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ABSTRACT IEEE 802.1 time-sensitive networking (TSN) is a set of amendments to the IEEE 802.1 standard
that enable safety-critical and real-time behavior over Ethernet for the industrial automation and automotive
domains. Selected TSN mechanisms offer the possibility to emulate the well-known traffic classes found in
mixed-criticality distributed systems: Time-triggered (TT) communication with low jitter and bounded end-
to-end latency, audio-video-bridging (AVB) streams with bounded end-to-end latency, and general best-
effort messages, which have no timing guarantees. Critical traffic is guaranteed via the global network
schedule which is stored in so-called gate control lists (GCLs) and controls the timely behavior of frames
for each queue of an egress port. Although researchers have started to propose approaches for the routing
and scheduling (i.e., GCL synthesis) of TT traffic, all previous research has ignored lower priority real-
time traffic, such as AVB, resulting in TT configurations that may increase the worst-case delays of
AVB traffic, rendering it unschedulable. In this paper, we propose a joint routing and scheduling approach for
TT traffic, which takes into account the AVB traffic, such that both TT and the AVB traffic are schedulable.
We extensively evaluate our approach on a number of synthetic and realistic test cases.

INDEX TERMS IEEE 802.1 Time-sensitive networking, deterministic ethernet, real-time networks, routing,
scheduling, meta-heuristic optimization.

I. INTRODUCTION
In this paper, we are interested in safety-critical and real-time
applications implemented using distributed cyber-physical
systems. Several real-time capable communication protocols
have been proposed and are in use in different application
areas, e.g., FlexRay for automotive [8], ARINC 664 p7 for
avionics [2], and EtherCAT for industrial automation [16].
However, emerging applications, e.g., Advanced Driver
Assistance Systems (ADAS), autonomous driving, or indus-
trial automation, have increasing bandwidth and real-time
demands. For instance, autonomous driving requires data
rates of at least 100 Mbps for graphical computing based on
camera, radar, and Light Detection And Ranging (LIDAR)
data, whereas CAN and FlexRay only provide data rates of
up to 1 Mbps and 10 Mbps, respectively.

The well-known networking standard IEEE 802.3
Ethernet [14] meets the emerging bandwidth requirements
for a wide range of application areas, while remaining
scalable and cost-effective. It does, however, lack real-
time and dependability capabilities [6]. Many extensions,
such as EtherCAT, PROFINET, ARINC 664p7 [3], and

TTEthernet [24], have been suggested and are used in the
industry. Although they satisfy the timing requirements,
they are incompatible; hence, the interoperability within
the same network is not possible without losing real-time
guarantees [7]. To mitigate this drawback, the IEEE 802.1
Time-Sensitive Networking (TSN) Task Group [15] has been
working on defining standard amendments for real-time and
safety-critical enhancements over Ethernet.

In standard switched Ethernet networks, in which end-
systems are interconnected through a series of physical links
and bridges (switches), communication from one sender to
one or multiple receivers (flows/streams) is done via frames
that are forwarded via a route through the network. Standard
switching fabric contains queues on the egress ports of the
switches (and end-systems) which implement a standard pri-
ority scheme and which store frames until the port is free
for transmission. Hence, a frame might experience queueing
delay while waiting for the transmission of higher priority
frames and earlier arriving frames with same priority. This
leads to network congestion causing nondeterministic behav-
ior and variance in frame arrival times.
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TSN: First, IEEE 802.1Q-20051 introduced support for pri-
oritizing the Best-Effort (BE) traffic providing some higher
Quality-of-Service (QoS) properties. The IEEE Audio-Video-
Bridging (AVB) Task Group [13] has developed another
enhancement generally known as AVB which introduce two
new shaped AVB traffic classes enabling bounded latency.
In 2012, TSN Task Group has started extending the pro-
tocol towards safety-critical and time-sensitive applications
which require even more stringent real-time guarantees. Via
selected amendments defined in TSN, i.e., IEEE 802.1Qbv
Enhancements for Scheduled Traffic and IEEE 802.11ASrev
Clock synchronization, the well-known Time-Triggered (TT)
traffic class, which has strict jitter and end-to-end latency
guarantees, can be emulated in standardized TSN networks.
TT Traffic: requires schedule tables, called Gate Control

Lists (GCLs), that defines the exact queue transmission times
of frames on every egress port along the route of the respec-
tive flows. The schedules define at which points in time a
so-called timed-gate that is associated with every queue is
opened and when it is closed, enabling and disabling frame
transmission, respectively. Since the schedules in different
devices need to be aligned, a clock synchronization mech-
anism is required in order to provide a global time refer-
ence. This synchronization protocol is defined in the IEEE
802.1ASrev standard and, together with IEEE 802.1Qbv, pro-
vide the basic building blocks for achieving determinism and
bounded end-to-end latency for critical traffic.AVB traffic is
intended for applications that require bounded end-to-end
latencies, but that do not have the same stringent real-time
requirements as TT traffic. In order to prevent the starvation
of lower priority messages AVB introduces two new shaped
traffic classes (AVBClass A andB) and uses the Credit-Based
Shaper (CBS) defined in IEEE 802.1BA. The worst-case end-
to-end delays (WCDs) of AVB flows can be analyzed via
timing analysis methods, e.g., based on Network Calculus.
The AVB traffic type is especially useful for industrial appli-
cations, which require dynamic reconfiguration to meet new
business demands, allowing computation and communication
services to evolve over time with minimal disruption. Finally,
BE traffic has the lowest priority and does not provide any
timing guarantees.

Note that for implementing real-time applications, both
TT and AVB traffic types provide bounded latencies, and
the choice of traffic type for a message depends on the
particularities of the application. The WCDs of TT flows are
determined by the GCLs. However, the WCD of an AVB
message depends on the GCLs of TT traffic and the other
AVB messages that share the same queue or have a higher
priority. Recent timing analysis work for AVB [31] has shown
how to determine the WCDs of AVB messages taking into
account the impact of TT traffic via the GCLs.
Problem Formulation: In this paper we consider real-

time applications implemented using both the TT and

1We will not provide references for all sub-standards, but these can be
easily found based on their names via IEEE Xplore.

AVB traffic types running on TSN-based distributed archi-
tectures. We assume that the network topology is given. The
applications messages are modelled as TT and AVB mes-
sages. Furthermore, we assume that the traffic type of each
message is given. We are interested to synthesize the routing
and the GCLs for TT traffic, such that both TT and AVB
traffic is schedulable.

A. RELATED WORK AND CONTRIBUTION
There is a lot of research work on deriving schedule tables
for tasks and messages [4]. For TTEthernet, researchers
have proposed strategies for the scheduling of TT frames
on network links [26], which take into account the lower
priority Rate-Constrained (RC) traffic type of TTEthernet.
However, although there are similarities between TSN and
TTEthernet, they differ in some significant aspects: Messages
in TTEthernet consist of a single frame, whereas TSN mes-
sages may consist of multiple frames. Furthermore, TTEth-
ernet schedule tables are specified for individual TT frames,
whereas TSN specifies schedules for the output port queues,
not frames. Consequently, all frames sharing the same queue
are affected by the associated GCL. As a result, the work
on TTEthernet scheduling is not directly applicable to TSN.
In addition, the transmission of RC frames and the corre-
sponding timing analysis for WCDs differ significantly com-
pared to AVB.

For the GCL synthesis problem in TSN, researchers have
started to propose several approaches, based on, e.g., Sat-
isfiability/Optimization Modulo Theories (SMT/OMT) [5]
and metaheuristics [7]. Deciding the routing of traffic flows
is also an important problem. The TSN standards proposes
dynamic routing and reservation mechanisms, such as IEEE
802.1Qca and IEEE 802.1Qcc. Such dynamic routing is
appropriate for non-critical traffic. However, real-time and
safety-critical traffic uses static routes, decided at design
time. Hence, researchers have also addressed the problem of
determining the static routes for both TT [18] and AVB [17]
traffic. Researchers have addressed also the joint routing and
scheduling problem, proposing solutions based on Integer
Linear Programming (ILP) [25] and a List Scheduling-based
heuristic [20].

However, all of the approaches for routing or GCL syn-
thesis of fully deterministic TT transmission in TSN pre-
sented previously have looked at TT traffic in isolation,
completely ignoring the impact on AVB traffic. The work
in [12] so far is the only one which addresses the GCL
synthesis for mixed-criticality applications in TSN. As we
will show in the experimental results section, ignoring AVB
traffic results in routes and GCLs that are optimized for TT at
the expense of AVB traffic, which leads to very large WCDs
for AVB.

Contribution: In this paper, we propose a joint routing
and scheduling of TT traffic in TSN taking into account the
AVB traffic. To the best of our knowledge this is the first
work dealing with the interdependence between AVB traffic
and the TT routing and scheduling. Considering the effect of
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FIGURE 1. TSN network and device architecture. (a) Example architecture.
(b) A TAS for an output port [31].

TT routing and scheduling on AVB traffic results optimized
solutions guarantee the schedulability of TT traffic while at
the same time reducing the WCDs of AVB traffic, such that
its end-to-end latency requirements are fulfilled. To solve
this problem we have developed a solution that integrates a
K-Shortest Path (KSP) heuristic for routing with a Greedy
Randomized Adaptive Search Procedure-based (GRASP)-
based metaheuristic for scheduling.

The paper is structured as follows: Section II presents the
architecture and applications models. We introduce briefly
TSN and present how TT and AVB work in section III.
Section IV outlines our problem formulation and section V
presents our proposed solution. The experimental results are
in section VI and the last section presents our conclusions.

II. SYSTEM MODELS
A. ARCHITECTURE MODEL
The architecture model is an abstract representation of the
physical TSN network, including end systems, switches, and
physical links. The topology is modeled as an undirected
graph G, where the vertices represent devices in the network,
i.e., end systems ES , and network switches SW , known in
TSN also as bridges. The edges represent physical full-duplex
links. A data link dli,j is a directed communication link from
a vertex vi to another vertex vj. Fig. 1a shows the topology
of a network with three end systems, ES1, ES2, ES3, and two
switches, SW1 and SW2. A route ri is a cycle-free ordered
sequence of data links connecting one sending end system
with one or more receiving end systems, via switches. With-
out loss of generality, we consider in this paper that the routes
are unicast. Fig. 1a shows two routes: r1 = {ES1, SW1,ES3},
and r2 = {ES2, SW1,ES3}. The set of all routes in a network
is denotedR.

B. APPLICATION MODEL
The real-time applications are modeled as a set of messages
which can be transmitted as TT or AVB flows. The set of
flows in the system is denoted as F = FTT

∪ FAVB. Associ-
atedwith each flow fi is the tuple of attributes (vs, vt ,T ,D,P),
where vs denotes the sending end system and vt denotes the
receiving end system. The flows are periodic, with a period T
and have a relative deadline D. P is the payload, or

TABLE 1. Example application model.

data size, of fi. A single Ethernet frame transmits a payload of
at most 1500 bytes (B), the so-calledMaximumTransmission
Unit (MTU). If the data size is larger than MTU, the message
is fragmented into multiple frames, f ki denoting the k th frame
of the flow fi. Table 1 shows eight sample flows, four TTflows
f1 to f4 and four AVB flows f5 to f8.
A routing R : F 7→ R ∪ {∅} is a function which maps

a flow to the route on which that message is forwarded.
To show that a flow fi has no assigned route we use the
notation R(fi) = ∅. In this work the routing R has to be
decided. U (R, dli,j) denotes the utilization on link dli,j for the
routing R. It represents the sum of the bandwidth of the flows
routed through the link dli,j and is defined as:

U (R, dli,j) =
∑

fk∈F |dli,j∈R(fk )

fk .P
fk .T

.

For a route r ∈ R the utilization U represents the maximum
utilization of links composing the route, i.e., U (R, r) =
maxdli∈r U (R, dli).

III. TSN PROTOCOL
TSN is based on the switched multi-hop network architec-
ture from IEEE 802.3 Ethernet. Switches interconnect end
systems via full-duplex links, meaning that the physical links
enable transmission in both directions simultaneously.

Ethernet frames contain IEEE 802.1Q headers, with two
fields of importance to TT traffic:
• VLAN Identifier (VID) is a 12-bit field specifying the
Virtual LAN of a frame. This is used to distinguish
frames from different messages.

• Priority Code Point (PCP) is a 3-bit field specifying
the priority level, i.e., the traffic class such as TT,
AVB, or BE. Furthermore, it defines which queue the
frame is assigned to within a switch.

An Ethernet switch has ingress (incoming) and egress (out-
going) ports connecting it via links to surrounding switches
and end systems. Each egress port typically has eight queues
for storing frames that wait to be forwarded on the cor-
responding link, one or more TT queues, two for AVB
(Class A and B respectively) and the remaining queues are
used for BE. Fig. 2 shows part of a TSN network.

A. TT TRAFFIC
IEEE 802.1ASrev provides a clock synchronization protocol
to obtain a global time base for TT transmission. Taking
advantage of the global synchronized clock, IEEE 802.1Qbv
defines a Time-Aware Shaper (TAS) to achieve low latency
for TT traffic by establishing completely independent time
windows by opening and closing the gates. Interference from
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FIGURE 2. TSN network with internal queues, gates and GCLs [31].

lower priority traffic is prevented by closing the gates of the
remaining queues, see Fig. 1b. When the egress port is idle,
the next frame is selected for transmission from the queue
with highest priority among the queues with open gates.
Opening queues in a mutually-exclusive fashion, allows for
full control of forwarded frame.

A Gate Control List (GCL) defines for each egress port,
when the queue gates are open and closed. In Fig. 2 they are
depicted as tables. 1 and 0 in the GCL represent an open
and closed gate, respectively. Using the GCLs to schedule
forwarding of frames in a route from sender to receiver,
enables very low latency and jitter for TT traffic, making it
suitable for hard real-time communication.

The GCLs can be constructed in such a way that AVB
and BE traffic are prevented from initiating transmission in
time slots reserved for TT frames. However, nondeterminism
could still occur due to interference with other TT flows.
When a frame is scheduled for transmission on a link in a
given time interval, the corresponding GCL is set to open
the associated gate in that interval. Suppose something goes
wrong, so the frame is not fully received, or is not the first
frame in the queue as expected. Then the link transmits
the wrong frame or remains idle when it should be trans-
mitting. Consequently, nondeterminism is introduced, which
means timeliness is compromised, see [5] for an in-depth
discussion. Similar to the related work on GCL synthesis [5],
we will determine the GCLs such that the non-determinism
is avoided, see section IV-A for a discussion.
Integration Modes: When there are mixed-criticality

frames within the same network, TT traffic might be delayed
by AVB or BE traffic that is already being transmitted at
the time of the schedule trigger for TT (i.e., gate open
for the respective queue). In order to reduce this delay,
TSN introduces two mechanisms. The first is referred to as
non-preemption mode. The gate of lower-priority traffic can
be closed in advance of the TT schedule event such that
the port is available for the TT traffic. This mechanism is
similar to the ‘‘guard band’’ approach found in TTEther-
net [4]. The second mechanism is preemption, defined by

FIGURE 3. Example AVB transmission [31].

IEEE 802.1Qbu, where the transmission of an AVB (or BE)
frame will be interrupted by the transmission of a TT frame
and resumed once the TT frame has been fully transmitted.
As specified in IEEE 802.1Qbu even in the case of pre-
emption mode the fragments of the preempted lower priority
frames should be transmitted by well formatted Ethernet
frames, i.e., the so-called smallest non-preemptable fragment
consists of an Ethernet preamble, a minimum of 64 B of data
and the trail which further consists on a CRC code and an
inter frame gap [27]. Please note that for the first integration
mode the delay of TT frames is 0 while for the second mode it
is upper bounded by the transmission duration of the smallest
non-preemptible fragment.

B. AVB TRAFFIC
The availability of an AVB queue is also determined by
a Credit-Based Shaper (CBS) and the purpose of CBS is
to prevent the starvation of lower priority flows. Hence,
an enqueued AVB frame is allowed to be transmitted if
(i) the queue gate is open, (ii) the CBS allows it and (iii) there
are no other higher priority AVB frames being transmitted.

The CBS standardized in IEEE 802.1Qat in conjunction
with the amendments in IEEE 802.1Qbv makes the queue
available for transmission whenever the amount of credit is
positive or zero. The credit is initially zero, it is decreased
with a sending slope (sdSl) while transmitting and frozen
while the gate is closed. Transmission is only initiated when
credit is non-negative. The credit is increased with an idle
slope (idSl) when frames are waiting, but they are not being
transmitted. If the queue is emptied while the credit is posi-
tive, the credit is reset to zero. The idle and sending slopes are
configuration parameters described in IEEE 802.1Qbv; the
idle slope is defined as fraction of link speed and the sending
slope as difference between idle slope and link speed.

Using the example in Fig. 3 we show howCBSworks, con-
sidering also TT and BE traffic. Rectangles on the first time-
line represent the transmission of frames and down arrows
on top give the frames arrival times, for example aiAVB_A
indicates the arrival time of the frame fi. The lines on the
timeline show the variation of credit for respective AVB class,
where AVB Class A and B are respectively shown with
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red and blue. Fig. 3a considers the non-preemption integra-
tion mode. An AVB Class A frame f 1AVB_A arrives at t0; mean-
while, a BE frame is transmitting. Due to the non-preemption
of BE frames, f 1AVB_A has to wait until fBE finishes its trans-
mission, and credit A is increased with the idle slope idSlA.
At time t1, the transmission of fBE is completed. However,
the AVB gates are closed due to the reservation for TT traffic
and insufficient idle interval (caused by the guard band) for
the whole frame f 1AVB_A transmission. Therefore, credit A is
frozen during [t1, t4] when AVB gates are closed. When an
AVB Class B frame f 1AVB_B arrives at t2, its credit is also
frozen. From time t4, since the gate for TT queue is closed
and due to the higher priority of Class A, f 1AVB_A is allowed
to be transmitted. The credits for A and B are, respectively,
decreased and increased with the sending slope sdSlA and idle
slope idSlB. During the transmission of f 1AVB_A, another frame
f 2AVB_A is enqueued in the Class A queue at time t5. Then,
at t6 when frame f 1AVB_A finishes, there are two frames f 2AVB_A
and f 1AVB_B waiting to be transmitted. But credit A at this time
is negative, therefore f 2AVB_A is not allowed to be transmitted
and f 1AVB_B has the permission to be transmitted. At the end of
f 1AVB_B transmission, f 2AVB_A starts its transmission as credit A
has been increased to a non-negative value.

In Fig. 3b, we present the preemption mode. The arrival
times are the same as in Fig. 3a. However, due to the pre-
emption integration mode, the TT frame fTT is delayed from
t3 to t4, and when f 1AVB_A resumes its transmission after
being preempted, we have to consider an additional overhead
(depicted).

IV. PROBLEM FORMULATION
The problem addressed in this paper is: Given a TSN network
topologyG, and a set of TT and AVB flowsF = FTT

∪FAVB

determine an implementation φ such that: (i) all the flows
are schedulable, i.e., the WCD(fi) ≤ fi.D for all TT and
AVBflows. Determining φmeans: (1) deciding the routeR(fi)
for each TT flow fi ∈ FTT , (2) deciding the number of
TT queues, (3) mapping the TT flows to egress port
TT queues and (4) deriving the GCLs GCL.
Note that mapping of AVB flows to AVB queues is decided

by their class, i.e., AVB Class A flows are assigned to AVB
Class A queue and B flows to Class B queue. Our proposed
solution can also determine the AVB routes at the same
time with the TT routes. However, the focus of this paper
is on determining the routing and scheduling of TT flows,
so we consider the AVB routing given and fixed. The routing
of AVB flows aiming at reducing their WCDs has been
addressed by us in [17].

A. GCL SYNTHESIS FOR TT
Let us consider the example from Fig. 4 where we have the
two flows from Fig. 4a routed as indicated in Fig. 4b.

Fig. 4 shows GCLs using a Gantt chart, depicting how
TT frames are transmitted. The x-axis represents time dimen-
sion, while y-axis is related to output ports of nodes.

FIGURE 4. Example GCL synthesis for TT. (a) Set of TT flows with
attributes. (b) Network topology and routing of TT flows.
(c) Minimum queue usage. (d) Minimum end-to-end latency.

Moreover, the rectangles represent TT frames’ transmission.
The left side of rectangle is the start time of the transmitted
frame, and its width represents the transmission duration
which is related to the frame size and the physical link rate.
To illustrate the queue usage, we use thin rows labeled qi
below the link schedules showing when frames are in the
queues of the respective egress port.

The GCLs must satisfy the following constraints:
• Link congestion. A data link is limited by its hardware
to only transmit a single frame at a time, i.e., frames on
the same link cannot overlap in the time domain. This
corresponds to the property that boxes on the same row
of Fig. 4 do not overlap. The link can be seen as a shared
resource that can only be occupied by a single frame at
a time.

• Flow transmission. A switch cannot forward a frame
until the entire frame has been buffered in the
switch. This introduces a forwarding delay for each hop
from source to destination. Due to the small synchro-
nization error of the clocks between devices, the exact
time when the entire frame has been received in a par-
ticular switch is unknown. Consequently, the time for
forwarding the frame on the next link should take into
account the worst-case synchronization error, δ.

• Bounded end-to-end latency. All TT flows must arrive
within their relative deadline, i.e., the end-to-end latency
cannot exceed the deadline. End-to-end latency is
defined as the time from the sender initiates transmission
of the first frame and until the last frame arrives at the
receiver.
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• Deterministic queues. Analogously to the link con-
gestion property, a queue can be considered a shared
resource, which can only be occupied by frames from
a single flow at a time. In Fig. 4 this corresponds to
the property that queue utilization boxes do not overlap
in the time domain, if they belong to the same queue.
In addition, there should be a δ-sized spacing between
queue utilization boxes of frames arriving at different
ingress ports, to account for the worst-case synchroniza-
tion error.

Under these assumptions, the GCLs are conceptually
equivalent to the schedule tables presented in Fig. 4.
Fig. 4c and 4d shows two feasible schedules. GCLs can be
optimized according to several criteria, e.g., TT queue usage
and TT end-to-end latency. In order to improve queue usage,
the frames of f1 and f2 should be rearranged in such a way
that they both share the same queue in [SW1,ES3] without
occupying the queue at the same time. Fig. 4c shows such
a schedule, where they both use q1. Notice that the queue
utilization boxes do not overlap.

On the other hand, minimizing queue usage has a negative
effect on end-to-end latency. In Fig. 4c the frames of f2 have
been spaced further apart, thereby increasing the end-to-end
latency. Instead, the schedule could be optimized with respect
to end-to-end latency as shown in Fig. 4d. In this schedule,
two queues are used but the frames of f2 are grouped closer
together compared to Fig. 4c resulting in a smaller end-to-
end latency. This example shows that a desirable schedule is
a tradeoff between queue usage and end-to-end latency.

B. ROUTING FOR TT
Let us illustrate the importance of optimizing the routing for
TT flows. Let us consider the TT flows in Fig. 5a to be routed
and scheduled in the architecture depicted in Fig. 5, consist-
ing of four end systems interconnected with five switches.
If we use the shortest path routing, which would intuitively
reduce the latency of TT flows, we obtain the two routes r1
and r2 as depicted in Fig. 5b. Flows f1, f2 and f3 have the
route r1 and flows f4, f5 have the route r2. In this situation,
flow f5 is not schedulable (does not meet its deadline), due to
the congestion on the link [SW1, SW2].
We can make the TT flows schedulable by rerouting

one of the flows reducing thus the congestion on the link
[SW1, SW2]. For example, flow f1 can be routed on a longer
route instead of the shortest path, e.g., {ES1, SW1, SW5,
SW4, ES4}. The optimal routing, which minimizes the TT
end-to-end latencies, is depicted in Fig. 5c (we label the
routes with the flow numbers), which makes use of longer
routes for several flows. This example shows that the routing
of TT flows impacts their scheduling and has to be considered
at the same time with the GCL synthesis.

C. AVB-AWARE TT ROUTING AND SCHEDULING
So far, we have ignored the AVB flows. Let us illustrate
the importance of taking into account the AVB flows during
the TT routing and scheduling. For this example we are

FIGURE 5. Example routing optimization for TT. (a) Flows example for
routing. (b) Shortest path routing. (c) Optimized routing.

using the network topology from Fig. 1a, which has three
end systems, ES1 to ES3, and two switches, SW1 and SW2,
implementing the set of flows presented in Fig. 1 with four TT
and four AVBflows, respectively. All AVB flows are Class A,
with the default idle slope of 75%. Each flow is packed in
one frame and all links have a speed of 1 Gbps, resulting
in a transmission time C of 6.33 µs for TT frames and
13.24 µs for AVB frames. In this example we consider the
non-preemption integration mode.

A flow is schedulable if the frames arrive before their
deadlines at the destination, even in the worst-case scenario
captured by WCD(fi). For TT, the WCDs are determined
directly by the GCLs. However, theWCD of an AVBflow f is
determined by its worst-case scenario, i.e., the situation that
delays f the most. An AVB frame will be delayed by other
AVB and TT frames (including the guard band of those
TT frames) sharing the same output port.

In the following examples we are going to show the sched-
ule tables for TT flows and we will illustrate the worst-case
scenario for one AVB flow, namely f5.

See section III for how to read the schedule. In addition,
the number on top of rectangle box represents the transmis-
sion time of the frame, and the number on top of a blank
interval is the waiting time due to the negative credit of
CBS or for timely block reasons. The 1 in the figure means
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FIGURE 6. Motivational examples for considering AVB during TT routing and scheduling. (a) Optimal
TT schedule: AVB flows are unschedulable; WCD for f5 is 151.76 µs. (b) AVB-aware TT schedule:
WCDs of AVB flows are decreased to 138.59 µs. (c) Rerouting of some TT flows: all AVB flows are
schedulable; WCDs for AVB flows are 99 µs.

that the frame arrives just at the instant when the remaining
time is slightly less than its transmission time. Similar to
Fig. 3, we use downward pointing arrows to show the arrival
times for AVB frames that create the worst-case scenario
for f5. Note that the GCLs are cyclic and in the worst case f5
may arrive in the previous hyperperiod and it cannot start
transmitting due to the timely block. The AVB credit for the
queue of f5 is depicted below the timelines using a red line.
Fig. 6a shows the optimal schedule for TT flows, which

minimizes their WCDs by scheduling them as soon as pos-
sible. Only one queue is used for TT and all AVB flows
are in the AVB Class A queue. As expected, the TT flows
are schedulable, but all AVB flows have a WCD of
151.76 µs > D so they are not schedulable. The worst-case

scenario resulting in the WCD of 151.76 µs for f5 is depicted
in Fig. 6a.

However, if we construct an optimized GCL, as depicted
in Fig. 6b, we can decrease the WCDs of all AVB flows
to 138.59 µs. In this example, we have rescheduled the
TT flows f1 and f2 by delaying them into the second half of
the hyperperiod. This keeps the TT flows schedulable (still
preserving their WCDs), but has the benefit of creating space
for the AVB flows, decreasing their delay even in their worst-
case. We illustrate the reduction of the WCD of AVB frame
f5 in Fig. 6b compared to Fig 6a.
Another choice is to reroute the TT flows f3 and f4

through switch SW2 as depicted in Fig. 6c. As we can
see, this preserves the schedulability of TT flows, as in the
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previous examples, but now also all AVB flows are schedu-
lable. By rerouting the TT traffic, the WCD of AVB flow f5
becomes 99 µs ≤ D.
The examples have shown the importance of carefully

deciding the routes and GCLs for the TT traffic such that both
TT and AVB are schedulable. Ignoring the AVB traffic when
deciding on the routing and scheduling of TT, as is the case
with all the related work, results in large AVB WCDs that
miss the deadlines.

V. OPTIMIZATION STRATEGY
The problem presented in section IV is NP-hard. Exhaus-
tively just enumerating every path between two vertices has
been proven NP-hard [28]. Also, the corresponding decision
problem of the TT scheduling problem, namely the flow-shop
scheduling, is NP-complete [9]. Thus for a joint scheduling
and routing problem to exhaustively evaluate every sched-
ule and routing combination leads to an intractable amount
of combinations that have to be evaluated. To solve our
network design problem we use an integrated heuristic-
metaheuristic strategy, i.e., a routing heuristic based on
K-Shortest Path (KSP) method [29] and a Greedy Random-
ized Adaptive Search Procedure (GRASP) metaheuristic [23]
for the scheduling. The integrated strategy is further called
Joint Routing and Scheduling JRS and is presented in Alg. 1.
Heuristics are not guaranteed to find the optimal solution;

successful heuristics are able to find good quality solutions to
large problem sizes in a reasonable time. Heuristics are algo-
rithms specialized for a particular problem (in our case, rout-
ing), whereas metaheuristics are more general optimization
algorithms that can be applied to a wide range of problems
(we use the GRASP metaheuristic for scheduling).
JRS takes as an input the architecture G and the set of

flows F and produces at the output a routing and scheduling
solution φ. JRS generates multiple routing and scheduling
alternatives, further called solutions (lines 3, 4) and evaluates
each solution (line 5) attempting to find that solution which
minimizes the objective function. The objective function is
presented in section V-A. Our proposed routing and schedul-
ing algorithms are presented in sections V-B and V-C, respec-
tively. JRS terminates after a given time limit is reached or if
there is no improvement in the objective function after a given
number of iterations.

Algorithm 1 JRS(G,F)
1: φ← ∅

2: repeat
3: R← RoutingHeuristic(G,F)
4: φ′← SchedulingMetaheuristic(G,FTT ,R)
5: if Obj(φ′,FAVB) < Obj(φ,FAVB) then
6: φ← φ′

7: end if
8: until stopping criterion not met
9: return φ

A. OBJECTIVE FUNCTION
We are interested to find solutions that meet the deadlines for
both TT and AVB flows. We consider a solution to be invalid
if the TT deadlines are not satisfied. On each iteration of JRS
and during the local search, the quality of a valid solution x
is evaluated using an objective function Obj(x,FAVB) that
checks if the AVB flows are schedulable, driving thus the
search towards schedulable solutions:

Obj(x,FAVB) =
∑

fi∈Favb

max(0,WCD(fi)− fi.D). (1)

The objective function captures the sum of tardiness for
each AVBflow, i.e., the time it takes to arrive at its destination
after its deadline has passed.

To validate and evaluate a solution we need to compute the
WCDs for both TT and AVB flows. Due to the deterministic
behavior of TT traffic the WCD for a TT flow is easily
computed from the schedule table as the difference between
the time when the last frame arrives at the receiver and the
time when the sender initiates transmission of the first frame.
However, to determine the WCDs of AVB flows in pres-
ence of TT traffic, we have to use a schedulability analysis
for AVB. Although such analyses have been proposed in the
past, they have considered AVB in isolation, ignoring TT traf-
fic. Only recently researchers have proposed AVB analysis
to consider the influence of GCLs. Thus, reference [17] has
extended the AVB Latency Math from IEEE 802.1BA, but this
approach is very pessimistic. In this paper, we use the AVB
schedulability analysis from [31] that: (i) is based onNetwork
Calculus, (ii) takes into account the GCLs, (iii) supports both
AVB Class A and B and (iv) considers all integration modes,
considerably reducing the pessimism compared to [17].

B. ROUTING STRATEGY
Our routing heuristic, presented in Alg. 2, takes as input the
architecture G and the set of TT flows FTT , including for
each flow fi ∈ FTT the sending fi.vs and receiving fi.vt end
systems. The strategy outputs the routing R which maps a
route to each flow.

Initially the routing R is empty, which means that routes
have to be found for all TT flows. As researchers demon-
strate [17], [25], when we target time-sensitive applica-
tions, the shortest path routing may not lead to the smallest
WCDs. However, enumerating all possible cycle-free paths
(the full search space) to find the optimal routes is intractable.
Hence, our strategy is to reduce the search space by using
the K-Shortest Path (KSP) algorithm [29], which generates
K unique routes of increasing length (the set RKSP), starting
from the shortest route. Our idea is that good quality routing
solutions can be found by combining routes which, although
are not the shortest routes, they are not excessively long. K is
a parameter that controls how many routes are generated.
The K parameter is randomly picked from the interval [1,K ]
(line 3), where K represents the upper bound of K , see [30]
for details on how this upper bound can be determined exper-
imentally for each flow based on the size of the topology.
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Algorithm 2 RoutingHeuristic(G,F)
1: R← ∅
2: for fi ∈ FTT do
3: K ← PickK (fi)
4: RKSP← GenerateRoutes(G, fi.vs, fi.vt ,K )
5: R← R ∪ {SelectRoute(R, fi,RKSP)}
6: end for
7: return R

The routing heuristic iteratively selects a route for each
TT flow attempting to evenly distribute the link utilization.
The idea is that a high link utilization increases the WCDs.
Thus, to determine a route R(fi) for a flow fi ∈ FTT the
routing heuristic: (1) generates the reduced set of routes
RKSP line 4 and (2) selects the least utilized route from the
generated set and adds it to the partial routing R (line 5).
The utilization U (R,R(fi)) of a route R(fi) from a partial
routing solution R represents the maximum link utilization
of the links composing the route, see section II-B for how we
calculate the utilization.

If there are multiple routes with the minimum utiliza-
tion, the heuristic selects a route randomly. By choosing
randomly K and the least utilized route we are able to diver-
sify the routing solutions output by our RoutingHeuristic,
which helps JRS in Alg. 1 to explore the solution space.

C. SCHEDULING STRATEGY
GRASP is well-suited for combinatorial optimization

problems, where an initial solution can be efficiently con-
structed in a greedy manner. Each iteration of GRASP con-
sists of two phases: (1) A construction phase, where an
initial feasible solution is built, and (2) a search phase,
where a neighborhood around the initial solution is examined
for improving solutions. The construction phase contributes
with diversification, and the local search with intensification,
enabling thus convergence towards a global optimum.

Alg. 3 presents our GRASP-based scheduling metaheuris-
tic. As input, it takes (1) the architectureG, (2) the set of flows
F = FTT

∪ FAVB, (3) the routing R and (4) two parameters,
γ and π , related to the construction and local search phases,
respectively. Alg. 3 outputs a feasible schedule x, which is
the best scheduling solution found throughout the search in

Algorithm 3 SchedulingMetaheuristic(G,F ,R, γ, π )
1: x ← ∅
2: repeat
3: x ′← GreedyRandomized(G,FTT ,R, γ )
4: x ′← LocalSearch(x ′,G,FTT ,R, π)
5: if Obj(x ′,FAVB) < Obj(x,FAVB) then
6: x ← x ′

7: end if
8: until termination criteria not met
9: return x

terms of the objective function from section V-A. Initially,
x is empty (line 1), indicating that a feasible solution is yet to
be found, i.e., the set of scheduled flows TT is empty.

In each iteration, a new scheduling solution x ′ is generated
in a greedy randomized fashion (line 3) using a constructive
scheduling heuristic (GreedyRandomized , section V-C.1).
GreedyRandomized contains a random element to ensure that
different parts of the solutions space are explored in each iter-
ation. The parameter γ defines the level of randomness. Too
much randomness affects the quality of the initial schedules,
whereas too little randomness affects diversification.

The initial solution is subsequently optimized via a local
neighborhood search until reaching a local optimum (line 4).
The local search destroys and repairs the current schedule to
obtain new schedules. The parameter π specifies how much
to destroy/repair in each iteration of the local search. If a
new solution results in a better solution than the current best
known, then the best solution is updated (lines 5 and 6). This
repeats until a given execution time limit has been reached
(termination criteria). The local search phase is described
in section V-C3.

1) GREEDY RANDOMIZED HEURISTIC
The construction phase of the GRASP-based Scheduling-

Metaheuristic is presented in Alg. 4. GreedyRandomized is
a polynomial-time greedy randomized heuristic designed to
find feasible schedules which serve as good starting points
for the subsequent local search. Hence, it should be computed
efficiently, should not produce the same schedule in each
iteration, and should not make obvious suboptimal decisions
which the local search has to spend much time rectifying.

Flows are ordered by their period (line 2). To break ties,
the route length is used as an indicator of how difficult flows
are to schedule. Flows are scheduled one at a time in this
order (lines 3-12). Given the current scheduling solution x,
we attempt to schedule each unscheduled TT flow using
several heuristic variations based on List Scheduling, see
section V-C2. The Restricted Candidate List (RCL) (line 4)
is a data structure that keeps track of the γ best schedules

Algorithm 4 GreedyRandomized(G,FTT ,R, γ )
1: x ← ∅
2: F ′← SortByPeriod(FTT ,R)
3: for fi ∈ F ′ do
4: RCL ← RestrictedCandidateList(γ, fi)
5: while ScheduleFlow(x, fi,RCL) = true do
6: x ′← x ∪ {fi}
7: RCL.AddCandidate(x ′)
8: end while
9: if RCL.Length() > 0 then

10: x ← RCL.GetRandomCandidate()
11: end if
12: end for
13: return x
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FIGURE 7. Heuristic variations for scheduling frames of a flow in an existing schedule. (a) ASAP. (b) ASAP-L. (c) ASAP-LF. (d) ASAPQ.
(e) ASAPQ-L. (f) ASAPQ-LF. (g) ALAP. (h) ALAP-F. (i) ALAP-FL. (j) ALAPQ. (k) ALAPQ-F. (l) ALAPQ-FL.

produced by the heuristics with respect to the objective func-
tionObj. When all heuristics have been considered, a random
schedule is chosen from among those in RCL (line 10).
It may be the case that the heuristics are unable to schedule

a particular flow. In that case, no candidate is added to RCL
(lines 5-8). If all heuristics fail, RCL is empty (lines 9-11),
i.e., that particular flow is not included in the schedule, mak-
ing it invalid.

TT flows are scheduled individually using ScheduleFlow,
presented in the next section.

2) SCHEDULE FLOW
Given an existing partial scheduling solution x, several
feasible schedules exist for a flow f . In this section we
present a List Scheduling-based heuristic approach called
ScheduleFlow for scheduling the individual frames of a single
flow, while minimizing queue usage. The achieved schedule
can then, in turn, be post-processed to minimize end-to-end
latency. The heuristic strategy is generalized into multiple
variations denotedH.
ScheduleFlow schedules the frames of f sequentially,

scheduling each frame on all links before moving on to the
next frame. It continues in this way until either all frames
in f are successfully scheduled, or until failing to schedule a
particular frame, i.e., failing to determine offsets for the frame
such that all constraints of section IV-A are satisfied.
Fig. 7a illustrates an ‘‘As Soon As Possible’’ (ASAP)

approach to scheduling frames in a schedule. A frame is
scheduled on its route, in-order, at the earliest possible offset
where the link is idle and the queue is empty. If the frame is
not assigned to the same empty-queue block as it was on the
previous link, the algorithm backtracks and reschedules the
previous frame to the next empty-queue block. ScheduleFlow
succeeds if the last frame is scheduled within the deadline
and fails otherwise. Analogous to ASAP, an ‘‘As Late As
Possible’’ (ALAP) approach can be formulated by traversing
the frames in reverse order, as well as scheduling on links in

reverse order. The reader is referred to [22], for more details
about determining feasible frame offsets using the ASAP and
ALAP approaches.

a: REDUCING QUEUE USAGE
To minimize queue usage, the heuristic initially assigns all
flow instances to the first queue. If the heuristic at some point
fails to schedule a particular frame on one of its links, it may
be because the queue assignment imposes too many restric-
tions on the feasible frame offsets. In this case, the queue
assignment is incremented for some link on the route, before
restarting the algorithm from the first frame. The idle-link
and empty-queue blocks are used to determine which link
to increment. ASAP heuristic increments the first queue
assignment which allows a frame to start earlier than with
the current queue assignment. When the algorithm terminates
one of two things has happened: Either all frames have been
scheduled, or some switch has no more queues available,
i.e., the heuristic failed to schedule the flow.

b: REDUCING END-TO-END LATENCY
Once a feasible solution has been found it can be post-
processed to minimize end-to-end latency. Recall, that the
end-to-end latency is the time from the offset of the first
frame on the first link and until the finish time of the last
frame on the last link. Hence, shifting the first frame to
the right, or the last frame to the left reduces end-to-end
latency. The intervals in which frames can safely be shifted
without violating feasibility are computed from the empty-
queue and idle-link intervals. A frame can be post-processed
immediately when it has been scheduled on all links, or all
frames can be post-processed together when the entire flow
has been scheduled.

Fig. 7 shows heuristic variations including the original
ASAP heuristic (Fig. 7a). White boxes represent the intervals
where frames can be shifted. The main variation, ASAPQ,
is illustrated in Fig. 7d. It reduces the time frames spend in
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queues by shifting each frame instance as close as possible
to the frame instance on the next link. Frame instances on the
last link are notmoved, which is illustratedwith a thick border
in Fig. 7d. As an important side effect, the method reduces the
overall time the queue is occupied, which could lead to better
queue utilization and a lower total number of queues.

The remaining ASAP variations are different ways of post-
processing the offsets once all frames have been scheduled
by either ASAP or ASAPQ. In ASAP-L (Fig. 7b) all frame
instances are shifted toward the last frame instance to reduce
end-to-end latency. The schedule produced by ASAP-LF
(Fig. 7c) has been through an additional post-processing
step, where all frames instances are shifted toward the first
frame instance. ASAPQ-L and ASAPQ-LF are variations of
ASAPQ that have been post-processed in the same two ways.

The same variations can be formulated for the ALAP
heuristic, but every shift is reversed compared to ASAP.
Consequently, the post-processing steps first move toward
the first frame instance, then the last. Fig. 7g–7l depict the
variations for ALAP. In total, twelve heuristic variants are
used, targeting both the latency and the queue usage.We refer
the reader to [22] for more details.

3) LOCAL SEARCH
The purpose of the local search phase is to intensify the search
by investigating a well-defined neighborhood of solutions
similar to the current solution. This corresponds to schedules
where the majority of TT flows are scheduled exactly as in
the current solution. It is likely that a better solution arises
from rescheduling only a couple of TTflows. The local search
attempts to identify such rearrangements by removing a small
subset of TT flows, and rescheduling them in a different way.

The destroy and repair mechanisms of the local search
rearrange flows compared to the original static order given
by SortByPeriod . Thus, the local search can recover from a
suboptimal ordering of flows in the construction phase.

The neighborhood is defined as follows: All the schedules
which can be constructed by removing up to π flows from x,
and subsequently rescheduling them using one of the schedul-
ing heuristics. If a new, improving solution is discovered,
the neighborhood search is repeated for the new solution.
The local search continues in this way until reaching a local
minimum, from which no solution from the neighborhood
improves the current solution, or until exceeding the time
limit.

VI. EXPERIMENTAL EVALUATION
We have performed three sets of experiments. In the first two
sets of experiments we focus on the ability of our approach
to determine good quality solutions for the TT routing and
scheduling in a reasonable time. We are interested if our Joint
Routing and Scheduling (JRS) approach scales well with
large problem sizes. For these experiments we ignore AVB.
Hence, in the first set of experiments (section VI-A) we eval-
uate the quality of our GRASP-based Scheduling Heuristic
for TT, and in the second set of experiments we evaluate the

TABLE 2. Comparison of ILP, OMT, and GRASP.

importance of considering the TT routing during the GCL
synthesis (section VI-B). In the last set of experiments we
take AVB into account and evaluate JRS in terms of its ability
to determine schedulable solutions for both TT and AVB.

A. EVALUATION OF GRASP-BASED SCHEDULING
HEURISTIC FOR TT GCL SYNTHESIS
In the first set of experiments we were interested to
evaluate the quality of our GRASP-based GCL synthesis
approach. We have used the GRASP implementation from
section V-C and we use two objective functions for GRASP,
the normalized queue usage, denoted kN , and the normalized
end-to-end latency, denoted3N . kN (x) is a mapping of queue
usage for TT traffic to the interval [0; 1] as shown in Eq. 2.

kN (x) =
k(x)− k(x)

k(x)− k(x)
(2)

where k(x) denotes the total number of queues used for
TT traffic across all egress ports. k(x) and k(x) are lower and
upper bounds, respectively. The lower bound is assuming a
single TT queue in all egress ports forwarding TT traffic,
and the upper bound assumes the minimum of the available
queues in the egress port and the number of TT flows for-
warded through that egress port.

The total end-to-end latency is normalized in3N in a simi-
lar way. The lower bound assumes that all flows are scheduled
independently, i.e., without interference from other TT flows.
The upper bound assumes the worst-case scenario where all
flows have end-to-end latencies equal to their deadline.

To evaluate GRASP, we have implemented the OMT
approach from [5] and the ILP approach from [21], which
both minimize the number of queues (k). The values of k
are presented in the table, including the lower and upper
bounds, and the normalized value. We have compared the
three approaches on the test cases from [21], and our GRASP
has been able to obtain the same optimal solutions in less than
1 second for all test cases as shown in table 2.

Further, we considered six topologies of varying size. The
topologies are industrial sized, and are derived from the work
presented in [19]. The topologies are grouped into three cat-
egories based on their size. There are three small topologies
(G1, G2 and G3, with up to 4 ESes and 3 NSes), two medium
(G4 and G5, with up to 48 ESes and 28 NSes), and one large
(G6, with 256 ESes and 146NSes), see Table 4 for the number
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TABLE 3. Combinations of periods in test cases.

TABLE 4. Average number of (flows, frames) of test cases.

of flows on each topology size. The network precision is
assumed to be δ = 5.008 µs. The transmission rate for all
links is fixed at 1 Gbps, and the propagation delay of each
link is assumed negligible, i.e., it is set to zero. Every egress
port has eight queues.

The hyperperiod of all flows defines the width of the sched-
ule, and has a major impact on the complexity of the problem.
Thus, the hyperperiod is an important aspect to consider,
when evaluating performance. We define three hyperperiods
of 1 ms, 6 ms, and 30 ms. For each choice of hyperperiod
we define a set of short periods and a set of long periods as
presented in Table 3. Short-period flows have a data size of
either one, two, or three times the MTU of 1500 bytes. Long-
period flows have data sizes 10, 20, 40, 60, or 100 timesMTU.
The choice of periods and data sizes is inspired by [5].

In order to generate flows, that yield difficult scheduling
problems in terms of queue usage and end-to-end latencies,
the link utilization should be relatively high. Hence, synthetic
applications are generated by repeatedly adding short-period
and long-period flows to the set of flows. The sending and
receiving end systems are randomly chosen among the end
systems in the topology. This procedure is repeated until
multi-queue scenarios arise.

For each choice of topology and hyperperiod, we generate
30 test cases with high link utilization. In total we use 540 test
cases, 90 for each of the six topologies.

Table 4 shows the average number of flows and frames
for every pair of topology class and hyperperiod. Overall,
the test instances range from a few hundred frames to tens
of thousands of frames.

We have extended the ILP formulation presented in [21],
which minimizes queue usage, to also feature end-to-end
latencyminimization. For the ILP formulation, the Gurobi [1]
solver was given a time limit of 4 hours, after which it returns
the best feasible solution. The ILP approach is intractable for
many of the test instances, especially for larger hyperperiods.
The results are compared with GRASP in Fig. 8a and Fig. 8b
for the subset of test cases solved by ILP (the x-axis shows
the topologies G1 to G6, each with flows of varying hyper-
periods, 1 to 30 ms). Some data points are missing, because
the ILP approach was unable to find feasible solutions within
the time limit.

FIGURE 8. Comparison of GRASP and ILP. (a) Average queue usage for
GRASP and ILP. (b) Average end-to-end latency for GRASP and ILP.

Fig. 8a shows on the y-axis the normalized queue usage kN ,
and Fig. 8b shows in µs the normalized end-to-end latency
3N . The ILP approach was able to solve 48% of the instances
when minimizing queue usage and 42% when minimizing
latency. On average, the ILP approach produced schedules
with 17% lower queue usage in Fig. 8a and 51% lower end-to-
end latency in Fig. 8b, but had a 15–20 times longer execution
time.

GRASP is able to significantly improve execution time
compared to the ILP approach which is intractable for large
instances, and is able to produce better schedules than a
pure heuristic approach (e.g., variants of ASAP and ALAP).
Its ability to minimize the objectives could be improved by
increasing the time limit. Conversely, the time limit can be
decreased in order to compute feasible schedules quickly.
This flexibilitymakes GRASPwell-suited to be used for GCL
synthesis, where the schedules must take into account AVB
flows. Our GRASP can also handle non-harmonic periods
(that may result in large hyperperiods, which increase the
complexity of the scheduling problem). However, in the case
of extremely large hyperperiods we recommend adjusting
the periods or changing the traffic type of the TT frames to
AVB. In our previous work [11] we addressed the problem
of determining the appropriate traffic type for each frame for
mixed-criticality traffic.

B. EVALUATION OF TT ROUTING HEURISTIC
In this section we are interested to evaluate the ability of our
RoutingHeuristic from Alg. 2 to find TT routes that improve
the schedulability of TT frames. We have ignored AVB flows
in these experiments and focused only on TT.
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TABLE 5. Comparison of shortest path routing with our proposed TT RoutingHeuristic .

TABLE 6. Experimental results for JRS.

We have used four synthetic test cases, TC1–TC4 and two
real-life test cases, ‘‘Orion’’ and ‘‘SAE’’. We have varied the
size and type of network topology, i.e., topologies such as
‘‘mesh’’ that have more alternative routes connecting ESes
and topologies with less alternative routes. Thus, TC1 is a
mesh topology with 6 end systems and 8 network switches
and TC2 is a mesh topology with 12 ESes and 14 NSes.
TC3 and TC4 use a ‘‘ring’’ topology that has fewer alternative
routes. In TC3, we have added more dataflow links such that
TC3 is in-between a mesh and a ring topology. Both TC3 and
TC4 have 12 ESes and 12NSes. Finally, ‘‘Orion’’ and ‘‘SAE’’
are real-life topologies adapted from [26].

The results are presented in table 5, where we have used
the results obtained considering ‘‘Shortest path’’ routes as
a baseline. In the table we show three setups for each test
case: low utilization (L), medium utilization (M) and high
utilization (H). The increasingly higher utilization has been
obtained by increasing the number of TT flows; the TT
flows were generated as presented in section VI-A. For each
algorithm and test case, we show the percentage of TT flows
that are schedulable (out of 100%).

As we can see from table 5, as the size of the topology
and the utilization increase, the shortest path routing has
difficulties in finding schedulable solutions for the TT flows.
Note that, for low utilizations it is easy to find schedula-
ble solutions even without optimizing the routing. However,
our RoutingHeuristic is able to significantly improve on the
shortest path routing as the topologies get larger and more
utilized.

As we can see from the results, for topologies that have
alternative routes, optimizing routing is very important if
we want to obtain solutions where TT flows can be sched-
uled, and our RoutingHeuristic is able to find such results
in the short time limits imposed. We have used time limits
of 1, 5, 15 and 30 minutes, corresponding to the topology
size and utilization (the larger the topology and utiliza-
tion, the longer the time limit). As expected, for topolo-
gies that do not have multiple alternative routes between
end systems (e.g., TC3 and TC4), optimizing routing is less
important.

C. EVALUATION OF AVB-AWARE ROUTING AND
SCHEDULING
Our proposed TT routing and scheduling algorithms are the
only approaches proposed so far in the literature that can
take into account the AVB flows. Our AVB-aware Joint Rout-
ing and Scheduling (JRS) for TT flows is evaluated in this
section. We have considered the non-preemption integration
mode in these experiments, but our approach is able to handle
all integration modes.

To evaluate JRS, we used five test cases, ‘‘Motiv.’’ (the
motivational example in Fig. 6), three synthetic test cases,
TC5–7 and an automotive test case ‘‘Auto.’’. For TC5–7 we
used star and snowflake topologies, gradually increasing
the size of the network. For ‘‘Auto’’, we used traffic flows
obtained from an automotive manufacturer, implementing
ADAS functions, and we have used the approach from [10] to
generate the network topology. The details of the test cases,
i.e., the number of TT and AVBflows and the number of ESes
and NSes are in table 6 columns 2–5.

We have run our proposed JRS optimization strategy on
these test cases, and the results are presented in table 6 under
the heading JRS. We have compared our approach with three
other approaches. (1) Thus, ‘‘TT+AVB’’ does not attempt to
optimize routing (considers shortest paths) and instead uses
the SchedulingMetaheuristic from Alg. 3 to determine GCLs
such that both TT andAVBflows are schedulable (i.e., it takes
into account the AVB flows).

The two other approaches ignore AVB flows and also
use shortest path routing. Thus, (2) in the ‘‘TT latency’’
approach, where we minimized the latency of TT flows
and (3) in the ‘‘TT queues’’ approach we minimized the
number of TT queues (in the hope of helping indirectly the
AVB flows by reducing the number of higher-priority TT
queues). These two approaches were also implemented using
SchedulingMetaheuristic, but the objective function has been
changed to minimize the TT latency and the number of TT
queues, respectively, see section VI-A. The ‘‘Exec.’’ columns
show the algorithms’ runtime in seconds. The TT flows
were schedulable for all experiments. In the columns labeled
‘‘Sched.’’ we show if the AVB flows were also schedulable.
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As we can see from the table, if AVB is ignored dur-
ing scheduling as is the case with the ‘‘TT latency’’ and
‘‘TT queues’’ approaches, we are not able to find schedulable
solutions for AVBflows. However, if we take into account the
AVB flows during the scheduling (the ‘‘TT+AVB’’ heading
in table 6), we are able to find solutions where both TT and
AVBflows are schedulable. However, this is possible only for
the smaller test cases, ‘‘Motiv.’’, TC5 and TC6. For the larger
test case TC7 and the realistic test case ‘‘Auto.’’, we also have
to optimize the routing of the TT flows in order to obtain
schedulable solutions.

The conclusion is that only by using our JRS approach
that takes the AVB into account during the routing and
scheduling optimization, we are able to obtain schedula-
ble solutions where all AVB flows are also schedulable.
In addition, our approach is able to handle large problem
sizes, such as TC7, with a network of 402 devices and
891 flows.

VII. CONCLUSIONS
In this paper we have considered TSN-based cyber-physical
systems and running mixed-criticality real-time applications
that use both TT and AVB traffic. We were interested to
decide the routing, the number of TT queues, the allocation
of TT flows to TT queues and the GCLs of TT queues such
that all flows are schedulable. Our approach was to use an
integrated heuristic-metaheuristic, called Joint Routing and
Scheduling (JRS), to search for TT routing and scheduling
solutions where both TT and AVB flows are schedulable.
Each solution visited during the search was evaluated in terms
of AVB schedulability using a Network Calculus approach
that takes into account the impact of TT GCLs on the WCDs
of AVB flows. Our results show that only by taking into
account the AVB flows during the routing and GCL syn-
thesis we can obtain schedulable solutions for both TT
and AVB.
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