al. [2007], Wang et al. [2016], also use classification techniques to
predict defects.

3.4.2 Testing the Generalisability of Prediction Models

A model is useful when it accurately predicts new, as yet unseen, data. Typically, a dataset is
split into a training and a test set, where a classifier is built using the training and validated
using the test set. If a classifier consistently achieves similar performances for both sets, we
can establish that the classifier has the ability to generalise.

Train and test sets can be assembled in multiple ways. The simplest approach is to use one
version of software as a train set, and its next version as a test set. When this is not possible,
a single dataset can be split into train and test sets (e.g. 70% train and 30% test). The former
approach is impossible for new systems, as they do not have historic versions. The latter is
often challenging due to the imbalanced nature of software defect prediction datasets. The
imbalanced nature leaves few defective instances to train on. Therefore, a common approach
in software defect prediction is some form of cross-validation. A cross-validation approach
reserves a certain amount for testing (a holdout), and uses the rest for training. This process
can then be repeated several times, where each time part of data is randomly sampled for
testing, and the rest is used for training Witten and Frank [2002].

Software defect prediction studies typically use N-fold stratified cross-validation [Mısırlı
et al. 2011a, Rathore and Kumar 2017, Xia et al. 2014]. Stratified cross-validation ensures that
an equal proportion of the defective and non-defective classes is represented in each holdout.
This approach is needed in highly imbalanced datasets. However, the commonly used 10-fold
stratified cross validation violates the cross-validation heuristics [Krstajic et al. 2014]. In
particular, to perform stratification the cross-validation algorithm needs to know the total
proportion of the defective and non-defective classes beforehand (i.e. during training cross-
validation needs to see the entire dataset). Leave-one-out cross validation is a special form of
N-fold cross validation, where N is equal to the number of data instances. Leave-one-out
does not suffer from the bias introduced by the 10-fold stratified cross validation.

To fairly evaluate the generalisability of a prediction model, any form of test data needs to
be hidden from a classifier during training [Witten and Frank 2002]. Menzies et al. [2007b]
conducted a software defect prediction study where attribute selection was performed on
the entire dataset (training and test set) violating the holdout strategy. As a consequence,
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the authors could have potentially “overestimated the performance of their learning model
and thereby reported a potentially misleading result” [Song et al. 2011]. Two more minor
methodological issues related to attribute selection occurred in the experiment (see Song et al.
[2011]). The methodological issues motivated Song et al. [2011] to develop a generalised
state-of-the-art software defect prediction framework. The framework aids in eliminating
most of the mistakes made in earlier software defect prediction studies.

3.4.3 Performance Metrics for Evaluating Defect Prediction Models

To assess the effectiveness of prediction models we measure their performances. Table 3.2
depicts commonly reported performance measures in software defect prediction. Regression
models are typically evaluated on the difference between the value of the original instance
and its prediction. For example, Mean Magnitude of Relative Error (MMRE) can be used
for regression purposes [Shepperd and Schofield 1997]. MMRE measures the relative error
on values from a ratio scale. The performance of classification models are usually derived
from the confusion matrix (for an example of a confusion matrix see Section 5.3). Several
performance measures can be derived from a confusion matrix (refer to Section 5.3).

In classification, which is the most common type of software defect prediction, it is
difficult to choose a correct performance measure. In the Menzies et al. [2007b] study,
the authors used the probability of detection (pd) and the probability of false alarm (p f )
performance measures. Zhang and Zhang [2007] replied via a comment paper that the models
built in Menzies et al. [2007b] are of no practical use, as the precision of models were low.
The precision figures were not reported in the original study, however Zhang and Zhang
[2007] derived them using the available performance metrics and class distribution data.
Menzies et al. [2007a] argued that models in software defect prediction seldom yield high
precision, yet can still be useful in practice.

Gray [2013] demonstrated how data balance can misleadingly impact the pd and p f
performance measures of defect predictors. For highly imbalanced datasets, it is possible
to achieve the same values of pd and p f even if the minority class is entirely misclassified.
Gray [2013] suggested the use of precision along with pd and p f for a suitable evaluation of
a model.

However, precision is not an ideal performance measure as it does not account for the true
negative quadrant of the confusion matrix. In 2014 Shepperd et al. [2014] proposed a more
suitable performance measure for software defect prediction, namely Mathews Correlation
Coefficient (MCC). Unlike precision, MCC is based on all four quadrants of the confusion
matrix. The authors reported that MCC “is a balanced measure and handles situations
where the ratio of class sizes are highly imbalanced which is typical of software defect
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data (classes containing defects are often relatively rare)” [Shepperd et al. 2014]. More
recently, Tantithamthavorn et al. [2018] demonstrated that Area Under the Curve (AUC) is
another performance measure not affected during data rebalancing and should be used for
comparing the performance of software defect prediction models. Therefore, MCC and AUC
are state-of-the-art performance measures for defect prediction.

Table 3.2 Composite Performance Measures

Construct Defined as Description
Recall
pd (probability of detec-
tion)
Sensitivity
True positive rate

T P/(T P+FN)
Proportion of defective units cor-
rectly classified

Precision T P/(T P+FP)
Proportion of units correctly pre-
dicted as defective

pf (probability of false
alarm)
False positive rate

FP/(FP+T N)
Proportion of non-defective units
incorrectly classified

Specificity
True negative rate T N/(T N +FP)

Proportion of correctly classified
non defective units

F-measure 2·Recall·Precision
Recall+Precision

Most commonly defined as the
harmonic mean of precision and
recall

Accuracy (T N+T P)
(T N+FN+FP+T P)

Proportion of correctly classified
units

Matthews Correlation Coef-
ficient

T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

Combines all quadrants of the bi-
nary confusion matrix to produce
a value in the range -1 to +1 with
0 indicating random correlation
between the prediction and the
recorded results. MCC can be
tested for statistical significance,
with χ2 = N ·MCC2 where N is
the total number of instances.



Chapter 4

A Methodology for Improving Data
Quality in Software Defect Prediction

Data quality has attracted significant attention in software defect prediction. Researchers
have reported dozens of integrity constraints that can help to improve the quality of software
defect prediction datasets [Gray et al. 2012, Shepperd et al. 2013]. Earlier research has shown
that data quality affects the conclusions of software defect prediction studies [Ghotra et al.
2015]. Therefore, to establish reliable results, researchers need to consider preprocessing
their data before use.

The aim of this analysis is to ensure that the models used in this work are built on high-
quality data. High quality data will lead to conclusions which are more reliable compared
to conclusions derived from data of poor quality [Bowes 2013]. I have used state-of-the-art
integrity violation checks to clean all datasets that I use in this work. However, during the
cleaning process, I discovered additional integrity violations in publicly available software
defect prediction datasets. Using the integrity violations I find, and the already existing
integrity violations, I create a comprehensive list of integrity checks to clean all datasets used
in this work. In this Chapter, I describe the findings and report all integrity violation checks
which are part of the methodology used in this dissertation.

4.1 Prelude

I show that four public datasets are highly affected by the integrity checks. These problematic
datasets are from the NASA corpus, which I use in some of my studies. After cleaning,
these datasets lose most of their tuples rendering them poor candidates for software defect
prediction. Refer to Section 4.5 for detailed findings. Two public datasets also change when



42 A Methodology for Improving Data Quality in Software Defect Prediction

the constraints are applied, e.g. xalan and xerces from the PROMISE repository, but the
majority of their tuples remain intact. The commercial datasets I use in this work do not
suffer from the integrity violations, indicating that the tools used to extract metrics from these
sources did not produce inconsistent values. Section 4.4 details the extent of the integrity
violations on the commercial and 14 public datasets. The next section summarises data
cleaning procedures reported in the literature. Section 4.3 demonstrates the extended set of
integrity constraints, followed by the section reporting on the impact of applying them.

4.2 Data Cleansing and Its Impact on Defect Studies

Numerous researchers have addressed data quality. Kaminsky and Boetticher [2004] removed
duplicates from the KC2 NASA dataset. Boetticher [2006] cleaned duplicates and tuples
with questionable values (e.g. 1.1 LOC) from several NASA datasets. Similarly, Bezerra et al.
[2007] removed duplicates and inconsistent instances in five NASA datasets. Inconsistent
rows occur when repeated instances have different labels. Removal of inconsistent cases had
earlier been carried out by Khoshgoftaar and Seliya [2004].

More systematic approach to data cleaning was first carried by Gray et al. [2011]. They
used the NASA datasets to perform a five-stage cleaning. Gray et al. [2011] suggested
removal of constant attributes (e.g. rows identifiers and attributes with zero variance) and
removal of repeated data points as they do not benefit software defect prediction. Their
systematic cleaning also deals with missing values, enforces domain specific integrity checks,
and removes duplicates and inconsistent instances. Shepperd et al. [2013] extended Gray
et al. [2011]’s work. They formalised Gray et al. [2011]’s approach and compiled a list of
18 integrity checks specific to the domain. Petrić et al. [2016] fulfilled that list with two
additional integrity checks.

Many more studies have used publicly available datasets in software defect prediction
(e.g. [Jing et al. 2014, Laradji et al. 2015, Tong et al. 2017]). Not all studies used the same
versions of the datasets. For example, Lessmann et al. [2008a] used ten NASA datasets
to compare the performance of 22 learners. Ghotra et al. [2015] repeated a similar study
to Lessmann et al. [2008a]’s using both, the datasets reported in Lessmann et al. [2008a]
and Shepperd et al. [2013]’s cleaned versions of those datasets. They found a statistically
significant impact of models trained on the cleaned versions compared to the models trained
on the non-cleaned datasets. Gray et al. [2011] also demonstrated how repeated instances
“can have a huge influence on the performance of classifiers”. Poor quality data affects the
conclusions researchers make in software defect prediction studies.
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4.3 Subsequent Data Cleansing

I use the NASA datasets in two of my studies (refer to Tables A.1 and A.2 in Appendix A for
the context of each dataset released by NASA). As the reliability of my studies rely on their
quality, I use Gray et al. [2011]’s and Shepperd et al. [2013]’s integrity checks for cleaning.
Further analysis of the cleaned datasets discovered two additional rules violating domain
specific constraints. Section 4.5 describes how the two integrity checks are derived.

I also use 14 datasets from the commonly used PROMISE repository [Wahono 2015]
and three commercial systems (refer to Tables A.3 and A.4, and Tables A.5 and A.6 in
Appendix A for the context of the PROMISE and commercial systems, respectively). All
17 systems contain object-oriented metrics. These metrics differ from the attributes in the
NASA systems, so different integrity checks apply. I identified a possible set of domain
knowledge integrity constraints occurring in the PROMISE datasets which are:

• CCavg <CCmax

• NOC < LOC

• NPM <WMC

Where CC is cyclomatic complexity [McCabe 1976], NOC is the number of children, LOC
is the number of lines of code, NPM is the number of public methods for a class and WMC
is weighted method per class (refer to Table A.4 in Appendix A for more details about the
metrics in the PROMISE datasets). These three violations are reported in Petrić et al. [2016]
and Bowes et al. [2017].

The three commercial systems contain yet another set of object-oriented metrics compared
to the PROMISE systems. Table 4.1 depicts these metrics. I used the JHawk tool1 to collect
them. I identified the following domain specific constraints that should hold for the JHawk
metrics:

• LOOP <= NLOC

• LOOP <= NOS

• V DEC <= NOS

To these 3, an additional 2 integrity checks defined by Shepperd et al. [2013] apply to the
JHawk metrics:

• NLOC > 0
1http://www.virtualmachinery.com/products.htm#JHAWK

http://www.virtualmachinery.com/products.htm#JHAWK
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Table 4.1 JHawk method level metrics

Metric Short Description
CAST Number of class casts in the method
COMP Cyclomatic Complexity
CREF Number of different classes referenced in the method
EXCR Number of exceptions referenced by this method
EXCT Number of exceptions thrown by this method
HBUG Estimated Halstead Bugs in the method
HDIF The Halstead Difficulty of a method is an indicator of method complexity

HEFF
The Halstead Effort for the method is an indicator of the amount of time
that it will take a programmer to implement the method

HLTH The Halstead Length of the method
HVOC The Halstead Vocabulary of the method
HVOL The Halstead Volume of a method is an indicator of method size

LMET
Number of calls to local methods i.e. methods that are defined in the
class of the method

LOOP Number of loops in the method
MDN Maximum Depth of Nesting
MOD Number of modifiers in the method declaration
NAME Name of method
NAND Number of operands in the method
NEXP Number of Java Expressions in the method
NLOC Number of Lines of Code in the method
NOA Number of arguments in method signature
NOC Number of comments
NOCL Number of comment Lines
NOPR Number of operators in the method
NOS Number of Java statements in the method
TDN Total Depth of Nesting
VDEC Number of variables declared in the method
VREF Number of variable references in the method
XMET Number of calls to methods that are not defined in the class of the method

• HEFF = HDIF ∗HVOL

When performing the last integrity check, I used the following equation to avoid the floating
point comparison problem:

ROUND(HEFF) = ROUND(HDIF ∗HVOL)
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4.4 The Impact of Data Cleansing on Defect Datasets

Shepperd et al. [2013]’s integrity constraints demonstrate that for the 2 NASA datasets, KC3
and PC2, there are over 50% of erroneous cases in the data. The PC2 and PC5 datasets contain
even higher number of tuples which do not benefit software defect prediction (above 80%).
Ghotra et al. [2015] showed that data quality affects the conclusions we reach in software
defect prediction studies. Our novel integrity checks show that 4 more NASA datasets suffer
severely from problematic instances. JM1 and MC2 datasets remain with insufficient data
points after cleaning, becoming poor candidates for defect prediction. MC1 and PC4 datasets
remain with no defective instances making them unusable for defect prediction. Future
work which further investigates the effect of Petrić et al. [2016] constraints remains an open
research avenue.

Table 4.2 The impact of the extended set of integrity checks on the PROMISE datasets

Dataset
# of modules
pre cleaning

# of modules
post cleaning

% loss due
to cleaning

% defective methods
post cleaning

ant 1.7 745 722 3.1 23.0
arc 234 210 10.3 12.4
camel 1.6 965 877 9.1 21.0
ivy 2.0 352 345 2.0 11.6
jedit 4.2 367 363 1.1 13.2
log4j 1.2 205 202 1.5 92.6
lucene 2.4 340 335 1.5 59.1
poi 3.0 442 397 10.2 64.5
redaktor 176 169 4.0 14.8
synapse 1.2 256 244 4.7 35.2
tomcat 858 791 7.8 9.7
velocity 1.6 229 209 8.7 36.4
xalan 2.6 885 724 18.2 44.6
xerces 1.4 588 482 18.0 77.0

Table 4.3 The impact of the extended set of integrity checks on the commercial systems

Dataset
# of modules
pre-cleaned

# of modules
post-cleaned

% loss due
to cleaning

PA 4996 4996 0.0
KN 4314 4314 0.0
HA 9062 8998 0.7
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Table 4.2 depicts the impact of data cleansing rules reported in Section 4.3 when applied
to the 14 PROMISE datasets. Refer to Section 5.4 to find the selection criteria for these 14
datasets. Two systems, xalan and xerces, are the most affected by the extended set of integrity
checks amongst the PROMISE datasets with 18% of erroneous instances. Two more datasets,
arc and poi, are affected by 10% of erroneous tuples. Each dataset is somewhat affected,
with jedit being the least affected with 1%. We also collected data for 3 commercial systems
from our big UK-based telecommunication industry collaborator. Table 4.3 demonstrates
the impact of the extended set of cleaning rules applied to the commercial systems. As the
table shows, PA and KN systems are not affected by the cleansing rules. The HA system is
minimally affected by 0.7%. These figures suggest that the 3 datasets are of high quality.

4.5 The paper: “The Jinx on the NASA Software Defect
Data Sets”

This section contains the following paper:
Paper 1. Petrić J, Bowes D, Hall T, Christianson B, Baddoo N. The jinx on the NASA
software defect data sets. In Proceedings of the 20th International Conference on Eval-
uation and Assessment in Software Engineering 2016 Jun 1 (p. 13). ACM.

This paper was published in the Proceedings of the 20th International Conference on Evalua-
tion and Assessment in Software Engineering. The paper was awarded the “Best Short Paper
and Work in Progress Award”. The study reports two novel integrity checks affecting most
of the NASA MDP datasets.
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ABSTRACT
Background: The NASA datasets have previously been
used extensively in studies of software defects. In 2013 Shep-
perd et al. presented an essential set of rules for removing
erroneous data from the NASA datasets making this data
more reliable to use.
Objective: We have now found additional rules necessary
for removing problematic data which were not identified by
Shepperd et al.
Results: In this paper, we demonstrate the level of erro-
neous data still present even after cleaning using Shepperd
et al.’s rules and apply our new rules to remove this erro-
neous data.
Conclusion: Even after systematic data cleaning of the
NASA MDP datasets, we found new erroneous data. Data
quality should always be explicitly considered by researchers
before use.

Keywords
Data quality, software defect prediction, machine learning

1. INTRODUCTION
Software defect prediction (SDP) uses historical software

data to predict locations in code likely to have defects be-
fore the software is released. Defects may cause software
behave in unintended ways deviating from requirements. To
find defects, SDP researchers use quantitative measures of
software, which are considered to correlate with parts of the
software that are likely to be defective. Various, usually au-
tomated, approaches are used to learn from historical data
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and make predictions on new data.
Most automated defect prediction is performed using vari-

ous machine learning techniques [7, 9]. Regression and clas-
sification are the two most commonly used approaches in
defect prediction. Regression techniques predict the density
or number of possible defects for each module, whilst classi-
fication techniques only give categorical information (i.e. a
module is defective or non-defective). Gray et al. argue that
regression techniques should be preferred over classification
techniques since they can provide a priority list of poten-
tially defective modules [2]. However, according to Wahono,
77% of studies have used classification techniques, compared
to 14% that used regression techniques [9].

Historical software data is usually fed into machine learn-
ers for the purpose of their training. The training data con-
tain quantitative measures for each module, along with the
number or label depicting whether a module is defective
or not. Machine learners then search for patterns in data
and derive mathematical rules for predicting defectiveness.
Therefore, the accuracy of predictions highly relies on the
quality of historical data. Lessmann et al. conducted a com-
prehensive study benchmarking over 20 different machine
learning algorithms on the NASA MDP datasets [6]. The
authors concluded that the top performing 17 classifiers do
not result in significantly different prediction performances.
However, after Gray et al.’s [3] and Shepperd et al.’s [8]
efforts on data cleansing, Ghotra et al. [1] performed a sim-
ilar study to Lessmann et al. on the cleaned version of the
NASA MDP datasets. In this case, the authors concluded
that the classifiers’ prediction performances are significantly
different, and therefore that the choice of a classifier mat-
ters. Hence, poor data quality may significantly affect the
conclusions that researchers derive.

In the early 2000s, the lack of data availability was a great
challenge [5]. However, NASA stepped in and published
the NASA Metrics Data Program datasets for researchers
to use. These datasets soon became very popular among
researchers, since the data in its original form can easily be
used for doing defect prediction. According to Hall et al.,
the NASA MDP datasets have been used in 62 out of 208
software prediction studies from 2000 to 2010 [4]. However,
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not much contextual information was released along with
the datasets. Without articulating sufficient contextual in-
formation it becomes more difficult for researchers to un-
derstand their results. Ambiguity in the metric definitions
makes it difficult or even impossible to verify the consistency
of these metrics. Therefore, future effort in collecting defect
data should ensure that enough contextual information is
also retrieved.

Shepperd et al.’s paper: “Data Quality: Some Comments
on the NASA Software Defect Datasets” was published in
the September 2013 issue of the IEEE Transactions on Soft-
ware Engineering journal [8]. Their paper, which extends
the work of Gray et al. [2, 3], presents a set of cleaning steps
for removing erroneous data from the NASA Metrics Data
Program datasets. The aim of this paper is to point out ad-
ditional inconsistency in some of the NASA MDP datasets.
The contribution of this paper is two-fold. First, we intro-
duce additional integrity checks essential for cleaning the
NASA MDP data before use. Second, we show to what
extent the NASA MDP data is affected by applying these
additional integrity checks.

In the next section we present related work aimed at clean-
ing NASA MDP datasets. Following the related work, we
show our findings and point out some additional integrity
checks that should be addressed when cleaning the defect
prediction data. Our conclusions are set out in the final
section.

2. RELATED WORK
Gray et al. systematically questioned the quality of the

NASA MDP datasets [2, 3]. Gray et al. pointed out a series
of problems in the data and offered a solution for dealing
with those problems. They identified several concerns that
can be summarised as:

• repeated or inconsistent instances: multiple software
modules contain the same attribute (i.e. static code
metric) and class values (i.e. defective label). This
situation is clearly possible in the real world, however
repeated data points can cause over-optimistic perfor-
mances when used in the machine learning context.
Inconsistent instances happen when multiple software
modules have the same attribute values, but different
class values. Again, such situation is possible in the
real world context, however it can potentially have a
negative impact on machine learners;

• data integrity : for example, 1.1 lines of code is a clear
example of such integrity check;

• constant and repeated attributes: attributes that do
not contain any variance are of no use for machine
learners. Repeated attributes, on the other hand, con-
tain the same values for each instance, which can harm
predictions having some attribute over-represented;

• missing values: can either be harmful or completely
ignored by classification methods.

Shepperd et al. have built on the work of Gray et al.
producing a comprehensive set of rules for data cleansing
[8]. Their most significant extension from Gray et al.’s rules
was in data integrity. They compiled a list of 18 different
referential integrity checks that can test the validity of data

instances. Overall, they found a significant number of er-
roneous data points, which they divided into two domains.
The first domain contains only the problematic data, i.e. the
data with impossible values. The other domain deals with
the data that is not problematic, but does not help defect
prediction (e.g. repeated attributes). All instances that fit
in either of these two categories were removed. The authors
provided the cleaned versions of the NASA datasets for both
domains to the scientific community.

3. INVESTIGATION AND RESULTS
Our analysis is based on the Shepperd et al.’s cleaned

versions of the NASA datasets from the tera-PROMISE
repository1, namely DS′ and DS′′. DS′ denotes data with
conflicting attribute values and implausible values removed,
whilst DS′′ is a dataset from which data have been removed
that are not problematic but which do not help improve
defect prediction (e.g., attributes with constant values, as
defined by Shepperd et al. [8]). The cleaned versions of the
NASA datasets were not publicly available from the Shep-
perd et al. original site2 at the time of our analysis. Conse-
quently, we used the Shepperd et al.’s cleaned version of the
NASA datasets from the tera-PROMISE repository. The
tera-PROMISE repository did not contain all 14 datasets
initially published by the NASA MDP. Datasets KC1 and
KC4 were not available in the tera-PROMISE repository,
and dataset KC2 did not contain Shepperd et al.’s cleaned
versions of the data. The remaining 11 NASA datasets
used in this study were at revision number 73 in the tera-
PROMISE SVN repository. Although the Shepperd et al.
and tera-PROMISE versions of the cleaned datasets may
differ, we used the tera-PROMISE version as this was the
only version now available. However, the tera-PROMISE
version is frequently used in software defect prediction stud-
ies.

Table 1 provides definitions and acronyms of the lines of
code (LOC ) metrics used in this study. These definitions
were available on the now defunct MDP site4 in the original
NASA Metrics Data Program documents. For the sake of
simplicity and space, we use the letters a to e to denote the
LOC metrics used and replace the number of lines metric
with the letter N (as shown in Table 1). We introduce a
new variable, called ξ, which quantifies the missing lines in
a module (also shown in Table 1).

Table 1 shows that N counts all LOC between open and
close brackets in a module. Because all of these 11 NASA
systems were written in either C/C++ or JAVA, only a lim-
ited number of code structures are allowed to occur between
open and close brackets. In particular, a module may con-
tain a number of: blank lines (variable d), comment lines
(variable b) and lines containing code. In the NASA data
sets lines containing code are divided into either code and
comment on the same line (variable a) or only executable
code on a line (variable c). Consequently N is equal to:

N = a+ b+ c+ d+ ξ (IC1)

where we should have ξ = 0 provided that the variable a is

1http://openscience.us/repo/
2http://j.mp/scvvIU
3The most recent revision at the time of conducting our
analysis
4http://mdp.ivv.nasa.gov
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Table 1: Definition of lines of code metrics in NASA MDP datasets
Acronym Metric Definition

a LOC CODE AND COMMENT The number of lines which contain both code & comment in a module.
b LOC COMMENTS The number of lines of comments in a module.
c LOC EXECUTABLE The number of lines of executable code for a module (not blank or comment)
d LOC BLANK The number of blank lines in a module.
e LOC TOTAL The total number of lines for a given module.
N NUMBER OF LINES Number of lines in a module. Pure, simple count from open bracket to close

bracket. Includes every line in between, regardless of character content.
ξ IRREGULARITY COUNT The number of unexpected missing lines in a module. We add this metric

to support a novel rule for removing erroneous data.

Table 2: Results of erroneous data in the NASA defect datasets violating two new integrity checks
DS' DS”

Dataset
IC1 partition IC1 violation

(P1 + P4)
IC2
violation

IC1 partition IC1 violation
(P1 + P4)

IC2
violationP1 P2 P3 P4 P1 P2 P3 P4

CM1 5 1 311 27 32 (9.3%) 0% 4 1 295 27 31 (9.48%) 0%
JM1 - - - - - 9555 (99.6%) - - - - - 7753 (99.63%)
KC3 0 0 128 72 72 (36%) 0% 0 0 123 71 71 (36.6%) 0%
MC1 0 0 3552 5725 5725 (61.71%) 0% 0 0 115 1873 1873 (94.22%) 0%
MC2 0 0 1 126 126 (99.21%) 0% 0 0 1 124 124 (99.2%) 0%
MW1 0 0 264 0 0 (0%) 0% 0 0 253 0 0 (0%) 0%
PC1 12 1 711 35 47 (6.19%) 0% 12 1 660 32 44 (6.24%) 0%
PC2 - - - - - 0% - - - - - 0%
PC3 2 3 1087 33 35 (3.11%) 0% 2 3 1040 32 34 (3.16%) 0%
PC4 0 0 275 1124 1124 (80.34%) 0% 0 0 228 1059 1059 (82.28%) 0%
PC5 0 0 1504 15497 15497 (91.15%) 0% 0 0 94 1617 1617 (94.51%) 0%

not subsumed in c, and similarly the variable b is not sub-
sumed in a. To verify that the variable a is not subsumed in
c we found multiple data points where a > c. The same ver-
ification test was used to confirm that the variable b is not
subsumed in a. Both verification tests were performed after
the datasets had been cleaned using our integrity checks.
C/C++ programming languages allow the use of preproces-
sor directives that could have been ignored by the metric
extraction tool and not counted in any of the LOC metrics
described above. However, we confirmed that this is not the
case since dataset KC3 is written in Java and some of KC3
instances also violate the (IC1) rule.

Table 3: All possible outcomes of violating the IC1
rule
Partition Rule Description

P1 ξ < 0
Implausible values. It is impossible
to have more lines of code than total
number of lines in a module.

P2 ξ = 0
Expected values. Number of lines in
a module matches the sum of lines
of the code metrics.

P3 ξ = 1
Out by one. This is the most com-
mon of these issues in the NASA
datasets.

P4 ξ > 1 The ξ are the missing lines in the
dataset.

Although all data should obey equation (IC1) with ξ = 0,
this is not the case for all of the 11 NASA datasets we anal-
ysed. Table 3 presents all possible outcomes of calculating
the integrity check (IC1). Partition P2 is the ideal situa-

tion where the data complies with (IC1), and therefore to
the equation (IC1). Partition P3 is where the result is out
by one. This is a commonly occurring situation in these
datasets and could be explained by tools not counting the
last line in a module. If the last line of a module is just a
bracket, the tool may count this as an additional line (N )
but not as a blank line (d), because the new line charac-
ter comes after the close bracket. This is not the case for
the beginning of a module, because the new line character
comes after the open bracket. However we cannot verify our
suspicion as no code is available with the NASA datasets.
We do not remove these out by one instances and accept the
data that are present in the partition P3 set. Partition P1
presents an impossible situation, because N must always be
equal to or greater than the sum of metrics from which it is
derived. In P4 missing lines of code occur, which we cap-
ture with the ξ variable. But, because we cannot know for
certain the source of ξ and what effect it may have on de-
fect prediction, we should probably avoid such occurrences.
Therefore, our opinion is that the data in the P1 and P4
sets are violating the (IC1) rule.

The total number of lines in a module (e) for all investi-
gated NASA datasets was equal to:

e = a+ c (IC2)

except for the JM1 dataset. We derived the IC2 rule by
checking its validity on 10 out of 11 NASA datasets we used.
Unfortunately, due to non-availability of the NASA source
code and information about the metric tools used, we could
not check the reason for this anomaly. However, it is likely
that problems were encountered during the collection of met-
rics for the JM1 dataset because it is the only instance of
the NASA datasets that violates the (IC2) rule.
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Figure 1: The erroneous instances discarded by Shepperd et al. (PROMISE data) and by (Our study)
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(a) Problematic data (DS′)
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(b) Data that do not add to defect prediction (DS′′)

We also encountered problems with data availability. Datasets
JM1 and PC2 were missing N and d metrics, respectively,
so we could not check the (IC1) rule for these two NASA
datasets.

Table 2 presents the overall results of applying the (IC1)
and (IC2) rules to Shepperd et al. cleaned versions of the
NASA datasets. Table 2 shows that some datasets are af-
fected dramatically by applying the (IC1) rule. For exam-
ple, more than 60% of the data in MC1, MC2, PC4 and
PC5 breaks the (IC1) rule. Table 2 also shows that there
is more erroneous data in the DS′′ dataset than the DS′

dataset. This is because the DS′′ cleaning procedure re-
duces the amount of data affected by Shepperd et al.’s rules,
whilst not removing the data affected by our rules. Ta-
ble 2 shows that JM1 and MC2 datasets are particularly
problematic. After cleaning, insufficient data remains in the
JM1 and MC2 datasets, rendering them poor candidates for
defect prediction. Additionally, the post-cleaning of MC1
and PC4 datasets removed all defective data points, making
them unusable for defect prediction.

Finally, Figure 1 compares the amount of instances dis-
carded by applying the rules from Shepperd et al. and by
our rules. The black bar denotes the instances removed from
the tera-PROMISE version of the NASA MDP datasets by
using Shepperd et al.’s cleaning rules. Similarly, the white
bar denotes the instances eliminated by using our (IC1) and
(IC2) rules. The figures clearly show that JM1, MC1, MC2,
PC4 and PC5 NASA MDP datasets are highly affected by
our rules and not by [8]. Furthermore, in the case of DS′′ the
JM1, MC1, MC2 and PC5 datasets remain with less than
5% of the original data points.

4. CONCLUSION
Software defect prediction models rely on the quality of

the datasets on which they are built. NASA data has been
used frequently in previous defect prediction studies. The
quality of the NASA data underpins the confidence that we
can have in the results of studies using this data. Because
data collection mistakes are inevitable, it is essential that
the quality of data is explicitly considered and that data

is cleaned before use. It is critical that the data cleaning
presented by Shepperd et al. and extended here by us is
applied to the NASA data before it is used in future studies.

5. ACKNOWLEDGEMENTS
The authors would like to thank Dr David Gray and Pro-

fessor Martin Shepperd on their valuable comments and rec-
ommendations. This work was partly funded by a grant
from the UK’s Engineering and Physical Sciences Research
Council under grant number: EP/L011751/1.

6. REFERENCES
[1] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting

the impact of classification techniques on the
performance of defect prediction models. In 37th Int.
Conf. on Software Engineering (ICSE), 2015.

[2] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. The misuse of the NASA metrics data
program data sets for automated software defect
prediction. In Evaluation Assessment in Software
Engineering (EASE 2011), pages 96–103, 2011.

[3] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. Reflections on the NASA MDP data
sets. Software, IET, 6(6):549–558, Dec 2012.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering.
Software Engineering, IEEE Transactions on,
38(6):1276–1304, Nov 2012.

[5] Y. Kamei and E. Shihab. Defect prediction:
Accomplishments and future challenges. In Software
Analysis, Evolution and Reengineering (SANER), 2016
IEEE 23rd International Conference on, 2016.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485–496, July 2008.

50 A Methodology for Improving Data Quality in Software Defect Prediction



[7] R. Malhotra. A systematic review of machine learning
techniques for software fault prediction. Applied Soft
Computing, 27:504 – 518, 2015.

[8] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
quality: Some comments on the NASA software defect
datasets. Software Engineering, IEEE Transactions on,
39(9):1208–1215, Sept 2013.

[9] R. S. Wahono. A systematic literature review of
software defect prediction: Research trends, datasets,
methods and frameworks. Journal of Software
Engineering, 1(1):1–16, 2015.

4.5 The paper: “The Jinx on the NASA Software Defect Data Sets” 51



52 A Methodology for Improving Data Quality in Software Defect Prediction

4.6 Summary of My Contributions

I discovered the following data integrity rules:

• I defined the IC1 and IC2 integrity constraints by analysing the NASA datasets as
reported in Section 4.5

• I defined the LOOP <= NLOC, LOOP <= NOS and V DEC <= NOS constraints by
analysing the Commercial datasets as reported in Section 4.3

• I defined the CCavg < CCmax, NOC < LOC and NPM < WMC by analysing the
PROMISE datasets as reported in Section 4.3

These rules extend the list of integrity constraints identified by Gray et al. [2011] and
Shepperd et al. [2013]. Combined together, the rules described in this Chapter and the rules
reported by Gray et al. [2011] and Shepperd et al. [2013], show that the NASA datasets
contain a high number of problematic data. In this chapter I have also shown that the public
PROMISE data contains a fraction of erroneous data. Commercial data we collected is not
affected by the extended set of integrity checks.

The integrity constraints demonstrate that publicly available defect data are not immune to
issues and need to be cleaned before use. As data quality can affect conclusions in software
defect prediction [Ghotra et al. 2015, Gray et al. 2011], I use the comprehensive list of
integrity checks described in this Chapter to improve the reliability of results reported in
this work. This list can also be used by other researchers who attempt doing software defect
prediction. The validation of the impact of the integrity constraints reported in this Chapter
are left for other researchers to study as future work.

4.7 Summary of the Contributions to the Paper

I conducted the initial analysis of the NASA datasets and discovered the issues with the
lines of code count (the IC1 and IC2 rules). Consequently, I devised initial definitions of
the IC1 and IC2 rules and wrote the first full draft of the paper. David Bowes re-checked
the rules and suggested the final partitioning of the IC1 rule into four partitions. David
Bowes and Tracy Hall provided most of the refinements to the paper by improving its
readability. Bruce Christianson improved the definition of the IC1 rule by suggesting that
LOC_CODE_AND_COMMENT is not subsumed in LOC_EXECUTABLE and LOC_COMMENTS is not
subsumed in LOC_CODE_AND_COMMENT. Bruce Christianson and Nathan Baddoo provided
minor comments to improve paper’s readability.
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4.8 Threats to Validity

The new integrity checks rely on domain specific knowledge and have a solid theoretical
background. However, due to unavailability of the NASA source code I could not track
the root cause of the NASA MDP datasets problems. In case of the JHawk tool, I could
not establish the root cause of the erroneous data points, as the source code of the tool is
not publicly available. Although the nature of the datasets and tooling issues do not allow
researchers to establish the root cause, the impact of these findings is not imperilled as it
contains domain specific knowledge.





Chapter 5

Classifiers’ Ability to Predict Unique
Subsets of Defects

Current trends suggest that the choice of classifier to build a prediction model is irrelevant for
software defect prediction as most predictors achieve similar performances. If all classifiers
find the same defects, then it would not matter which of them is chosen as a predictor.
However, if this is not the case, the choice of a classifier would drive which defects get or do
not get predicted. The aim of this chapter is to present empirical evidence which supports the
case that models created by different classifiers find different defective components. This
is important as more appropriate models which account for diversity in predictions could
be built. In addition, some defects matter more than others. I show that models created
by different classifiers find different subsets of defects, by using distinct classifier families.
Despite the similar predictive performances that classifiers achieve, each classifier detects
different sets of defects. This needs to be taken into account when creating software defect
prediction models.

5.1 Prelude

The aim of this chapter is to answer the following research question (initially posed in
Chapter 1):

RQ1. Do models created by different classifiers find different defective components?

I conduct an empirical analysis to compare the performance of Random Forest, Naïve Bayes,
RPart, PART and SVM classifiers when predicting defects in 12 NASA, 17 PROMISE, and
three commercial datasets. I find that although prediction performance results of different
models are similar, each learner finds a unique subset of defects missed by the others. The
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results are reported in three separate studies. Two studies are already published as conference
and journal papers and are an integral part of this chapter (refer to Section 5.3 for the papers):

Paper 2. Bowes D, Hall T, Petrić J. Different classifiers find different defects although
with different level of consistency. In Proceedings of the 11th International Conference
on Predictive Models and Data Analytics in Software Engineering 2015 Oct 21 (p. 3).
ACM.

Paper 3. Bowes D, Hall T, Petrić J. Software defect prediction: do different classifiers
find the same defects?. Software Quality Journal. 2017:1-28.

One further study reported in Section 5.4 was subsequently conducted to account for
the erroneous data reported in Chapter 4, which was not known about at the time of initial
publication. In particular, Paper 2 and Paper 3 did not consider the comprehensive set of
integrity constraints reported in Chapter 4. For this reason, I repeated the studies from Paper
2 and Paper 3 using datasets which were cleaned by the comprehensive set of integrity
constraints. Section 5.4 describes in more detail the need for extending Paper 2 and Paper
3 and reports on the differences I found.

The rest of this chapter is organised as follows. In the next section I explain the motivation
for investigating the predictions of individual defects. This is followed by the section
presenting the papers. Section 5.4 is a subsequent study which repeats the analysis reported
in the papers but takes into account problems with the erroneous data. The rest of the chapter
details the contributions of my findings, the contributions to the papers, and threats to validity.

5.2 The Motivation for Investigating the Predictions of
Individual Defects

The motivation of this analysis is stated in Paper 2 and Paper 3 which I reiterate here. I
aim to find whether models created by different classifier techniques find distinct subsets
of defects. The focus is on within-project prediction by using the classification approach.
Within-project defect prediction builds and tests models using one or multiple versions of
datasets from the same project. In contrast, cross-project defect prediction trains a model
using datasets from different projects before the model makes predictions on the project
of interest. I focus on within-project defect prediction as many eminent researchers before
me have also aimed to do this (e.g. [Briand et al. 2002, D’Ambros et al. 2012, Lessmann
et al. 2008b]). In addition, within-project defect prediction is preferred when enough data is
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available, which is the case in this work, because of the heterogeneity of data represented in
the cross-project strategy [Di Nucci et al. 2017] (i.e. data composed of different populations).
Classification is used over regression as it enables easier comparison with other studies in
software defect prediction which are predominately based on classification [Wahono 2015].

Those before me have differentiated predictive performance using some form of mea-
surement scheme. Such schemes typically calculate performance values (e.g. precision,
recall, F-measure etc.) to calculate an overall number representing how well models correctly
predict defective and non-defective code taking into account the level of incorrect predictions
made (see Table 3.2 for the description of performance measures). I go beyond this by
looking at the individual defects that specific classifiers detect and do not detect. I show
that, despite the overall figures suggesting similar predictive performances, there is a marked
difference between classifiers in terms of the specific defects each detects and does not detect.

These findings suggest that assessing predictive performance using conventional measures
gives only a basic picture of the performance of models. Models built using only one classifier
are not likely to comprehensively detect defects. The results suggest that the way forward
in building high performance prediction models is by using ensembles [Kim et al. 2011].
Ensembles are collections of individual classifiers trained on the same data and combined
to perform a prediction task. I investigate the application of ensembles in software defect
prediction in Chapter 6.

5.3 Different Classifiers Find Different Defects

This section presents the two papers described at the beginning of this chapter. Paper 2 was
published at the 11th International Conference on Predictive Models and Data Analytics in
Software Engineering in 2015. This paper won the best paper award. Paper 3 was an invited
paper which was published in Software Quality Journal. I wrote both papers together with
David Bowes and Tracy Hall.

The aim of Paper 2 is to answer the question: “Do models created by different learners
find different defective components?”. Paper 3 builds on the work presented in Paper 2 by
adding more datasets into the experiment and validating the conclusions previously made. To
the NASA datasets used in Paper 2, 6 new datasets (3 open source, and 3 industrial datasets)
were added to Paper 3. Introducing more datasets to the analysis increases the diversity of
code and defects in those systems. Confirming the previous findings with more and diverse
datasets provide stronger evidence that the results are generalisable.
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Science and Technology Research Institute,

University of Hertfordshire,
Hatfield, Hertfordshire,

AL10 9AB, UK.
Email: j.petric@herts.ac.uk

Abstract—BACKGROUND – During the last 10 years hun-
dreds of different defect prediction models have been published.
The performance of the classifiers used in these models is reported
to be similar with models rarely performing above the predictive
performance ceiling of about 80% recall.
OBJECTIVE – We investigate the individual defects that four
classifiers predict and analyse the level of prediction uncertainty
produced by these classifiers.
METHOD – We perform a sensitivity analysis to compare the
performance of Random Forest, Naı̈ve Bayes, RPart and SVM
classifiers when predicting defects in 12 NASA data sets. The
defect predictions that each classifier makes is captured in a
confusion matrix and the prediction uncertainty is compared
against different classifiers.
RESULTS – Despite similar predictive performance values for
these four classifiers, each detects different sets of defects. Some
classifiers are more consistent in predicting defects than others.
CONCLUSIONS – Our results confirm that a unique sub-set
of defects can be detected by specific classifiers. However, while
some classifiers are consistent in the predictions they make, other
classifiers vary in their predictions. Classifier ensembles with
decision making strategies not based on majority voting are likely
to perform best.

I. INTRODUCTION

Defect prediction models can be used to direct test effort
to defect-prone code1. Latent defects can then be detected
in code before the system is delivered to users. Once found
these defects can be fixed pre-delivery, at a fraction of post-
delivery fix costs. Each year defects in code cost industry
billions of dollars to find and fix. Models which efficiently
predict where defects are in code have the potential to save
companies large amounts of money. Because the costs are so
huge, even small improvements in our ability to find and fix
defects can make a significant difference to overall costs. This
potential to reduce costs has led to a proliferation of models
which predict where defects are likely to be located in code.
Hall et al. [14] provide an overview of several hundred defect
prediction models published in 208 studies.

The aim of this paper is to identify classification techniques
which perform well in software defect prediction. We focus
on within-project prediction as this is a very common form
of defect prediction. Many eminent researchers before us

1Defects can occur in many software artefacts, but here we focus only on
defects found in code.

have also aimed to do this (e.g.[5], [17]). Those before us
have differentiated predictive performance using some form
of measurement scheme. Such schemes typically calculate
performance values (e.g. precision, recall, etc. (see Table III))
to calculate an overall number representing how well models
correctly predict truly defective and truly non-defective code
taking into account the level of incorrect predictions made.
We go beyond this by looking underneath the numbers and at
the individual defects that specific classifiers detect and do not
detect. We show that, despite the overall figures suggesting
similar predictive performances, there is marked difference
between four classifiers in terms of the specific defects each
detects and does not detect. We also investigate the effect of
prediction ‘flipping’ among these four classifiers. Although
different classifiers can detect different sub-sets of defects, we
show that the consistency of predictions vary greatly among the
classifiers. In terms of prediction consistency, some classifiers
tend to be more stable when predicting a specific software unit
as defective or non-defective, hence ‘flipping’ less between
experiment runs.

Identifying the defects that different classifiers detect is im-
portant as it is well known [10] that some defects matter more
than others. Identifying defects with critical effects on a system
is more important than identifying trivial defects. Our results
offer future researchers an opportunity to identify classifiers
with capabilities to identify sets of defects that matter most.
Panichella et al. [27] previously investigated the usefulness of
a combined approach to identifying different sets of individual
defects that different classifiers can detect. We build on [27]
by further investigating whether different classifiers are equally
consistent in their predictive performances. Our results confirm
that the way forward in building high performance prediction
models in the future is by using ensembles [16]. Our results
also show that researchers should repeat their experiments a
sufficient number of times to avoid the ‘flipping’ effect that
may skew prediction performance.

We compare the predictive performance of four classi-
fiers: Naı̈ve Bayes, Random Forest, RPart and Support Vector
Machines (SVM). These classifiers were chosen as they are
widely used by the machine learning community and have been
commonly used in previous studies. These classifiers offer an
opportunity to compare the performance of our classification
models against those in previous studies. These classifiers
also use distinct predictive techniques and so it is reasonable
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to investigate whether different defects are detected by each
and whether the prediction consistency is distinct among the
classifiers. We apply these classifiers to each of 12 NASA data
sets2. NASA data sets provide a standard set of independent
variables (static code metrics) and dependent variables (defect
data labels) for each module in the data set. We chose these
NASA data sets because they are also commonly used in
software defect prediction and, again, allow our results to be
benchmarked against previous results. Unfortunately NASA
datasets provide no code. This means that any feature analysis
of particular defect sets is not possible.

The following section is an overview of defect prediction.
Section Three details our methodology. Section Four presents
results which are discussed in Section Five. We identify threats
to validity in Section Six and conclude in Section Seven.

II. BACKGROUND

Classifiers are mathematical techniques for building models
which can then predict dependent variables (defects). Defect
prediction has frequently used trainable classifiers. Trainable
classifiers build models using training data which has items
composed of both independent and dependant variables. There
are many classification techniques that have been used in
previous defect prediction studies. Witten and Frank [32]
explain classification techniques in detail and Lessmann et
al. [17] summarise the use of 22 such classifiers for defect
prediction. Ensembles of classifiers are also used in prediction
[23], [31]. Ensembles are collections of individual classifiers
trained on the same data and combined to perform a prediction
task. An overall prediction decision is made by the ensemble
based on the predictions of the individual models. Majority
voting is a decision-making strategy commonly used by en-
sembles. Although not yet widely used in defect prediction,
ensembles have been shown to significantly improve predictive
performance. For example, Misirli et al. [25] combine the use
of Artificial Neural Networks, Naı̈ve Bayes and Voting Feature
Intervals and report improved predictive performance over the
individual models. Ensembles have been more commonly used
to predict software effort estimation (e.g. [24]) where their per-
formance has been reported as sensitive to the characteristics
of data sets ([6], [28]).

Many defect prediction studies individually report the com-
parative performance of the classification techniques they have
used. Mizuno and Kikuno [26] report that, of the techniques
they studied, Orthogonal Sparse Bigrams Markov models
(OSB) are best suited to defect prediction. Bibi et al. [2] report
that Regression via Classification works well. Khoshgoftaar
et al. [15] report that modules whose defect proneness is
predicted as uncertain, can be effectively classified using the
TreeDisc technique. Our own analysis of the results from 19
studies [14] suggests that Naı̈ve Bayes and Logistic regression
techniques work best. However overall there is no clear con-
sensus on which techniques perform best. Several influential
studies have performed large scale experiments using a wide
range of classifiers to establish which classifiers dominate.
In Arisholm et al.’s [1] systematic study of the impact that
classifiers, metrics and performance measures have on predic-
tive performance, eight classifiers were evaluated. Arisholm

2http://promisedata.googlecode.com/svn/trunk/defect/

et al. [1] report that classifier technique had limited impact
on predictive performance. Lessmann et al’s [17] large scale
comparison of predictive performance across 22 classifiers
over 10 NASA data sets showed no significant performance
differences among the top 17 classifiers.

In general, defect prediction studies do not consider indi-
vidual defects that different classifiers predict or do not predict.
Panichella et al. [27] is an exception to this reporting a com-
prehensive empirical investigation into whether different clas-
sifiers find different defects. Although predictive performances
among the classifiers in their study were similar, they showed
that different classifiers detect different defects. Panichella
et al. proposed CODEP which uses an ensemble technique
(i.e. stacking [33]) to combine multiple learners in order to
achieve better predictive performances. The CODEP model
showed superior results when compared to single models.
However, Panichella et al. conducted a cross-project defect
prediction study which differs from our study. Cross-project
defect prediction has an experimental set-up based on training
models on multiple projects and then tested on one project.
Consequently, in cross-project defect prediction studies the
multiple execution of experiments is not required. Contrary,
in within-project defect prediction studies, experiments are
frequently done using cross-validation techniques. To get more
stabilised and generalised results experiments based on cross-
validation are repeated multiple times. As a drawback of exe-
cuting experiments multiple times, the prediction consistency
may not be stable resulting in classifiers ‘flipping’ between
experimental runs. Therefore, in within-project analysis pre-
diction consistency should also be taken into account.

Our paper further builds on Panichella et al. in a number
of other ways. Panichella et al. conducted analysis at a class-
level while our study is at a module level (i.e. the smallest
unit of functionality, usually a function, procedure or method).
Panichella et al. also consider regression analysis where prob-
abilities of a module being defective are calculated. Our study
deals with classification where a module is labelled either as
defective or non-defective. Therefore, the learning algorithms
used in each study differ. We also show full performance
figures by presenting the numbers of true positives, false
positives, true negative and false negatives for each classifier.

Predictive performance in all previous studies is presented
in terms of a range of performance measures (see the following
sub-section for more details of such measures). The vast
majority of predictive performances were reported to be within
the current performance ceiling of 80% recall identified by
Menzies et al. [22]. However, focusing only on performance
figures, without examining the individual defects that individ-
ual classifiers detect, is limiting. Such an approach makes it
difficult to establish whether specific defects are consistently
missed by all classifiers, or whether different classifiers detect
different sub-sets of defects. Establishing the set of defects
each classifier detects, rather than just looking at the overall
performance figure, allows the identification classifier ensem-
bles most likely to detect the largest range of defects.

Studies present the predictive performance of their models
using some form of measurement scheme. Measuring model
performance is complex and there are many ways in which
the performance of a prediction model can be measured. For
example, Menzies et al. [21] use pd and pf to highlight
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standard predictive performance, while Mende and Koschke
[20] use Popt to assess effort-awareness. The measurement
of predictive performance is often based on a confusion
matrix (shown in Table II). This matrix reports how a model
classified the different defect categories compared to their
actual classification (predicted versus observed). Composite
performance measures can be calculated by combining values
from the confusion matrix (see Table III).

There is no one best way to measure the performance of
a model. This depends on the distribution of the training data,
how the model has been built and how the model will be used.
For example, the importance of measuring misclassification
will vary depending on the application. Zhou et al. [34]
report that the use of some measures, in the context of a
particular model, can present a misleading picture of predic-
tive performance and undermine the reliability of predictions.
Arisholm et al. [1] also discuss how model performance varies
depending on how it is measured. The different performance
measurement schemes used mean that directly comparing the
performance reported by individual studies is difficult and
potentially misleading. Comparisons cannot compare like with
like as there is no adequate point of comparison. To allow such
comparisons we previously developed a tool to transform a
variety of reported predictive performance measures back to a
confusion matrix [4].

III. METHODOLOGY

We have chosen four different classifiers for this study:
Naı̈ve Bayes, RPart, SVM and Random Forest. These four
classifiers were chosen because they build models based
on different mathematical properties. Naı̈ve Bayes produces
models based on the combined probabilities of a dependent
variable being associated with the different categories of
the dependent variables. Naı̈ve Bayes requires that both the
dependent and independent variables are categorical. RPart is
an implementation of a technique for building Classification
and Regression Trees (CaRT). RPart builds a decision tree
based on the information entropy (uniformity) of the sub sets
of training data which can be achieved by splitting the data
using different independent variables. SVMs build models by
producing a hyper-plane which can separate the training data
into two classes. The items (vectors) which are closest to
the hyper-plane are used to modify the model with the aim
of producing a hyper-plane which has the greatest average
distance from the supporting vectors. Random Forest is an
ensemble technique. It is built by producing many CaRTs,
each with samples of the training data having a sub-set of
features. Bagging is also used to improve the stability of the
individual trees by creating training sets produced by sampling
the original training data with replacement. The final decision
of the ensemble is determined by combining the decisions of
each tree and computing the modal value.

The different methods of building a model by each classi-
fier may lead to differences in the items predicted as defective.
Naı̈ve Bayes is purely probabilistic and each independent
variable contributes to a decision. RPart may use only a
subset of independent variables to produce the final tree.
The decisions at each node of the tree are linear in nature
and collectively put boundaries around different groups of
items in the original training data. RPart is different to Naı̈ve

Bayes in that the thresholds used to separate the groups
are different at each node compared to Naı̈ve Bayes which
decides the threshold to split continuous variables before the
probabilities are determined. SVMs use mathematical formulae
to build non linear models to separate the different classes.
The model is therefore not derived from decisions based on
individual independent variables, but on the ability to find a
formula which separates the data with the least amount of false
negatives and false positives.

Classifier tuning is an important part of building good
models. As described above, Naı̈ve Bayes requires all variables
to be categorical. Choosing arbitrary threshold values to split
a continuous variable into different groups may not produce
good models. Choosing good thresholds may require many
models to be built on the training data using different thresh-
old values and determining which produces the best results.
Similarly for RPart, the number of items in the leaf nodes of
a tree should not be so small that a branch is built for every
item. Finding the minimum number of items required before
branching is an important process in building good models
which do not over fit on the training data and then do not
perform as well on the test data. Random Forest can be tuned
to determining the most appropriate number of trees to use in
the forest. Finally SVMs are known to perform poorly if they
are not tuned [30]. SVMs can use different kernel functions to
produce the complex hyper-planes needed to separate the data.
The radial based kernel function has two parameters: C and
γ, which need to be tuned in order to produce good models.

In practice, not all classifiers perform significantly better
when tuned. Both Naı̈ve Bayes and RPart can be tuned, but the
default parameters and splitting algorithms are known to work
well. Random Forest and particularly SVMs do require tuning.
For Random Forest we tuned the number of trees from 50 to
200 in steps of 50. For SVM using a radial base function we
tuned γ from 0.25 to 4 and C from 2 to 32. In our experiment
tuning was carried out by splitting the training data into 10
folds, 9 folds were combined together to build models with
the parameters and the 10th fold was used to measure the
performance of the model. This was repeated with each fold
being held out in turn. The parameters which produced the
best average performance we used to build the final model on
the entire training data.

We used the NASA data sets first published on the now
defunct MDP website3. This repository consists of 13 data sets
from a range of NASA projects. A summary of each dataset
can be found in Table I. While carrying out our SLR [14]
into defect prediction, we extracted the predictive performance
of many studies including those we analyse in this paper. In
this study we use 12 of the 13 NASA data sets. JM1 was
not used because during cleaning, 29% of data was removed
suggesting that the quality of the data may have been poor.
We carried out a series of pre-processing steps. Initially we
allocated each item in each original dataset a unique RowID.
The unique RowIDs allow us to map items to their predictions
for each cross validation run. We then discretised the data into
two categories by assigning the defect label of false for any
item with zero defects and a defect label of true where the
number of reported defect is greater than zero.

3http://mdp.ivv.nasa.gov---unfortunatelynownotaccessible
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TABLE I. SUMMARY STATISTICS FOR NASA DATA SETS BEFORE AND AFTER CLEANING

Project Dataset Language Total
KLOC

No. of
Modules

(pre-
cleaning)

No. of
Modules

(post-
cleaning)

%Loss Due to
Cleaning

%Faulty
Modules

(pre-cleaning)

%Faulty
Modules

(post-cleaning)

Spacecraft
Instrumentation CM1 C 20 505 505 0.0 9.5 9.5

Ground Data
Storage
Management

KC1 C++ 43 2109 2096 0.6 15.4 15.5
KC3 Java 18 458 458 0.0 9.4 9.4
KC4 Perl 25 125 125 0.0 48.8 48.8

Combustion
Experiment

MC1 C & C++ 63 9466 9277 2.0 0.7 0.7
MC2 C 6 161 161 1.2 32.3 32.3

Zero Gravity
Experiment MW1 C 8 403 403 0.0 7.7 7.7

Flight Software for
Earth Orbiting
Satellites

PC1 C 40 1107 1107 0.0 6.9 6.9
PC2 C 26 5589 5460 2.3 0.4 0.4
PC3 C 40 1563 1563 0.0 10.2 0.0
PC4 C 36 1458 1399 4.0 12.2 12.7
PC5 C++ 164 17186 17001 1.1 3.0 3.0

Real-time
Predictive Ground
System

JM1 C 315 10878 7722 29.0 19.0 21.0

The data quality of the original MDP data sets can be
improved [3], [12], [29]. [12], [11], [29] describe techniques
for cleaning the data. Shepperd has provided a ‘cleaned’
version of the MDP data sets4, however full traceability back
to the original items is not provided. Consequently we did
not use Shepperd’s cleaned data sets. Instead we cleaned the
data sets ourselves. We carried out the following data cleaning
stages described by [12]: Each independent variable was tested
to see if all values were the same, if they were, this variable
was removed because they contained no information which
allows us to discriminate defective items from non defective
items. The correlation for all combinations of two independent
variables was found, if the correlation was 1 the second
variable was removed. Where the dataset contained the variable
‘DECISION DENSITY’ any item with a value of ‘na’ was
converted to 0. The ‘DECISION DENSITY’ was also set to 0
if ‘CONDITION COUNT’=0 and ‘DECISION COUNT’=0.
Items were removed if

1) HALSTEAD LENGTH!=
NUM OPERANDS+NUM OPERATORS

2) CYCLOMATIC COMPLEXITY>
1+NUM OPERATORS

3) CALL PAIRS> NUM OPERATORS

Our method for data cleaning also differs from [29] because
we do not remove items where the executable lines of code
is zero. We did not do this because we have not been able to
determine how the metrics were computed and it is possible
to have zero executable lines in Java interfaces.

A. Experimental Set-Up

The following experiment was repeated 100 times. Exper-
iments are more commonly repeated 10 times. We chose 100
repeats because Mende [19] reports that using 10 experiment
repeats results in an unreliable final performance figure. Each
dataset was split into 10 stratified folds. Each fold was held out
in turn to form a test set and the other folds were combined
and randomised (to reduce ordering effects) to produce the
training set. Such stratified cross validation ensures that there
are instances of the defective class in each test set, so reduces
the likelihood of classification uncertainty. Re-balancing of the

4http://nasa-softwaredefectdatasets.wikispaces.com

training set is sometimes carried out to provide the classifier
with a more representative sample of the infrequent defective
instances. Re-balancing was not carried out because not all
classifiers benefit from this step. For each training/testing pair
four different classifiers were trained using the same training
set. Where appropriate a grid search was performed to identify
optimal meta-parameters for each classifier on the training set.
The model built by each classifier was used to classify the test
set. The RowID, DataSet, runid, foldid and classified label was
recorded for each item in the test set for each classifier.

We calculate predictive performance values using two
different measures: f-measure and MCC (see Table III). F-
measure was selected because it is very commonly used by
published studies and allows us to easily compare the predic-
tive performance of our models against previous models. It has
a range of 0 to 1. MCC was selected because it is relatively
easy to understand with a range from -1 to +1. MCC has the
added benefit that it encompasses all four components of the
confusion matrix whereas f-measure ignores the proportion of
true negatives. The results for each combination of classifier
and dataset were further analysed by calculating for each item
the frequency of being classified as defective. The results were
then categorised by the original label for each item so that we
can see the difference between how the models had classified
the defective and non defective items.

TABLE II. CONFUSION MATRIX
Predicted defective Predicted defect free

Observed
defective

True Positive
(TP)

False Negative
(FN)

Observed
defect free

False Positive
(FP)

True Negative
(TN)

The confusion matrix is in many ways analogous to residuals for regression models. It
forms the fundamental basis from which almost all other performance statistics are

derived .

IV. RESULTS

We aim to investigate variation in the individual defects
and prediction consistency produced by the four classifiers. To
ensure the defects that we analyse are reliable we first checked
that our four models were performing satisfactorily. Figure 1
compares the MCC performance of our models against 600
defect prediction performances reported in published studies

5.3 Different Classifiers Find Different Defects 61



TABLE III. COMPOSITE PERFORMANCE MEASURES
Construct Defined as Description
Recall
pd (probability of detection)
Sensitivity
True positive rate

TP/(TP + FN)
Proportion of defective units correctly
classified

Precision TP/(TP + FP )
Proportion of units correctly predicted as
defective

pf (probability of false alarm)
False positive rate FP/(FP + TN)

Proportion of non-defective units incor-
rectly classified

Specificity
True negative rate TN/(TN + FP )

Proportion of correctly classified non
defective units

F-measure 2·Recall·Precision
Recall+Precision

Most commonly defined as the harmonic
mean of precision and recall

Accuracy (TN+TP )
(TN+FN+FP+TP )

Proportion of correctly classified units

Matthews Correlation Coefficient
TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Combines all quadrants of the binary
confusion matrix to produce a value in
the range -1 to +1 with 0 indicating ran-
dom correlation between the prediction
and the recorded results. MCC can be
tested for statistical significance, with
χ2 = N ·MCC2 where N is the total
number of instances.
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Fig. 1. Our Results Compared to Results Published by other Studies.

using these NASA data sets [14]5. We re-engineered MCC
from the performance figures reported in these previous studies
using DConfusion. This is a tool we developed for trans-
forming a variety of reported predictive performance measures
back to a confusion matrix. DConfusion is described in [4].
Figure 1 shows that the performances of our four classifiers
are generally in keeping with those reported by others. Figure
1 confirms that some data sets are notoriously difficult to
predict. For example few performances for PC2 are better
than random. Whereas very good predictive performances are
generally reported for PC5 and KC4.

We investigated classifier performance variation with Table
IV showing the overall performance of our four classifiers

5Data set MC1 is not included in the figure because none of the studies we
had identified previously used this dataset.

across all 12 data sets. Table IV shows little overall differ-
ence in average MCC performance across the four classifiers.
However these overall performance figures mask a range of
different performances by classifiers when used on individual
NASA data sets. For example Table V shows Naı̈ve Bayes and
RPart performing generally best when used only on the CM1
data set. Whereas Table VI shows much lower performance
figures for Naı̈ve Bayes when used only on the KC4 data set6.

TABLE IV. PERFORMANCE MEASURES ALL DATA SETS BY
CLASSIFIER

MCC
Classifier Average StDev
SVM 0.291 0.188
RPart 0.331 0.162
NB 0.269 0.083
RF 0.356 0.184

TABLE V. PERFORMANCE MEASURES FOR CM1
Classifier MCC F-Measure
SVM 0.077 0.094
RPart 0.291 0.349
NB 0.236 0.315
RF 0.121 0.131

TABLE VI. PERFORMANCE MEASURES FOR KC4
Classifier MCC F-Measure
SVM 0.567 0.795
RPart 0.650 0.825
NB 0.272 0.419
RF 0.607 0.809

Having established that our models were performing ac-
ceptably we next wanted to identify the particular defects that
each of our four classifiers predicts so that we could identify
variations in the defects predicted by each. We needed to be
able to label each module as either containing a predicted
defect (or not) by each classifier. As we used 100 repeated
10-fold cross validation experiments, we needed to decide on
a prediction threshold at which we would label a module as
either predicted defective (or not) by each classifier, i.e. how
many of these 100 runs must have predicted that a module
was defective before we labelled it as such. We analysed the
labels that each classifier assigned to each module for each

6Performance tables for all data sets are available from https://bugcatcher.
stca.herts.ac.uk/nasa/sensitivity/.
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of the 100 runs. There was a surprising amount of prediction
‘flipping’ between runs. On some runs a module was labelled
as defective and other runs not. There was variation in the
level of prediction flipping amongst the classifiers. Table VII
shows the overall label ‘flipping’ between the classifiers.
TABLE VII. FREQUENCY OF ALL ITEMS FLIPPING IN ALL DATA SETS

Non Defective Items Defective Items
Classifier Never <5% <10% Never <5% <10%
SVM 0.983 0.985 0.991 0.717 0.746 0.839
RPart 0.972 0.972 0.983 0.626 0.626 0.736
NB 0.974 0.974 0.987 0.943 0.943 0.971
RF 0.988 0.991 0.993 0.748 0.807 0.859

Table VII divides predictions between the actual defective
and non-defective labels (i.e. the known labels for each mod-
ule). For each of these two categories Table VII shows three
levels of label flipping: never, 5% and 10%. For example
a value of defective items flipping Never = 0.717 would
indicate that 71.7% of defective items never flipped, a value
of defective items flipping <5% = 0.746 would indicate that
74.6% of defective items flipped less than 5% of the time.
Table VII suggests that non defective items had a more stable
prediction than defective items. This is probably because of
the imbalance of data. Although Table VII does not seem to
indicate much flipping between modules being predicted as
defective or non defective, this table includes all data sets
together and so the low flipping in large data sets masks the
flipping that occurs in individual data sets.

Tables VIII and IX show the label flipping variations
during the 100 runs between data sets7. For some data sets
using particular classifiers results in a high level of flipping
(prediction uncertainty). For example Table VIII shows that
using RPart on CM1 results in prediction uncertainty, with
54% of the predictions for known defective modules flipping
at least once between being predicted defective to predicted
non defective between runs. Table IX shows the prediction
uncertainty of using SVM on the KC4 data set with only
26% of known defective modules being consistently predicted
as defective or not defective across all cross validation runs.
Figure 2 shows the flipping for SVM on KC4 in more detail8.
As a result of analysing these labelling variations between runs,
we decided to label a module as having been predicted as either
defective or not defective if it had a been predicted as such on
more than 50 runs. Using a threshold of 50 is the equivalent
of choosing the label based on the balance of probability.

TABLE VIII. FREQUENCY OF FLIPPING FOR CM1
Non defective items Defective Items

Classifier Never <5% <10% Never <5% <10%
SVM 0.952 0.954 0.972 0.812 0.917 0.958
RPart 0.783 0.783 0.873 0.458 0.458 0.542
NB 0.961 0.961 0.980 0.958 0.958 1.000
RF 0.980 0.987 0.991 0.917 0.917 0.938

TABLE IX. FREQUENCY OF FLIPPING FOR KC4
Non Defective Items Defective Items

Classifier Never <5% <10% Never <5% <10%
SVM 0.719 0.734 0.828 0.262 0.311 0.443
RPart 0.984 0.984 1.000 0.902 0.902 0.984
NB 0.938 0.938 0.984 0.885 0.885 0.934
RF 0.906 0.938 0.953 0.803 0.820 0.918

Having labelled each module as being predicted or not
as defective by each of the four classifiers, we constructed

7Label flipping tables for all data sets are available from https://bugcatcher.
stca.herts.ac.uk/nasa/sensitivity/.

8Violin plots for all data sets are available from https://bugcatcher.stca.herts.
ac.uk/nasa/sensitivity/

Fig. 3. Sensitivity Analysis for all Data Sets using Different Classifiers. n=
37987 p= 1568

set diagrams to show which defects were identified by which
classifiers. Figure 3 shows a set diagram for the 12 frequently
used NASA data sets together. The Figure is divided into the
four quadrants of a confusion matrix. The performance of
each individual classifier is shown in terms of the numbers
of predictions falling into each quadrant. Figure 3 shows
similarity and variation in the actual modules predicted as
either defective or not defective by each classifier. Figure 3
shows that 96 out of 1568 defective modules are correctly
predicted as defective by all four classifiers (only 6.1%). Very
many more modules are correctly identified as defective by
individual classifiers. For example Naı̈ve Bayes is the only
classifier to correctly find 280 (17.9%) defective modules and
SVM is the only classifier to correctly locate 125 (8.0%)
defective modules (though such predictive performance must
always be weighed against false positive predictions). Our
results suggest that using only a Random Forest classifier
would fail to predict many (526 (34%)) defective modules.

There is much more agreement between classifiers about
non-defective modules. In the true negative quadrant Figure
3 shows that all four classifiers agree on 35364 (93.1%) out
of 37987 true negative modules. Though again, individual
non defective modules are located by specific classifiers. For
example, Figure 3 shows that SVM correctly predicts 100 non
defective modules that no other classifier predicts. The pattern
of module predictions across the classifiers varies slightly
between the data sets. Figure 4 shows a set diagram for the
CM1 data set and Figure 5 shows a set diagram for the
KC4 data set9. KC4 is an interesting data set. It is unusually
balanced between defective and non-defective modules (64 v
61). It is also a small data set (only 125 modules). Figure 5
shows that for KC4 Naı̈ve Bayes behaves differently compared
to how it behaves for the other data sets. In particular for KC4
Naı̈ve Bayes is much less optimistic (i.e. it predicts only 17

9Set diagrams for all data sets can be found at https://bugcatcher.stca.herts.
ac.uk/nasa/sensitivity/
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Fig. 2. Violin Plot of Frequency of Flipping for KC4 Data Set

Fig. 4. CM1 Sensitivity Analysis using Different Classifiers. n= 457 p= 48

out of 125 modules as being defective) in its predictions than
it is for the other data sets.

V. DISCUSSION

Our results suggest that there is uncertainty in the predic-
tions made by classifiers. We have demonstrated that there is a
surprising level of prediction flipping between cross validation
runs by classifiers. This level of uncertainty is not usually
observable as studies normally only publish average final
prediction figures. Few studies concern themselves with the
results of individual cross validation runs. Elish and Elish
[8] is a notable exception to this, where the mean and the
standard deviation of the performance values across all runs
are reported. Few studies run experiments 100 times. More
commonly experiments are run only 10 times (e.g. [17], [21]).
This means that the level of prediction flipping between runs

Fig. 5. Sensitivity Analysis for KC4 using Different Classifiers. n= 64 p=
61

is likely to be artificially reduced. We suspect that prediction
flipping by a classifier for a data set is caused by the random
generation of the folds. The items making up the individual
folds determine the composition of the training data and the
model that is built. The larger the data set the less prediction
flipping occurs. This is likely to be because larger data sets
may have training data that is more consistent with the entire
data set. Some classifiers are more sensitive to the composition
of the training set than other classifiers. RPart is particularly
sensitive for CM1 where 21% of non defective items flip at
least once and 54% of defective items flip. Although RPart
performs relatively well (MCC = 0.227), the items it predicts
as being defective are not consistent across different cross
validation runs. Future research is needed to use our results
on flipping to identify the threshold at which overall defective
or not defective predictions should be determined.
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The level of uncertainty among classifiers may be valuable
for practitioners in different domains of defect predictions. For
instance, where stability of prediction plays a significant role
our results suggest that Naı̈ve Bayes would be the most suitable
selection. On the other hand, learners such as RPart may be
avoided in applications where higher prediction consistency is
needed. The reasons for this prediction inconsistency are yet to
be established. More classifiers with different properties should
also be investigated to establish the extent of uncertainty in
predictions.

Other large scale studies comparing the performance of
defect prediction models show that there is no significant dif-
ference between classifiers [1], [17]. Our overall MCC values
for the four classifiers we investigate also suggest performance
similarity. Our results show that specific classifiers are sensitive
to data set and that classifier performance varies according to
data set. For example, our SVM model performs poorly on
CM1 but performs much better on KC4. Other studies have
also reported sensitivity to data set (e.g. Lessmann et al. [17]).

Similarly to Panichella et al. [27], our results also suggest
that overall performance figures hide a variety of differences
in the defects that each classifier predicts. While overall
performance figures between classifiers are similar, very dif-
ferent subsets of defects are actually predicted by different
classifiers. So it would be wrong to conclude that, given overall
performance values for classifiers are similar, it does not matter
which classifier is used. Very different defects are predicted
by different classifiers. This is probably not surprising given
that the four classifiers we investigate approach the prediction
task using very different techniques. Future work is needed to
investigate whether there is any similarity in the characteristics
of the set of defects that each classifier predicts. Currently it is
not known whether particular classifiers specialise in predicting
particular types of defect.

Our results strongly suggest the use of classifier ensembles.
It is likely that a collection of heterogeneous classifiers offer
the best opportunity to predict defects. Future work is needed
to extend our investigation and identify which set of classifiers
perform the best in terms of prediction performance and
consistency. This future work also needs to identify whether
a global ensemble could be identified or whether effective
ensembles remain local to the data set. Our results also
suggest that ensembles should not use the popular majority
voting approach to deciding on predictions. Using this decision
making approach will miss the unique subsets of defects that
individual classifiers predict. Again, future work is needed to
establish a decision making approach for ensembles that will
exploit our findings.

VI. THREATS TO VALIDITY

Although we implemented what could be regarded as
current best practice in classifier-based model building, there
are many different ways in which a classifier may be built.
There are also many different ways in which the data used
can be pre-processed. All of these factors are likely to impact
on predictive performance. As Lessmann et al. [17] say clas-
sification is only a single step within a multistage data mining
process [9]. Especially, data preprocessing or engineering
activities such as the removal of non informative features

or the discretisation of continuous attributes may improve
the performance of some classifiers (see, e.g., [7], [13]).
Such techniques have an undisputed value. Despite the likely
advantages of implementing these many additional techniques,
as Lessmann et al. we implemented only a basic set of these
techniques. Our reason for this decision was the same as
Lessmann et al. ...computationally infeasible when considering
a large number of classifiers at the same time. The experiments
we report here each took several days of processing time.
We did implement a set of techniques that are commonly
used in defect prediction of which there is evidence they
improve predictive performance. We went further in some of
the techniques we implemented e.g. running our experiments
100 times rather than the 10 times that studies normally do.
However we did not implement a technique to address data
imbalance (e.g. SMOTE). This was because data imbalance
does not affect all classifiers equally. We implemented only
partial feature reduction. The impact of the model building
and data pre-processing approaches we used are not likely
to significantly affect the results we report. In addition the
range of approaches we used are comparable to current defect
prediction studies.

Our studies are also limited in that we only investigated
four classifiers. It may be that there is less variation in
the defect subsets detected by classifiers that we did not
investigate. We believe this to be unlikely, as the four classifiers
we chose are representative of discrete groupings of classifiers
in terms of the prediction approaches used. However future
work will have to determine whether additional classifiers
behave as we report these four classifiers to. We also used
only NASA data in our study. Again, it is possible that other
data sets behave differently. We believe this will not be the
case, as the 12 NASA data sets we investigated were wide
ranging in their features and produced a variety of results in
our investigation. A further limitation to using only NASA
data is that no code accompanies this data. Consequently it
is not possible to inspect or further analyse the particular
defects being predicted. Extending this study to data sets which
include code is now being planned.

Our analysis is also limited by only measuring predictive
performance using f-measure and MCC metrics. Such metrics
are implicitly based on the cut-off points used by the classi-
fiers themselves to decide whether a software component is
defective or not. All software components having a defective
probability above a certain cut-off point (in general it is
equal to 0.5) are labelled as defective, or as non-defective
otherwise. For example, Random Forest not only provides
a binary classification of data points, but also provides the
probabilities for each component belonging to defective or
non-defective categories. D’Ambros et al. [18] investigated
the effect of different cut-off points on the performances of
classification algorithms in the context of defect prediction
and proposed other performance metrics that are independent
from the specific (and also implicit) cut-off points used by
different classifiers. Future work includes consideration of the
different cut-off points to the individual performances of the
four classifiers used in this paper.
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VII. CONCLUSION

We report a surprising amount of prediction variation
within experimental runs. We repeated our cross validation
runs 100 times. Between these runs we found a great deal
of inconsistency in whether a module was predicted as de-
fective or not by the same model. This finding has impor-
tant implications for defect prediction as many studies only
repeat experiments 10 times. This means that the reliability
of some previous results may be compromised. In addition
the prediction flipping that we report has implications for
practitioners. Although practitioners may be happy with the
overall predictive performance of a given model, they may
not be so happy that the model predicts different modules as
defective depending on the training of the model.

Performance measures can make it seem that defect pre-
diction models are performing similarly. However, even where
similar performance figures are produced, different defects
are identified by different classifiers. This has important
implications for defect prediction. First, assessing predictive
performance using conventional measures such as f-measure,
precision or recall gives only a basic picture of the performance
of models ([10]). Second, models built using only one classifier
are not likely to comprehensively detect defects. Ensembles
of classifiers need to be used. Third, current approaches to
ensembles need to be re-considered. In particular the popular
‘majority’ voting decision approach used by ensembles will
miss the sizeable sub-sets of defects that single classifiers
correctly predict. Ensemble decision-making strategies need
to be enhanced to account for the success of individual
classifiers in finding specific sets of defects. As Panichella et
al. suggested, techniques such as “local prediction” may be
suitable for within-project defect prediction as well.

The feature selection techniques for each classifier could
also be explored in future. Since different classifiers find
different sub-set of defects it is reasonable to explore whether
some particular features better suit specific classifiers. Perhaps
some classifiers work better when combined with specific sub-
sets of features.

We suggest new ways of building enhanced defect pre-
diction models and opportunities for effectively evaluating the
performance of those models in within-project studies. These
opportunities could provide future researchers with the tools
with which to break through the performance ceiling currently
being experienced in defect prediction.
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© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract During the last 10 years, hundreds of different defect prediction models have
been published. The performance of the classifiers used in these models is reported to be
similar with models rarely performing above the predictive performance ceiling of about
80% recall. We investigate the individual defects that four classifiers predict and analyse
the level of prediction uncertainty produced by these classifiers. We perform a sensitivity
analysis to compare the performance of Random Forest, Naı̈ve Bayes, RPart and SVM clas-
sifiers when predicting defects in NASA, open source and commercial datasets. The defect
predictions that each classifier makes is captured in a confusion matrix and the prediction
uncertainty of each classifier is compared. Despite similar predictive performance values for
these four classifiers, each detects different sets of defects. Some classifiers are more con-
sistent in predicting defects than others. Our results confirm that a unique subset of defects
can be detected by specific classifiers. However, while some classifiers are consistent in the
predictions they make, other classifiers vary in their predictions. Given our results, we con-
clude that classifier ensembles with decision-making strategies not based on majority voting
are likely to perform best in defect prediction.

Keywords Software defect prediction · Prediction modelling · Machine learning

� Jean Petrić
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1 Introduction

Defect prediction models can be used to direct test effort to defect-prone code.1 Latent
defects can then be detected in code before the system is delivered to users. Once found,
these defects can be fixed pre-delivery, at a fraction of post-delivery fix costs. Each year,
defects in code cost industry billions of dollars to find and fix. Models which efficiently
predict where defects are in code have the potential to save companies large amounts of
money. Because the costs are so huge, even small improvements in our ability to find and
fix defects can make a significant difference to overall costs. This potential to reduce costs
has led to a proliferation of models which predict where defects are likely to be located in
code. Hall et al. (2012) provide an overview of several hundred defect prediction models
published in 208 studies.

Traditional defect prediction models comprise of four main elements. First, the model
uses independent variables (or predictors) such as static code features, change data or previ-
ous defect information on which to base its predictions about the potential defect proneness
of a unit of code. Second, the model is based on a specific modelling technique. Mod-
elling techniques are mainly either machine learning (classification) or regression methods2

(Wahono 2015). Third, dependent variables (or prediction outcomes) are produced by the
model which are usually either categorical predictions (i.e. a code unit is predicted as either
defect prone or not defect prone) or continuous predictions (i.e. the number of defects
are predicted in a code unit). Fourth, a scheme is designed to measure the predictive
performance of a model. Measures based on the confusion matrix are often used for cat-
egorical predictions and measures related to predictive error are often used for continuous
predictions.

The aim of this paper is to identify classification techniques which perform well in
software defect prediction. We focus on within-project prediction as this is a very com-
mon form of defect prediction. Many eminent researchers before us have also aimed to do
this (e.g. Briand et al. (2002) and Lessmann et al. (2008)). Those before us have differ-
entiated predictive performance using some form of measurement scheme. Such schemes
typically calculate performance values (e.g. precision and recall ; see Table 3) to calcu-
late an overall number representing how well models correctly predict truly defective and
truly non-defective codes taking into account the level of incorrect predictions made. We go
beyond this by looking underneath the numbers and at the individual defects that specific
classifiers detect and do not detect. We show that, despite the overall figures suggesting sim-
ilar predictive performances, there is a marked difference between four classifiers in terms
of the specific defects each detects and does not detect. We also investigate the effect of
prediction ‘flipping’ among these four classifiers. Although different classifiers can detect
different subsets of defects, we show that the consistency of predictions vary greatly among
the classifiers. In terms of prediction consistency, some classifiers tend to be more stable
when predicting a specific software unit as defective or non-defective, hence ‘flipping’ less
between experiment runs.

1Defects can occur in many software artefacts, but here, we focus only on defects found in code.
2In this paper, we concentrate on classification models only. Hall et al. (2012) show that about 50% of
prediction models are based on classification techniques. We do this because a totally different set of analysis
techniques is needed to investigate the outcomes of regression techniques. Such an analysis is beyond the
scope of this paper.
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Identifying the defects that different classifiers detect is important as it is well known
(Fenton and Neil 1999) that some defects matter more than others. Identifying defects with
critical effects on a system is more important than identifying trivial defects. Our results
offer future researchers an opportunity to identify classifiers with capabilities to identify
sets of defects that matter most. Panichella et al. (2014) previously investigated the useful-
ness of a combined approach to identifying different sets of individual defects that different
classifiers can detect. We build on (Panichella et al. 2014) by further investigating whether
different classifiers are equally consistent in their predictive performances. Our results con-
firm that the way forward in building high-performance prediction models in the future is
by using ensembles (Kim et al. 2011). Our results also show that researchers should repeat
their experiments a sufficient number of times to avoid the ‘flipping’ effect that may skew
prediction performance.

We compare the predictive performance of four classifiers: Naı̈ve Bayes, Random For-
est, RPart and Support Vector Machines (SVM). These classifiers were chosen as they are
widely used by the machine-learning community and have been commonly used in previous
studies. These classifiers offer an opportunity to compare the performance of our classifica-
tion models against those in previous studies. These classifiers also use distinct predictive
techniques, and so, it is reasonable to investigate whether different defects are detected by
each and whether the prediction consistency is distinct among the classifiers.

We apply these four classifiers to twelve NASA datasets,3 three open source datasets,4

and three commercial datasets from our industrial partner (see Table 1). NASA datasets pro-
vide a standard set of independent variables (static code metrics) and dependent variables
(defect data labels). NASA data modules are at a function level of granularity. Additionally,
we analyse the open source systems: Ant, Ivy, and Tomcat from the PROMISE repository
(Jureczko and Madeyski 2010). Each of these datasets is at the class level of granularity. We
also use three commercial telecommunication datasets which are at a method level. There-
fore, our analysis includes datasets with different metrics granularity and from different
software domains.

This paper extends our earlier work (Bowes et al. 2015). We build on our previous
findings by adding more datasets into our experimental set-up and validating the conclu-
sions previously made. To the NASA datasets used in Bowes et al. (2015), we add six new
datasets (three open source, and three industrial datasets). Introducing more datasets to our
analysis increases the diversity of code and defects in those systems. Confirming our previ-
ous findings with increased and diverse datasets provides evidence that our results may be
generalisable.

The following section is an overview of defect prediction. Section 3 details our method-
ology. Section 4 presents results which are discussed in Section 5. We identify threats to
validity in Section 6 and conclude in Section 7.

2 Background

Many studies of software defect prediction have been performed over the years. In 1999,
Fenton and Neil critically reviewed a cross section of such studies (Fenton and Neil 1999).
Catal and Diri (2009) mapping study identified 74 studies, and in our more recent study

3http://promisedata.googlecode.com/svn/trunk/defect/
4http://openscience.us/repo/defect/ck/
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Table 1 Summary statistics for datasets before and after cleaning

Project Dataset Language Total
KLOC

No. of
modules
(pre-
cleaning)

No. of
modules
(post-
cleaning)

%loss due
to cleaning

%faulty
modules
(pre-
cleaning)

%faulty
modules
(post-
cleaning)

Spacecraft
instrumentation

CM1 C 20 505 505 0.0 9.5 9.5

Ground data KC1 C++ 43 2109 2096 0.6 15.4 15.5

Storage KC3 Java 18 458 458 0.0 9.4 9.4

Management KC4 Perl 25 125 125 0.0 48.8 48.8

Combustion MC1 C & C++ 63 9466 9277 2.0 0.7 0.7

Experiment MC2 C 6 161 161 1.2 32.3 32.3

Zero gravity
experiment

MW1 C 8 403 403 0.0 7.7 7.7

Flight software PC1 C 40 1107 1107 0.0 6.9 6.9

for Earth PC2 C 26 5589 5460 2.3 0.4 0.4

orbiting PC3 C 40 1563 1563 0.0 10.2 0.0

satellites PC4 C 36 1458 1399 4.0 12.2 12.7

PC5 C++ 164 17186 17001 1.1 3.0 3.0

Real-time
predictive
ground
system

JM1 C 315 10878 7722 29.0 19.0 21.0

Telecommunication PA Java 21 4996 4996 0.0 11.7 11.7

Software KN Java 18 4314 4314 0.0 7.5 7.5

HA Java 43 9062 9062 0.0 1.3 1.3

Java build tool Ant Java 209 745 742 0.0 22.3 22.4

Dependency
manager

Ivy Java 88 352 352 0.0 11.4 11.4

Web server Tomcat Java 301 858 852 0.0 9.0 9.0

(Hall et al. 2012), we systematically reviewed 208 primary studies and showed that pre-
dictive performance varied significantly between studies. The impact that many aspects of
defect models have on predictive performance have been extensively studied.

The impact that various independent variables have on predictive performance has been
the subject of a great deal of research effort. The independent variables used in previ-
ous studies mainly fall into the categories of product (e.g. static code data) metrics and
process (e.g. previous change and defect data) as well as metrics relating to developers.
Complexity metrics are commonly used (Zhou et al. 2010), but LOC is probably the most
commonly used static code metric. The effectiveness of LOC as a predictive independent
variable remains unclear. Zhang (2009) reports LOC to be a useful early general indica-
tor of defect proneness. Other studies report LOC data to have poor predictive power and
is out-performed by other metrics (e.g. Bell et al. (2006)). Malhotra (2015) suggests that
object-oriented metrics such as coupling between objects and response for a class are useful
for defect prediction.
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Several previous studies report that process data, in the form of previous history data,
performs well (e.g. D’Ambros et al. (2009), Shin et al. (2009), Nagappan et al. (2010), and
Madeyski and Jureczko (2015)). D’Ambros et al. (2009) specifically report that previous
bug reports are the best predictors. More sophisticated process measures have also been
reported to perform well (e.g. Nagappan et al. (2010)). In particular, Nagappan et al. (2010)
use ‘change burst’ metrics with which they demonstrate good predictive performance. The
few studies using developer information in models report conflicting results. Ostrand et al.
(2010) report that the addition of developer information does not improve predictive perfor-
mance much. Bird et al. (2009b) report better performances when developer information is
used as an element within a socio-technical network of variables. Madeyski and Jureczko
(2015) show that some process metrics are particularly useful for predictive modelling. For
example, the number of developers changing a file can significantly improve defect predic-
tion (Madeyski and Jureczko 2015). Many other independent variables have also been used
in studies, for example Mizuno et al. (2007) and Mizuno and Kikuno (2007) use the text of
the source code itself as the independent variable with promising results.

Lots of different datasets have been used in studies. However, our previous review of
208 studies (Hall et al. 2012) suggests that almost 70% of studies have used either the
Eclipse dataset.5,6 Wahono (2015) and Kamei and Shihab (2016) suggest that the NASA
datasets remain the most popular for defect prediction, and also report that the PROMISE
repository is used increasingly. Ease of availability mean that these datasets remain pop-
ular despite reported issues of data quality. Bird et al. (2009a) identifies many missing
defects in the Eclipse data. While Gray et al. (2012), Boetticher (2006), and Shepperd et al.
(2013), and Petrić et al. (2016b) raise concerns over the quality of NASA datasets in the
original PROMISE repository.7 Datasets can have a significant effect on predictive per-
formance. Some datasets seem to be much more difficult than others to learn from. The
PC2 NASA dataset seems to be particularly difficult to learn from. Kutlubay et al. (2007)
and Menzies et al. (2007) both note this difficulty and report poor predictive results using
these datasets. As a result, the PC2 dataset is more seldom used than other NASA datasets.
Another example of datasets that are difficult to predict from are those used by Arisholm
and Briand (2007) and Arisholm et al. (2010). Very low precision is reported in both of these
Arisholm et al. studies (as shown in Hall et al. (2012)). Arisholm and Briand (2007) and
Arisholm et al. (2010) report many good modelling practices and in some ways are exem-
plary studies. But these studies demonstrate how the data used can impact significantly on
the performance of a model.

It is important that defect prediction studies consider the quality of data on which mod-
els are built. Datasets are often noisy. They often contain outliers and missing values that
can skew results. Confidence in the predictions made by a model can be impacted by the
quality of the data used while building the model. For example, Gray et al. (2012) show that
defect predictions can be compromised where there is a lack of data cleaning with Jiang
et al. (2009) acknowledging the importance of data quality. Unfortunately, Liebchen and
Shepperd (2008) report that many studies do not seem to consider the quality of the data
they use, but that small problems with data quality can have a significant impact on results.

5http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
6https://code.google.com/p/promisedata/(Menzies et al. 2012)
7http://promisedata.org
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The features of the data also need to be considered when building a defect prediction
model. In particular, repeated attributes and related attributes have been shown to bias the
predictions of models. The use of feature selection on sets of independent variables seems
to improve the performance of models (e.g. Shivaji et al. (2009), Khoshgoftaar et al. (2010),
Bird et al. (2009b), and Menzies et al. (2007)).

Data balance is also an important factor in defect prediction and has been considered by
previous studies. This is important as substantially imbalanced datasets are commonly used
in defect prediction studies (i.e. there are usually many more non-defective units than defec-
tive units) (Bowes et al. 2013; Myrtveit et al. 2005). An extreme example of this is seen in
NASA dataset PC2, which has only 0.4% of datapoints belonging to the defective class (23
out of 5589 datapoints). Imbalanced data can strongly influence both the training of a model,
and the suitability of performance metrics. The influence data imbalance has on predictive
performance varies from one classifier to another. For example, C4.5 decision trees have
been reported to struggle with imbalanced data (Chawla et al. 2004; Arisholm and Briand
2007; Arisholm et al. 2010), whereas fuzzy-based classifiers have been reported to perform
robustly regardless of class distribution (Visa and Ralescu 2004). Data balancing has shown
positive effects when used with Random Forest (Chen et al. 2014); however, there is a risk
of over-fitting (Gray et al. 2012). On the other hand, data balancing has demonstrated no
significant effect on performance when used with some other techniques (e.g. Naı̈ve Bayes
(Rodriguez et al. 2014)). Studies specifically investigating the impact of defect data balance
and proposing techniques to deal with it include, for example, Khoshgoftaar et al. (2010),
Shivaji et al. (2009), and Seiffert et al. (2009). Gao et al. (2015) investigate the combination
of feature selection and data balancing techniques. Particularly, Gao et al. (2015) experi-
ment with changing the order of the two techniques, using feature selection followed by data
balancing (separately using sampled and unsampled data instances), and vice versa. They
show that sampling performed prior to feature selection by keeping the unsampled data can
boost prediction performance more than the other two approaches (Gao et al. 2015).

Classifiers are mathematical techniques for building models which can then predict
dependent variables (defects). Defect prediction has frequently used trainable classifiers
(Wahono 2015). Trainable classifiers build models using training data which has items
composed of both independent and dependant variables. There are many classification tech-
niques that have been used in previous defect prediction studies. Witten (2005) explain
classification techniques in detail and Lessmann et al. (2008) summarise the use of 22
such classifiers for defect prediction. Ensembles of classifiers are also used in prediction
(Minku and Yao 2012; Sun et al. 2012; Laradji et al. 2015; Petrić et al. 2016a). Ensembles
are collections of individual classifiers trained on the same data and combined to perform a
prediction task. An overall prediction decision is made by the ensemble based on the pre-
dictions of the individual models. Majority voting is a decision-making strategy commonly
used by ensembles. Although not yet widely used in defect prediction, ensembles have been
shown to significantly improve predictive performance. For example, Mısırlı et al. (2011)
combine the use of Artificial Neural Networks, Naı̈ve Bayes and Voting Feature Intervals
and report improved predictive performance over the individual models. Ensembles have
been more commonly used to predict software effort estimation (e.g. Minku and Yao (2013))
where their performance has been reported as sensitive to the characteristics of datasets
(Chen and Yao 2009; Shepperd and Kadoda 2001).

Many defect prediction studies individually report the comparative performance of the
classification techniques they have used. Mizuno and Kikuno (2007) report that, of the tech-
niques they studied, Orthogonal Sparse Bigrams Markov models (OSB) are best suited to
defect prediction. Bibi et al. (2006) report that Regression via Classification works well.
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Khoshgoftaar et al. (2002) report that modules whose defect proneness is predicted as
uncertain, can be effectively classified using the TreeDisc technique. Our own analysis
of the results from 19 studies (Hall et al. 2012) suggests that Naı̈ve Bayes and Logistic
regression techniques work best. However, overall, there is no clear consensus on which
techniques perform best. Several influential studies have performed large-scale experiments
using a wide range of classifiers to establish which classifiers dominate. In Arisholm et al.
(2010) systematic study of the impact that classifiers, metrics and performance measures
have on predictive performance, eight classifiers were evaluated. Arisholm et al. (2010)
report that the classifier technique had limited impact on predictive performance. Less-
mann et al. (2008) large-scale comparison of predictive performance across 22 classifiers
over 10 NASA datasets showed no significant performance differences among the top 17
classifiers.

In general, defect prediction studies do not consider individual defects that different
classifiers predict or do not predict. Panichella et al. (2014) is an exception to this report-
ing a comprehensive empirical investigation into whether different classifiers find different
defects. Although predictive performances among the classifiers in their study were simi-
lar, they showed that different classifiers detect different defects. Panichella et al. proposed
CODEP which uses an ensemble technique (i.e. stacking Wolpert (1992)) to combine multi-
ple learners in order to achieve better predictive performances. The CODEP model showed
superior results when compared to single models. However, Panichella et al. conducted
a cross-project defect prediction study which differs from our study. Cross-project defect
prediction has an experimental set-up based on training models on multiple projects and
then tested on one project (explanatory studies on cross-project defect prediction were done
by Turhan et al. (2009) and Zimmermann et al. (2009)). Consequently, in cross-project
defect prediction studies, the multiple execution of experiments is not required. Contrary,
in within-project defect prediction studies, experiments are frequently done using cross-
validation techniques. To get more stabilised and generalised results, experiments based on
cross validation are repeated multiple times. As a drawback of executing experiments mul-
tiple times, the prediction consistency may not be stable resulting in classifiers ‘flipping’
between experimental runs. Therefore, in a within-project analysis, prediction consistency
should also be taken into account.

Our paper further builds on Panichella et al. in a number of other ways. Panichella et
al. conducted an analysis only at a class level while our study is additionally extended
to a module level (i.e. the smallest unit of functionality, usually a function, procedure or
method). Panichella et al. also consider regression analysis where probabilities of a module
being defective are calculated. Our study deals with classification where a module is labelled
either as defective or non-defective. Therefore, the learning algorithms used in each study
differ. We also show full performance figures by presenting the numbers of true positives,
false positives, true negative and false negatives for each classifier.

Predictive performance in all previous studies is presented in terms of a range of per-
formance measures (see the following sub-sections for more details of such measures). The
vast majority of predictive performances were reported to be within the current performance
ceiling of 80% recall identified by Menzies et al. (2008). However, focusing only on perfor-
mance figures, without examining the individual defects that individual classifiers detect, is
limiting. Such an approach makes it difficult to establish whether specific defects are con-
sistently missed by all classifiers, or whether different classifiers detect different subsets
of defects. Establishing the set of defects each classifier detects, rather than just looking at
the overall performance figure, allows the identification classifier ensembles most likely to
detect the largest range of defects.
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Table 2 Confusion matrix
Predicted defective Predicted defect free

Observed
defective

True positive
(TP)

False negative
(FN)

Observed
defect free

False positive
(FP)

True negative
(TN)

The confusion matrix is in many
ways analogous to residuals for
regression models. It forms the
fundamental basis from which
almost all other performance
statistics are derived.

Studies present the predictive performance of their models using some form of measure-
ment scheme. Measuring model performance is complex and there are many ways in which
the performance of a prediction model can be measured. For example, Menzies et al. (2007)
use pd and pf to highlight standard predictive performance, while Mende and Koschke
(2010) use Popt to assess effort-awareness. The measurement of predictive performance
is often based on a confusion matrix (shown in Table 2). This matrix reports how a model
classified the different defect categories compared to their actual classification (predicted
versus observed). Composite performance measures can be calculated by combining values
from the confusion matrix (see Table 3).

There is no one best way to measure the performance of a model. This depends on the
distribution of the training data, how the model has been built and how the model will be
used. For example, the importance of measuring misclassification will vary depending on
the application. Zhou et al. (2010) report that the use of some measures, in the context of a
particular model, can present a misleading picture of predictive performance and undermine
the reliability of predictions. Arisholm et al. (2010) also discuss how model performance
varies depending on how it is measured. The different performance measurement schemes
used mean that directly comparing the performance reported by individual studies is dif-
ficult and potentially misleading. Comparisons cannot compare like with like as there is
no adequate point of comparison. To allow such comparisons, we previously developed a
tool to transform a variety of reported predictive performance measures back to a confusion
matrix (Bowes et al. 2013).

Table 3 Composite performance measures

Construct Defined as Description

Recall pd (probability of
detection) sensitivity true
positive rate

T P/(T P + FN) Proportion of defective units cor-
rectly classified

Precision T P/(T P + FP) Proportion of units correctly pre-
dicted as defective

F-measure 2·Recall·Precision
Recall+Precision

Most commonly defined as the har-
monic mean of precision and recall

Matthews correlation
coefficient

T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N+FP)(T N+FN)

Combines all quadrants of the binary
confusion matrix to produce a value
in the range -1 to +1 with 0 indicat-
ing random correlation between the
prediction and the recorded results.
MCC can be tested for statistical sig-
nificance, with χ2 = N · MCC2

where N is the total number of
instances.
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3 Methodology

3.1 Classifiers

We have chosen four different classifiers for this study: Naı̈ve Bayes, RPart, SVM and
Random Forest. These four classifiers were chosen because they build models based on
different mathematical properties. Naı̈ve Bayes produces models based on the combined
probabilities of a dependent variable being associated with the different categories of
the dependent variables. Naı̈ve Bayes requires that both the dependent and independent
variables are categorical. RPart is an implementation of a technique for building Classifi-
cation and Regression Trees (CaRT). RPart builds a decision tree based on the information
entropy (uniformity) of the subsets of training data which can be achieved by splitting the
data using different independent variables. SVMs build models by producing a hyper-plane
which can separate the training data into two classes. The items (vectors) which are closest
to the hyper-plane are used to modify the model with the aim of producing a hyper-plane
which has the greatest average distance from the supporting vectors. Random Forest is an
ensemble technique. It is built by producing many CaRTs, each with samples of the training
data having a subset of features. Bagging is also used to improve the stability of the indi-
vidual trees by creating training sets produced by sampling the original training data with
replacement. The final decision of the ensemble is determined by combining the decisions
of each tree and computing the modal value.

The different methods of building a model by each classifier may lead to differences in
the items predicted as defective. Naı̈ve Bayes is purely probabilistic and each independent
variable contributes to a decision. RPart may use only a subset of independent variables to
produce the final tree. The decisions at each node of the tree are linear in nature and collec-
tively put boundaries around different groups of items in the original training data. RPart is
different to Naı̈ve Bayes in that the thresholds used to separate the groups are different at
each node compared to Naı̈ve Bayes which decides the threshold to split continuous vari-
ables before the probabilities are determined. SVMs use mathematical formulae to build
nonlinear models to separate the different classes. The model is therefore not derived from
decisions based on individual independent variables, but on the ability to find a formula
which separates the data with the least amount of false negatives and false positives.

Classifier tuning is an important part of building good models. As described above, Naı̈ve
Bayes requires all variables to be categorical. Choosing arbitrary threshold values to split
a continuous variable into different groups may not produce good models. Choosing good
thresholds may require many models to be built on the training data using different threshold
values and determining which produces the best results. Similarly for RPart, the number of
items in the leaf nodes of a tree should not be so small that a branch is built for every item.
Finding the minimum number of items required before branching is an important process in
building good models which do not overfit on the training data and then do not perform as
well on the test data. Random Forest can be tuned to determine the most appropriate number
of trees to use in the forest. Finally SVMs are known to perform poorly if they are not tuned
(Soares et al. 2004). SVMs can use different kernel functions to produce the complex hyper-
planes needed to separate the data. The radial-based kernel function has two parameters: C

and γ , which need to be tuned in order to produce good models.
In practice, not all classifiers perform significantly better when tuned. Both Naı̈ve Bayes

and RPart can be tuned, but the default parameters and splitting algorithms are known to
work well. Random Forest and particularly SVMs do require tuning. For Random Forest
we tuned the number of trees from 50 to 200 in steps of 50. For SVM using a radial base
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function, we tuned γ from 0.25 to 4 and C from 2 to 32. In our experiment, tuning was
carried out by splitting the training data into 10 folds, 9 folds were combined together to
build models with the parameters and the 10th fold was used to measure the performance
of the model. This was repeated with each fold being held out in turn. The parameters
which produced the best average performance we used to build the final model on the entire
training data.

3.2 Datasets

We used the NASA datasets first published on the now defunct MDP website.8 This repos-
itory consists of 13 datasets from a range of NASA projects. In this study, we use 12 of the
13 NASA datasets. JM1 was not used because during cleaning, 29% of data was removed
suggesting that the quality of the data may have been poor. We extended our previous analy-
sis (Bowes et al. 2015) by using 6 additional datasets, 3 open source and 3 commercial. All
3 open source datasets are at class level, and originate from the PROMISE repository. The
commercial datasets are all in the telecommunication domain and are at method level. A
summary of each dataset can be found in Table 1. Our choice of datasets is based on several
factors. First, the NASA and PROMISE datasets are frequently used in defect prediction.
Second, three open source datasets in our analysis (Ant, Ivy, and Tomcat) are very different
in nature, and they could have a variety of different defects. Commercial datasets also add
to the variety of very different datasets. We use these factors to enhance the possibility of
generalising our results, which is one of the major contributions of this paper.

The data quality of the original NASA MDP datasets can be improved (Boetticher 2006;
Gray et al. 2012; Shepperd et al. 2013). Gray et al. (2012), Gray (2013), and Shepperd et al.
(2013) describe techniques for cleaning the data. Shepperd has provided a ‘cleaned’ version
of the MDP datasets,9 However, full traceability back to the original items is not provided.
Consequently we did not use Shepperd’s cleaned NASA datasets. Instead we cleaned the
NASA datasets ourselves. We carried out the following data cleaning stages described by
Gray et al. (2012): Each independent variable was tested to see if all values were the same;
if they were, this variable was removed because they contained no information which allows
us to discriminate defective items from non-defective items. The correlation for all combi-
nations of two independent variables was found; if the correlation was 1, the second variable
was removed. Where the dataset contained the variable ‘DECISION DENSITY’, any item
with a value of ‘na’ was converted to 0. The ‘DECISION DENSITY’ was also set to 0 if
‘CONDITION COUNT’=0 and ‘DECISION COUNT’=0. Items were removed if:

1. HALSTEAD LENGTH!= NUM OPERANDS+NUM OPERATORS
2. CYCLOMATIC COMPLEXITY> 1+NUM OPERATORS
3. CALL PAIRS> NUM OPERATORS

Our method for cleaning the NASA data also differs from Shepperd et al. (2013) because
we do not remove items where the executable lines of code is zero. We did not do this
because we have not been able to determine how the NASA metrics were computed and it
is possible to have zero executable lines in Java interfaces. We performed the same cleaning
to our commercial datasets. We performed cleaning of the open source datasets for which

8http://mdp.ivv.nasa.gov – unfortunately now not accessible
9http://nasa-softwaredefectdatasets.wikispaces.com
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we defined a similar set of rules as described above, for data at a class level. Particularly,
we removed items if:

1. AVERAGE CYCLOMATIC COMPLEXITY>

MAXIMAL CYCLOMATIC COMPLEXITY
2. NUMBER OF COMMENTS> LINES OF CODE
3. PUBLIC METODS COUNT> CLASS METHODS COUNT

Since all the NASA and open source datasets are publicly available, the aforementioned
cleaning steps can be applied to them. We do not provide pre-cleaned data as we believe it
is vital that researchers do their own cleaning. Problems with poor-quality data being used
have prolificated because researchers have taken pre-cleaned data without questioning their
quality (for example NASA datasets (Gray et al. 2011; Shepperd et al. 2013)). Cleaning
the data we use is straightforward to future researchers as the cleaning steps are easy to
understand and implement.

3.3 Experimental Set-Up

The following experiment was repeated 100 times. Experiments are more commonly
repeated 10 times. We chose 100 repeats because Mende (2011) reports that using 10
experiment repeats results in an unreliable final performance figure. Each dataset was split
into 10 stratified folds. Each fold was held out in turn to form a test set and the other folds
were combined and randomised (to reduce ordering effects) to produce the training set. Such
stratified cross validation ensures that there are instances of the defective class in each test
set, so reduces the likelihood of classification uncertainty. Re-balancing of the training set
is sometimes carried out to provide the classifier with a more representative sample of the
infrequent defective instances. Data balancing may have very different effects on an experi-
ment depending on the classifier used (as explained in Section 2). To reduce the confounding
factors of data balance, we do not apply this technique in our experiment. Specifically, it
would be difficult to control the impact of data balance on performance across the range
of classifiers we used. Also, our experiment is focused on the dispersion of individual pre-
dictions based on real data across classifiers, rather than investigating whether and how
re-balancing affects defect prediction results. Furthermore, data balancing is infrequently
used in defect prediction studies. For each training/testing pair, four different classifiers
were trained using the same training set. Where appropriate, a grid search was performed to
identify optimal meta-parameters for each classifier on the training set. The model built by
each classifier was used to classify the test set.

To collect the data showing individual predictions made by individual classifiers, the
RowID, DataSet, runid, foldid and classified label (defective or not defective) was recorded
for each item in the test set for each classifier and for each cross-validation run.

We calculate predictive performance values using two different measures: f-measure and
MCC (see Table 3). F-measure was selected because it is very commonly used by published
studies and allows us to easily compare the predictive performance of our models against
previous models. Additionally, f-measure gives the harmonic mean of both measures,
precision and recall. It has a range of 0 to 1. MCC was selected because it is relatively easy
to understand with a range from -1 to +1. MCC has the added benefit that it encompasses all
four components of the confusion matrix whereas f-measure ignores the proportion of true
negatives. Furthermore, Matthews’ Correlation Coefficient (MCC) has been demonstrated
to be a reliable measure of predictive model performance (Shepperd et al. 2014). The results
for each combination of classifier and dataset were further analysed by calculating for each

78 Classifiers’ Ability to Predict Unique Subsets of Defects



Software Qual J

SVM

RPart

NB

RF

Average Published Results

Bounded by Min and Max

P
C

2

M
C

2

C
M

1

M
W

1

K
C

1

K
C

3

P
C

1

P
C

3

K
C

4

P
C

4

P
C

5

−1

0

1

DataSet

M
C

C

Fig. 1 Our results compared to results published by other studies

item the frequency of being classified as defective. The results were then categorised by the
original label for each item so that we can see the difference between how the models had
classified the defective and non-defective items.

4 Results

We aim to investigate variation in the individual defects and prediction consistency produced
by the four classifiers. To ensure the defects that we analyse are reliable, we first checked
that our models were performing satisfactorily. To do this, we built prediction models using
the NASA datasets. Figure 1 compares the MCC performance of our models against 600
defect prediction performances reported in published studies using these NASA datasets
Hall et al. (2012).10 We re-engineered MCC from the performance figures reported in these
previous studies using DConfusion. This is a tool we developed for transforming a vari-
ety of reported predictive performance measures back to a confusion matrix. DConfusion
is described in (Bowes et al. 2013). Figure 1 shows that the performances of our four clas-
sifiers are generally in keeping with those reported by others. Figure 1 confirms that some
datasets are notoriously difficult to predict. For example, few performances for PC2 are
better than random. Whereas, very good predictive performances are generally reported for
PC5 and KC4. The RPart and Naı̈ve Bayes classifiers did not perform as well on the NASA
datasets as on our commercial datasets (as shown in Table 4). However, all our commercial
datasets are highly imbalanced, where learning from a small set of defective items becomes
more difficult, so this imbalance may explain the difference in the way these two classifiers
perform. Similarly the SVM classifier performs better on the open source datasets than it
does on the NASA datasets. The SVM classifier seems to perform particularly poorly when

10Dataset MC1 is not included in the figure because none of the studies we had identified previously used
this dataset.
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Table 4 MCC performance for all datasets by classifier

NASA datasets OSS datasets Commercial datasets All datasets

Classifier Average StDev Average StDev Average StDev Average StDev

SVM 0.291 0.188 0.129 0.134 0.314 0.140 0.245 0.154

RPart 0.331 0.162 0.323 0.077 0.166 0.148 0.273 0.129

NB 0.269 0.083 0.322 0.089 0.101 0.040 0.231 0.071

RF 0.356 0.184 0.365 0.095 0.366 0.142 0.362 0.140

used on extremely imbalanced datasets (especially the case when datasets have less than
10% faulty items).

We investigated classifier performance variation across all the datasets. Table 4 shows
little overall difference in average MCC performance across the four classifiers, except
Random Forest, which usually performs best (Lessmann et al. 2008). By using Friedman’s
non-parametric test at the significance level 0.05, we formally confirmed no statistically sig-
nificant difference in the MCC performance values across all datasets when applied amongst
SVM, Naı̈ve Bayes, and RPart classifiers (p-value: 0.939). Similarly, by using the same pro-
cedure, we established that there is a statistically significant difference in terms of MCC
performance when Random Forest is added to the statistical test (p value: 0.021). However,
these overall performance figures mask a range of different performances by classifiers
when used on individual datasets. For example, Table 5 shows Naı̈ve Bayes performing rela-
tively well when used on the Ivy and KC4 datasets, however, much worse on the KN dataset.
On the other hand, SVM achieves the highest MCC performance across all classifiers on
the KN dataset, but poor performance values on the Ivy dataset.11 By repeating Friedman’s
non-parametric statistical test on the three datasets reported in Table 5, across all runs, we
confirmed a statistically significant difference amongst the four classifiers, with the p value
less than 0.0001 in the cases where Random Forest was included or excluded from the test.

Having established that our models were performing acceptably (comparable to the 600
models reported in Hall et al. (2012) and depicted in Fig. 1), we next wanted to identify
the particular defects that each of our four classifiers predicts so that we could identify
variations in the defects predicted by each. We needed to be able to label each module as
either containing a predicted defect (or not) by each classifier. As we used 100 repeated 10-
fold cross-validation experiments, we needed to decide on a prediction threshold at which
we would label a module as either predicted defective (or not) by each classifier, i.e. how
many of these 100 runs must have predicted that a module was defective before we labelled
it as such. We analysed the labels that each classifier assigned to each module for each of
the 100 runs. There was a surprising amount of prediction ‘flipping’ between runs. On some
runs, a module was labelled as defective and other runs not. There was variation in the level
of prediction flipping amongst the classifiers. Table 7 shows the overall label ‘flipping’
between the classifiers.

Table 6 divides predictions between the actual defective and non-defective labels (i.e. the
known labels for each module) for each of our dataset category, namely NASA, commercial
(Comm), and open source dataset (OSS), respectively. For each of these two categories,
Table 6 shows three levels of label flipping: never, 5% and 10%. For example, a value of

11Performance tables for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235
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Table 5 Performance measures
for KC4, KN and Ivy KC4 KN Ivy

Classifier MCC F-measure MCC F-measure MCC F-measure

SVM 0.567 0.795 0.400 0.404 0.141 0.167

RPart 0.650 0.825 0.276 0.218 0.244 0.324

NB 0.272 0.419 0.098 0.170 0.295 0.375

RF 0.607 0.809 0.397 0.378 0.310 0.316

defective items flipping Never = 0.717 would indicate that 71.7% of defective items never
flipped, a value of defective items flipping < 5% = 0.746 would indicate that 74.6% of
defective items flipped less than 5% of the time. Table 7 suggests that non-defective items
had a more stable prediction than defective items across all datasets. Although Table 7 shows
the average numbers of prediction flipping across all datasets, this statement is valid for all
of our dataset categories as shown in Table 6. This is probably because of the imbalance
of data. Since there is more non-defective items to learn from, predictors could be better
trained to predict them and hence flip less. Although the average numbers do not indicate
much flipping between modules being predicted as defective or non-defective, these tables
show datasets together, and so, the low flipping in large datasets masks the flipping that
occurs in individual datasets.

Table 8 shows the label flipping variations during the 100 runs between datasets.12 For
some datasets, using particular classifiers results in a high level of flipping (prediction
uncertainty). For example, Table 8 shows that using Naı̈ve Bayes on KN results in predic-
tion uncertainty, with 73% of the predictions for known defective modules flipping at least
once between being predicted defective to predicted non-defective between runs. Table 8
also shows the prediction uncertainty of using SVM on the KC4 dataset with only 26% of
known defective modules being consistently predicted as defective or not defective across
all cross-validation runs. Figure 2 presents violin plots showing the flipping for the four dif-
ferent classifiers on KC4 in more detail.13 The violin plots show the flipping that occurs for
each quadrant of the confusion matrix. The y-axis represents the probability of a module
to flip, where the central part of a ‘violin’ represents the 50% chance of flipping, reducing
towards no flipping at the ends of the ‘violin’. The x-axis demonstrates the proportion of
modules that flip, where a wide ‘violin’ indicates a high proportion of modules, and a nar-
row ‘violin’ represents a small number of modules. For example, Fig. 2 shows that SVM is
particularly unstable when predicting both, defective and non-defective modules for KC4,
compared to the other classifiers. The reason for that is the wider ‘violin’ body around
the 50% probability of flipping. On the other hand, Naı̈ve Bayes shows the greatest stabil-
ity when predicting non-defective instances since the majority of modules are concentrated
closer to the ends of the ‘violin’. RPart provides relatively stable predictions for defective
instances when used on the KC4 dataset. As a result of analysing these labelling variations
between runs, we decided to label a module as having been predicted as either defective or
not defective if it had been predicted as such on more than 50 runs. Using a threshold of 50
is the equivalent of choosing the label based on the balance of probability.

12Label flipping tables for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235.
13Violin plots for all datasets are available from https://sag.cs.herts.ac.uk/?page id=235
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Table 6 Frequency of all items
flipping across different dataset
categories

Non-defective items Defective items

Classifier Never <5 % <10 % Never <5 % <10 %

NASA SVM 0.983 0.985 0.991 0.717 0.746 0.839

RPart 0.972 0.972 0.983 0.626 0.626 0.736

NB 0.974 0.974 0.987 0.943 0.943 0.971

RF 0.988 0.991 0.993 0.748 0.807 0.859

Comm SVM 0.959 0.967 0.974 0.797 0.797 0.797

RPart 0.992 0.992 0.995 0.901 0.901 0.901

NB 0.805 0.805 0.879 0.823 0.823 0.823

RF 0.989 0.992 0.995 0.897 0.897 0.897

OSS SVM 0.904 0.925 0.942 0.799 0.799 0.799

RPart 0.850 0.850 0.899 0.570 0.570 0.570

NB 0.953 0.953 0.971 0.924 0.924 0.924

RF 0.958 0.970 0.975 0.809 0.809 0.809

Having labelled each module as being predicted or not as defective by each of the four
classifiers, we constructed set diagrams to show which defects were identified by which
classifiers. Figures 3–5 show set diagrams for all dataset categories, divided in groups for
NASA datasets, open source datasets, and commercial datasets, respectively. Figure 3 shows
a set diagram for the 12 frequently used NASA datasets together. Each figure is divided into
the four quadrants of a confusion matrix. The performance of each individual classifier is
shown in terms of the numbers of predictions falling into each quadrant. Figures 3–5 show
similarity and variation in the actual modules predicted as either defective or not defec-
tive by each classifier. Figure 3 shows that 96 out of 1568 defective modules are correctly
predicted as defective by all four classifiers (only 6.1%). Very many more modules are
correctly identified as defective by individual classifiers. For example, Naı̈ve Bayes is the
only classifier to correctly find 280 (17.9%) defective modules and SVM is the only classi-
fier to correctly locate 125 (8.0%) defective modules (though such predictive performance
must always be weighed against false positive predictions). Our results suggest that using
only a Random Forest classifier would fail to predict many (526 (34%)) defective modules.
Observing Figs. 4 and 5 we came to similar conclusions. In the case of the open source
datasets, 55 out of 283 (19.4%) unique defects were identified by either Naı̈ve Bayes or
SVM. Many more unique defects were found by individual classifiers in the commercial
datasets, precisely 357 out of 1027 (34.8%).

Table 7 Frequency of all item
flipping in all datasets Non-defective items Defective items

Classifier Never <5% <10% Never <5% <10%

SVM 0.949 0.959 0.969 0.771 0.781 0.812

RPart 0.938 0.938 0.959 0.699 0.699 0.736

NB 0.911 0.911 0.945 0.897 0.897 0.906

RF 0.978 0.984 0.988 0.818 0.838 0.855
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Table 8 Frequency of flipping
for three different datasets Non-defective items Defective items

Classifier Never <5 % <10 % Never <5 % <10 %

KC4 SVM 0.719 0.734 0.828 0.262 0.311 0.443

RPart 0.984 0.984 1.000 0.902 0.902 0.984

NB 0.938 0.938 0.984 0.885 0.885 0.934

RF 0.906 0.938 0.953 0.803 0.820 0.918

KN SVM 0.955 0.964 0.971 0.786 0.817 0.854

RPart 0.993 0.993 0.997 0.888 0.888 0.929

NB 0.491 0.491 0.675 0.571 0.571 0.730

RF 0.988 0.991 0.994 0.919 0.922 0.957

Ivy SVM 0.913 0.949 0.962 0.850 0.850 0.875

RPart 0.837 0.837 0.881 0.625 0.625 0.700

NB 0.933 0.933 0.952 0.950 0.950 1.000

RF 0.955 0.974 0.981 0.900 0.925 0.950

There is much more agreement between classifiers about non-defective modules. In the
true negative quadrant, Fig. 3 shows that all four classifiers agree on 35364 (93.1%) out
of 37987 true negative NASA modules. Though again, individual non-defective modules
are located by specific classifiers. For example, Fig. 3 shows that SVM correctly predicts
100 non-defective NASA modules that no other classifier predicts. The pattern of module
predictions across the classifiers varies slightly between the datasets. Figures 6, 7 and 8
show set diagrams for individual datasets, KC4, KN and Ivy. Particularly, Fig. 6 shows a
set diagram for the KC4 dataset.14 KC4 is an interesting dataset. It is unusually balanced
between defective and non-defective modules (64 v 61). It is also a small dataset (only 125
modules). Figure 6 shows that for KC4 Naı̈ve Bayes behaves differently compared to how
it behaves for the other datasets. In particular for KC4 Naı̈ve Bayes is much less optimistic
(i.e. it predicts only 17 out of 125 modules as being defective) in its predictions than it is
for the other datasets. RPart was more conservative when predicting defective items than
non-defective ones. For example, in the KN dataset, RPart is the only classifier to find 17
(5.3%) unique non-defective items as shown on Fig. 8.

5 Discussion

Our results suggest that there is uncertainty in the predictions made by classifiers. We have
demonstrated that there is a surprising level of prediction flipping between cross-validation
runs by classifiers. This level of uncertainty is not usually observable as studies normally
only publish average final prediction figures. Few studies concern themselves with the
results of individual cross-validation runs. Elish and Elish (2008) is a notable exception to
this, where the mean and the standard deviation of the performance values across all runs are
reported. Few studies run experiments 100 times. More commonly, experiments are run only
10 times (e.g. Lessmann et al. (2008); Menzies et al. (2007)). This means that the level of

14Set diagrams for all datasets can be found at https://sag.cs.herts.ac.uk/?page id=235
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Fig. 2 Violin plot of frequency of flipping for KC4 dataset
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prediction flipping between runs is likely to be artificially reduced. We suspect that predic-
tion flipping by a classifier for a dataset is caused by the random generation of the folds. The
items making up the individual folds determine the composition of the training data and the
model that is built. The larger the dataset, the less prediction flipping occurs. This is likely
to be because larger datasets may have training data that is more consistent with the entire
dataset. Some classifiers are more sensitive to the composition of the training set than other
classifiers. SVM is particularly sensitive for KC4 where 26% of non-defective items flip at
least once and 44% of defective items flip. Although SVM performs well (MCC = 0.567),
the items it predicts as being defective are not consistent across different cross-validation
runs. A similar situation is observed with Ant, where the level of flipping for Rpart is 63%
while maintaining a reasonable performance (MCC = 0.398). However, the reasons for such
prediction uncertainty remain unknown and investigating the cause of this uncertainty is
beyond the scope of this paper. Future research is also needed to use our results on flipping
to identify the threshold at which overall defective or not defective predictions should be
determined.

The level of uncertainty among classifiers may be valuable for practitioners in different
domains of defect predictions. For instance, where stability of prediction plays a signif-
icant role, our results suggest that on average, Naı̈ve Bayes would be the most suitable
selection. On the other hand, learners such as RPart may be avoided in applications where
higher prediction consistency is needed. The reasons for this prediction inconsistency are
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yet to be established. More classifiers with different properties should also be investigated
to establish the extent of uncertainty in predictions.

Other large-scale studies comparing the performance of defect prediction models show
that there is no significant difference between classifiers (Arisholm et al. 2010; Lessmann
et al. 2008). Our overall MCC values for the four classifiers we investigate also suggest
performance similarity. Our results show that specific classifiers are sensitive to dataset
and that classifier performance varies according to dataset. For example, our SVM model
performs poorly on Ivy but performs much better on KC4. Other studies have also reported
sensitivity to dataset (e.g. Lessmann et al. (2008)).

Similarly to Panichella et al. (2014), our results also suggest that overall performance
figures hide a variety of differences in the defects that each classifier predicts. While over-
all performance figures between classifiers are similar, very different subsets of defects are
actually predicted by different classifiers. So, it would be wrong to conclude that, given
overall performance values for classifiers are similar, it does not matter which classifier
is used. Very different defects are predicted by different classifiers. This is probably not
surprising given that the four classifiers we investigate approach the prediction task using
very different techniques. From each category of system in our analysis, we observe a con-
siderable number of defects predicted by a single classifier. Overall, the NASA category
contains 43%, Comm 57% and OSS 34% of unique defects predicted by only one classifier.
Future work is needed to investigate whether there is any similarity in the characteristics of
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Fig. 6 Sensitivity analysis for KC4 using different classifiers. n = 64; p = 61

the set of defects that each classifier predicts. Currently, it is not known whether particular
classifiers specialise in predicting particular types of defect.

Our results strongly suggest the use of classifier ensembles. It is likely that a collec-
tion of heterogeneous classifiers offer the best opportunity to predict defects. Future work
is needed to extend our investigation and identify which set of classifiers perform best in
terms of prediction performance and consistency. This future work also needs to identify
whether a global ensemble could be identified or whether effective ensembles remain local
to the dataset. Our results also suggest that ensembles should not use the popular major-
ity voting approach to deciding on predictions. Using this decision-making approach will
miss the unique subsets of defects that individual classifiers predict. Such understanding has
previously not been obvious since only average overall performance figures for different
classifiers have been reported. Our results now support Kim et al. (2011)’s recommendations
on the use of classifier ensembles, and we, in addition, provide better understanding about
ensemble design. One way forward in building future prediction models could be stacking
ensembles. The stacking approach does not base its predictions on voting, but rather uses
an additional classifier to make the final prediction. Our recent study has shown that stack-
ing ensembles provide significantly better prediction performance compared to many other
classifiers (Petrić et al. 2016a). However, a substantial amount of future work is needed to
establish a decision- making approach for ensembles that will fully exploit our findings. Our
results further indicate the possible reasons for high false alarms previously attributed to
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ensembles. As many true defects are individually predicted by single classifiers, ensembles
based on majority voting approach would certainly misclassify such defects.

6 Threats to validity

Although we implemented what could be regarded as current best practice in classifier-
based model building, there are many different ways in which a classifier may be built.
There are also many different ways in which the data used can be pre-processed. All of
these factors are likely to impact on predictive performance. As Lessmann et al. (2008)
say classification is only a single step within a multistage data mining process (Fayyad
et al. 1996). Especially, data preprocessing or engineering activities such as the removal
of non-informative features or the discretisation of continuous attributes may improve the
performance of some classifiers (see, e.g., Dougherty et al. (1995) and Hall and Holmes
(2003)). Such techniques have an undisputed value. Despite the likely advantages of imple-
menting these many additional techniques, as Lessmann et al. we implemented only a basic
set of these techniques. Our reason for this decision was the same as Lessmann et al. ...com-
putationally infeasible when considering a large number of classifiers at the same time.
The experiments we report here each took several days of processing time. We did imple-
ment a set of techniques that are commonly used in defect prediction of which there is
evidence they improve predictive performance. We went further in some of the techniques
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we implemented, e.g. running our experiments 100 times rather than the 10 times that stud-
ies normally do. However, we did not implement a technique to address data imbalance
(e.g. SMOTE). This was because data imbalance does not affect all classifiers equally. We
implemented only partial feature reduction. The impact of the model building and data
pre-processing approaches we used are not likely to significantly affect the results we report.
This could be due to the ceiling effect reported in 2008, which states that prediction mod-
elling solely based on model building and data pre-processing cannot break through the
performance ceiling (Menzies et al. 2008). In addition, the range of steps we applied in our
experiments while building prediction models are comparable to current defect prediction
studies (e.g. repeated experiments, the use of cross validation, etc.).

Our studies are also limited in that we only investigated four classifiers. It may be that
there is less variation in the defect subsets detected by classifiers that we did not investigate.
We believe this to be unlikely, as the four classifiers we chose are representative of discrete
groupings of classifiers in terms of the prediction approaches used. However, future work
will have to determine whether additional classifiers behave as we report these four classi-
fiers to. We also used a limited number of datasets in our study. Again, it is possible that
other datasets behave differently. We believe this will not be the case, as the 18 datasets
we investigated were wide ranging in their features and produced a variety of results in our
investigation.

Our analysis is also limited by only measuring predictive performance using f-measure
and MCC metrics. Such metrics are implicitly based on the cut-off points used by the
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classifiers themselves to decide whether a software component is defective or not. All soft-
ware components having a defective probability above a certain cut-off point (in general,
it is equal to 0.5) are labelled as ‘defective’, or as ‘non-defective’ otherwise. For exam-
ple, Random Forest not only provides a binary classification of datapoints but also provides
the probabilities for each component belonging to ‘defective’ or ‘non-defective’ categories.
D’Ambros et al. (2012) investigated the effect of different cut-off points on the perfor-
mances of classification algorithms in the context of defect prediction and proposed other
performance metrics that are independent from the specific (and also implicit) cut-off points
used by different classifiers. Future work includes consideration of the different cut-off
points to the individual performances of the four classifiers used in this paper.

7 Conclusion

We report a surprising amount of prediction variation within experimental runs. We repeated
our cross-validation runs 100 times. Between these runs, we found a great deal of inconsis-
tency in whether a module was predicted as defective or not by the same model. This finding
has important implications for defect prediction as many studies only repeat experiments
10 times. This means that the reliability of some previous results may be compromised. In
addition, the prediction flipping that we report has implications for practitioners. Although
practitioners may be happy with the overall predictive performance of a given model,
they may not be so happy that the model predicts different modules as defective depend-
ing on the training of the model. Our analysis shows that the classifier’s inconsistency
occurs in a variety of different software domains, including open source and commercial
projects.

Performance measures can make it seem that defect prediction models are performing
similarly. However, even where similar performance figures are produced, different defects
are identified by different classifiers. This has important implications for defect prediction.
First, assessing predictive performance using conventional measures such as f-measure, pre-
cision or recall gives only a basic picture of the performance of models. Second, models
built using only one classifier are not likely to comprehensively detect defects. Ensembles of
classifiers need to be used. Third, current approaches to ensembles need to be re-considered.
In particular, the popular ‘majority’ voting decision approach used by ensembles will miss
the sizeable subsets of defects that single classifiers correctly predict. Ensemble decision-
making strategies need to be enhanced to account for the success of individual classifiers in
finding specific sets of defects. Our results support the use of classifier ensembles not based
on majority voting.

The feature selection techniques for each classifier could also be explored in the future.
Since different classifiers find different subsets of defects, it is reasonable to explore
whether some particular features better suit specific classifiers. Perhaps some classifiers
work better when combined with specific subsets of features.

We suggest new ways of building enhanced defect prediction models and opportunities
for effectively evaluating the performance of those models in within-project studies. These
opportunities could provide future researchers with the tools with which to break through
the performance ceiling currently being experienced in defect prediction.
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5.4 An Extended Analysis of “Different Classifier Find Dif-
ferent Defects”

Researchers have reported similar performances of software defect prediction models over
the last few decades. In our earlier [Bowes et al. 2015, 2017] work we showed that despite
the similar predictive performances of four different classifiers, they predict very different
subsets of defects. In the previous work we used public and commercial datasets. My
subsequent analysis has shown that some of those datasets are of questionable quality. To
ensure the validity of findings from our previous work, I repeat the experiments using cleaned
data. I find that the previously reported results hold given the cleaned datasets. In other
words, different classifiers do find unique subsets of defects.

5.4.1 Background

Many standalone classifiers have been used for predicting defects. Arisholm et al. [2010]
systematically studied the impact of classifiers, metrics and performance measures on pre-
dictive performance. They found that the choice of classifier has a limited impact on the
performance. Lessmann et al. [2008a] performed defect prediction using 22 classifiers and
demonstrated that the top performing 17 classifiers do not differ significantly. Malhotra and
Raje [2014] selected 18 classifiers which are a subset of the 22 classifiers used by Lessmann
et al. [2008a]. Accounting for the issues previously reported in software defect prediction (e.g.
the use of inappropriate performance measures and validation of models without separating
training and testing datasets), Malhotra and Raje [2014] compared the performance of the
classifiers using 6 datasets. The authors established that Naïve Bayes is the best performing
classifier with an average AUC of 0.76 across the datasets. According to Wahono [2015] the
most commonly used classifiers in software defect prediction are Logistic Regression, Naïve
Bayes, K- Nearest Neighbor, Neural Network, Decision Tree, Support Vector Machine and
Random Forest.

Ensembles have been increasingly used in software defect prediction. Tosun et al.
[2008] combined the Naïve Bayes, neural networks, and Voting Feature interval classifiers
to demonstrate they perform considerably better than Naïve Bayes alone. Wahono and
Suryana [2013] used bagging (see Section 3.3.1) to tackle the imbalance problem common in
software defect prediction datasets. Their results showed that bagging, when combined with
particle swarm optimisation for selecting attributes, can considerably improve prediction
performances. Wang and Yao [2013] compared resampling techniques, threshold moving,
and ensemble algorithms to investigate which has the greatest potential in dealing with
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imbalanced software defect prediction datasets. They found that boosting (see Section
3.3.1) is the most effective technique according to balance, G-mean, and AUC performance
measures. Panichella et al. [2014] demonstrated that different classifiers combined into
stacking complement each other and improve predictions over standalone classifiers in the
cross-project software defect prediction set-up.

With the exception of Panichella et al. [2014], previous studies presented predictive
performances of software defect prediction models using performance measures alone.
However, focusing only on performance figures, without examining the individual defects
each classifiers detects or does not detect, is limiting. Such an approach makes it difficult
to establish whether specific defects are consistently missed by all classifiers, or whether
different classifiers detect different subsets of defects. Establishing the set of defects each
classifier detects, rather than just looking at the overall performance figures, allows the
identification of classifier ensembles most likely to detect the largest range of defects.

Therefore, in our two studies repeated here, we went beyond performance measure num-
bers and set out to answer whether different classifiers find different defective components.
In Paper 2 we found that 4 different classifiers achieve similar prediction performances but
find unique subsets of defects. We extended the analysis reported in Paper 2 to 6 additional
open source and commercial datasets. In the extended work, we used 3 open source datasets
available at PROMISE and three commercial datasets for which we collected defect data. We
found that the results reported in Paper 2 hold across the public and commercial datasets.
We reported those results in Paper 3.

However, the comprehensive set of integrity checks was not carried out on all datasets
reported in the two papers. In Paper 2 we did not use the NASA datasets that satisfy the
integrity checks defined in Petrić et al. [2016]. In Paper 3, both, the NASA datasets and
commercial datasets were not cleaned by all integrity checks defined in Section 4.5. The
PROMISE datasets were cleaned according to the rules reported in the paper (see Section
5.3), which does not contain the comprehensive list of integrity checks. In this extended
analysis I address the aforementioned shortcomings.

5.4.2 Methodology

The selection of classifiers and datasets in this analysis is inspired by Paper 2 and Paper
3. I use four classifiers: Naïve Bayes, RPart, SVM and Random Forest. I select these
four classifiers because they build models based on different mathematical properties. They
are also the most commonly used classifiers in defect prediction [Wahono 2015]. Naïve
Bayes makes predictions by applying Bayes’ theorem. Even though Naïve Bayes makes
an assumption that attributes are independent, which is rarely the case with defect data, it
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performs well [Hall et al. 2012, Wahono 2015]. RPart builds a decision tree based on the
information entropy of the subsets of training data which can be achieved by splitting the
data using different independent attributes. SVMs transfer each data instance as a point to
an n-dimensional space, where n is the number of attributes. It then finds a hyper-plane
that adequately separates defective from non-defective class instances. Random Forest is
an ensemble approach which combines multiple decision trees and uses majority-voting to
make the final prediction. These classifiers are described in more detail in 3.2.

Tuning is an important step when building prediction models. Therefore, I tune Random
Forest by varying the number of trees from 50 to 200 in steps of 50. For SVM using a radial
base function I tune γ from 0.25 to 4 and C from 2 to 32. However, not all models perform
significantly better when tuned. Default parameters and splitting algorithms for Naïve Bayes
and RPart are known to work well, so I do not perform tuning of these two classifiers. I repeat
the experiment 100 times. I use the 10-fold cross validation by splitting each dataset into 9
folds used for training and the last fold for evaluating the performance of the model. This
was repeated with each fold being held out in turn. I use Matthews Correlation Coefficient
(MCC) to estimate the performance of the models. MCC has been reported as a suitable
performance measure for software defect prediction as it deals well with highly imbalanced
data [Shepperd et al. 2014].

I use 14 open source and 3 commercial datasets in this analysis. I do not use the NASA
datasets due to their poor quality. When the NASA datasets are cleaned by the complete
list of integrity checks, the majority of the datasets become unusable for defect prediction
as shown in Section 4.5. Table 5.1 depicts the proportion of affected data points in the
commercial datasets, where only the HA system is affected by only 0.7%.

Table 5.1 Commercial datasets cleaned according to the integrity checks described in Section
4.5

Dataset
# of modules
pre-cleaned

# of modules
post-cleaned

% loss due
cleaning

PA 4996 4996 0.0
KN 4314 4314 0.0
HA 9062 8998 0.7

I select the 14 PROMISE datasets based on the following criteria. First, I obtain all defect
datasets from the PROMISE repository and sort them by the number of data instances. I
then select a single version for each project with the highest number of data instances. Two
datasets are exceptions to this: jedit and xalan, as the versions 4.3, and 2.7 contain a small
number of tuples belonging to either class. As in this experiment I aim to answer whether
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Table 5.2 Datasets used in the repeated experiment

Dataset
# of modules
pre cleaning

# of modules
post cleaning

% loss due
cleaning

% defective methods
post cleaning

ant 1.7 745 722 3.1 23.0
arc 234 210 10.3 12.4
camel 1.6 965 877 9.1 21.0
ivy 2.0 352 345 2.0 11.6
jedit 4.2 367 363 1.1 13.2
log4j 1.2 205 202 1.5 92.6
lucene 2.4 340 335 1.5 59.1
poi 3.0 442 397 10.2 64.5
redaktor 176 169 4.0 14.8
synapse 1.2 256 244 4.7 35.2
tomcat 858 791 7.8 9.7
velocity 1.6 229 209 8.7 36.4
xalan 2.6 885 724 18.2 44.6
xerces 1.4 588 482 18.0 77.0

classifiers find different defective components, I use a diverse set of datasets to verify the
validity of my previous findings.

To mitigate threats due to data integrity, I repeat the experiment reported in Section 5.3
by using the complete list of integrity checks described in 4.3. I do not repeat the experiment
by using all open source and commercial datasets. I make the following decisions when
selecting datasets. I use the 14 datasets from the PROMISE repository listed in Table 5.2.
I do not use the NASA datasets as they are highly problematic (see Chapter 4), nor the
commercial datasets as even after the cleaning the HA system gets affected by less than 1%.

The experiments in Paper 2 and Paper 3 provide analyses which go beyond the research
question I aim to answer in this chapter. Therefore, the experiments reported in the two papers
are partially repeated here. I exclude the parts of the experiment which do not contribute to
answering the research question set out in Section 5.1.

5.4.3 Results

Table 5.3 shows Matthews Correlation Coefficient (MCC) values for the four classifiers across
the 14 PROMISE datasets. To validate whether classifiers achieve similar performances
I perform the Friedman’s statistical test. With the p = 0.05 level of confidence I confirm
that there is a significant difference in the classifiers’ performances. The statistical test is
carried out for the MCC values on the 14 datasets and the four classifiers. I carry out a
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further statistical analysis to establish which classifiers outperform others. For this purpose I
select a post-hoc Nemenyi’s test. Unlike Friedman’s test which only verifies whether there
is a significant difference between classifiers’ performance or not, Nemenyi’s test reports
these differences between individual classifiers. Both, Friedman’s and Nemanyi’s tests have
previously been used for the same purpose by Lessmann et al. [2008a].

Table 5.3 Performance Measures All Datasets by Learner

Classifier Average StDev
SVM 0.287 0.191
RPart 0.375 0.190
NaiveBayes 0.274 0.105
RandomForest 0.419 0.165

The post-hoc analysis shows no significant differences between the SVM, Naïve Bayes,
and RPart classifiers. Random Forest outperforms SVM and Naïve Bayes and has typically
achieved good performances in previous studies [Bowes et al. 2017, Lessmann et al. 2008a].
However, the overall performance figures depicted in Table 5.3 mask a range of different
performances by classifiers when used on individual datasets. Figure 5.1 demonstrates the
true positive instances for four PROMISE datasets. These four datasets are selected as they
demonstrate the highest diversity of predictions achieved by individual classifiers. Overall,
the results of this extended analysis support our previous findings (see Section 5.3) which
suggest that different learners find different defective components.

From Figure 5.1 it is evident that SVMs find the majority of unique defects in each dataset
(except ant), which other classifiers fail to correctly predict. As SVMs make predictions by
finding the most suitable separation plane in high dimensional data, it is possible for them
to capture complex patterns in data. However, as performance values suggest, SVMs do
not perform the best. This is because SVMs make more incorrect predictions compared to
some other classifiers. For instance, SVMs have in total predicted 103 non defective data
instances as defective, which is more than Random Forest and RPart classifiers together.
Overall, SVMs are a potential candidate to be combined with other classifiers due to their
ability to identify a considerable number of unique defects. Apart from SVMs, Naïve Bayes
predicts a substantial number of unique defects for the ant and cam datasets.

Figure 5.2 depicts overall individual predictions made by different learners. SVMs clearly
predict the highest number of unique defects, followed by Naïve Bayes, RPart, and Random
Forest. Even though SVMs find most defects, they achieve the worst predictive performances.
Random Forest, on the other hand, finds the least number of unique defects but achieve the
best predictive performance. The reason for this is the number of false positive and false
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Fig. 5.1 True positive rates for the four top diverse datasets

negative predictions, which is higher for SVMs compared to Random Forest. Therefore, it
is likely that a certain combination of classifiers could detect more defects than any of the
classifiers individually. These results suggest the use of ensembles, which are described in
the Chapter 6. Similar findings are reported in Paper 2 and Paper 3.
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Fig. 5.2 Confusion matrix for all 14 PROMISE datasets

5.4.4 Conclusion

Paper 2 and Paper 3 report on the ability of classifiers to find different subsets of defects.
Both studies use datasets which are of poor quality. For this reason I repeated the experiments
to ensure the validity of our previous results. Even when the experiments are repeated using
the clean and diverse datasets, I establish that each classifier detects distinct subsets of defects
as depicted in Figures 5.1 and 5.2. This result suggests the use of ensembles of machine
learners, as standalone classifiers do not comprehensively detect all defects. In addition, the
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observation from Figures 5.1 and 5.2 suggest that the majority-voting approach should not be
used in software defect prediction. As many true defects are individually predicted by single
classifiers, ensembles based on majority-voting approach would misclassify such defects.

5.5 Summary of the Research Question

RQ1. Do models created by different classifiers find different defective components?
Paper 2, Paper 3 and the extended analysis reported in Section 5.4 suggest that despite

the similar predictive performances, models created by different classifiers find unique
subsets of defects.

5.6 Summary of My Contributions

Performance measures can make it seem that software defect prediction models are per-
forming similarly. However, even where similar performance figures are obtained, different
defective components are identified by different classifiers. This finding suggests that no in-
dividual classifier can comprehensively detect all defects different classifiers find. Ensembles
of classifiers need to be used, which is investigated in more detail in Chapter 6. The results
also suggest that the current approaches for ensembles in software defect prediction need to
be reconsidered. In particular, the popular ‘majority’ voting approach could miss substantial
subsets of defects that standalone classifiers correctly predict. Ensembles decision-making
strategies that account for the success of individual classifiers should be used.

5.7 Summary of the Contributions to the Papers

The initial version of Paper 2 was rejected, so I extended the work by addressing all issues
raised by the reviewers. I altered the paper in several ways. First, I modified the parts of
the paper describing the key findings which are “even though overall performance figures
between classifiers are similar, very different subsets of defects are predicted by different
classifiers” and “the effect of prediction ‘flipping’ amongst the four classifiers used in the
study”. I modified the abstract, introduction, results, discussion and conclusion sections to
focus the narrative of the paper in the direction of the two key findings. Second, I revised the
background section to account for state-of-the-art related developments in software defect
prediction. Third, I compared our work with the work of Panichella et al. [2014]. Finally, I
independently repeated all experiments described in the paper before it was submitted for
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the second time. David Bowes conducted the initial experiment and analysis, and together
with Tracy Hall shaped the paper to its full form. Tracy Hall and myself made the final
improvements to the paper. In terms of Paper 3, I selected and pre-processed the extended set
of datasets. I ran all analyses using the extended set of datasets. I conducted and documented
all comparisons between the results of existing and extended sets of datasets. I made all
written additions to the paper which are finally improved by Tracy Hall. I independently
conducted the extended analysis reported in Section 5.4.

5.8 Threats to Validity

A subsequent threat to validity of the experiment reported in Section 5.4, compared to the
already published studies, is the selection of datasets. As it is often the case in software
engineering studies, results do not always generalise. However, my selection of datasets has
specifically been targeted to avoid the non-generalisability problem. All datasets I selected
are from different projects, with very different levels of balance in both classes. Despite
these differences, the conclusion of the repeated experiment is unchanged. All datasets were
cleaned using state-of-the-art cleaning rules, which adds to the rigour of the conclusions I
made.



Chapter 6

Building Ensemble Learners to Improve
Prediction Models

Building better-performing prediction models may be possible using the differences in
predictions that different models produce. I have confirmed that models created by different
classifiers do not make the same decisions. If they had, we would only ever need one classifier.
I can therefore investigate if the differences in the decisions can be exploited. In this chapter
I investigate if models from different classifier families and different tuning can improve
the performance of an ensemble of learners. My investigation shows that ensembles with
diverse sets of classifiers can improve software defect prediction. A few diverse classifiers
are sufficient to build effective ensemble models. The stacking technique should be preferred
over majority-voting as unique subsets of defects are identified by some classifiers and not
by others.

6.1 Prelude

In this chapter I investigate the following research questions:

RQ2 How can software defect prediction models be improved by combining classifiers
predicting different defective components?

RQ2(a) Can stacking ensembles based on explicit diversity improve prediction per-
formance compared to other software defect prediction models?

RQ2(b) How many classifiers combined into stacking ensembles are needed to provide
good software defect prediction models?



106 Building Ensemble Learners to Improve Prediction Models

RQ2(c) How much diversity and which base classifiers need to be combined to provide
good ensemble models?

The overall aim of this chapter is to find whether defect models can be improved by accounting
for diverse predictions of different models. I perform an empirical study to answer the
research questions. The study is published as a conference paper:

Paper 4. Petrić J, Bowes D, Hall T, Christianson B, Baddoo N. Building an ensemble
for software defect prediction based on diversity selection. InProceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement 2016 Sep 8 (p. 46). ACM.

The paper is laid out in Section 6.3. My findings show performance improvement
using stacking ensembles compared to other software defect prediction models. Diversity
amongst classifiers used for building ensembles is essential to achieving these performance
improvements.

This chapter is organised as follows. The next section explains the need for ensembles in
software defect prediction, followed by the section incorporating the main study. Summaries
of my contributions and contributions to the paper are then discussed.

6.2 The Need for Ensembles to Improve Software Defect
Prediction Models

A substantial amount of research has been done to identify best performing classifiers.
Mizuno and Kikuno [2007] report that, of the techniques they studied, Orthogonal Sparse
Bigrams Markov models (OSB) are best suited to software defect prediction. [Bibi et al.
2006] report that Regression via Classification works well. Khoshgoftaar et al. [2002]
report that modules whose defect proneness are predicted as uncertain according to the
χ2 statistical test, can be effectively classified using the TreeDisc technique. Hall et al.
[2012]’s systematic literature review shows that Naïve Bayes and Logistic Regression perform
well. A large empirical study with the aim to compare 22 classifiers by Lessmann et al.
[2008a] demonstrates that no significant difference in performance exists amongst the top
17 performing classifiers. Another empirical analysis by Malhotra and Raje [2014] which
compares 18 classifiers confirms that most models achieve similar prediction performances
of (with the AUC around 0.7).

As described in more detail in Section 3.3, an ensemble of machine learners is a strategy to
combine predictions made by multiple classifiers. This approach typically achieves superior
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performances over individual classifiers [Polikar 2006, Rokach 2009]. Some ensemble
techniques have been investigated in the domain of software defect prediction. Mısırlı et al.
[2011b], Sun et al. [2012], Wang et al. [2011] demonstrate the performance improvement by
using ensembles. These works suggest that a collection of heterogeneous classifiers offer
the best opportunity to predict defects. However, the approach to model an ensemble has a
substantial effect on how well the model will perform in software defect prediction.

Panichella et al. [2014] recognise that different classifiers find different defective com-
ponents and use an ensemble for cross-project software defect prediction. Di Nucci et al.
[2017] suggest a variant of the stacking ensemble called ASCI, where classifiers are selected
based on their ability to predict individual software units. Whereas in this work I provide pre-
dictions from the first layer of classifiers to a meta-classifier in order to predict defectiveness,
Di Nucci et al. [2017] provide the original independent variables. Their goal is to predict the
most suitable classifier given the properties of a software unit. As I shall show in this chapter,
carefully designed ensemble classifiers can enhance the prediction performance of software
defect prediction models.

6.3 Building an Ensemble for Software Defect Prediction
Based on Diversity Selection

In this section I present Paper 4. This paper is published as a conference paper at the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.
This study uses eight open–source datasets from the PROMISE repository to answer the
research questions set out in Section 6.1. The paper can be summarised as follows. RQ2(a)
The stacking approach and diverse learners show relative increase in the number of identified
defects compared to some other commonly used ensemble techniques. RQ2(b) Stacking en-
sembles made of three classifiers are sufficient to achieve improved prediction performances.
RQ2(c) Classifiers in the stacking ensemble should be diverse and from different classifier
families.
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ABSTRACT
Background: Ensemble techniques have gained attention
in various scientific fields. Defect prediction researchers have
investigated many state-of-the-art ensemble models and con-
cluded that in many cases these outperform standard single
classifier techniques. Almost all previous work using en-
semble techniques in defect prediction rely on the major-
ity voting scheme for combining prediction outputs, and on
the implicit diversity among single classifiers. Aim: Investi-
gate whether defect prediction can be improved using an ex-
plicit diversity technique with stacking ensemble, given the
fact that different classifiers identify different sets of defects.
Method: We used classifiers from four different families and
the weighted accuracy diversity (WAD) technique to exploit
diversity amongst classifiers. To combine individual predic-
tions, we used the stacking ensemble technique. We used
state-of-the-art knowledge in software defect prediction to
build our ensemble models, and tested their prediction abil-
ities against 8 publicly available data sets. Conclusion:
The results show performance improvement using stacking
ensembles compared to other defect prediction models. Di-
versity amongst classifiers used for building ensembles is es-
sential to achieving these performance improvements.

Keywords
Software defect prediction, software faults, ensembles of learn-
ing machines, stacking, diversity
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1. INTRODUCTION
A software defect can cause programs to misbehave, lead-

ing to negative effects for the software industry. Defects that
are fixed pre-release can potentially save companies from
high repair costs and a bad reputation. The software in-
dustry spends billions of pounds annually finding and fixing
defects. Defect prediction assists practitioners to promptly
identify parts of software likely to contain defects, and act
accordingly before the system is delivered to users. Predic-
tion modelling has been used in several hundred studies con-
ducted in software defect prediction in the last few decades.
Some of the most recent work in software defect prediction
literature has been covered in several meta-analysis and sys-
tematic literature reviews [2, 7, 12, 30].

As a matter of usual practice, researchers have used dozens
of publicly available defect data sets, and tested different
modelling techniques on those data sets. The standard ap-
proach to defect prediction is to use historical data con-
taining quantitative measures about software modules. The
historical data is fed into machine learners that produce pre-
diction models. These prediction models can then be used to
determine which software instances contain defects, by pro-
viding them new instances for which the defectiveness status
is unknown to a model. Menzies et al. hypothesized that the
current standard approaches used in defect prediction have
reached their limits, and that new approaches are needed to
make better predictions [14]. In this work, we focus on using
ensemble techniques to make improved predictions.

Existing defect prediction studies generally do not con-
sider whether different models find different sets of defects.
Lessmann et al. did a study using 22 different machine learn-
ers, and concluded that the top 18 classifiers perform simi-
larly [11]. The result that the majority of classifiers perform
similarly suggests that it does not matter which classifiers
are chosen to build prediction models. Similar average re-
sults that various classifiers produce could potentially hide
different sets of defects that they identify. However, not
all defects are the same. Diverse mathematical properties
underlying different classifiers may have an effect on which
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defects are found by one classifier, and not by others. Re-
cently, Panichella et al. have confirmed that in cross-project
defect prediction different techniques could be combined to
find a wider range of defects than by just using single classi-
fiers [17]. In within-project defect prediction, we previously
confirmed that different machine learners detect very differ-
ent subsets of defects [1]. Therefore, we now aim to identify
whether different machine learners, when combined, can en-
hance the performance of prediction models.

To achieve our aim, we performed an experiment to es-
tablish whether ensemble techniques based on diversity and
stacking can improve defect prediction. Ensembles of ma-
chine learners combine multiple classifiers and join their pre-
diction outputs into a final solution. It is widely accepted
by the machine learning community that ensemble mod-
els should contain diverse classifiers and that their outputs
should be combined in a way that will amplify the correct
decisions of single classifiers. Some ensemble techniques (e.g.
Bagging) implicitly achieve diversity amongst classifiers by
randomising a data set in each iteration of the algorithm.
Since base classifiers are trained on different training sets,
each classifier should make different predictions. In this case,
the diversity amongst different classifier families is not ac-
counted for. However, it is likely that ensemble modelling
can be improved in the context of defect prediction. We use
an explicit diversity scheme, which targets only the most di-
verse predictors from several different families to build our
ensembles, since different classifiers discover different sub-
sets of defects [1, 17]. Schemes like majority voting may not
be suitable for defect prediction as unique subsets of defects
are identified by some classifiers and not by others, making
majority voting a non-optimal approach for combining en-
semble outputs. Therefore, we use the stacking technique.
Stacking performs a classification task with the prediction
results previously made by individual classifiers. The output
produced by this classification task gives the final prediction.
Particularly, we want to address the following research ques-
tions:

RQ1 Can stacking ensembles based on explicit diversity im-
prove prediction performance compared to other defect
prediction models?

RQ2 How many classifiers combined into stacking ensem-
bles provide good defect prediction models?

RQ3 How much diversity and which base classifiers are usu-
ally combined in stacking ensemble models?

In this work we make several contributions. First, we show
that ensemble models based on classifiers from different fam-
ilies can improve defect prediction. We further explore how
much diversity affects defect prediction models and what are
the most popular classifiers chosen for building the stacking
ensembles. We also show that only a few, but diverse classi-
fiers, are sufficient to build effective ensemble models. This
knowledge could help other researchers and practitioners to
build improved defect prediction models.

Our paper is structured as follows. In the next section, we
give an overview of software defect prediction and ensemble
techniques. In the third section we detail our methodology
followed by the results and discussion in the fourth section.
We present the threats to validity of our experiment in the
fifth section, give conclusiouns in the sixth section, and in-
troduce ideas for future work in the seventh section.

2. BACKGROUND
Software defect prediction uses independent and depen-

dent variables, and mathematical models to predict error-
prone locations in software. Independent variables are quan-
titative measures of software, generally depicting the size
and complexity of its components. Size, complexity, and
CK object-oriented are the most common metrics used in
studies of defect prediction [12]. Fenton and Neil showed
that size is in a complex relationship with defects, resulting
in studies that range from size giving good prediction to very
poor prediction results [3]. Shepperd criticised complexity
measures as being a proxy for several other metrics used
in defect prediction [23]. Much effort has been put to engi-
neering new metrics for defect prediction. Recently, Shippey
presented a new metric based on the Java abstract syntax
tree and showed usefulness in predicting a specific subsets of
defects [26]. Zimmermann and Nagappan used graph theory,
showing that software modules with a greater degree of cen-
trality tend to be more defective [37]. Similarly, Petrić and
Galinac used graph theory to show that some graph struc-
tures are more related to defects than others [19]. However,
there is no definite agreement about which metric is superior
for defect prediction. Most defect prediction studies tend to
use a combination of available metrics.

Independent variables are usually combined with depen-
dent variables in the form of a data set. Each data set
contains a set of software units (modules), where each mod-
ule is described with its metrics (independent variables) and
the corresponding defectiveness (dependent variable). The
dependent variable can be a number depicting the density
of defects contained in a module, or a flag stating whether
a module is defective or not. The systematic collection
of such data is a complex and time consuming task. To
tackle this problem, the PROMISE repository has been es-
tablished containing a collection of publicly available defect
data. Although very popular, some PROMISE data sets
have been shown to be of low quality [5, 18]. However,
for the sake of comparability with other studies, many re-
searchers have used the original versions of the data sets
available at PROMISE [7].

Researchers mostly use machine learning classifiers in the
context of defect prediction [30]. Classifiers are first trained
by using historical defect data, and then exploited to make
predictions on the new data, previously not seen by a model
[28, 33]. Lessmann et al.’s comprehensive study, which was
performed using 22 different classifiers, showed no signifi-
cant difference among the top 18 classifiers [11]. Lessmann
et al. have presented average figures for the prediction per-
formances of their classifiers. We showed that these perfor-
mance figures hide the sets of defects identified by using dif-
ferent prediction models [1]. Specifically, we demonstrated
that different classifiers are capable of finding different de-
fects, where some subsets of defects are unique to a specific
classifier. Panichella et al.’s study reported similar conclu-
sions in the context of cross-project defect prediction [17].

Following our findings, and those of Panichella et al., we
explore the use of ensembles of machine learners. The idea
of ensemble models is to combine multiple single classifiers
with the aim of improving the predictive performance of
single classifiers [15, 21]. In the last few years, ensembles
of machine learners have been occasionally used in software
defect prediction. One of the fundamental motivations for
using ensembles is the performance bottleneck [14] when us-
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ing single classifiers. Wang et al. conducted a comparison
study between popular ensemble classifiers and some single
classifiers [31]. They showed that in many cases ensemble
classifiers outperform other classifiers, including the single
Näıve Bayes algorithm. Kultur et al. presented an ensemble
of neural networks with associative memory that achieve
more accurate and stable results compared to neural net-
works themselves [8]. More recent work also demonstrates
the efficacy of ensemble learners against more conventional
methods such as Support Vector Machines [10]. Particularly,
Laradji et al. demonstrated that ensemble classifiers made
up of carefully devised learners and using a few useful fea-
tures can achieve improved results over other conventional
models. The reasons for using ensembles in predictive mod-
elling are covered in detail by Polikar [20].

Two things should be carefully considered when building
ensemble models. First, ensembles should be built from di-
verse classifiers. Ensembles should include classifiers that
make different incorrect predictions (because classifiers that
make the same prediction errors do not add any informa-
tion). Second, combining the outputs from all classifiers
should be done in a way that encourages the correct decisions
are amplified and ignores incorrect decisions. Since different
classifiers find different defects, techniques commonly used
in defect prediction for combining classifier outputs, such
as majority voting, should be reconsidered. Current ensem-
ble models in software defect prediction are not specifically
designed to combine prediction outputs in such a way that
will amplify correct predictions. If several prediction models
have uniquely identified different sets of defects, then ma-
jority voting will not be a suitable technique to increase pre-
diction performance. On the contrary, some of the defects
uniquely identified by single classifiers will now be misclas-
sified, downgrading the overall performance of the ensemble
models. Combining the decisions of individual classifiers can
be achieved using other techniques rather than majority vot-
ing. In this study, we use the stacking approach first intro-
duced by Wolpert [34]. Stacking uses a two layer approach,
where the first layer is constituted of individual classifiers,
all trained on the same training data. The second layer, also
called the meta layer, uses the output predictions of individ-
ual classifiers from the first layer as an input. This input is
fed into the second layer classifier which then makes the final
predictions. Therefore, the stacking approach seeks patterns
in predictions made by the first layer, rather then ignoring
classifiers that have minority “votes”. Consequently, if a
specific subset of defects is detectable only by one classifier,
stacking will still have an opportunity to correctly classify
such instances. The majority-voting approach would cer-
tainty misclassify such instances, since all but one of the
classifiers would predict non-defective.

Many techniques for measuring and achieving higher di-
versity have been proposed by Kuncheva and Whitaker [9].
Some of these measures are Correlation diversity, Q-statistics,
Disagreement and Double Fault Measures, Entropy Mea-
sures, Kohavi-Wolpert Variance, Weighted Accuracy and
Diversity (WAD), etc. Kuncheva and Whitaker argue that
there is no diversity measure that consistently correlates
with higher accuracy. They recommend the use ofQ-statistics
because of its simplicity and intuitive meaning. WAD is an-
other relatively simple diversity measure proposed by Zeng
et al. [35], who showed that using WAD in combination
with a bagging approach can boost prediction performance.

We use WAD in this work as a diversity measure in defect
prediction.

3. METHODOLOGY

3.1 Data sets
We used several public data sets from PROMISE1, the

repository commonly used by researchers in software defect
prediction. We selected 8 data sets shown in Table 1, which
come from different domains, to ensure diversity among pos-
sible defects that can appear in each project. We performed
data cleaning to remove software modules that comply with
the following rules:

• LOC = 0

• AnyNumericalMetric < 0

• CCavg > CCmax

• NOC > LOC

• NPM > WMC

We remove instances where lines of code (LOC) is 0, or any
numerical metric is negative as suggested by Shepperd et al.
[25]. We additionally remove instances where the average
cyclomatic complexity (CCavg) exceeds the maximal cyclo-
matic complexity (CCmax), number of comments (NOC) is
greater than number of lines of code and number of public
methods for a class (NPM) is greater than weighted methods
per class (WMC).

3.2 Base classifiers
We experimented with four different classifiers, namely

Näıve Bayes , C4.5 decision tree, K-nearest neighbour, and
sequential minimal optimisation. These four were chosen
since classifiers from different “families” were previously suc-
cessful in finding different defects [1, 17]. Näıve Bayes be-
longs to a family of linear classification techniques, where
the prediction of a model is made according to conditional
probabilities. It requires all variables to be categorical and
assumes full independence among them. C4.5 is a tree-based
learning algorithm that produces a structured classification
model on which all predictions are based. The C4.5 algo-
rithm uses information theory to make an optimal decision
about node splitting on the attribute which best separates
the data. K -nearest neighbour makes predictions based on
the class values of closest neighbours. It uses a distance
algorithm to find K nearest neighbours of the instance be-
ing predicted, and then assigns to that instance the highest
occurring class of its neighbours. Sequential minimal opti-
misation is used for training Support Vector Machines in a
more nearly optimal way than its predecessor algorithms.
Support Vector Machine algorithms are designed for solving
non-linear problems by mapping data points into a higher-
dimensional space and separating the classes with a linear
hyper-plane. The hyper-plane is usually chosen to maximise
the distance between classes.

From each base classifier we have built several different
models, changing the classifier parameters to address two
important ideas. First, parameter tuning has been shown

1http://openscience.us/repo/
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Table 1: PROMISE data sets used in our experiment

Id Data set Language
# of modules

before cleaning
# of modules
after cleaning

% loss due to
cleaning

% defective methods
after cleaning

Description

1 ant-1.5 Java 293 292 0.3 11.0
A Java library and a command tool
commonly known for building Java

programs.
2 ant-1.6 Java 351 350 0.3 26.3 Same as ant-1.5
3 ant-1.7 Java 745 742 0.4 22.4 Same as ant-1.5

4 jedit-4.1 Java 312 312 0.0 25.3
JEdit is a text editor mostly
used as a programming tool.

5 jedit-4.2 Java 367 367 0.0 13.1 Same as jedit-4.1

6 tomcat Java 858 852 0.7 9.0
Apache tomcat is a web-server

for running Java programs.

7 xalan-2.5 Java 803 797 0.7 48.6
Xalan is a library for transforming
XML documents into HTML, text

or other XML document types.
8 xalan-2.6 Java 885 880 0.6 46.7 Same as xalan-2.5

to have an important role when building prediction mod-
els [6, 27]. Support Vector Machine classifiers are known to
perform badly if not tuned. Decision trees might produce
over-optimistic models if the number of possible branches is
unlimited. K -nearest neighbour has problems with unbal-
anced data since the probability of predicting the majority
class is higher. Näıve Bayes can use different kernel estima-
tors to convert continuous into nominal data. Second, dif-
ferent parameters enrich diversity among classifiers, possibly
making mistakes in different instances, which is a valuable
characteristic when building ensembles [20]. When more
classifiers make mistakes on different instances, a strategic
combination of these classifiers may reduce the total error.
In total, 15 base classifiers were used, each coming from one
of the four families and using different model parameters.

We used two different parameters for a Näıve Bayes (NB)
learner. One parameter uses a kernel density estimator
rather than normal distribution for continuous attributes.
The second parameter uses supervised discretisation for pro-
cessing continuous attributes. The purpose of both parame-
ters is to best split continuous attributes into nominal ones,
since the Näıve Bayes classifier works only with categorical
values. Two different parameters are usually tuned in K -
nearest neighbour (kNN) learners, the k value and the near-
est neighbour searching algorithm. The first parameter, k,
denotes how many nearest neighbours the algorithm should
take into consideration. The k parameter should be an odd
number higher than 0. We chose three different values: 3,
5 and 7. Further increase of the parameter k may have a
negative impact on our learners since defect prediction data
is generally imbalanced. We left the default value for the
nearest neighbour searching algorithm, which is the Euclid-
ian distance. For the Support Vector Machines algorithm
we have used sequential minimal optimisation (SMO). SMO
uses less complex methods than its predecessors for train-
ing support vector machines, providing for the creation of
faster models. For SMO we varied the complexity param-
eter C, assigning four different values: 1, 10, 25 and 50.
The complexity parameter C controls the margin that sep-
arates the defective instances from the non-defective ones.
If the C parameter is very small, the SMO algorithm will
try to maximise the margin between two classes. On the
other hand, higher C values will force the SMO algorithm
to find margins that make the least amount of mistakes on
the training data. Consequently, increasing the C values

can lead to over-fitting, since the margin is tightly adjusted
to the training data. Other parameters for SMO were left at
their default values. The last family of classifiers is decision
tree. The Weka implementation of decision tree is called
J48. We varied the confidence factor of the J48 classifier
using five different values: 0.25, 0.20, 0.15, 0.10, 0.05. Low-
ering the confidence factor, the J48 classifier will result in
more pruning.

3.3 Diversity
Diversity is one of the key components when building en-

semble models. Having multiple classifiers that make mis-
takes on the same instances does not add any additional in-
formation that we did not have with only a single classifier.
Therefore, when building ensemble models, diversity should
ensure that we include only classifiers that make mistakes
on different instances. The common and simplest way of
calculating diversity measures is between each pair of clas-
sifiers. An overall diversity is then calculated by averaging
these pair-wise values. Several measures are frequently used
to measure the diversity between pairs of classifiers. Corre-
lation diversity measures the diversity between each pair of
classifiers by obtaining the correlation between two classi-
fier outputs. The Q-Statistic gives positive values when two
classifiers make correct predictions, negative values for in-
correct predictions and 0 for the maximal diversity between
classifiers. Weighted accuracy and diversity (WAD), intro-
duced by Zeng et al. [35], belongs to the family of diversity
measures that compare two classifiers at a time. The WAD
measure works on a similar principle to the F -measure by
finding a weighted harmonic mean between accuracy and
diversity:

WADα,β(Acc,Div) =
Acc ·Div

β ·Acc+ α ·Div (1)

when α+ β = 1. The α and β parameters represent weights
that control the importance of accuracy and diversity, where
α > β gives more focus on accuracy, and α < β focuses more
on diversity. When α > β, the WAD measure combines mul-
tiple classifiers that are more accurate rather than diverse,
and vice versa. In our experiment the accuracy in the WAD
equation was replaced with precision, since accuracy is not a
suitable measure for imbalanced data sets commonly found
in SDP [4].
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Diversity was computed among all pairs of classifiers as:

Div =
2

m(m− 1)

m−1∑

i=1

m∑

j=i+1

divi,j (2)

where m denotes the number of base classifiers in an en-
semble, and i, j indexes of each base classifier. Diversity
between each pair of classifiers divi,j was calculated using
the following equation:

divi,j =
N10 +N01

N00 +N11 +N10 +N01
(3)

where N11 represents the correct prediction of both clas-
sifiers, and N10 the situation where classifier i makes the
correct prediction whilst classifier j incorrect. N00 denotes
incorrect prediction of both classifiers, and finally N01 de-
picts correct prediction of the classifier j, but incorrect pre-
diction of the classifier i.

3.4 Experimental setup
We used Song et al.’s and Gray’s software defect predic-

tion frameworks to build our predictors [6, 28]. The frame-
work is divided into two parts, a scheme evaluation stage and
a defect prediction stage. The scheme evaluation stage eval-
uates the performance of different classifiers to find the best
prediction models among all classifiers. At this stage only
training data is used, which is further split into the training'
and validation sets. The test set is left out from the eval-
uation stage and used in the next, defect prediction stage.
The defect prediction stage consists of the final prediction
model that uses the test set for evaluating the model perfor-
mance. Each experiment is run using 10 times 10 fold strat-
ified cross-validation. Repeating an experiment 10 times, as
well as using cross-validation, reduces the amount of vari-
ance in the evaluation of prediction models. The stratified
technique guarantees the same distribution of the minority
and the majority class as in the original data for each fold,
preventing folds constituted only from the majority class. To
ensure that we use only relevant attributes, we performed
correlation-based feature selection on all training sets. A
subset of attributes for each fold was recorded, and applied
on the test set at the defect prediction stage.

Base learners can be combined in many different ways, as
well as made up of a lot of different classifiers, however for
an optimal model this step should be carried out with care.
Although ensembles have still not been extensively used in
software defect prediction, until now researchers have usu-
ally used some sort of majority voting as a decision making
rule for ensembles [16, 22]. However, we showed in our previ-
ous work that using majority-like voting mechanisms results
in some defects being ignored by such ensembles [1]. Simi-
larly to Panichella et al. [17], we proposed the stacking ap-
proach when building ensemble based prediction models for
software defect prediction. Still, combing all base learners
into stacking may not be computationally and performance-
wise optimal. More classifiers in an ensemble will inevitably
prolong experiments, but it will not simultaneously guar-
antee better performance results. To address this issue, we
selected only a subset of classifiers in a way that is explanied
below.

Our stacking ensembles were built using 5 different mea-
sures depicted in Table 2. Each stacking ensemble was pro-
duced by combining multiple base classifiers according to

Table 2: Measures used for building ensemble mod-
els

Measure Full name Type of measure
1 BASE No measure Basic
2 PRECISION Precision Base
3 MCC Matthews correlation coeficient Base
4 DIV Diversity Advanced
5 WAD WAD Advanced

their measure stated in Table 2. Precision and MCC be-
long to the basic group of measures, directly provided by
the Weka API. For instance, when stacking is built using
precision, only the most precise classifiers are put into the
ensemble. Similarly for the other Basic measures. WAD
and Div measures are part of the Advanced group of mea-
sures. These measures are not provided by the Weka API,
rather are derived from Equations 1 and 2, respectively. The
last measure is Base. Base indicates one base classifier that
performs best among all the other base classifiers.

Figure 1: Stacking building

Figure 1 depicts the design used for building our stack-
ing models. All base classifiers were first trained on the
training’ data sets, and evaluated using the validation set.
Performances on the validation set were further sorted from
the highest to the lowest value for each performance mea-
sure stated in Table 2. Starting from Precision, each mea-
sure was then taken to form a stacking ensemble. The two
most precise base classifiers were taken to form the stack-
ing ensemble. The model was trained on the whole training
set, and finally evaluated on the test set. The experiment
continued combining the three most precise base classifiers,
forming the stacking ensemble, training on the whole train-
ing set and evaluating on the test set. After combining all
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base classifiers, the experiment carried on the next measure
from Table 2, MCC. The special Base group was evaluated
slightly differently. Each base classifier was directly trained
on the whole training set, and evaluated on the test set.

3.5 Performance measure
There has been a great debate on measuring the perfor-

mance of prediction models [4, 13, 36]. When quantifying
the performance of classifiers based on a categorical depen-
dent variable, usually some performance measure, derived
from confusion matrix, is reported. The confusion matrix is
depicted in Table 3. However, some performance measures

Table 3: Confusion matrix
Predicted defective Predicted defect free

Observed
defective

True Positive
(TP)

False Negative
(FN)

Observed
defect free

False Positive
(FP)

True Negative
(TN)

are not suitable for use in the defect prediction context. De-
fect prediction data is commonly imbalanced, which makes
some performance measures unusable (e.g. probability of
detection [36]). On the other hand, frequently used mea-
sures such as precision and recall do not take all four quad-
rants into consideration, leaving space for making incorrect
conclusions. Matthews correlation coefficient (MCC) is an
appropriate measure when it comes to imbalanced data sets,
and it captures all four quadrants of the confusion matrix
[24]. MCC ranges from -1 to 1, where -1 indicates perfect
disagreement, whilst 1 indicates perfect agreement between
prediction and observation. The MCC value of 0 represents
prediction no better than random. Given that MCC cap-
tures all quadrants of the confusion matrix, we believe that
this measure is a trustworthy indicator of the prediction per-
formance.

4. RESULTS AND DISCUSSION
We conducted a series of experiments to build the final

ensemble models. Since we used the WAD measure, proper
tuning of α and β parameters depicted in Equation 1 was
required. Therefore, we ran a set of prediction models on all
data sets changing both parameters. The parameters were
changed in the range from 0 to 1 in steps of 0.05. The y-
axis on Figure 2 depicts the change in MCC performance for
all data sets we used. The x-axis represents the value of α
parameter, where β parameter was changed automatically
to satisfy α+ β = 1.

Figure 2 shows no compelling difference in MCC amongst
all the data sets we used by changing the WAD param-
eters. The greatest differences were achieved on margins
where α = 0 and α = 1. However, marginal values have al-
ready been covered using Precision and Diversity measures.
Use of Precision can be compared to α = 1 since in this
case diversity is ignored. Similarly, when α = 0 Precision
is completely ignored and focus is on the diversity among
base classifiers. Considering both Precision and Diversity
as important factors when building ensembles, we set both
parameters to 0.5. Setting α = β = 0.5 ensures that both
concepts are equally represented.

Table 4 shows the average performance values of single
and ensemble classifiers. The columns contain different pre-
diction techniques, whilst rows depict average MCC and
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Figure 2: WAD sensitivity for all eight data sets

Table 4: Average MCC performance across all data
sets

Data set SC BA BO PR MCC DIV WAD
ant-1.5 Avg. 0.255 0.338 0.303 0.461 0.485 0.507 0.503

Dev. 0.276 0.285 0.287 0.254 0.246 0.24 0.242
ant-1.6 Avg. 0.408 0.479 0.412 0.475 0.49 0.488 0.488

Dev. 0.174 0.145 0.168 0.154 0.148 0.145 0.145
ant-1.7 Avg. 0.395 0.456 0.389 0.448 0.474 0.465 0.465

Dev. 0.134 0.124 0.128 0.131 0.131 0.123 0.123
jedit-4.1 Avg. 0.427 0.433 0.403 0.459 0.466 0.471 0.471

Dev. 0.191 0.187 0.181 0.185 0.178 0.182 0.182
jedit-4.2 Avg. 0.334 0.338 0.342 0.346 0.426 0.421 0.421

Dev. 0.243 0.219 0.217 0.232 0.191 0.193 0.193
tomcat Avg. 0.171 0.247 0.23 0.3 0.349 0.351 0.348

Dev. 0.192 0.203 0.175 0.177 0.156 0.153 0.158
xalan-2.5 Avg. 0.257 0.355 0.35 0.274 0.293 0.29 0.29

Dev. 0.115 0.108 0.1 0.109 0.107 0.107 0.106
xalan-2.6 Avg. 0.474 0.535 0.495 0.471 0.471 0.471 0.471

Dev. 0.089 0.08 0.093 0.092 0.092 0.092 0.092
Avg. 0.34 0.398 0.366 0.404 0.432 0.433 0.432
Dev. 0.177 0.169 0.169 0.167 0.156 0.154 0.155

standard deviation values for each data set. To make our
approach more readily comparable to other approaches, we
trained two additional ensemble models commonly used in
SDP, namely Bagging and Boosting. Both additional models
were trained using the same parameters for the base classi-
fiers as described in Section 3.2. SC represents the average
values of all 15 single classifiers used, whilst BA and BO
are the bagging and boosting approaches added for compar-
ison, respectively. The rest of the table represents the other
basic and advanced measures used, Precision, MCC, Diver-
sity, and WAD, respectively. Average performance measures
show that across all data sets our techniques achieve better
results than the other approaches. Particularly, the aver-
age figures from Table 4 show that the DIV technique is
better by 27.2%, Bagging by 8.9%, and Boosting by 18.5%
compared to the Single classifier technique. For formal con-
firmation in favour of the DIV technique, we used Wilcoxon
signed-rank test to statistically compare the differences [32].
The same form of test was previously used by Sun et al. in
the context of defect prediction [29]. The alternative hy-
pothesis tests whether for a given technique (single clas-
sifier OR bagging OR boosting), DIV technique performs
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better than the other three techniques at significance level
α = 0.05. The p-values of the Single Classifier and Boost-
ing techniques were less than 0.05, whilst the p-value for
the Bagging technique was greater than 0.05. From these
results we can conclude that the DIV technique is signifi-
cantly better than the other techniques except Bagging. The
same conclusions were derived for the WAD and MCC tech-
niques using the same statistical approach.

Table 5: Relative increase in true positives of all
techniques compared to Bagging

BA SC BO PR MCC DIV WAD
ant-1.5 1.06 -0.20 -0.07 0.68 0.83 0.94 0.93
ant-1.6 4.95 -0.10 -0.02 0.09 0.20 0.22 0.21
ant-1.7 8.02 -0.11 -0.02 -0.00 0.21 0.24 0.24

jedit-4.1 3.65 -0.03 0.08 0.08 0.18 0.24 0.24
jedit-4.2 1.53 -0.03 0.14 0.24 0.78 0.78 0.78
tomcat 1.40 -0.08 0.31 1.28 2.01 2.02 2.03

xalan-2.5 25.21 -0.15 0.02 -0.20 -0.05 -0.08 -0.08
xalan-2.6 28.99 -0.11 0.02 -0.25 -0.19 -0.18 -0.18

Avg 9.35 -0.10 0.06 0.24 0.50 0.52 0.52

Table 6: Relative increase in false positives of all
techniques compared to Bagging

BA SC BO PR MCC DIV WAD
ant-1.5 1.01 0.19 0.14 0.87 1.07 1.15 1.17
ant-1.6 2.50 0.16 0.38 0.31 0.55 0.62 0.62
ant-1.7 4.41 0.16 0.41 0.09 0.54 0.73 0.72

jedit-4.1 1.95 -0.03 0.44 0.06 0.32 0.46 0.46
jedit-4.2 1.46 -0.06 0.41 0.49 1.35 1.45 1.45
tomcat 1.50 0.54 1.26 3.35 4.82 4.86 4.95

xalan-2.5 12.26 0.00 0.05 -0.13 0.09 0.05 0.05
xalan-2.6 8.35 -0.04 0.27 -0.45 -0.28 -0.25 -0.25

Avg 4.18 0.11 0.42 0.57 1.06 1.14 1.15

Having established the average performances of our mod-
els, we further investigated the effect size of all approaches.
The effect size serves as a measure of how many defects can
each model detect (true positives) for the price of misclas-
sifying certain instances (false positives). To demonstrate
effect sizes, we derived the confusion matrix for all runs and
across all data sets. To make our comparison fair, we com-
pared Single Classifier, Boosting, Precision, MCC, DIV, and
WAD against the Bagging technique. The reason for this is
that the Bagging technique achieved better results than Sin-
gle Classifier and Boosting. Also, we want to compare our
techniques against others that achieve best results in defect
prediction. The first column in Table 5 shows the average
number of true positives achieved by Bagging. The follow-
ing columns show the relative improvement in the number of
true positives for the techniques used in our study. Clearly,
DIV and WAD techniques achieve better performances rel-
ative to Single Classifiers, Bagging and Boosting techniques.
More precisely, DIV and WAD techniques can on average
achieve a relative improvement of 0.52 compared to the Bag-
ging technique. For instance, in the case of the tomcat data
set, the WAD technique correctly identifies about two times
more defects relative to Bagging. Table 6 on the other hand
depicts an increase of false positives. Taken together, the ta-
bles of relative increase in true and false positives show that
there is a trade-off between true positives and false posi-
tives. However, increasing the number of true positives in
defect prediction is particularly challenging since data sets
are known to be imbalanced. Although a higher false posi-
tive rate detection is discouraged, finding more real defects

for the price of more false positives could be of benefit for
some companies. This is especially true for companies where
the cost of defects is extremely high.

We additionally compared single classifiers against our
best two techniques, DIV and WAD. The reason is a fre-
quent use of single classifiers in SDP. To make a fair com-
parison, we extracted only one classifier from each family
that on average achieved the best MCC performance. From

Table 7: Average best single classifiers against DIV
and WAD

NB KNN SMO J48 DIV WAD
ant-1.5 0.316 0.169 0.385 0.279 0.507 0.503
ant-1.6 0.482 0.327 0.445 0.397 0.488 0.488
ant-1.7 0.432 0.355 0.407 0.411 0.465 0.465

jedit-4.1 0.432 0.408 0.499 0.400 0.471 0.471
jedit-4.2 0.370 0.398 0.321 0.334 0.421 0.421
tomcat 0.256 0.190 0.029 0.264 0.351 0.348

xalan-2.5 0.169 0.289 0.264 0.314 0.290 0.290
xalan-2.6 0.473 0.498 0.481 0.484 0.471 0.471

Avg 0.366 0.329 0.354 0.360 0.433 0.432

the Näıve Bayes family, the classifier with a kernel density
estimator achieved the best MCC result in average across
all data sets. K nearest neighbour with k = 3, SMO with
C = 50, and J48 with C = 0.10 achieved the best aver-
age performances according to MCC. Single classifiers with
the best average MCC performances, along with DIV and
WAD techniques are shown in Table 7. Since DIV and WAD
both achieved the same average MCC performances, they
improved over Näıve Bayes by 18.2%, over K NN by 31.4%,
over SMO by 22.3%, and finally over J48 by 20.1%. The
Wilcoxon significance test, where the alternative hypothesis
tests superior performance values of DIV and WAD over
Single Classifiers was performed. With the p = 0.05 level of
confidence we confirmed that the both techniques, DIV and
WAD, are superior to all the other Single Classifier tech-
niques.

RQ1. Can stacking ensembles based on ex-
plicit diversity improve prediction perfor-
mance compared to other defect prediction
models?
From the analysis of MCC performance and rela-
tive improvements in effect sizes we can conclude
that stacking ensembles can indeed improve predic-
tion performance.

In our final experiment we test how many classifiers, and
of which family, used for building stacking ensembles are
needed for these ensembles to perform well. It may be the
case that combining only a few classifiers, that are most
precise and diverse, is sufficient for achieving good perfor-
mance results. This would have practical benefits reducing
the training time of such ensemble classifiers. Since we built
stacking ensembles of all possible sizes (combining from 2 to
15 single classifiers used in this study), it is now possible to
compare their prediction performances. Furthermore, it is
possible to analyse which single classifiers are often picked
by the ensemble. In the context of this analysis, we inves-
tigate only the WAD technique, since it is based on both
aspects that are in the focus of our analysis: diversity and
precision. Additionally, the WAD technique performed as
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Figure 3: Prediction performance of WAD groups of
classifiers. The x-axis represents the size of a group.

well as our other ensemble techniques. Figure 3 presents
prediction performance box-plots for all 8 data sets used in
our analysis. The x-axis depicts the size of each group us-
ing the WAD technique, whilst the y-axis shows the MCC
performance. From the figure it is clear that small groups,
of just two or three classifiers, combined into the stacking
ensemble perform well. Combining only three classifiers into
a stacking ensemble gives prediction performance not signif-
icantly worse than combining more classifiers, as Figure 3
demonstrates. This statement is valid for all data sets used
in our experiment. Achieving such results is important since
training only three classifiers, and using an additional classi-
fier in the stacking meta-layer, reduces the time for building

a prediction model.

RQ2. How many classifiers combined into
stacking ensembles provide good defect pre-
diction models?
Our experiment showed that adding more than three
classifiers into the stacking ensembles does not sig-
nificantly increase the prediction performance.

Table 8: Frequency of the individual classifiers ap-
pearing in the stacking ensembles of size 3

# Data set Classifier Frequency (%)
1 ant-1.5 NB default parameters 100
2 ant-1.5 SMO -C 1, else default parameters 90
3 ant-1.5 kNN k=3, else default parameters 34
1 ant-1.6 SMO -C 1, else default parameters 100
2 ant-1.6 kNN k=3, else default parameters 85
3 ant-1.6 NB -D 77
1 ant-1.7 NB -D 100
2 ant-1.7 SMO -C 1, else default parameters 100
3 ant-1.7 kNN k=3, else default parameters 99
1 jedit-4.1 NB -D 100
2 jedit-4.1 SMO -C 1, else default parameters 95
3 jedit-4.1 kNN k=3, else default parameters 90
1 jedit-4.2 NB -D 100
2 jedit-4.2 SMO -C 1, else default parameters 89
3 jedit-4.2 NB default parameters 59
1 tomcat NB -D 100
2 tomcat kNN k=3, else default parameters 45
3 tomcat NB default parameters 44
1 xalan-2.5 kNN k=3, else default parameters 83
2 xalan-2.5 SMO -C 1, else default parameters 56
3 xalan-2.5 J48 -C 0.25, else default parameters 41
1 xalan-2.6 kNN k=3, else default parameters 97
2 xalan-2.6 NB -D 95
3 xalan-2.6 NB default parameters 86

Finally, we investigated the base classifiers that form our
stacking ensemble in order to find the ones that are fre-
quently chosen by ensembles. For the purpose of this analy-
sis we again used the WAD technique with stacking ensem-
bles of size 3. Table 8 shows the first three classifiers com-
monly used for building stacking ensembles for all 8 data
sets used. The Näıve Bayes classifier has constantly been
chosen by the stacking ensemble, with an average frequency
of 86% across all data sets. This suggests that Näıve Bayes
classifiers perform well across all data sets, and increase di-
versity in ensembles. Some variants of SMO have also been
repeatedly chosen by stacking ensembles, often with differ-
ent parameter settings. Interestingly, the frequently used
decision tree classifier J48 was not dominant for any of the
data sets.

RQ3. How much diversity and which base
classifiers are usually combined in stacking
ensemble models?
Although only a small proportion of classifiers are
needed to build a stacking ensemble that performs
well, diversity among classifiers seems to have an
important role in this. The frequency table (shown
in Table 8) suggests that the ensembles of size 3
are usually combined with classifiers from different
families (e.g. in 90% of the runs Näıve Bayes , SMO
and kNN combine together in ensembles for Jedit-
4.1).
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5. THREATS TO VALIDITY
We consider several internal and external threats to valid-

ity. In our study, we replaced accuracy with precision in the
WAD equation. Although, the authors of the WAD tech-
nique have used accuracy as the measure of how correct a
classifier is, they used data sets with a relatively balanced
level of class instances. However, software defect prediction
often deals with highly imbalanced data sets, and therefore
the accuracy measure can be misleading. For that reason
we decided to use precision as the measure of how correct a
classifier is.

We did not perform a full parameter search to find opti-
mal values for each learner. Parameter tuning is an impor-
tant step when building prediction models, however it is also
performance demanding. To minimise the threat of model
optimisation, we changed the most important parameters of
the classifiers for each family. By changing the basic param-
eters we minimised the threat of building models with poor
generalisation abilities.

We evaluated our models using the Matthews correlation
coefficient measure. There are many ways to measure pre-
diction models, and all come with certain strengths and
weaknesses. Although some researchers would argue that
one measure is better than another, we decided to use MCC
since it covers all aspects of the confusion matrix. Taking
into consideration true positives, true negatives, false posi-
tives and false negatives at the same time, we believe that
our reported values do not hide aspects of the predictions.

Our study is also limited to several data sets from the
PROMISE repository. It is possible that by using different
data sets we would come to different conclusions. However,
most of these data sets have been extensively used in many
other SDP studies, giving us and other researchers possibili-
ties to compare results. We want to stress that we performed
cleaning of the data sets to remove erroneous data points.
By using these data sets, and our cleaning steps given in Sec-
tion 3.1, others are able to replicate our work and confirm
or extend our results.

6. CONCLUSION
Ensembles of machine learners composed of classifiers from

different families can outperform some traditional ensemble
techniques in defect prediction. Using the stacking approach
and diverse classifiers, we showed relative increase in number
of identified defects compared to the commonly used bagging
technique. Such a stacking ensemble does not require many
base classifiers, however our results suggest those classifiers
have to be diverse and from different classifier families. Par-
ticularly, Näıve Bayes and SMO seem to work well in com-
bination. Although the predictive limitation of using single
classifiers has been reached, ensembles of machine learners
leave space for improvements. This is due to the fact that
different classifiers identify different subsets of defects.

Our findings have important implications in the way fu-
ture prediction models should be built. We suggest use of en-
sembles of machine learners composed of different classifiers.
Majority-voting should not be used to combine predictions
of individual classifiers since this approach may miss some
subsets of defects found only by some classifiers and not
others. The use of the stacking approach could reduce the
number of misclassifications compared to majority-voting.
Researchers and practitioners can use our findings to build

better defect prediction models. They can also use the fact
that different classifiers find different defects and develop
even better ways of combining individual classifiers.

7. FUTURE WORK
We plan to extend this work with several enhancements.

First, we want to extend the experiment by using more clas-
sifiers and apply full parameter search to them. Adding new
classifiers may help detect new families of defects, or even
help the stacking approach to finding “better” patterns from
the first layer. Second, we plan to use different diversity
measures, such as Q-statistics, and investigate how much
use of those measures affects defect prediction. We do not
yet know what effect different diversity measures have on
the correct classification of defective instances. Last but not
least, we should establish why some defects are identified
by some classifiers and missed by others. This should help
in building better ensemble techniques that can find a vari-
ety of defects, and at the same time reduce the number of
false positives, hence achieve higher precision and recall at
the same time. Such understanding is necessary if we are to
build models with superior performances over simple single
models. We should further investigate whether some spe-
cific defects are found only by our approaches, and missed
by other ensemble techniques. Models with that power may
break the performance ceiling identified in 2008 [14].
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6.4 Summary of the Research Questions

RQ2(a) Can stacking ensembles based on explicit diversity improve prediction perfor-
mance compared to other software defect prediction models?

The models that I have built using stacking ensembles show improved MCC performances
and an increase in the relative number of defects they can predict. There is, however, an
increase in the false positive rates by stacking ensembles. Taken together, the relative
increase in true and false positives show that there is a trade–off between true and false
positive predictions. However, increasing the number of true positives in software defect
prediction is particularly challenging since data sets are known to be imbalanced. Although
a higher false positive rate detection is discouraged, finding more real defects for the price
of more false positives could be of benefit for some companies. This is especially true for
companies where the cost of defects is extremely high.
RQ2(b) How many classifiers combined into stacking ensembles provide good software
defect prediction models?

My findings show that adding more than 3 classifiers into the stacking ensembles does
not significantly increase the prediction performance. This is true for all datasets used in the
experiment. Achieving such results is important since training only 3 classifiers, and using
an additional classifier in the stacking meta-layer, reduces the time for building a prediction
model.
RQ2(c) How much diversity and which base classifiers are usually combined in stack-
ing ensemble models?

Classifiers selected in the stacking ensembles are typically coming from different classifier
families. For instance, on no occasion is the SMO classifier combined with another SMO
classifier with different tuning. The same is true for the kNN classifier. Naïve Bayes is only
occasionally combined with another Naïve Bayes classifier with different tuning. This result
suggests that diversity is paramount when generating stacking ensembles. Some classifiers
are selected more than others. The frequently used decision tree classifier (J48) does not
appear to be dominant for any of the datasets used in my study.

6.5 Summary of My Contributions

My results strongly suggest that stacking ensembles should be used in software defect
prediction. Stacking ensembles do not require many base learners, however the results
suggest those learners have to be diverse and from different classifier families. The Naïve
Bayes and SMO learners seem to work well in combination. Majority-voting should not
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be used to combine predictions of individual classifiers since this approach will miss some
subsets of defects found only by some classifiers and not others. The use of the stacking
approach can reduce the number of misclassification compared to majority-voting.

6.6 Summary of the Contributions to the Paper

I devised the methodology of this study and developed an experiment which I independently
ran. I collected and analysed all results of the experiment. I wrote the first draft of the paper
in full. David Bowes assisted in improving the methodology by checking its correctness and
providing useful guidance in building the prediction models. He also suggested a further
analysis in terms of the frequency count of the classifiers selected into an ensemble (i.e. RQ3
of the paper). Tracy Hall provided most of the refinements to the paper. Bruce Christianson
and Nathan Baddoo provided useful comments to improve the paper.





Chapter 7

Potential Improvements to Ensembles for
Software Defect Prediction

In Chapter 5 I established that different classifiers have the ability to find unique subsets
of defects. This ability has led to better understanding about how to construct software
defect prediction models which outperform state-of-the-art models (see Chapter 6). However,
there are many potential avenues to improve these prediction models. A limited number of
previous studies have been focused on understanding how well a classifier suits software
defect prediction. Most studies, including my own, apply different classification techniques
with the aim to achieve better prediction performances. The analysis in this chapter suggests
that some classifiers are more conservative when making predictions than others. For
example, for particular datasets SVMs predict fewer individual defects compared to other
classifiers, but also produce the smallest number of false positives. On the other hand, Naïve
Bayes tends to predict a high number of unique defects for the price of producing many
false positives. The work in this chapter is an initial attempt to explore why some classifiers
are more successful than others in predicting individual defects. This could help future
researchers to improve the design of ensembles presented in Chapter 6 by combining the
most suitable classifiers.

7.1 Background

Several classifiers have been reported to perform well in software defect prediction. Re-
gression via Classification [Bibi et al. 2008], Orthogonal Sparse Biagrams Markov Models
[Mizuno and Kikuno 2007] and TreeDisc techniques [Khoshgoftaar and Hulse 2009] achieve
good prediction performances. On the other hand, some classifiers have been reported to
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perform less well. In particular, SVMs have been frequently reported to obtain low prediction
performances in software defect prediction [Hall et al. 2012]. Decision trees have been
shown to struggle with highly imbalanced data [Japkowicz and Stephen 2002]. Random
Forest, however, is a good choice for highly imbalanced datasets [Khoshgoftaar et al. 2007].
Overall, no standalone classifier performs best for all defect data.

Previous studies have, however, mostly focused on assessing performance measures only.
For example, Lessmann et al. [2008a] and Malhotra [2015] both compared 40 models in
terms of their Area Under Curve measure (AUC) alone. An exception to this is Gray et al.
[2010] who manually investigated the predictions made by SVM classifiers. Using Principal
Component Analysis (PCA) and comparing the confidence of predictions, they found that
on average the SVMs make well motivated predictions (i.e. real defects are predicted with
greater confidence than false positives). This would not be possible to establish by analysing
prediction performances only. The work of Gray et al. [2010] illuminates the importance of
deeper manual analysis of individual predictions.

In this work I aim to analyse individual defects predicted by classifiers to find an ex-
planation why a classifier performs well or poorly. Despite the obvious reason that each
classifier constructs a different decision boundary, I investigate the scenarios in which some
classifiers could under-perform in defect prediction due to their inherent characteristics and
the properties of the data. This analysis offers some valuable insights about which classifiers
should be chosen to compose an ensemble model. Future research will be needed to establish
the usefulness of the identified characteristics in this chapter. For example, the following
question could be explored: “Can stacking take advantage of the confidence of the individual
predictor?”.

I use two exploratory data analyses approaches in this work, namely PCA and density
plots. The PCA is a well established technique for dimensionality reduction, where most
informative attributes are converted into most significant principal components (or factors)
[Wold et al. 1987]. The first few principal components typically explain most of the variance
in data. The PCA is useful as the first two or three principal components can easily be visu-
alised. Density plots, on the other hand, visualise the distribution of data over a continuous
interval. Density plots are similar to histograms, however they use kernel smoothing which
helps in removing noise.

7.2 Methodology

In this experiment I use four classifiers: Naïve Bayes, PART, Support Vector Machines, and
Random Forest. I select these four classifiers because they build models based on different
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mathematical properties. The four classifiers were used in my previous studies (see Sections
5 and 6) and are amongst the top commonly used classifiers in software defect prediction
[Wahono 2015]. The four classifiers belong to different classifier families, which allows for a
variety of predictions to be made as demonstrated in Chapter 5. The classifiers are described
in more detail in Section 3.2.

In this experiment I tune Random Forest and Support Vector Machine classifiers. Similar
to studies in Chapters 5 and 6, I vary the number of trees from 50 to 200 in steps of 50.
For SVM using a radial base function I tune γ from 0.25 to 4 and C from 2 to 32. I do not
tune Naïve Bayes or PART classifiers since they are known to perform well with the default
parameters. I repeat each experiment 100 times, using the 10-fold stratified cross validation.
In this study the WEKA tool1 is used to run the experiments.

I use 14 open source datasets from the PROMISE repository which I clean prior to the
analysis. The datasets are listed in Table 4.2. In order to analyse individual predictions
made by different classifiers I adjust the datasets in the following way. Prior to running the
experiments each data point is given a unique identifier. During predictions I record the fold
and run number for each data point, as well as the prediction outcome of a classifier. The
results of the experiments are then combined using the R package reshape22 [Wickham
2017]. As the results are in the long format I first convert them to the wide format. Using
the dcast function, the predictions from 100 runs get summarised in one line describing
how many true positive predictions a classifier has made. For example, if SVMs predict a
particular defect correctly in 90 out of the 100 runs, the data point is assigned 0.9. Data
points with values equal or over the balance of probability (0.5) are considered as predicted
defective.

To analyse the predictions of individual classifiers I create a specific label category to
distinguish those predictions. Table 7.1 summarises 10 categories I define for the purpose
of this analysis. Each true positive prediction identified by a classifier is labelled with one
of the categories in Table 7.1. For example, the defect with rowid = 320 in the poi system
gets assigned to category = RFde f , as the Random Forest classifier predicts it as defective.
Defects correctly predicted by Random Forest and Naïve Bayes are assigned both RFde f
and NBde f . The categories are used for visualising the results using the PCA and density
plots.

On the PCA plots I only present the following five categories: NBdef, PARTdef, RFdef,
and SVMdef. Additionally, I plot the false negative predictions. I do not plot the non-defective
data points which were not predicted by the unique classifiers as my primary focus is on the

1Weka version 3.9.1
2reshape2 version 1.4.3
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Category Alias Description
NBdef NB TP correctly predicted by NB
SVMdef SVM TP correctly predicted by SVM
PARTdef PART TP correctly predicted by PART
RFdef RF TP correctly predicted by RF
NBnondef - TN correctly predicted by NB
SVMnondef - TN correctly predicted by SVM
PARTnondef - TN correctly predicted by PART
RFnondef - TN correctly predicted by RF
def - Defective
nondef - Non defective
Table 7.1 Categories of predictions by different classifiers

defective instances. Another reason is that there are many non-defective data points which
makes the distinction between defective and non-defective instances difficult to observe.

Prior to visualising individual predictions I remove the outliers and standardise the data.
Outliers distort PCA plots to the level where it is not possible to distinguish individual
predictions made by classifiers. I set the minimum threshold for removing outliers to 3σ .
The majority of removed outliers are false negative predictions. I standardise the data to
ensure that no attribute dominates any of the PCA plots.

However, PCA plots have a limited power to visualise data with no clear patterns.
Therefore, in addition to the PCA plots, I develop a visual approach which aims to describe
individual predictions using density plots. I break each density plot by an attribute and
calculate a density function to be plotted. In other words, I render density functions of
individual classifier predictions on the same graph for each attribute separately. This makes
it possible to compare the attribute values for which each classifier correctly or incorrectly
predicts a defect. My technique allows the selection of an attribute to be rendered on a plot.
Below the same plot depicting the categories described in Table 7.1, I render the plot showing
the density functions of true defective and non-defective instances (def and nondef categories
depicted in Table 7.1). Both plots are aligned, where the x-axis denotes the value of an
attribute, and the y-axis depicts the scaled density value. The two plots enable the comparison
of different classifiers predicting different defective components for each individual attribute.

The motivation for using density plots, supplemented by the PCA, is to improve the
understanding why some classifiers predict defects other miss. Defects are in many ways
different and vary greatly in their characteristics. Some defects are design problems in
code, some are because data is being handled incorrectly, some are logic problems. Static
code metrics capture various characteristics of the code, which can be used in an attempt to
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distinguish those defects. My proposed visual approach is suitable for analysing contributions
each attribute has in determining classifiers’ decisions. The plots can quickly demonstrate
regions of interest, such as which attributes are found to be of more interest for a classifier.

7.3 Results and Discussion

Figure 7.1 shows the first 5 principal components of the PCA analysis for all 14 datasets.
Each plot in the figure shows two principal components. The top left plot shows the first
principal component (PC1) on the x-axis, and the second principal component (PC2) on the
y-axis. The first two principal components contain most of the variance that can explain the
dependent variable (defective/non-defective), whilst the other components contain reduced
explanation of the variance. In addition to the defects individually predicted by each classifier,
the plots contain false negative predictions. The FNs show areas where none of the classifiers
were able to correctly predict defects.

Figure 7.1 demonstrates that some classifiers predict unique defects in different areas
of the attribute space. For example, PART and Naïve Bayes tend to correctly predict more
instances in the positive direction of PC2, whilst the SVMs in the negative direction of
PC2. Yet, the PCA plots show limited information. As the PCA transforms all attributes
into principal components, it becomes unmanageable to visualise differences in individual
attribute values between different data points. Therefore, I use density functions to present
individual predictions of each classifier broken down by attributes.

To handle outliers my visual approach allows the use of multiple density functions: nrd,
ucv, bcv, SJ-ste, SJ-dpi, and numeric. These are the functions for calculating bandwidths
[Plummer and Best 2016]. To focus on specific regions in the plots it is possible to modify
minimum and maximum values for both axes, which allows zooming in the regions of most
interest.

Figure 7.2 is an example of a density plot, where the wmc attribute is used for visualising
the density functions. I choose the lucene dataset for visualisation purposes as it shows a clear
separation of several defects predicted by SVMs only. Lucene also contains true positive
predictions from all classifiers. For comparison, Figure 7.3 shows the principal components
for lucene. Even though the PCA plot shows the tendency of the SVMs to predict defects at
extremes, the density plot gives the exact values of attributes.

The top plot in Figure 7.2 depicts the density functions for each individual classifier
correctly predicting defects, whilst the bottom plot contains the density functions of defective
and non-defective classes. The top plot clearly indicates that the SVMs classifier is the only
one to correctly predict defects where wmc > 40. The bottom plot suggests these predictions
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●●

●

●
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●
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●
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●
● ●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●●
●

●

●

●

●

●
●

●

● ●
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● ●
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Fig. 7.1 The first five principal components showing the defects predicted by different
classifiers for all dataset

are correct, as in that region the data points are indeed defective. From Figure 7.3 it is not
obvious that the higher values of wmc cause those data points to be defective.

Figure 7.4 shows PCA plots for four different datasets. Each dataset in the plot was
selected based on the number of representatives in each category. For most of the datasets
there were either not enough data points, or no representatives from different classifier
families. The PCA plots demonstrate that in all four datasets Naïve Bayes captures the widest
areas of defective data points, compared to the other classifiers. This is likely due to a higher
number of false positives across the datasets, relative to the other classifiers, as indicated in
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Fig. 7.2 Density functions broken down by the WMC metric showing individual prediction
of the four classifiers on lucene

Figure 7.5. For ant-1.7 and camel-1.6 Naïve Bayes has the highest number of false positives,
and wide areas of true positives. A similar effect is true for Random Forest in xalan-2.6,
where the widest area of true positives maps to the highest number of false positives. SVMs
do not appear in most of the PCA plots at Figure 7.4 because of a low number of true positive
predictions as shown in Figure 7.5.

Although Naïve Bayes can stretch its predictions over a wide range of variability in
data, it poses a risk of overfitting. PART and Random Forest make predictions in narrower
areas of variability, whilst predicting less defects. For ant, camel, and synapse PART and
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Fig. 7.3 The first five principal components showing the defects predicted by different
classifiers for the lucene dataset

Random Forest make predictions in a narrow space of variability compared to the Naïve
Bayes classifier.

The SVMs predict most unique defects across the 14 systems I analyse. However, SVMs
are often discarded as poor predictors in defect prediction as they achieve low performance
values. Table 5.3 shows that even when SVMs are tuned, they generally achieve worse pre-
diction performances compared to other classifiers. Finding most unique defects in systems
by simultaneously achieving low performance values on the whole appears contradictory.
Therefore, I analyse whether and when SVMs can be useful for software defect prediction.
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Fig. 7.4 The first two principal components for defects predicted only by a specific classifier
indicated in ‘category’

SVMs find unique defects in only 5 out of the 14 systems I analyse, where the top 3
systems are lucene, poi and xerces. In all 3 systems there is a higher representation of
defective relative to non-defective instances. Lucene, poi and xerces have a better balance of
the data than the other systems. Contrary, the SVMs perform poorly for the systems where
imbalance is high. For example, the SVMs achieve particularly low prediction performances
compared to the other classifiers for camel, ivy, jedit, and tomcat. All of these datasets have
high imbalance. Figures 7.4 and 7.5 also demonstrate that the SVMs find a low number of
true positives across these four systems. Apart from xalan, these systems are characterised by
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Fig. 7.5 Confusion matrix counts for different classifiers

high imbalance. SVMs struggle to find a hyper-plane which efficiently separates the classes
when there are not enough data points representing one class to learn from. However, when
data tends to be in balance, SVMs can achieve superior prediction performances in terms of
identifying unique defects.

SVMs are particularly successful where there is enough data to train from. For the three
systems, lucene, poi and xerces, the SVMs find more unique defects than any other classifier
I use in my analysis. Figure 7.2 demonstrates the capability of the SVMs to correctly predict
defects no other classifier predicts. The density plots in Figure 7.1 also show that the SVMs
mostly make similar predictions to the other classifiers in the regions of the wmc attributes
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where wmc < 40. By analysing all metrics, using the def and nondef categories for all
classifiers, I established that the SVMs consistently make correct unique predictions in
specific regions.

There are specific characteristics that distinguish SVMs from other classifiers, making
them valuable for defect prediction. As I demonstrated, although the SVMs on average
achieved worse performances, they flourish when the data tends to be balanced. Another
beneficial characteristic of the SVMs is their ability to introduce diversity in results. Diversity
is particularly useful for ensembles of learning machines, where diverse predictions help in
making the final decision.

7.4 Conclusion

Understanding why some classifiers predict defects that others miss is necessary for further
improvements of ensembles in software defect prediction. A few studies have tried to
establish why classifiers predict the defects they predict. However, to build accurate models
a better understanding of when classifiers work or do not work is needed. An ensemble
design which accounts for characteristics of classifiers that correctly predict defects is likely
to further improve prediction performances. My analysis has shown a potential towards
improving the ensembles design for software defect prediction.

In this chapter I used two visual techniques, PCA and density plots, to find potential
characteristics of classifiers which make them suitable for ensembles. I found that despite the
low average prediction performances of SVMs, they predict unique defects which typically
reside at extremes of specific attributes. Those defects could potentially be dangerous as
they indicate a design not common to the majority of other modules. For this reason, SVMs
should be considered when building ensembles for software defect prediction. My results
also suggest that SVMs find a small proportion of defects in highly imbalanced datasets, but
make a small number of wrong predictions. Therefore, an ensemble design which increases
the signal of SVMs outputs could possibly lead to more correct predictions of defects which
are located at extremes.

The analysis also demonstrates that Naïve Bayes finds a wide range of unique defects for
the price of higher misclassification of non-defective instances (false positives). This could
explain why Naïve Bayes classifiers are typically considered good classifiers for software
defect prediction. However, misclassified instances cost industries extra effort in time and
resources. A solution to this problem is combining Naïve Bayes with conservative classifiers
to potentially reduce the number of false positive predictions.
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7.5 Threats to Validity

Different tools for prediction modelling are used in this experiment compared to the exper-
iment in Chapter 5. In this experiment I use WEKA, whilst in the previous chapter the R
implementation was used. I noticed that this difference can affect the results, as the confusion
matrices between WEKA and R do not match. However, the differences in the results are
beyond the methodology of my experiment, as they rely on the third-party tools. To mitigate
the problem due to the tools used, I only compared high level results with the findings from
Chapter 5.



Chapter 8

Conclusions and Future Work

8.1 Reflection on the Research Questions

In this section I reflect on the research questions set out in the Introduction of this dissertation.
I then briefly explain the value of data quality in my work.

RQ1: Do models created by different classifiers find different defective components?

I used classifiers from four different families and found that each identifies a unique subset
of defects that the others miss. The findings are validated in three separate studies reported
in Paper 2, Paper 3, and Section 5.4. In particular, these studies confirm that no single
classifier can comprehensively detect all defects in the system. Due to the variations in
decision boundaries those classifiers make and the differences in defects, some classifiers
are better at predicting particular defects than others. Identifying the defects that different
classifiers detect is important as it is well known [Fenton and Neil 1999a] that some defects
matter more than others. Identifying defects with critical effects on a system is more important
than identifying trivial defects. More research will be needed to establish which type of
defects get predicted by different classifiers. In the context of my thesis, the importance of
this finding is to explore more efficient ways to improve prediction models, which I do in
RQ2.

RQ2(a): Can stacking ensembles based on explicit diversity improve prediction perfor-
mance compared to other software defect prediction models?

In Chapter 6 and Paper 4 I demonstrate that the stacking ensemble can achieve significantly
superior prediction performances compared to other ensemble or individual models. The
ability of the stacking ensemble to correctly classify a higher number of defects compared to
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other ensemble and single classifier approaches consistently persist. The results also suggest
a consistent relative increase in the number of false predictions. However, the increase of
misclassifications is substantially lower compared to the increase in the correct predictions.
Such prediction models are useful to industries where any defects posing risk should be
identified and fixed. This research question opens a potential for further research to establish
the roots of misclassifications and adjust the stacking ensemble models appropriately. Di
Nucci et al. [2017] have already shown that by selecting the most appropriate meta-classifier
in ensembles improve prediction performances.

RQ2(b) How many classifiers combined into stacking ensembles provide good software
defect prediction models?

My analysis of the ensemble’s size reported in Chapter 6 and Paper 4 have shown that the
stacking ensemble of size 3 is sufficient for achieving the highest prediction performance.
Adding more classifiers to the ensemble will not significantly improve the performance.
An intuitive explanation of this finding is that adding poorer performing and less diverse
classifiers to the ensemble cannot improve the overall performance. I analysed the prediction
performances of ensemble sizes from 2 to 15.

RQ2(c) How much diversity and which base classifiers are usually combined in stack-
ing ensemble models?

The experiment showed that stacking ensembles combining classifiers from different families,
in contrast to optimised classifiers from the same family, are more favoured during the
stacking creation. In five out of eight cases, where equal preference was given to precision
and diversity (i.e. the WAD technique), the stacking ensembles were constituted of classifiers
all belonging to a different family. To reiterate the findings reported in Paper 4, the Naïve
Bayes classifier has constantly been chosen by the stacking ensemble across all datasets. This
suggests that Naïve Bayes classifiers perform well across all data sets, and increase diversity
in ensembles. Some variants of SMO have been repeatedly chosen by stacking ensembles,
often with different parameter settings. The frequently used decision tree classifier J48 was
not dominant for any of the data sets.

I ensured that all experiments ran as part of this work were of high quality before answering
the research questions. Therefore, I surveyed the literature to find state-of-the-art data
preprocessing rules for software defect prediction (see Chapter 4). Subsequently, I identified
new integrity violations in commonly used software defect datasets. I combined newly
identified and state-of-the-art rules to create a comprehensive set of data cleaning steps
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(reported in Chapter 4). I explicitly considered data quality as an important preprocessing
step of the defect prediction methodology as advocated by [Gray 2013] and [Shepperd et al.
2013].

The repeated study from Section 5.4 was necessary to account for data quality issues
reported in Chapter 4. In Paper 2 we used the NASA datasets cleaned by Shepperd et al.
[2013], but not cleaned by Petrić et al. [2016]. In Paper 3, the NASA and commercial
datasets also needed cleaning. The datasets in Paper 4 were fully cleaned, so no subsequent
study was needed. The explicit consideration of data quality in the methodology of this work
improves the reliability of the conclusions made in this dissertation.

8.2 Contributions to Knowledge

I make the following contributions to knowledge in this dissertation:

• Improving the quality of datasets for defect prediction. In Chapter 4 I introduce
novel integrity checks for cleaning software defect datasets. This includes Paper 1
where we report on two integrity constraints in the highly popular NASA MDP datasets.
In Paper 4 we report three additional integrity constraints specific for the PROMISE
datasets. Poor data quality threatens the validity of software defect prediction studies,
often leading those studies to incorrect conclusions. Chapter 4 extensively reports
on state-of-the-art cleansing methods to improve the reliability of results reported in
software defect prediction studies.

• Models created by classifiers from different families find distinct defective com-
ponents. Despite many classifiers achieving similar prediction performances, the
findings in Chapter 5 finding suggest that no single classifier can comprehensively
detect all defects in the system. Previous software defect prediction studies, includ-
ing most of those using stacking, have overlooked the implications of distinguishing
different defective components. All defects are treated the same. This has led defect
researchers to using modelling techniques that may not be suitable for the software
defect prediction task. In addition, as some defects matter more than others, it would
be beneficial to know what classifiers would be more suitable for predicting critical
defects. Future work will be needed to establish the different types of defects certain
classifiers are able or not able to predict.

• Classifiers can be combined to provide improved performances in defect predic-
tion. This finding is three-fold:
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1. The way classifiers are combined into ensembles matters. Most previous work
reporting on ensembles in software defect prediction use a form of majority-
voting to combine predictions into the final outcome. I show that this approach
is suboptimal, as the correct predictions of classifiers, but in minority, will be
ignored. I suggest the stacking approach which considers predictions of all
classifiers in ensembles.

2. Combining three classifiers in an ensemble is sufficient. Finding out the optimal
number of classifiers to combine in ensembles is relevant to practitioners, as
precise, but ensembles combining many classifiers, would be slow to build for
large systems. However, as my results show, adding more than three classifiers
will not significantly improve the performance of stacking ensembles. Therefore,
efficient ensembles can be built by using only three classifiers.

3. Diversity in ensembles improves prediction performances. I find that the best
performing stacking ensemble combines models from different classifier families.
This finding strengthens the observation that a stacking ensemble can more
effectively, compared to ensembles based on majority-voting, combine diverse
classifiers which complement each other.

• Visualisation techniques for potential improvements of ensembles for software
defect prediction. In Chapter 7 I introduce visualisation techniques which provide
the possibility of analysing individual predictions made by different classifiers. By
using these visual techniques, I found that some classifiers make more conservative
predictions than others. These findings open new avenues for research in improving
ensemble designs that account for the peculiarities of different classifiers.

8.3 Significance of Work

The significance of work in this dissertation is three-fold:

1. The comprehensive set of data cleansing rules improves the reliability of conclusions
made in this dissertation. Future researchers can use the comprehensive set of data
cleansing rules in their work.

2. I provide practical suggestions on how to improve software defect prediction models
by combining multiple classifiers which complement each other. Three classifiers
belonging to different classifier families and combined into the stacking ensemble can
provide adequate prediction performances.
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3. I provide visual techniques which are a novel way of examining individual predictions
made by different classifiers. One possible use of these visual techniques for future
researchers is to further improve ensemble modelling, which will account for the
peculiarities of different classifier techniques.

4. My work has been cited and extended by Di Nucci et al. [2017] who further explored
the stacking approach in terms of algorithm recommendation described in Section
3.3.3. Their results on 30 software defect datasets confirmed that a variation of stacking
ensembles is effective for software defect prediction.

8.4 Future Work

One possible direction of research the work in this dissertation opens up is refining the
ensemble approach to account for the characteristics found in software defect prediction.
Some researchers have already investigated possible improvements as a response to the
published work included in this dissertation. As reported in Chapter 3, Di Nucci et al. [2017]
proposed the ASCI ensemble technique based on the stacking approach. Fully understanding
why some defects are predicted by one classifier and not by others could further help to
improve the selection of suitable classifiers which are based on the characteristics of data.

A wider spectrum of classifiers needs to be considered in the future. Some classifiers
could have a greater potential than others in software defect prediction. As an example, the
analysis in Chapter 7 shows frequent swings of the defectiveness label across attributes. This
suggests that not all classifiers may be suitable for software defect prediction. For example,
classifiers capable of constructing complex decision boundaries (e.g. SVM) could be a better
fit for the task compared to simple classifiers (e.g. Logistic Regression). More research is
also needed to reduce the amount of variance in predictions. Blending techniques that can
reduce variance, such as bagging, could potentially further improve prediction performances.

The work in this dissertation suggests practical changes on how past studies using
ensembles in software defect prediction could be improved based on the findings reported
here. For example, the validation and voting techniques [Laradji et al. 2015, Mısırlı et al.
2011b] and bagging techniques [Kim et al. 2011, Wahono and Suryana 2013] used in software
defect prediction should be reconsidered. Even though these ensemble techniques often
improve performances and reduce bias, this work finds that majority-voting techniques miss
defects predicted by individual classifiers. On the other hand, the studies by Panichella et al.
[2014] and Di Nucci et al. [2017] are likely to more efficiently exploit ensembles in software
defect prediction as their models do not rely on majority-voting approaches. The work in
this dissertation further suggests that researchers should explicitly consider data quality,



138 Conclusions and Future Work

as erroneous data affects the conclusions made in software defect prediction [Ghotra et al.
2015].
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Appendix

Table A.1 The Summary of the NASA Datasets

Dataset Language KLOC #features #modules
(pre-
cleaning)

#modules
(post-
cleaning)*

%loss
due to
clean-
ing

%faulty
modules
(pre-
cleaning)

%faulty
modules
(post-
cleaning)

CM1 C 20 43 505 296 41.4 9.5 12.8
JM1 C 315 24 10878 29 99.9 27.4 0.0
KC1 C++ 43 27 2107 n.a. 0.6 15.4 15.5
KC3 Java 18 43 458 123 73.1 9.4 13.0
KC4 Perl 25 43 125 n.a. n.a. 48.8 n.a.
MC1 C/C++ 63 42 9466 115 98.8 0.7 0.0
MC2 C 6 43 161 1 99.4 32.3 100.0
MW1 C 8 43 403 253 37.2 7.7 10.7
PC1 C 40 43 1107 661 40.3 6.9 7.9
PC2 C 26 43 5589 745 86.7 0.4 2.1
PC3 C 40 43 1563 1043 33.3 10.2 12.2
PC4 C 36 43 1458 228 84.4 12.2 0.0
PC5 C++ 164 42 17186 94 99.5 19.0 19.1
*cleaning using the comprehensive set of integrity checks reported in Section 4.5
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Table A.2 The Summary of the NASA Dataset Metrics (as documented in Gray [2013])

Metric Description

McCabe

Cyclomatic Complexity
Cyclomatic Density
Decision Density
Design Density
Essential Complexity
Essential Density
Global Data Density
Global Data Complexity
Maintenance Severity
Module Design Complexity
Pathological Complexity
Normalised Cyclomatic Complexity

Halstead

Number of Operators
Number of Operands
Number of Unique Operators
Number of Unique Operands
Length
Volume
Level
Difficulty
Intelligent Content
Programming Effort
Error Estimate
Programming Time

LOC Counts

LOC Total
LOC Executable
LOC Comments
LOC Code and Comments
LOC Blank
Number of Lines (opening to closing bracket)

Misc.

Node Count
Edge Count
Branch Count
Condition Count
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Decision Count
Formal Parameter Count
Modified Condition Count
Multiple Condition Count
Call Pairs
Percent Comments

Error
Error Count
Error Density
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Table A.3 The Summary of the PROMISE Datasets (KLOC from Di Nucci et al. [2017])

Dataset Language KLOC #features #modules
pre clean-
ing

#modules
post
cleaning

%loss
due to
clean-
ing

%faulty
methods
pre-
cleaning

%faulty
methods
post
cleaning

ant 1.7 Java 208 20 745 722 3.1 22.3 23.0
arc Java 31 20 234 210 10.3 11.5 12.4
camel 1.6 Java 113 20 965 877 9.1 19.5 21.0
ivy 2.0 Java 87 20 352 345 2.0 11.4 11.6
jedit 4.2 Java 202 20 367 363 1.1 13.1 13.2
log4j 1.2 Java 38 20 205 202 1.5 92.2 92.6
lucene 2.4 Java 102 20 340 335 1.5 59.7 59.1
poi 3.0 Java 129 20 442 397 10.2 63.6 64.5
redaktor Java 59 20 176 169 4.0 15.3 14.8
synapse 1.2 Java 53 20 256 244 4.7 33.6 35.2
tomcat Java 300 20 858 791 7.8 9.0 9.7
velocity 1.6 Java 57 20 229 209 8.7 34.1 36.4
xalan 2.6 Java 428 20 885 724 18.2 46.4 44.6
xerces 1.4 Java 4 20 588 482 18.0 74.3 77.0
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Table A.4 The Summary of the PROMISE Dataset Metrics (definitions provided in [Jureczko
and Spinellis 2010])

Metric Description Source
Weighted methods per
class (WMC)

The value of the WMC is equal to the number of methods in the
class (assuming unity weights for all methods).

C&K

Depth of Inheritance Tree
(DIT)

The DIT metric provides for each class a measure of the inheri-
tance levels from the object hierarchy top.

C&K

Number of Children
(NOC)

The NOC metric simply measures the number of immediate
descendants of the class.

C&K

Coupling between object
classes (CBO)

The CBO metric represents the number of classes coupled to a
given class (efferent couplings and afferent couplings). This cou-
plings can occur through method calls, field accesses, inheritance,
method arguments, return types, and exceptions.

C&K

Response for a Class
(RFC)

The RFC metric measures the number of different methods that
can be executed when an object of that class receives a message.
Ideally, we would want to find for each method of the class,
the methods that class will call, and repeat this for each called
method, calculating what is called the transitive closure of the
method call graph. This process can however be both expensive
and quite inaccurate. Ckjm calculates a rough approximation to
the response set by simply inspecting method calls within the
class method bodies. The value of RFC is the sum of number
of methods called within the class method bodies and the num-
ber of class methods. This simplification was also used in the
[Chidamber and Kemerer 1994]’s description of the metric.

C&K

Lack of cohesion in meth-
ods (LCOM)

The LCOM metric counts the sets of methods in a class that are
not related through the sharing of some of the class fields. The
original definition of this metric (which is the one used in ckjm)
considers all pairs of class methods. In some of these pairs both
methods access at least one common field of the class, while
in other pairs the two methods do not share any common field
accesses. The lack of cohesion in methods is then calculated by
subtracting from the number of method pairs that do not share a
field access the number of method pairs that do.

C&K

Lack of cohesion in meth-
ods (LCOM3)

LCOM3 =
( 1

a ∑
a
j=1 η(A j))−m

1−m m - number of methods in a class; a -
number of attributes in a class; η(A) - number of methods that
access the attribute A.

Henderson-
Sellers

Afferent couplings (Ca) The Ca metric represents the number of classes that depend upon
the measured class.

Martin

Efferent couplings (Ce) The Ca metric represents the number of classes that the measured
class is depended upon.

Martin
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Number of Public Meth-
ods (NPM)

The NPM metric simply counts all the methods in a class that are
declared as public. The metric is known also as Class Interface
Size (CIS).

QMOOD

Data Access Metric
(DAM)

This metric is the ratio of the number of private (protected) at-
tributes to the total number of attributes declared in the class.

QMOOD

Measure of Aggregation
(MOA)

This metric measures the extent of the part-whole relationship,
realized by using attributes. The metric is a count of the number
of class fields whose types are user defined classes.

QMOOD

Measure of Functional
Abstraction (MFA)

This metric is the ratio of the number of methods inherited by a
class to the total number of methods accessible by the member
methods of the class. The constructors and the java.lang.Object
(as parent) are ignored.

QMOOD

Cohesion Among Meth-
ods of Class (CAM)

This metric computes the relatedness among methods of a class
based upon the parameter list of the methods. The metric is
computed using the summation of number of different types of
method parameters in every method divided by a multiplication
of number of different method parameter types in whole class
and number of methods.

QMOOD

Inheritance Coupling
(IC)

This metric provides the number of parent classes to which a
given class is coupled. A class is coupled to its parent class if
one of its inherited methods functionally dependent on the new
or redefined methods in the class. A class is coupled to its parent
class if one of the following conditions is satisfied:

• One of its inherited methods uses an attribute that is de-
fined in a new/redefined method.

• One of its inherited methods calls a redefined method.

• One of its inherited methods is called by a redefined
method and uses a parameter that is defined in the re-
defined method.

Tang

Coupling Between Meth-
ods (CBM)

The metric measures the total number of new/redefined methods
to which all the inherited methods are coupled. There is a cou-
pling when at least one of the given in the IC metric definition
conditions is held.

Tang

Average Method Com-
plexity (AMC)

This metric measures the average method size for each class. Size
of a method is equal to the number of Java binary codes in the
method.

Tang
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McCabe’s cyclomatic
complexity (CC)

CC is equal to number of different paths in a method (function)
plus one. The cyclomatic complexity is defined as: CC = E−N+

P, where E - the number of edges of the graph; N - the number of
nodes of the graph; P - the number of connected components. CC
is the only method size metric. The constructed models make the
class size predictions. Therefore, the metric had to be converted
to a class size metric. Two metrics has been derived:

• Max(CC) - the greatest value of CC among methods of
the investigated class.

• Avg(CC) - the arithmetic mean of the CC value in the
investigated class.

Mc

Lines of Code (LOC) The LOC metric based on Java binary code. It is the sum of
number of fields, number of methods and number of instructions
in every method of the investigated class.

C&K [Chidamber and Kemerer 1994]
Henderson-Sellers [Henderson-Sellers 1995]
Martin (Uncle Bob) [Martin 1994]
QMOOD [Bansiya and Davis 2002]
Tang [Tang et al. 1999]
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Table A.5 The Summary of the Commercial Datasets

Dataset Language KLOC #features #modules
(pre-
cleaning)

#modules
(post-
cleaning)

%loss
due to
clean-
ing

%faulty
modules
(pre-
cleaning)

%faulty
modules
(post-
cleaning)

PA Java 21 24 4996 4996 0.0 11.7 11.7
KN Java 18 24 4314 4314 0.0 7.5 7.5
HA Java 43 18 9062 8998 0.7 1.3 1.3



161

Table A.6 The Summary of the Commercial Dataset Metrics (defined in Virtual Machinery
[2018])

Metric Short Description
CAST Number of class casts in the method
COMP Cyclomatic Complexity
CREF Number of different classes referenced in the method
EXCR Number of exceptions referenced by this method
EXCT Number of exceptions thrown by this method
HBUG Estimated Halstead Bugs in the method
HDIF The Halstead Difficulty of a method is an indicator of method complexity

HEFF
The Halstead Effort for the method is an indicator of the amount of time
that it will take a programmer to implement the method

HLTH The Halstead Length of the method
HVOC The Halstead Vocabulary of the method
HVOL The Halstead Volume of a method is an indicator of method size

LMET
Number of calls to local methods i.e. methods that are defined in the
class of the method

LOOP Number of loops in the method
MDN Maximum Depth of Nesting
MOD Number of modifiers in the method declaration
NAME Name of method
NAND Number of operands in the method
NEXP Number of Java Expressions in the method
NLOC Number of Lines of Code in the method
NOA Number of arguments in method signature
NOC Number of comments
NOCL Number of comment Lines
NOPR Number of operators in the method
NOS Number of Java statements in the method
TDN Total Depth of Nesting
VDEC Number of variables declared in the method
VREF Number of variable references in the method
XMET Number of calls to methods that are not defined in the class of the method
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