100 research outputs found

    Presenting a New Strategy to Extract Data Clustering Heartbeat Samples by Using Discrete Wavelet Transform

    Get PDF
    This paper presents the improvement of detection system that normal and arrhythmia electrocardiogram classification. This classification is done to aid the ANFIS (Adaptive Neuro Fuzzy Inference System). The data used in this paper obtained from MIT-BIH normal sinus ECG database signal and MIT-BIH arrhythmia database signal. The main goal of our approach is to create an interpretable classifier that provides an acceptable accuracy. In this model, the feature extraction using DWT (Discrete Wavelet Transform) is obtained. The last stage of this extraction is introduced as the input of ANFIS model. In this paper, the ANFIS model has been trained with Quantum Behaved Particle Swarm Optimization (QPSO). In this study, for training of proposed model, four sample data have been used which result in acceleration of training data. On the test set, we achieved an outstanding sensitivity and accuracy 100%. Experimental results show that the proposed approach is very fast and accurate in improving classification. Using the proposed methodology and telemedicine technology can manage patient of heart disease

    Presenting a New Strategy to Extract Data Clustering Heartbeat Samples by Using Discrete Wavelet Transform

    Get PDF
    This paper presents the improvement of detection system that normal and arrhythmia electrocardiogram classification. This classification is done to aid the ANFIS (Adaptive Neuro Fuzzy Inference System). The data used in this paper obtained from MIT-BIH normal sinus ECG database signal and MIT-BIH arrhythmia database signal. The main goal of our approach is to create an interpretable classifier that provides an acceptable accuracy. In this model, the feature extraction using DWT (Discrete Wavelet Transform) is obtained. The last stage of this extraction is introduced as the input of ANFIS model. In this paper, the ANFIS model has been trained with Quantum Behaved Particle Swarm Optimization (QPSO). In this study, for training of proposed model, four sample data have been used which result in acceleration of training data. On the test set, we achieved an outstanding sensitivity and accuracy 100%. Experimental results show that the proposed approach is very fast and accurate in improving classification. Using the proposed methodology and telemedicine technology can manage patient of heart disease

    Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm

    Get PDF
    This paper proposes a novel method of training the parameters of adaptive-network-based fuzzy inference system (ANFIS). Different from the previous works which emphasized on gradient descent (GD) method, we present an approach to train the parameters of ANFIS by using an improved version of quantum-behaved particle swarm optimization (QPSO). This novel variant of QPSO employs an adaptive dynamical controlling method for the contraction-expansion (CE) coefficient which is the most influential algorithmic parameter for the performance of the QPSO algorithm. The ANFIS trained by the proposed QPSO with adaptive dynamical CE coefficient (QPSO-ADCEC) is applied to five example systems. The simulation results show that the ANFIS-QPSO-ADCEC method performs much better than the original ANFIS, ANFIS-PSO, and ANFIS-QPSO methods

    "Training ANFIS Using Genetic Algorithm for Dynamic Systems Identification

    Get PDF
    In this study, the premise and consequent parameters of ANFIS are optimized using Genetic Algorithm (GA) based on a population algorithm. The proposed approach is applied to the nonlinear dynamic system identification problem. The simulation results of the method are compared with the Backpropagation (BP) algorithm and the results of other methods that are available in the literature. With this study it was observed that the optimisation of ANFIS parameters using GA is more successful than the other method

    Consumer satisfaction on the adoption of e-payment among millennials in Malaysia during Covid 19 pandemic

    Get PDF
    The Pandemic Covid-19 had hugely impacted businesses and economy in every sector of the world through the implementation of Lockdowns and Movement Control Order (MCO). This situation has unavoidably caused a worldwide monetary decline (Cheng, 2020 & UNDP, 2020). , The MCO situation has limited the normal face to face retailing activity and affected consumer goods and the retail industry. Stores of essential items along with meals, groceries, and healthcare experienced extended call for opportunities for serving purchasers at home, at the same time as facing demanding situations of stock, supply chain control, shipping, and maintaining their facility a secure environment (Roggeveen & Sethuraman, 2020)

    A Modified Neuro-Fuzzy System Using Metaheuristic Approaches for Data Classification

    Get PDF
    The impact of innovated Neuro-Fuzzy System (NFS) has emerged as a dominant technique for addressing various difficult research problems in business. ANFIS (Adaptive Neuro-Fuzzy Inference system) is an efficient combination of ANN and fuzzy logic for modeling highly non-linear, complex and dynamic systems. It has been proved that, with proper number of rules, an ANFIS system is able to approximate every plant. Even though it has been widely used, ANFIS has a major drawback of computational complexities. The number of rules and its tunable parameters increase exponentially when the numbers of inputs are large. Moreover, the standard learning process of ANFIS involves gradient based learning which has prone to fall in local minima. Many researchers have used meta-heuristic algorithms to tune parameters of ANFIS. This study will modify ANFIS architecture to reduce its complexity and improve the accuracy of classification problems. The experiments are carried out by trying different types and shapes of membership functions and meta-heuristics Artificial Bee Colony (ABC) algorithm with ANFIS and the training error results are measured for each combination. The results showed that modified ANFIS combined with ABC method provides better training error results than common ANFIS model

    Development of a PSO-ANN Model for Rainfall-Runoff Response in Basins, Case Study: Karaj Basin

    Get PDF
    Successful daily river flow forecasting is necessary in water resources planning and management. A reliable rainfall-runoff model can provide useful information for water resources planning and management. In this study, particle swarm optimization algorithm (PSO) as a metaheuristic approach is employed to train artificial neural network (ANN). The proposed PSO-ANN model is applied to simulate the rainfall runoff process in Karaj River for one and two days ahead. In this regard, different combinations of the input variables including flow and rainfall time series in previous days have been taken under consideration in order to obtain the best model's performances. To evaluate efficiency of the PSO algorithm in training ANNs, separate ANN models are developed using Levenberg-Marquardt (LM) training algorithm and the results are compared with those of the PSO-ANN models. The comparison reveals superiority of the PSO algorithm than the LM algorithm in training the ANN models. The best model for 1 and 2 days ahead runoff forecasting has R2 of 0.88 and 0.78. Results of this study shows that a reliable prediction of runoff in 1 and 2 days ahead can be achieved using PSO-ANN model. Overall, results of this study revealed that an acceptable prediction of the runoff up to two days ahead can be achieved by applying the PSO-ANN model

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    Review of soft computing models in design and control of rotating electrical machines

    Get PDF
    Rotating electrical machines are electromechanical energy converters with a fundamental impact on the production and conversion of energy. Novelty and advancement in the control and high-performance design of these machines are of interest in energy management. Soft computing methods are known as the essential tools that significantly improve the performance of rotating electrical machines in both aspects of control and design. From this perspective, a wide range of energy conversion systems such as generators, high-performance electric engines, and electric vehicles, are highly reliant on the advancement of soft computing techniques used in rotating electrical machines. This article presents the-state-of-the-art of soft computing techniques and their applications, which have greatly influenced the progression of this significant realm of energy. Through a novel taxonomy of systems and applications, the most critical advancements in the field are reviewed for providing an insight into the future of control and design of rotating electrical machines
    • 

    corecore