48 research outputs found

    Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)

    Get PDF
    In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows. We are interested to determine the routing of both TT and AVB flows as well as the scheduling of the TT flows such that all frames are schedulable and the AVB worst-case end-to-end delay is minimized. We have proposed an Integer Linear Programming (ILP) formulation for the scheduling problem and a Greedy Randomized Adaptive Search Procedure (GRASP)-based heuristic for the routing problem. The proposed approaches have been evaluated using several test cases

    AVB-Aware Routing and Scheduling of Time-Triggered Traffic for TSN

    Get PDF

    Time Sensitive Networking Protocol Implementation for Linux End Equipment

    Get PDF
    By bringing industrial-grade robustness and reliability to Ethernet, Time Sensitive Networking (TSN) offers an IEEE standard communication technology that enables interoperability between standard-conformant industrial devices from any vendor. It also eliminates the need for physical separation of critical and non-critical communication networks, which allows a direct exchange of data between operation centers and companies, a concept at the heart of the Industrial Internet of Things (IIoT). This article describes creating an end-to-end TSN network using specialized PCI Express (PCIe) cards and two final Linux endpoints. For this purpose, the two primary standards of TSN, IEEE 802.1AS (regarding clock synchronization), and IEEE 802.1Qbv (regarding time scheduled traffic) have been implemented in Linux equipment as well as a configuration and monitoring system.This work has been supported by the Ministerio de Economía y Competitividad of Spain within the project TEC2017-84011-R and FEDER funds as well as by the Department of Education of the Basque Government within the fund for research groups of the Basque university system IT978-16

    Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking

    Full text link
    Owning to the sub-standards being developed by IEEE Time-Sensitive Networking (TSN) Task Group, the traditional IEEE 802.1 Ethernet is enhanced to support real-time dependable communications for future time- and safety-critical applications. Several sub-standards have been recently proposed that introduce various traffic shapers (e.g., Time-Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), Credit-Based Shaper (CBS), Strict Priority (SP)) for flow control mechanisms of queuing and scheduling, targeting different application requirements. These shapers can be used in isolation or in combination and there is limited work that analyzes, evaluates and compares their performance, which makes it challenging for end-users to choose the right combination for their applications. This paper aims at (i) quantitatively comparing various traffic shapers and their combinations, (ii) summarizing, classifying and extending the architectures of individual and combined traffic shapers and their Network calculus (NC)-based performance analysis methods and (iii) filling the gap in the timing analysis research on handling two novel hybrid architectures of combined traffic shapers, i.e., TAS+ATS+SP and TAS+ATS+CBS. A large number of experiments, using both synthetic and realistic test cases, are carried out for quantitative performance comparisons of various individual and combined traffic shapers, from the perspective of upper bounds of delay, backlog and jitter. To the best of our knowledge, we are the first to quantitatively compare the performance of the main traffic shapers in TSN. The paper aims at supporting the researchers and practitioners in the selection of suitable TSN sub-protocols for their use cases

    Design of Time-Sensitive Networks For Safety-Critical Cyber-Physical Systems

    Get PDF
    A new era of Cyber-Physical Systems (CPSs) is emerging due to the vast growth in computation and communication technologies. A fault-tolerant and timely communication is the backbone of any CPS to interconnect the distributed controllers to the physical processes. Such reliability and timing requirements become more stringent in safety-critical applications, such as avionics and automotive. Future networks have to meet increasing bandwidth and coverage demands without compromising their reliability and timing. Ethernet technology is efficient in providing a low-cost scalable networking solution. However, the non-deterministic queuing delay and the packet collisions deny low latency communication in Ethernet. In this context, IEEE 802.1 Time Sensitive Network (TSN) standard has been introduced as an extension of the Ethernet technology to realize switched network architecture with real-time capabilities. TSN offers Time-Triggered (TT) traffic deterministic communication. Bounded Worst-Case end-to-end Delay (WCD) delivery is yielded by Audio Video Bridging (AVB) traffic. In this thesis, we are interested in the TSN design and verification. TSN design and verification are challenging tasks, especially for realistic safety-critical applications. The increasing complexity of CPSs widens the gap between the underlying networks' scale and the design techniques' capabilities. The existing TSN's scheduling techniques, which are limited to small and medium networks, are good examples of such a gap. On the other hand, the TSN has to handle dynamic traffic in some applications, e.g., Fog computing applications. Other challenges are related to satisfying the fault-tolerance constraints of mixed-criticality traffic in resource-efficient manners. Furthermore, in space and avionics applications, the harsh radiation environment implies verifying the TSN's availability under Single Event Upset (SEU)-induced failures. In other words, TSN design has to manage a large variety of constraints regarding the cost, redundancy, and delivery latency where no single design approach fits all applications. Therefore, TSN's efficient employment demands a flexible design framework that offers several design approaches to meet the broad range of timing, reliability, and cost constraints. This thesis aims to develop a TSN design framework that enables TSN deployment in a broad spectrum of CPSs. The framework introduces a set of methods to address the reliability, timing, and scalability aspects. Topology synthesis, traffic planning, and early-stage modeling and analysis are considered in this framework. The proposed methods work together to meet a large variety of constraints in CPSs. This thesis proposes a scalable heuristic-based method for topology synthesis and ILP formulations for reliability-aware AVB traffic routing to address the fault-tolerance transmission. A novel method for scalable scheduling of TT traffic to attain real-time transmission. To optimize the TSN for dynamic traffic, we propose a new priority assignment technique based on reinforcement learning. Regarding the TSN verification in harsh radiation environments, we introduce formal models to investigate the impact of the SEU-induced switches failures on the TSN availability. The proposed analysis adopts the model checking and statistical model checking techniques to discover and characterize the vulnerable design candidates

    Scheduling Rate Constrained traffic in End Systems of Time-Aware Networks

    Get PDF
    Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TTcommunication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows

    Just a Second -- Scheduling Thousands of Time-Triggered Streams in Large-Scale Networks

    Full text link
    Deterministic real-time communication with bounded delay is an essential requirement for many safety-critical cyber-physical systems, and has received much attention from major standardization bodies such as IEEE and IETF. In particular, Ethernet technology has been extended by time-triggered scheduling mechanisms in standards like TTEthernet and Time-Sensitive Networking. Although the scheduling mechanisms have become part of standards, the traffic planning algorithms to create time-triggered schedules are still an open and challenging research question due to the problem's high complexity. In particular, so-called plug-and-produce scenarios require the ability to extend schedules on the fly within seconds. The need for scalable scheduling and routing algorithms is further supported by large-scale distributed real-time systems like smart energy grids with tight communication requirements. In this paper, we tackle this challenge by proposing two novel algorithms called Hierarchical Heuristic Scheduling (H2S) and Cost-Efficient Lazy Forwarding Scheduling (CELF) to calculate time-triggered schedules for TTEthernet. H2S and CELF are highly efficient and scalable, calculating schedules for more than 45,000 streams on random networks with 1,000 bridges as well as a realistic energy grid network within sub-seconds to seconds

    Schedulability analysis and optimization of time-partitioned distributed real-time systems

    Get PDF
    RESUMEN: La creciente complejidad de los sistemas de control modernos lleva a muchas empresas a tener que re-dimensionar o re-diseñar sus soluciones para adecuarlas a nuevas funcionalidades y requisitos. Un caso paradigmático de esta situación se ha dado en el sector ferroviario, donde la implementación de las aplicaciones de señalización se ha llevado a cabo empleando técnicas tradicionales que, si bien ahora mismo cumplen con los requisitos básicos, su rendimiento temporal y escalabilidad funcional son sustancialmente mejorables. A partir de las soluciones propuestas en esta tesis, además de contribuir a la validación de sistemas que requieren certificación de seguridad funcional, también se creará la tecnología base de análisis de planificabilidad y optimización de sistemas de tiempo real distribuidos generales y también basados en particionado temporal, que podrá ser aplicada en distintos entornos en los que los sistemas ciberfísicos juegan un rol clave, por ejemplo en aplicaciones de Industria 4.0, en los que pueden presentarse problemas similares en el futuro.ABSTRACT:he increasing complexity of modern control systems leads many companies to have to resize or redesign their solutions to adapt them to new functionalities and requirements. A paradigmatic case of this situation has occurred in the railway sector, where the implementation of signaling applications has been carried out using traditional techniques that, although they currently meet the basic requirements, their time performance and functional scalability can be substantially improved. From the solutions proposed in this thesis, besides contributing to the assessment of systems that require functional safety certification, the base technology for schedulability analysis and optimization of general as well as time-partitioned distributed real-time systems will be derived, which can be applied in different environments where cyber-physical systems play a key role, for example in Industry 4.0 applications, where similar problems may arise in the future
    corecore