5 research outputs found

    Transfer learning with multiple pre-trained network for fundus classification

    Get PDF
    Transfer learning (TL) is a technique of reuse and modify a pre-trained network. It reuses feature extraction layer at a pre-trained network. A target domain in TL obtains the features knowledge from the source domain. TL modified classification layer at a pre-trained network. The target domain can do new tasks according to a purpose. In this article, the target domain is fundus image classification includes normal and neovascularization. Data consist of 100 patches. The comparison of training and validation data was 70:30. The selection of training and validation data is done randomly. Steps of TL i.e load pre-trained networks, replace final layers, train the network, and assess network accuracy. First, the pre-trained network is a layer configuration of the convolutional neural network architecture. Pre-trained network used are AlexNet, VGG16, VGG19, ResNet50, ResNet101, GoogLeNet, Inception-V3, InceptionResNetV2, and squeezenet. Second, replace the final layer is to replace the last three layers. They are fully connected layer, softmax, and output layer. The layer is replaced with a fully connected layer that classifies according to number of classes. Furthermore, it's followed by a softmax and output layer that matches with the target domain. Third, we trained the network. Networks were trained to produce optimal accuracy. In this section, we use gradient descent algorithm optimization. Fourth, assess network accuracy. The experiment results show a testing accuracy between 80% and 100%

    Una revisión sistemática de métodos de aprendizaje profundo aplicados a imágenes oculares

    Get PDF
    Artificial intelligence is having an important effect on different areas of medicine, and ophthalmology has not been the exception. In particular, deep learning methods have been applied successfully to the detection of clinical signs and the classification of ocular diseases. This represents a great potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning methods have primarily been applied to eye fundus images and optical coherence tomography. On the one hand, these methods have achieved an outstanding performance in the detection of ocular diseases such as: diabetic retinopathy, glaucoma, diabetic macular degeneration and age-related macular degeneration.  On the other hand, several worldwide challenges have shared big eye imaging datasets with segmentation of part of the eyes, clinical signs and the ocular diagnostic performed by experts. In addition, these methods are breaking the stigma of black-box models, with the delivering of interpretable clinically information. This review provides an overview of the state-of-the-art deep learning methods used in ophthalmic images, databases and potential challenges for ocular diagnosisLa inteligencia artificial está teniendo un importante impacto en diversas áreas de la medicina y a la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades oculares. Esto representa un potencial impacto en el incremento de pacientes correctamente y oportunamente diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principalmente a imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como: retinopatía diabética, glaucoma, degeneración macular diabética y degeneración macular relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por expertos. Adicionalmente, estos métodos están rompiendo el estigma de los modelos de caja negra, con la entrega de información clínica interpretable. Esta revisión proporciona una visión general de los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases de datos y posibles desafíos para los diagnósticos oculare

    Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.

    Get PDF
    Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are widely used by the research community, the preprocessing techniques employed and how these accelerate and improve the models' performance, to the development of such deep learning models for the diagnosis and grading of the disease as well as the localization of the disease's lesions. We also discuss certain models that have been applied in real clinical settings. Finally, we conclude with some important insights and provide future research directions

    Training deep convolutional neural networks with active learning for exudate classification in eye fundus images

    No full text
    Training deep convolutional neural network for classification in medical tasks is often difficult due to the lack of annotated data sam-ples. Deep convolutional networks (CNN) has been successfully used as an automatic detection tool to support the grading of diabetic retinopa-thy and macular edema. Nevertheless, the manual annotation of exu-dates in eye fundus images used to classify the grade of the DR is very time consuming and repetitive for clinical personnel. Active learning al-gorithms seek to reduce the labeling effort in training machine learning models. This work presents a label-efficient CNN model using the ex-pected gradient length, an active learning algorithm to select the most informative patches and images, converging earlier and to a better local optimum than the usual SGD (Stochastic Gradient Descent) strategy. Our method also generates useful masks for prediction and segments regions of interest
    corecore