Scheduling Rate Constrained traffic in End Systems of Time-Aware Networks

Abstract

Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TTcommunication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows

    Similar works